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Abstract. The total least squares (TLS) and truncated TLS (T-TLS) methods are widely
known linear data fitting approaches, often used also in the context of very ill-conditioned,
rank-deficient, or ill-posed problems. Regularization properties of T-TLS applied to linear
approximation problems Ax ≈ b were analyzed by Fierro, Golub, Hansen, and O’Leary
(1997) through the so-called filter factors allowing to represent the solution in terms of
a filtered pseudoinverse of A applied to b. This paper focuses on the situation when multiple
observations b1, . . . , bd are available, i.e., the T-TLS method is applied to the problem
AX ≈ B, where B = [b1, . . . , bd] is a matrix. It is proved that the filtering representation
of the T-TLS solution can be generalized to this case. The corresponding filter factors are
explicitly derived.
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1. Introduction

In a wide range of applications there is a need to solve linear approximation

problems in the form

(1.1) AX ≈ B, A ∈ R
m×n, B ∈ R

m×d, X ∈ R
n×d.
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The matrix A represents a discretized model, the columns of B are observation or

measurement (also called data) vectors and the columns of X stand for the unknown

solutions.

Since both A and B typically contain errors, the problem (1.1) is usually solved

by data fitting approaches looking for some corrections of the observed data or of

the model making the problem compatible. Popular methods are ordinary, data,

or total least squares methods possibly extended by appropriate constraints; see

[18], [12]. When A is ill-conditioned or when the problem (1.1) is ill-posed (meaning

that the solution does not depend continuously on the data B), it is necessary to

approximate (1.1) by a near problem with better properties; see [8], or [17], Sect. IV.1,

p. 85. Such approach is called the regularization, see e.g. [17], [9], [10]. Regularized

least squares methods include the truncated singular value decomposition (also called

truncated least squares), Tikhonov regularization, truncated (also called regularized)

total least squares, and many others, see e.g. [9], [12].

It was shown previously that for problems with d = 1 (i.e., single data vector)

some of the regularization methods can be interpreted as filtering methods, since the

regularized solutions can be written in terms of filtered pseudoinverse of A applied

to b, see e.g. [11], Chap. 6, or [4]. The analysis of the corresponding filter factors

gives insight into the regularization properties of these methods. However, the case

when d > 1 (i.e., multiple data) has to our knowledge not been fully addressed.

In the truncated singular value decomposition and Tikhonov regularization, the

generalization to d > 1 is straightforward, since the filter factors for individual

columns of B can be constructed independently. In the paper, we show that this is

not true in the truncated total least squares. Thus, we concentrate on the analysis

of this method for problems with d > 1. We prove that it can also be described as

a filtering method by deriving an explicit formula for the underlying filter factors

forming a three-way tensor.

Our exposition essentially follows the development in papers [5], [3], [2], and [4]

for d = 1. We first study spectral properties of rank-d updates of a real symmetric

matrix, and the singular value decomposition of a matrix extended by d columns,

while generalizing the results presented in [3] and [2]. The work [4] motivates the

application in the truncated total least squares regularization of a problem with

several observation vectors b1, . . . , bd and the formulation of the filter factors.

For simplicity of derivations, some nonrestrictive assumptions are considered

throughout this paper. Let A⋆B 6= 0 (otherwise the data vectors are uncorrelated

with the model and thus the only reasonable solution is X = 0). Let (1.1) be incom-

patible, i.e., R(B) 6⊆ R(A) (otherwise there exists a solution matrix X such that

B − AX = 0 and no least squares minimization is required), and overdetermined,

i.e., m > n+ d (otherwise one can add zero rows to A and B). Let B have the full
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column rank, i.e., rank(B) = d (otherwise a right-hand side preprocessing can be

applied, see [15], [16]).

The paper is organized as follows. Section 2 summarizes the filter factor repre-

sentation of least squares based regularized solutions. Section 3 describes the total

least squares regularization. Section 4 analyzes the eigenvalues and eigenvectors of

specific rank-d updates of symmetric matrices. Section 5 derives the filter factor

representation of the total least squares based regularized solutions. Section 6 gives

the conclusions.

In the text M⋆, M−1, M † denote the transposition, the inverse, and the Moore-

Penrose pseudoinverse of M , respectively, Im (or just I) denotes the square identity

matrix of order m and ej its jth column, 0m,n (or just 0) denotes the m × n zero

matrix. Furthermore, R(M) denotes the range of M , ‖v‖, ‖M‖, ‖M‖F denote the

Euclidean norm of a vector v, the spectral and the Frobenius norms of a matrix M ,

respectively.

2. Least squares based regularization by filtering

We start with a definition of the (ordinary) least squares (LS) problem.

Definition 2.1 (Least squares minimization). Let AX ≈ B be the approxima-

tion problem (1.1). Then

(2.1) min
G∈Rm×d

‖G‖F subject to AX = B +G

is called the LS minimization problem.

Consider the singular value decomposition (SVD) of A,

(2.2) A = UΣV ⋆, Σ =

[
diag(σ1, . . . , σn)

0m−n,n

]
, σ1 > . . . > σn > 0,

U = [u1, . . . , um], V = [v1, . . . , vn], U
⋆ = U−1, V ⋆ = V −1. Denote r = rank(A), i.e.,

σr > σr+1 = . . . = σn = 0.

The standard (minimum Frobenius norm) LS solution of (1.1) can be expressed

by the Moore-Penrose pseudoinverse of A

XLS = A†B.

From the definition of the LS problem it is obvious that the corrections for individual

columns of B = [b1, . . . , bd] represented by the corresponding columns of G can be
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determined independently. Thus, employing the SVD of A,

(2.3) xLSj ≡ XLS ej = A†bj =

r∑

i=1

u⋆i bj

σi
· vi, j = 1, . . . , d,

i.e., the multiple right-hand side LS problem is equivalent to d single right-hand side

LS problems, see e.g. [7], Chap. 5, or [1].

It is well known (see e.g. [11], Chap. 6) that if the problem (1.1) is ill-posed,

the components of (2.3) corresponding to large i can be dominated by errors in the

data B. This is caused by a combination of properties of B and the presence of

a significant number of very small singular values in denominators of (2.3). Thus,

many regularization methods are based on the idea to suppress the components

corresponding to small σi. We mention two popular approaches.

2.1. Truncated SVD (T-SVD). In the truncated SVD (T-SVD), also called

truncated LS (T-LS) method, the sum in (2.3) is simply truncated, see e.g. [9],

Sect. 5.3. Let t, t < r, be the truncation parameter. Then the T-SVD regularized

solution can be expressed as the filtered pseudoinverse

(2.4) xT-SVD
j =

t∑

i=1

u⋆i bj

σi
· vi =

r∑

i=1

fi ·
u⋆i bj

σi
· vi, j = 1, . . . , d,

where

(2.5) f1 = . . . = ft = 1, ft+1 = . . . = fr = 0

are the corresponding filter factors. Note that t can also be understood as a numerical

rank of A with respect to the given approximation problem.

2.2. Tikhonov regularization. The Tikhonov regularization (see e.g. [9],

Sect. 5.1) tries to minimize the norm of the residual while controlling the norm

of the corresponding approximate solution. In particular, it minimizes the func-

tional

min
X∈Rn×d

(‖B −AX‖2F + ‖LX‖2F ),

where L ∈ R
p×n is a given matrix. Similarly as in the LS method, the minimization

problem is equivalent to d independent single right-hand side Tikhonov minimization

problems

min
xj∈Rn

(‖Axj − bj‖
2 + ‖Lxj‖

2), j = 1, . . . , d.
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In the simplest case L = λI ∈ R
n×n, i.e., the balance between the two norms in

the minimization is controlled by the so-called regularization parameter λ > 0. The

minimizer can be written as the filtered pseudoinverse

(2.6) xTikhonov
j =

r∑

i=1

fi ·
u⋆i bj

σi
· vi, j = 1, . . . , d,

where

(2.7) fi =
σ2
i

σ2
i + λ2

, i = 1, . . . , r

are the filter factors, see e.g. [11], Chap. 6.

3. Total least squares based regularization by filtering

Contrary to the ordinary LS, in the total least squares (TLS) method we seek for

a correction of the right-hand side B and also of the system matrix A, so that the

corrected system becomes compatible.

Definition 3.1 (Total least squares minimization). Let AX ≈ B be the approx-

imation problem (1.1), then

(3.1) min
G∈Rm×d, E∈Rm×n

‖[G,E]‖F subject to (A+ E)X = B +G

is called the TLS minimization problem.

We directly see that since the correction E is shared by all right-hand sides in B,

the TLS problem with d > 1 cannot be equivalently reformulated to d independent

TLS problems with individual columns of B as single right-hand sides.

The TLS problem is significantly more complicated than the ordinary LS problem.

It has been studied for a long time, see in particular [6], [18], [21], [20], [14], and

recently also [13]. The analysis is based on the SVD of the system matrix A (2.2)

and of the extended matrix [B,A]. Consider the SVD

(3.2) [B,A] = ÛΣ̂V̂ ⋆, Σ̂ =

[
diag(σ̂1, . . . , σ̂n+d)

0m−(n+d),n+d

]
, σ̂1 > . . . > σ̂n+d > 0,

Û = [û1, . . . , ûm], V̂ = [v̂1, . . . , v̂n+d], Û
⋆ = Û−1, V̂ ⋆ = V̂ −1. Consider a truncation

parameter t, 0 6 t 6 n, chosen so that:

(i) σ̂n−t > σ̂(n−t)+1 (for t = n, we put formally σ̂0 = ∞), and
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(ii) the right-upper block in the partitioning

(3.3) V̂ =

[
V̂11 V̂12

V̂21︸︷︷︸
n−t

V̂22︸︷︷︸
t+d

]}
d}
n
, i.e. V̂12 =



v̂1,(n−t)+1 . . . v̂1,n+d

...
. . .

...

v̂d,(n−t)+1 . . . v̂d,n+d


 ,

is of full row rank, i.e., rank(V̂12) = d (for t = n, we formally consider V̂11
and V̂21 with no columns).

For given A and B, there always exists at least one choice of t (t = n), however,

there are several options, in general.

The partitioning (3.3) can be used to analyze as well as to solve the TLS problem.

For example, if it is possible to set t = 0 or if σ̂(n−t)+1 = σ̂n+d, then the TLS problem

has a solution in the form

(3.4) XTLS = −V̂22V̂
†
12,

see [18]. However, there is a principal difficulty that the problem (1.1) may not have

a TLS solution, even in the simplest case with d = 1, see [6]. When d > 1, it may also

happen that there exists a TLS solution, but it cannot be obtained in the form (3.4),

see [14]. For the full solvability analysis of TLS problems we refer to [14]. Note that

other orthogonally invariant norms in the TLS definiton (3.1) can be relevant for

some problems, see [19].

3.1. Truncated total least squares (T-TLS). Truncated TLS (T-TLS) min-

imization represents another regularization method for solving (1.1) in case it is

ill-posed. Here the idea is to set a threshold ε > 0 such that all smaller singular

values of [B,A] are considered redundant and are removed during the regularization

process. More precisely, the T-TLS regularized solution is defined as follows, see [4],

Sect. 2 or [14], Lemma 6.2.

Definition 3.2 (Truncated total least squares solution). Let AX ≈ B be the

approximation problem (1.1). Consider ε > 0 such that:

(i) σ̂n−t > ε > σ̂(n−t)+1 holds for some index t, 0 6 t 6 n, and

(ii) V̂12 in the corresponding partitioning (3.3) is of full column rank.

Then

(3.5) XT-TLS = −V̂22V̂
†
12

is called the T-TLS solution of AX ≈ B.
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Note that in real computations the threshold ε > 0 is always chosen such that the

above conditions are satisfied. The value of n− t can again be seen as a numerical

rank of [B,A], in particular see Step 2 of Algorithm 3.1 [18], Sect. 3.6. Note that

the T-TLS solution coincides with the TLS solution of a modified problem, where

all σ̂l < ε (for l = (n − t) + 1, . . . , n + d) are replaced by any number σ̂ satisfying

0 < σ̂ < ε (see e.g. [14], Lemma 6.2); σ̂ then represents the minimal singular value

of the modified problem with the multiplicity d + t. Consequently, similarly to the

TLS, the T-TLS solution of (1.1) with d > 1 cannot be obtained directly from d

T-TLS solutions of separated single right-hand side problems corresponding to the

individual columns of B.

The T-TLS solution for d = 1 was analyzed in [4]. It was shown that it can be

written in the form of the filtered pseudoinverse

(3.6) xT-TLS =
r∑

i=1

fi ·
u⋆i b

σi
· vi,

where

(3.7) fi =

n+1∑

l=(n−t)+1

v̂21,l

‖V̂12‖2F
·

σ2
i

σ2
i − σ̂2

l

are the filter factors. Moreover, the partitioning (3.3) for d = 1 gives

‖V̂12‖
2
F = ‖V̂12‖

2 =

t+1∑

j=1

v̂21,(n−t)+j .

For the detailed derivation see [4], Sect. 3.2.

This derivation employs a link between SVDs of the system matrix A and the

extended matrix [b, A] shown in [5], [3], and [2]. Here, the SVDs are related to eigen-

decompositions of AA⋆ and [b, A][b, A]⋆, using the fact that [b, A][b, A]⋆ = AA⋆ + bb⋆

can be interpreted as the rank-one update of AA⋆.

In the rest of this paper we use a similar technique to extend the filter factor

representation of T-TLS to the problems (1.1) with multiple right-hand sides, i.e.,

for d > 1. In order to do this, we first analyze eigenvalues and eigenvectors of positive

semidefinite rank-d updates of symmetric matrices. This result is then used to study

the SVD of a matrix extended by d columns.
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4. Rank-d update of a symmetric eigenvalue problem

Let M ∈ R
m×m, M =M⋆, be a real symmetric matrix and

(4.1) M = UDU⋆, where U⋆ = U−1, D = diag(δ1, . . . , δm)

its eigendecomposition. The eigenvalues and eigenvectors of general symmetric rank-

one updates of M have been studied in [5], Sect. 5 and [3], see also [7], Sect. 8.4.3,

pp. 469–471. For simplicity of the exposition we present the derivation for d = 2.

The generalization to d > 2 is straightforward and it is commented on through the

text. Let

(4.2) K =M + w̃w̃⋆ + ỹỹ⋆ =M + [w̃, ỹ][w̃, ỹ]⋆

be a positive semidefinite rank-two update ofM (note that a general rank-two update

is of the form M ± w̃w̃⋆ ± ỹỹ⋆). By denoting C = U⋆KU , w = U⋆w̃, y = U⋆ỹ, we

get

(4.3) C = D + [w, y][w, y]⋆, where w = [w1, . . . , wm]⋆, y = [y1, . . . , ym]⋆,

the rank-two update of the diagonal matrix D.

4.1. Eigenvalues of rank-d update. The eigenvalues of K are roots of the

characteristic polynomial

(4.4) χK(λ) = χC(λ) = det(C − λI) = det((D − λI) + (ww⋆ + yy⋆)).

The jth column of (C − λI) can be written as a sum of two components c0j and c
1
j

as follows:

((D − λI) + (ww⋆ + yy⋆))ej = ej(δj − λ)︸ ︷︷ ︸
c0j

+ [w, y][wj , yj ]
⋆

︸ ︷︷ ︸
c1j

, j = 1, . . . ,m.

Using the linearity of determinants in columns, (4.4) becomes the sum of 2m deter-

minants of matrices formed by putting all possible combinations of the vectors c0j
and c1j , j = 1, . . . ,m, in their columns. In other words,

χK(λ) =

2m−1∑

µ=0

det([c
β1,µ

1 , c
β2,µ

2 , . . . , cβm,µ
m ]), where βj,µ ∈ {0, 1}
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is the jth digit in the binary representation of µ, i.e.,

m∑

j=1

βj,µ · 2j−1 = µ.

Clearly, if the µth determinant contains more than two columns c1j originated in

the rank-two updating matrix (ww⋆ + yy⋆), then it is identically equal to zero.

Consequently, (4.4) is a sum of determinants of three types of matrices: containing

no, one, or two columns of the updating matrix, i.e.,

(4.5) χK(λ) =

χM (λ) = det(D − λI)
︷ ︸︸ ︷
m∏

l=1

(δl − λ)

+

m∑

i=1

(
(w2

i + y2i )

m∏

l=1
l 6=i

(δl − λ)

)

+

m∑

i,j=1
i6=j

((
(w2

i + y2i )(w
2
j + y2j )− (wiwj + yiyj)

2
)

︸ ︷︷ ︸
(wiyj − wjyi)

2

m∏

l=1
l 6=i,j

(δl − λ)

)
.

The first term is the characteristic polynomial of the original matrix M . The second

term contains squares of determinats of all 1 × 1 submatrices of the factor [w, y] of

the updating matrix, and the third term contains squares of determinants of all 2×2

submatrices of [w, y]. Obviously, in rank-one updates the third term vanishes. In

rank-d updates, χK(λ) contains at most d + 1 analogously structured terms, where

the (j + 1)st involves squared determinants of all j × j submatrices of the factor of

the updating matrix, j = 1, . . . , d. The following theorem states the result for d = 2

in a simpler way, by employing the secular equation.

Theorem 4.1 (Eigenvalues of rank-two update). Let M ∈ R
m×m be a symmet-

ric matrix with eigenvalues δl, l = 1, . . . ,m, and let K be its symmetric positive

semidefinite rank-two update (4.2)–(4.3). Assume that the spectra of M and K are

disjoint. Then the eigenvalues of K are roots of the secular equation

(4.6) ϕK(λ) = 1 +

m∑

i=1

w2
i + y2i
δi − λ

+

m∑

i,j=1
i6=j

∣∣∣∣
wi yi

wj yj

∣∣∣∣
2

(δi − λ)(δj − λ)
= 0.

P r o o f. The secular equation is obtained simply by dividing the characteristic

polynomial χK(λ) by its first term χM = det(D − λI). �
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Note that in the case when some eigenvalues ofM andK coincide (which is easy to

verify, since we have the spectrum of M available), we can project the problem onto

the subspace orthogonal to the respective eigenspace. For the detailed description

of this technique cf. deflation in [3]. For deeper relations between the spectra of M

and K and the components of the updating term in the case d = 1 we refer to [5],

Sect. 5, [3], and [7], Sect. 8.4.3, pp. 469–471.

4.2. Eigenvectors of rank-d update. Let λl be the eigenvalues of the updated

matrixK. Now we want to determine the corresponding eigenvectors x̃l, i.e., to solve

(4.7) Kx̃l = (M + w̃w̃⋆ + ỹỹ⋆) x̃l = x̃lλl,

or, by denoting xl = U⋆x̃l,

(4.8) Cxl = (D + ww⋆ + yy⋆)xl = xlλl.

The following theorem formulates the result.

Theorem 4.2 (Eigenvectors of rank-two update). LetM ∈ R
m×m be a symmetric

matrix, M = UDU⋆ its eigendecomposition, and let K be its symmetric positive

semidefinite rank-two update (4.2)–(4.3) with eigenvalues λl, l = 1, . . . ,m. Assume

that the spectra of M and K are disjoint. Denote

(4.9) Dl = D − λlI.

Then the eigenvector x̃l of K corresponding to λl has the form

(4.10) x̃l = UD−1
l [w, y] pl = UD−1

l U⋆[w̃, ỹ] pl,

where pl ∈ R
2 is a unit vector.

P r o o f. Since the spectra of M and K are disjoint, Dl is invertible. Rearrang-

ing (4.8) gives

(D − λlI)xl = −(ww⋆ + yy⋆)xl,

xl = −D−1
l (w(w⋆xl) + y(y⋆xl)),

i.e., xl ∈ D−1
l · span{w, y} = D−1

l · span{U⋆w̃, U⋆ỹ}.(4.11)

The back-transformation x̃l = Uxl gives the result. �

The following technical lemma will be useful later.
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Lemma 4.3. Let D ∈ R
m×m be a diagonal matrix and C = D + [w, y][w, y]⋆ its

rank-two update. Let λl be an eigenvalue of C such that Dl = D− λlI is invertible,

and let xl = D−1
l [w, y] pl, ‖pl‖ = 1, be the corresponding eigenvector. Then the

vector pl is the eigenvector of

(4.12) J = [w, y]⋆D−1
l [w, y] such that Jpl = −pl,

i.e., J acts like the minus identity on pl.

P r o o f. Substituting the formula for xl into rearranged (4.8) gives

Dlxl = −[w, y][w, y]⋆xl,

DlD
−1
l︸ ︷︷ ︸

I

[w, y] pl = −[w, y] [w, y]⋆D−1
l [w, y]︸ ︷︷ ︸
J

pl.(4.13)

Consider the eigendecomposition

J = ZΘZ⋆, where Z⋆ = Z−1, Z = [z1, z2], Θ = diag(θ1, θ2).

Then (4.13) gives

([w, y]Z)

[
(z⋆1pl)

(z⋆2pl)

]
= [w, y]ZZ⋆pl = −[w, y]ZΘZ⋆pl = ([w, y]Z)

[
−θ1 (z

⋆
1pl)

−θ2 (z⋆2pl)

]
.

The linear independence of w and y then implies

(z⋆j pl) = −θj (z
⋆
j pl) for j = 1, 2,

i.e., either (z⋆j pl) = 0 or θj = −1. Since ‖pl‖ 6= 0, there are the following possibilities:

If (z⋆1pl) = 0, then (z⋆2pl) 6= 0, θ2 = −1, so

Jpl = ZΘZ⋆pl = Z

[
θ1 (z

⋆
1pl)

θ2 (z⋆2pl)

]
= Z

[
0

−1 (z⋆2pl)

]
= −Z

[
(z⋆1pl)

(z⋆2pl)

]
= −pl.

If (z⋆2pl) = 0, then the situation is analogous.

If (z⋆1pl) 6= 0 and (z⋆2pl) 6= 0, then θ1 = θ2 = −1, so J = −I, and Jpl = −pl. �
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5. Filter factors of T-TLS in the multiple right-hand side case

Now we use the results from the previous section to study the link between the

SVDs of A, see (2.2), and [B,A], see (3.2), by interpreting [B,A][B,A]⋆ as a rank-d

update of AA⋆. Then we give the formula for T-TLS filter factors.

5.1. Relation between SVDs of the system and extended matrices.

Consider the symmetric (positive semidefinite) matrix M = AA⋆ ∈ R
m×m. The

SVD (2.2) directly gives its eigendecomposition

M = AA⋆ = UΣΣ⋆U⋆ = UDU⋆, where

D = ΣΣ⋆ = diag(σ2
1 , . . . , σ

2
n, 0m−n,m−n).

Consider a symmetric (positive semidefinite) rank-d update K of M , and its trans-

formation

K = [B,A][B,A]⋆ = AA⋆ +BB⋆ =M +BB⋆,

C = U⋆KU = U⋆MU + U⋆BB⋆U = D + (U⋆B)(U⋆B)⋆.

Clearly, nonzero eigenvalues of M are squares of nonzero singular values of A,

while nonzero eigenvalues of K are squares of nonzero singular values of [B,A].

Thus Theorem 4.1 for matrices M and K defined above allows to relate the singular

values of [B,A] and A for d = 2.

Corollary 5.1. Let AX ≈ B be the approximation problem (1.1) with d = 2.

Consider the SVDs of the system matrix A and of the extended matrix [B,A], see

(2.2) and (3.2), respectively. Then the singular values σ̂ of [B,A] are the roots of

the secular equation

(5.1) ψ[B,A](σ̂) = 1 +

m∑

i=1

b2i,1 + b2i,2

σ2
i − σ̂2

+

m∑

i,j=1
i6=j

∣∣∣∣
bi,1 bi,2

bj,1 bj,2

∣∣∣∣
2

(σ2
i − σ̂2)(σ2

j − σ̂2)
= 0.

In case of a general d, the eigenvalues are again roots of a secular equation of

a more complicated form, as we have explained in the previous section. Thus we

do not present it here explicitly. Using Theorem 4.2 and Lemma 4.3 and noticing

that the eigenvectors of K are the left singular vectors of [B,A], we get the following

corollary for singular vectors.
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Corollary 5.2. Let AX ≈ B be the approximation problem (1.1) with d = 2.

Consider the SVDs of the system matrix A and of the extended matrix [B,A], see

(2.2) and (3.2), respectively. Let σ̂l be a nonzero singular value of [B,A]. Then the

corresponding left singular vector ûl has the form

(5.2) ûl =
û′l
‖û′l‖

, û′l = US−1
l U⋆Bpl, where Sl = (ΣΣ⋆ − σ̂2

l I)

and pl ∈ R
2 is the unit eigenvector of (U⋆B)⋆S−1

l (U⋆B) by Lemma 4.3. The right

singular vector v̂l can be obtained by the normalization of [B,A]
⋆û′l, i.e.,

(5.3) v̂l =
v̂′l
‖v̂′l‖

, v̂′l = [B,A]⋆û′l =

[
B⋆US−1

l U⋆B

VΣ⋆S−1
l U⋆B

]
pl =

[
−I

VΣ⋆S−1
l U⋆B

]
pl.

We see that the previous corollary deals with two different normalizations: The

singular vectors ûl and v̂l are of unit length ‖ûl‖ = ‖v̂l‖ = 1 as usual, but the norms

of the auxiliary vectors û′l and v̂
′
l are given by the unit length vector pl. Note that in

the case of a general d, the structure of both ûl and v̂l remains the same as above,

with pl of the form

(5.4) pl ≡ [p1,l, . . . , pd,l]
⋆ ∈ R

d, ‖pl‖ = 1.

Since the T-TLS solution is obtained as a product of blocks of V̂ = [v̂1, . . . , v̂n+d]

(see (3.5)), it will be useful to denote

νl ≡ ‖v̂′l‖, l = 1, . . . , n+ d,

the norms of the corresponding auxiliary vectors.

5.2. Filter factors. Comparing the partitioning (3.3) of V̂ with (5.3), we see

that the lth columns of [V̂11, V̂12] and [V̂21, V̂22] are given by

[V̂11, V̂12] el = −
1

νl
· pl

and

[V̂21, V̂22] el =
1

νl
· V Σ⋆S−1

l U⋆Bpl

=
1

νl
·

r∑

i=1

σ2
i

σ2
i − σ̂2

l

·
u⋆iBpl

σi
· vi

=
1

νl
·

r∑

i=1

d∑

j=1

σ2
i

σ2
i − σ̂2

l

· pj,l ·
u⋆i bj

σi
· vi.
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Since V̂12 is of full row rank d, the T-TLS solution (3.5) can be written as

(5.5) XT-TLS = −V̂22V̂
†
12 = (V̂22W ) (−W−1V̂ ⋆

12(V̂12V̂
⋆
12)

−1)︸ ︷︷ ︸
Ω

,

where

W ≡ diag(ν(n−t)+1, . . . , νn+d)

allows us to accumulate the normalization coefficients νl in only one factor of (5.5)

while yielding a result as similar to the orginal one (see [4], Theorem 3.6, p. 1229)

as possible. Thus the (l, k)th entry of Ω ∈ R
(t+d)×d is

ωl,k = −
1

ν(n−t)+l

· e⋆l V̂
⋆
12(V̂12V̂

⋆
12)

−1ek = p⋆(n−t)+l (ν
2
(n−t)+l V̂12V̂

⋆
12)

−1ek .

The kth column of the T-TLS solution is then a linear combination of the columns

of V̂22W with the coefficients ωl,k. The next theorem summarizes this result and

shows how the T-TLS solution can be expressed in terms of a filtered pseudoinverse

of A applied to the columns of B.

Theorem 5.3 (Filter factors of T-TLS regularization). Let AX ≈ B be the

approximation problem (1.1). Consider the SVDs of the system matrix A and of the

extended matrix [B,A], see (2.2) and (3.2), respectively. Let XT-TLS ∈ R
n×d be its

T-TLS solution (3.5). The inverse-mapping of bj , the jth column of the right-hand

side matrix B, onto xT-TLS
k , the kth column of the solution matrix XT-TLS, is given

by

(5.6) xT-TLS
k =

r∑

i=1

d∑

j=1

( n+d∑

l=(n−t)+1

ωl−(n−t),k ·
σ2
i

σ2
i − σ̂2

l

· pj,l

)

︸ ︷︷ ︸
fi,j,k

u⋆i bj

σi
· vi,

where pj,l are the coefficients of the unit vector pl (5.4), and ωl−(n−t),k are the entries

of the matrix Ω given by (5.5).

The proof follows directly from the discussion above. We see that the filter factors

fi,j,k in fact form a three-way tensor of the size r × d × d. The behavior of filter

factors requires further research. In particular, the structure of pj,l as well as sizes

of ωl−(n−t),k have to be analyzed. On the other hand, we can conclude that the

structure of the filter factors fi,j,k is essentially the same as that of the factors (3.7)

118



for the single right-hand side T-TLS method. In particular, for d = 1 we obtain

p1,l = 1 (see (4.11)), v̂1,l = −ν−1
l p1,l = −ν−1

l (see (5.3)), and

ωl−(n−t),k = ωl−(n−t),1 = −ν−1
l · v̂1,l ‖V̂12‖

−2
F = v̂21,l ‖V̂12‖

−2
F .

Substituting this into (5.6) gives back the original formula (3.6).

6. Conclusions

In this paper, we have studied the symmetric positive semidefinite rank-2 update

of a real symmetric matrix. We have derived the formula for its eigenvectors, and

described its eigenvalues as roots of a particular secular equation. We have explained

how these results can be generalized to d > 2. It has been proved that the T-TLS

solution can be expressed as a filtered pseudoinverse of A applied to B, with filter

factors given in a tensor form. This generalizes the results obtained previously for

d = 1. Further analysis of the behavior of the filter factors can help to understand

regularization properties of the T-TLS in the future. Such study is however beyond

the scope of this paper.
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