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In a recent review, VanRullen (2011) con-

cludes that electrophysiological data should 

not be filtered at all when one is interested 

in the temporal dynamics or onset latencies 

of the electrophysiological responses. This 

conclusion was based on the observation 

that response onset latency was “smeared 

out in time for several tens or even hun-

dreds of milliseconds” (p. 6) in a simulated 

dataset.

It is correct that any band limitation in 

the frequency domain necessarily affects 

the signal in the time domain resulting 

in reduced precision and artifacts (cf. 

e.g., Luck, 2005). Nevertheless, here, we 

will discuss that the problem is overesti-

mated by about an order of magnitude by 

the assumptions and analysis parameters 

used in VanRullen’s simulated dataset and 

advertise the cautious usage of carefully 

designed filters to be able to also detect 

small signals.

FILTER SELECTION

The filter selected in VanRullen’s simulation 

was a bad choice as it results in artifacts not 

related to filtering per se. The FIR filter gen-

erated by EEGLAB (Delorme et al., 2011) 

with default settings exhibits excessive filter 

ringing (cf., Figure A1 in Appendix), and 

excessive pass-band ripple including non-

unity gain at DC (the step response never 

returns to one). These artifacts are due to a 

known misconception in FIR filter design in 

EEGLAB1. The artifacts are further ampli-

fied by filtering twice, forward and back-

ward, to achieve zero-phase.

With more appropriate filters the under-

estimation of signal onset latency due to 

the smoothing effect of low-pass filtering 

could be narrowed down to about 4–12 ms 

in the simulated dataset (see Figure 1 and 

Appendix for a simulation), that is, about an 

order of magnitude smaller than assumed.

SIGNAL-TO NOISE RATIO

The signal-to-noise ratio chosen by 

VanRullen for the simulated dataset is 

implausibly high (+26 dB at single trial 

level, +43 dB averaged) as signal-to-noise 

ratios smaller than one are common in real 

electrophysiological data. This assumption 

biases the conclusion on the detectability 

of the signal without filtering and overesti-

mates the impact of filter ringing artifacts.

At more realistic signal-to-noise ratios 

no significant impact of the filter arti-

facts is observed (but only effects of tran-

sient smoothing by low-pass filtering; see 

Figure 1 and Appendix). The precision that 

can be achieved in the measurement of the 

response onset latency is limited by signal-

to-noise ratio. Thus, the trade-off between 

filter effects versus the signal-to-noise ratio 

gain by filtering must be considered.

FILTER EFFECTS VS. FILTER ARTIFACTS

We also recommend to distinguish between 

filter effects, that is, the obligatory effects 

any filter with equivalent properties – cutoff 

frequency, roll-off, ripple, and attenuation 

– would have on the data (e.g., smoothing 

of transients as demonstrated by the filter’s 

step response), and filter artifacts, that is, 

effects which can be minimized by selection 

of filter type and parameters (e.g., ringing).

CAUSAL FILTERING

In a commentary on VanRullen, Rousselet 

(2012) suggested to use “causal” filtering to 

solve the problem of signal onset latency 

underestimation due to smoothing. This is 

a valid recommendation, which has already 

been given (e.g., Luck, 2005). However, it 

should have been made explicit that the sug-

gested type of “causal” filtering comes at the 

cost of a distortion of phase information also 

with FIR filters (cf., Figure A1 in Appendix).

The causality in filtering is not directly 

related to the symmetry of filter coefficients 

as implied in Figure 1 in Rousselet’s (2012) 

comment. That is, the FIR filter labeled “non-

causal” can also be applied in a causal way by 

not compensating the filter’s delay (by not 

filtering the signal backward and not “left-

shifting” the signal by the group delay). In 

order to reduce this filter delay in causal fil-

tering, asymmetric “causal” FIR filters, more 

often referred to as minimum-phase filters, 

can be used. However, as FIR filter coef-
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However, in most situations filtering will 

nevertheless be necessary to appropriately 

analyze electrophysiological data. In these 

situations it is essential to know and under-

stand the effects of filtering on the data and 

cautiously adjust filter settings (cutoff fre-

quencies, roll-off, attenuation, and ripple) 

to the signal of interest and the particular 

application, e.g., by evaluating the effects of 

different filters on the data. Especially the 

high-pass filtering of slow ERP components 

or blinks, as commonly observed in the lit-

erature, might seriously affect ERP time 

course and amplitudes (see, Luck, 2005, for 

a detailed discussion). Furthermore, we rec-

ommend not using default filter settings, in 

In the first paragraph of the appendix 

Rousselet (2012) suggests that the causal 

filtered signal could be left-shifted by the 

group delay to achieve zero-phase. We do not 

agree with this recommendation: First, this 

would re-introduce non-causality. Second, 

this statement is wrong as only linear-phase 

(anti-/symmetric FIR) filters can be made 

zero-phase by left-shifting the signal.

CONCLUSION

In the analysis of electrophysiological data 

signal-to-noise ratio has to be improved by 

all adequate means. Priority should be given 

to the collection of higher numbers of trials 

and reduction of noise in data recording. 

ficients  necessarily must be symmetric (or 

antisymmetric) for the filter to have linear-

phase characteristic (Rabiner and Gold, 1975; 

Ifeachor and Jervis, 2002), this reduction of 

filter delay comes at the cost of a non-linear 

phase response and the introduction of a sys-

tematic delay in the signal (which can not eas-

ily be compensated due to non-linear phase). 

The recommendation for minimum-phase 

causal FIR filtering, thus, should be strictly 

limited to the detection of onset latencies and 

applications where causality is required for 

theoretical considerations. In its application 

it should be considered that the systematic 

delay and the non-linear phase response 

could also affect response onset information.
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FIGURE 1 | Impact of filter type and signal-to-noise ratio (SNR) on the 

time course of the averaged signal and the detected signal onset 

latency in the simulated dataset (sampling frequency 500 Hz; step 

signal; signal onset 150–180 ms) as defined by VanRullen (2011). The 

simulated dataset was filtered with the EEGLAB firls based filter, a 

windowed sinc FIR filter (Widmann, 2006), a discrete Gaussian kernel filter 

(Lindeberg, 1990), and a minimum-phase converted version of the Gaussian 

filter (causal; see Figure A1 in Appendix for a detailed description of the 

filters). Single trial signal-to-noise ratio was reduced in 20 dB-steps from 

+26 dB (original dataset; left column) to −14 dB (right column). The Gaussian 

filtered single trials (second row) and the averaged trials (third row) are 

displayed. Signal onset latency was measured by a running one-sided t-test 

(bottom row; gray bars) and jack-knifing with a relative 20%-criterion (black 

lines; Kiesel et al., 2008).
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particular when using EEGLAB, but rather 

to manually and carefully select filter type 

and parameters to minimize filter artifacts.

Filtering can result in considerable dis-

tortions of the time course (and amplitude) 

of a signal as demonstrated by VanRullen 

(2011). Thus, filtering should not be used 

lightly. However, if effects of filtering are 

cautiously considered and filter artifacts 

are minimized, a valid interpretation of the 

temporal dynamics of filtered electrophysi-

ological data is possible and signals missed 

otherwise can be detected with filtering.
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filters were significantly reduced (non-unity 

DC gain is still noticeable with the EEGLAB 

firls filter). No significant ringing artifacts 

were observed with the windowed sinc FIR 

filters. Importantly, at −14 dB single trial 

signal-to-noise ratio the signal could no 

longer be reliably detected without filter-

ing and thus no signal onset latency could 

be determined. With non-causal and causal 

filtering the signal was detectable and the 

onset latency was overestimated by 4–6 and 

18 ms, respectively (0 and 14 ms as esti-

mated by jack-knifing). −14 dB single trial 

signal-to-noise ratio would be considered 

a good value in many electrophysiological 

measurements as, e.g., in electroencepha-

lography (EEG). Averaging the 50 trials 

improved signal-to-noise ratio by +17 dB. 

Filtering further improved signal-to-noise 

ratio by about +12 dB allowing the reliable 

detection of the signal.

We would like to note that ringing arti-

facts must be considered in relation to noise 

level. In non-simulated electrophysiological 

observed with the windowed sinc filter, in 

particular undershoot before signal onset 

(see Figure 1, left column, third row). 

Additionally, we re-analyzed the dataset 

by means of a causal filtering with a min-

imum-phase converted discrete Gaussian 

kernel filter as suggested by Rousselet 

(2012). The signal onset latency was over-

estimated by 4 ms due to the systematic 

delay introduced by causal filtering (16 ms 

as estimated by jack-knifing). However, the 

morphology of the signal was considerably 

affected by the non-linear phase response 

of the filter.

SIGNAL-TO-NOISE RATIO

In two additional analyses we reduced single 

trial signal-to-noise ratio in the simulated 

dataset in steps of −20 dB to +6 dB and 

−14 dB by reducing the signal amplitude 

from 1 to 0.1 and 0.01, respectively (Figure 1, 

columns two and three). At +6 dB signal-to-

noise ratio the differences in onset latency 

underestimation between the linear-phase 

APPENDIX

FILTER SELECTION

We re-analyzed the simulated dataset as 

defined by VanRullen by means of a 49 

point Hamming windowed sinc FIR filter 

(same length as the “default” EEGLAB gen-

erated filter; Widmann, 2006), and a dis-

crete Gaussian kernel filter (σ = 6.18 ms; 

see Figure A1 for impulse, step, magni-

tude, and phase responses). The signal 

onset latency was underestimated by 

about 4 (windowed sinc) to 12 ms (discrete 

Gaussian) relative to unfiltered data com-

pared to 42 ms when applying the EEGLAB 

firls default filter by one-sided t-tests (see 

Figure 1, bottom row; with non-simulated 

data more appropriate methods as, e.g., 

cluster-based non-parametric analysis, 

Maris and Oostenveld, 2007, could have 

been employed). No signal onset latency 

underestimation was observed using 

a jack-knifing technique with a rela-

tive 20%-criterion (Kiesel et al., 2008). 

Significant ringing artifacts could still be 
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FIGURE A1 | Prototypical low-pass linear-phase filters’ impulse, step, 

magnitude, and phase responses (top row; sampling frequency = 500 Hz, 

cutoff frequency 30 Hz). The EEGLAB “Basic FIR filter” (red, 49 points, default 

settings, EEGLAB v11.0.2.1b; Delorme et al., 2011) exhibiting excessive ringing 

artifacts (“ripples” in the time domain observed if filtering a non-oscillating input, 

e.g., a step signal, yields an oscillating output) is shown in comparison to a 

windowed sinc (green, 49 points, firfilt EEGLAB plugin; Widmann, 2006) and a 

discrete Gaussian kernel filter (σ = 6.18 ms, based on a modified Bessel 

function; Lindeberg, 1990). The minimum-phase converted version of the 

discrete Gaussian kernel filter (bottom row; “causal” filter converted by means 

of Hilbert transform) shows a considerably non-linear phase response but does 

not show a response before signal onset.
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roll-off) should be preferred over nar-

rower ones where possible. Cutoff fre-

quencies and transition-bands should be 

separated from the signal of interest in 

the frequency domain to minimize dis-

tortion of the signal by filter artifacts and 

undesired filter effects. The filter should 

be as short as possible in order to mini-

mize temporal smearing. Low-pass filters 

can sometimes be omitted in favor of later 

analysis steps introducing additional fil-

tering as, e.g., computing time window 

mean values (representing low-pass filters 

as well). Balancing transition-band width 

and cutoff frequency is a particular chal-

lenge for high-pass filter design as the 

transition-band is limited by DC on the 

one hand but cutoff frequency should be 

low in order not to distort slow compo-

nents on the other hand. Extreme cutoff 

frequencies <0.1 Hz as found sometimes 

in the literature should be avoided as filters 

usually become very long.
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filters, e.g., the Remez-exchange (equirip-

ple) algorithm, preferable for arbitrary 

frequency responses not very common in 

the analysis of electrophysiological data 

(McClellan et al., 1973). The authors have 

good experiences with windowed sinc FIR 

filters, also commonly referred to as “ideal” 

filters due to the rectangular shape of the 

sinc function in the frequency domain. 

Implementations for the analysis of elec-

trophysiological data can be found, e.g., in 

EEProbe software package (ANT, Enschede, 

The Netherlands) and the open-source 

firfilt EEGLAB plugin (Widmann, 2006). 

For a widely accessible introduction to 

windowed sinc FIR filter design see, e.g., 

Smith (1999). Windowed sinc FIR filter’s 

stop-band attenuation (and pass-band rip-

ple) can be precisely controlled by selection 

of window type; the filters’ transition-band 

width is a function of filter order/length 

(and window type), thus, filter length can 

be estimated (as with Remez-exchange FIR 

filters) or computed (with Kaiser windows), 

and high-pass filters can be easily optimized 

for excellent DC attenuation. If filter ringing 

is assumed to have an impact on a particular 

application, non-oscillating FIR filters, as, 

e.g., Gaussian kernel FIR filters, should be 

considered.

As rule of thumb, stop-band attenu-

ation should be selected only as high as 

necessary, wider transition-bands (slow 

data ringing artifacts are not expected to 

have a major impact due to the high noise 

level on the one hand and the absence of 

ultra-sharp transients on the other hand.

RECOMMENDATIONS FOR SELECTION OF 

FILTER TYPE AND PARAMETERS

Unfortunately there cannot be given a 

ubiquitously valid recommendation for the 

selection of optimal filter settings, type, and 

parameters. They have to be individually 

adjusted to each application.

Infinite impulse response (IIR) filters are 

often considered as computationally more 

efficient compared to FIR filters as they are 

shorter. However, it should be considered, 

that the signal has to be filtered twice – for-

ward and backward – to achieve zero-phase 

(possibly introducing artifacts with DC off-

sets at signal boundaries and squaring the 

frequency response); a larger number of 

computations is necessary with IIR filters 

due to recursive operation (relative to the 

IIR filter’s shorter length); numerical errors 

can be accumulated due to the infinitive 

impulse response; and they are more dif-

ficult to control and can be unstable.

For FIR filters, only symmetric linear-

phase filters should be considered for most 

applications in electrophysiology as they 

can be easily made zero-phase by left-

shifting the signal by the filters group delay. 

There are various methods to design FIR 
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