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Abstract—In this article, the issue of positive L1 filter design
is investigated for positive nonlinear stochastic switching systems
subject to the phase-type semi-Markov jump process. Many
complicated factors, such as semi-Markov jump parameters, posi-
tivity, T–S fuzzy strategy, and external disturbance, are taken into
consideration. Practical systems under positivity constraint con-
ditions and unpredictable structural changes are characterized by
positive semi-Markov jump systems (S-MJSs). First, by the key
properties of the supplementary variable and the plant trans-
formation technique, phase-type S-MJSs are transformed into
Markov jump systems (MJSs), which means that, to an extent,
these two kinds of stochastic switching systems are mutually rep-
resented. Second, with the help of the normalized membership
function, the associated nonlinear MJSs are transformed into the
local linear MJSs with specific T–S fuzzy rules. Third, by choos-
ing the linear copositive Lyapunov function (LCLF), stochastic
stability (SSY) criteria are given for the corresponding system
with L1 performance. Some solvability conditions for positive L1
filter are constructed under a linear programming framework.
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Finally, an epidemiological model illustrates the effectiveness of
the theoretical findings.
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I. INTRODUCTION

NONLINEARITY always finds its utilization to charac-
terize many practical physical systems and industrial

processes. Then, it becomes difficult to tackle nonlinearity
issues and many traditional control strategies for analyzing lin-
ear systems are no longer used for nonlinear systems. In order
to handle complex nonlinear systems, the T–S fuzzy model
provides a potent modeling framework to characterize com-
plex nonlinear systems [1], [2]. With the help of the T–S fuzzy
approach, nonlinear systems can be converted into local linear
subsystems. Based on this approach, many results for linear
systems can be applied to nonlinear systems. During the past
years, the T–S fuzzy model has been widely investigated, and
research topics on the T–S fuzzy model include stability and
stabilization, H∞ control, finite-time control, adaptive control,
input saturation, filter design, and input quantization [3]–[14].

It should be pointed out that many experts have begun to
study a special kind of T–S fuzzy systems, i.e., positive T–S
fuzzy systems [15], due to their potential applications in abso-
lute temperature of physics, population position of biology,
price of economics, etc. For more details, we refer readers
to [16]–[27] and the references therein. Compared with tradi-
tional T–S fuzzy systems, the special characteristic of positive
T–S fuzzy systems relies on the positivity of their state signals,
output signals, and input signals, and it is more challenging
to study positive T–S fuzzy systems. This positive require-
ment always generates new ideas and results. Recently, there
are numerous results available in the literature (see [28]–[35]),
in which stability analysis and control synthesis are the main
research topics.

It is noted that Markov jump systems (MJSs), as an impor-
tant modeling approach, have attracted substantial attention
in industrial applications, including biomedicine, aerospace,
and other aspects (see [34], [36]–[42]). However, for general
MJSs, there exists one obvious limitation, that is, the sojourn

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-9065-0802
https://orcid.org/0000-0002-0218-2333
https://orcid.org/0000-0001-6498-5580
https://orcid.org/0000-0003-3133-7119
https://orcid.org/0000-0002-3483-747X


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

time (ST) of the Markov process obeys exponential distribu-
tion, in which the distribution function is memoryless. In fact,
it is difficult to satisfy this severe constraint for the ST dis-
tribution subject to memoryless characteristics in practice. In
such a case, the corresponding stochastic switching systems
with ST obeying nonexponential distribution can be character-
ized as semi-MJSs (S-MJSs). Nevertheless, the ST-dependent
property brings many difficulties for S-MJSs. Consequently,
large amounts of topics toward S-MJSs have been brought
(see [43]–[55]).

On the other hand, several effective strategies for estima-
tion and filter have been proposed to estimate z(t), in which
the H∞ filter is a popular approach to investigate the external
noise without exactly known statistics. During the filter design
process of positive systems [25], sufficient conditions formu-
lated in the linear matrix inequality framework are proposed,
in which the L2-norm (or �2-norm) is adopted to generate H∞
performance index with the alternative quadratic Lyapunov
function. However, considering the non-negative property, it is
natural to apply the L1-norm (or �1-norm) to measure the input
and output variables. Thus, it is better to choose the LCLF.
Compared with the traditional quadratic Lyapunov function,
LCLF makes full use of the features of positive systems, and
its derivative calculation is convenient. Under a linear pro-
gramming framework, the corresponding judgment basis can
save operational time.

Although some excellent results for positive stochastic
switching systems have sprung up, there still exist obvious dis-
advantages. The ST subject to exponential distribution in [34],
[35], and [34], [38]–[42] has become one of the most impor-
tant constraint conditions, whereas many dynamical systems
do not always satisfy the rigorous requirement. Specifically,
the considered systems [34], [38]–[42] are positive linear
MJSs without nonlinearity. Next, the traditional positive L1
filter design [40] only provides an estimation of system
states, which further implies that no information about the
transient performance can be given under its framework.
Additionally, [15], [16], [22], [23], and [25]–[30] describe
the deterministic switching case while the dynamical systems
subject to the stochastic semi-Markov process (SMP) in this
article can be more suitable to describe practical systems
affected by inevitable random factors. Moreover, many factors,
such as SMP, positivity, external disturbance, and nonlinearity,
play an important part in describing practical complex stochas-
tic switching systems. Therefore, a critical issue about positive
L1 filter for positive nonlinear S-MJSs is whether there exists
a positive L1 filter to estimate the state signals for positive
nonlinear S-MJSs. However, up to now, there are no theoret-
ical results, which motivate our study. Specifically, there are
two innovations to be addressed during the positive L1 filter
design.

Q1: Different from special MJSs [34], [34], [35], [38]–[42]
subject to exponential distribution, how to propose the
stochastic stability (SSY) for S-MJSs with nonexponential
distribution?

Q2: Compared with the traditional positive L1 filter
design [40], how to design a novel positive L1 filter to achieve
the better performance?

In this article, we will address the positive L1 filter for a
class of positive nonlinear S-MJSs subject to phase-type SMP.
Compared with the existing works, the contributions of this
article are summarized as follows.

1) In contrast with [34], [35], and [34], [38]–[42], one
unrealistic assumption, i.e., the ST in stochastic switch-
ing systems follows an exponential distribution, is
removed in this article by applying the S-MJSs model.
Considering the equivalent relationship between the
phase-type SMP and the Markov process, phase-type
S-MJSs are transformed into MJSs.

2) By fuzzy blending, the associated nonlinear MJSs are
converted into the local linear MJSs. Furthermore, with
the help of the LCLF, sufficient conditions are proposed
to realize SSY with L1 performance.

3) Compared with [40], the positive L1 fuzzy upper-
bounding filter and lower-bounding filter for positive
nonlinear S-MJSs are constructed to obtain a better
performance under a linear programming optimization
framework.

This article is organized as follows. In Section II, the
system description, and some necessary definitions and lem-
mas are presented. Section III shows SSY with L1 analysis.
In Section IV, a positive filter design is investigated in the
form of linear programming. An epidemiological model is pro-
vided to illustrate the effectiveness of the theoretical findings
in Section V. Concluding remarks are given in Section VI.

Notations: A ≥≥ (>> 0) means that all entries of matrix A
are non-negative (positive); 1-norm of ||x||1 stands for ||x||1 =∑n

k=1 |xk|, where xk is the kth element of x ∈ Rn; and 1n

denotes all-ones vector in Rn. For given η(t) : R → Rm, the
L1-norm is defined by ||η(t)||L1 = ∫ ∞

0 ||η(t)||1dt. L1[0,+∞)

is the space of absolute integrable vector-valued functions on
[0,+∞), i.e., we say η(t) : [0,+∞) → Rm is in L1[0,+∞)

if
∫ ∞

0 ||η(t)||1dt < ∞. � is the weak infinitesimal operator.
E{·} stands for the mathematical expectation. iff means if and
only if.

II. PRELIMINARIES

Consider a class of stochastic systems as

ẋ(t) = ĝ
(
x(t), η(t), ω̂t

)

y(t) = ĥ
(
x(t), η(t), ω̂t

)
(1)

where ĝ(x(t), η(t), ω̂t) and ĥ(x(t), η(t), ω̂t) mean the smooth
nonlinearities; x(t) ∈ Rn and y(t) ∈ Rp stand for the state
and the measured output; and η(t) ∈ Rm is the disturbance
input and belongs to L1[0,+∞). Let {ω̂t, t ≥ 0} be a stochas-
tic process (SP) in {1, 2, . . . , m + 1}, where 1, 2, . . . , m are
transient and m + 1 is absorbing. The infinitesimal generator

(IG) is W =
[ Q Q0

01×m 0

]

, where Q = (Qμν)m×m, Qμμ < 0,

and Qμν ≥ 0, for ν �= μ, and Q−1 exists. The non-negative
column vector Q0 satisfies Qe + Q0 = 0, where the vector
e has all entries equal to one. The initial distribution vector
(δ, am+1) satisfies δe + am+1 = 1, where δ = (δ1, δ2, . . . , δm).

Lemma 1 [37]: The probability distribution (PD) H(t)
dependent on the initial distribution vector (δ, am+1) is given
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as H(t) = 1 − δexp(Qt)e, for t ≥ 0, when the time arrives at
the absorbing state m + 1.

Definition 1 [43]: The PD H(t) on [0,+∞) is called a con-
tinuous distribution of phase-type iff it is the distribution of
the time related to a finite Markov process with an absorb-
ing state and all the other transient states. The pair (δ,Q) is
defined as a representation of the PD H(t).

Definition 2 [43]: Consider a finite set �. The SP ω̂t is
called phase-type SMP, if the followings hold.

1) The sample paths of the SP ω̂t are right-continuous
functions with left-hand limits in probability one.

2) Denote the sth jump point of the SP ω̂t by φs, where
0 = φ0 < φ1 < φ2 < · · · < φs < · · · , and φs (s =
0, 1, 2, . . . ,) are Markov of the SP ω̂t.

3) Hμν(t) = Pr(φs+1 − φs ≤ t|ω̂φs = μ, ω̂φs+1 = ν) =
Hμ(t), μ, ν ∈ �, t ≥ 0 are independent of ν and s.

4) Hμ(t), μ ∈ � is a phase-type distribution.
Remark 1: The time between transitions is subject to phase-

type distribution. It is noted that the phase-type distribution is
a generalization of exponential distribution and retains the ana-
lytical characteristics of an exponential distribution. Moreover,
the family of phase-type distribution has a dense property in all
the families of distributions on [0,+∞). Therefore, by choos-
ing a phase-type distribution, the original distribution can be
approximated in a compact domain to arbitrary accuracy.

Let (δ(μ),Q(μ)), μ ∈ � stand for the m(μ) order represen-
tation of Hμ(t) and �(μ) be the set of all transient states,
where

δ(μ) =
(
δ
(μ)
1 , δ

(μ)
2 , . . . , δ

(μ)

m(μ)

)

Q(μ) =
(
Q(μ)

νk , ν, k ∈ �(μ)
)
.

Let

πμν = Pr
(
ω̂s = μ|ω̂s+1 = ν

)
, μ, ν ∈ �

P = (
πμν

)
, μ, ν ∈ �

(δ,Q) =
(
δ(μ),Q(μ)

)
, μ ∈ �.

Based on the above analysis, the PD of Hμ(t) is determined
by {P, (δ,Q)}. For every s (s = 0, 1, . . . ,), φs ≤ t ≤ φs+1,
define

J (t) = the phase of Hω̂t(·) at time t − φs. (2)

For any μ ∈ �, define

Qμ,0
μ = −

m(μ)
∑

k=1

Q(μ)
νk , ν = 1, 2, . . . , mμ

G =
{(

μ, k(μ)
)
|μ ∈ �, k(μ) = 1, 2, . . . , mμ

}
. (3)

Lemma 2 [43]: O(t) = (ω̂t,J (t)) is a Markov chain in
state space G. The IG of Ot given by W = (wij), i, j ∈ G is
determined by the pair of (ω̂t,J (t)) given by {P, (δ,Q)} as

w(μ,k(μ))(μ,k(μ)) = Q(μ)

k(μ)k(μ) ,
(
μ, k(μ)

)
∈ G

w(μ,k(μ))
(
μ,k̄(μ)

) = Q(μ)

k(μ)k̄(μ)
, k(μ) �= k̄(μ),

(
μ, k(μ)

)
∈ G

and
(
μ, k̄(μ)

)
∈ G

w(μ,k(μ))(ν,k(ν)) = πμνQ(μ,0)

k(μ) δ
(ν)

k(ν) , μ �= ν,
(
μ, k(μ)

)
∈ G

and
(
ν, k(ν)

)
∈ G.

According to (3), G has 
 = ∑
μ∈� mμ elements, which

means that the state space of O(t) has 
 elements. Define the
number of (μ, k(μ)) by

∑μ−1
τ=1 m(τ ) + k, (1 ≤ k ≤ m(μ)) and

this transformation by ϒ(·). Hence, one has

ϒ(μ, k) =
μ−1∑

τ=1

m(τ ) + k, μ ∈ �, 1 ≤ k ≤ m(μ).

Furthermore, define

ωt = ϒ(O(t))

ϒ(μ,k)ϒ(μ′,k′) = wϒ(μ,k)ϒ(μ′,k′).

Therefore, ωt is an associated Markov process of ω̂t in ℘ =
{1, 2, . . . , 
} and the IG is ℘ = (αβ), 1 ≤ α, β ≤ 
, so that

Pr{ωt+� = β|ωt = α}
= Pr{ϒ(O(t + �)) = β|ϒ(O(t)) = α}
=

{
αβ� + o(�), α �= β

1 + αα� + o(�), α = β

where αβ ≥ 0 stands for the transition rate from α to β for
α �= β, and

∑

β=1,β �=ααβ = −αα .

According to Lemma 2, every finite phase-type SMP can be
transformed into a Markov chain. Then, consider the following
system which is equivalent to (1):

ẋ(t) = g(x(t), η(t), ωt)

y(t) = h(x(t), η(t), ωt) (4)

where g(x(t), η(t), ωt) and h(x(t), η(t), ωt) mean the smooth
nonlinearities; and x(t) ∈ Rn, η(t) ∈ Rm, and y(t) ∈ Rp stand
for the state, the disturbance input, and the measured output.

Next, consider the T–S fuzzy method to approximate
system (4). Then, we have the θ th rule as follows.

Plant Rule θ : IF φ1(t) is Qθ
1, φ2(t) is Qθ

2, and · · · and φι(t)
is Qθ

l , THEN

ẋ(t) = Aθ (ωt)x(t) + Cθ (ωt)η(t)

y(t) = Dθ (ωt)x(t) + Eθ (ωt)η(t) (5)

where Qθ
ϑ1

(θ = 1, 2, . . . , � , ϑ1 = 1, 2, . . . , ι) denotes the
fuzzy sets with linear membership functions representing a
fuzzy subspace in which the implication R can be applied for
reasoning [1]. φ1(t), φ2(t), . . ., and φι(t) denote the premise
variables that depend on the system states. When ωt = α ∈ ℘,
Aθ (ωt), Cθ (ωt), Dθ (ωt), and Eθ (ωt) are, respectively, denoted
as Aθα , Cθα , Dθα , and Eθα . Thus, one has

ẋ(t) =
�∑

θ=1

pθ (φ(t))(Aθαx(t) + Cθαη(t))

y(t) =
�∑

θ=1

pθ (φ(t))(Dθαx(t) + Eθαη(t)) (6)

where φ(t) = [
φ1(t) φ2(t) · · · φl(t)

]T , and pθ (φ(t))
means the membership function as

pθ (φ(t)) =
∏ι

ϑ1=1 Qθ
ϑ1

(
φϑ1(t)

)

∑�
θ=1

∏ι
ϑ1=1 Qθ

ϑ1

(
φϑ1(t)

) (7)
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and Qθ
ϑ1

(φϑ1(t)) ∈ [0, 1] represents the grade of the member-
ship of φϑ1(t) in Qθ

ϑ1
. In fact, since Qθ

ϑ1
(φϑ1(t)) ≥ 0, it is

clear that
�∑

θ=1

pθ (φ(t)) = 1, pθ (φ(t)) ≥ 0. (8)

Lemma 3 [18], [19], [34]: System (6) is positive if Aθα is
the Metzler matrix, Cθα ≥≥ 0, Dθα ≥≥ 0, and Eθα ≥≥ 0.

Definition 3 [34]: For the initial conditions x0 ≥≥ 0 and
ω0, system (6) with (η(t) = 0) is said to be stochastically
stable if E{∫ ∞

0 ||x(s)||1ds|(x0, ω0)} < ∞ holds.
Definition 4 [34]: For γ > 0, system (6) is said to be

stochastically stable with L1 performance index, if system (6)
with zero input η(t) is said to be stochastically stable, and
E{∫ ∞

0 ||y(s)||1ds} ≤ γ E{∫ ∞
0 ||η(s)||1ds} holds, for x0 = 0 and

η(t) �= 0.

III. SSY WITH L1 ANALYSIS

Based on the linear stochastic Lyapunov function, suffi-
cient conditions for SSY of the resulting closed-loop system
(RCLAS) (6) with η(t) = 0 will be provided in Theorem 1.

Theorem 1: If there exists σα ∈ Rn+ ∀α ∈ ℘, such that

AT
θασα +


∑

β=1

αβσβ << 0 (9)

then system (6) (η(t) = 0) realizes SSY.
Proof: Construct the LCLF

S(x(t), ωt) = xT(t)σωt . (10)

Next, one has the weak infinitesimal operator as

�S(x(t), α) =
�∑

θ=1

pθ (φ(t))xT(t)

⎛

⎝AT
θασα +


∑

β=1

αβσβ

⎞

⎠.

(11)

Applying (9) yields

�S(x(t), α) = xT(t)μα ≤ −μ0‖x(t)‖1 < 0 (12)

where

μ0 = min
α=1,2,...,


{

min
s=1,2,...,n

{−[μα]s
}
}

μα =
�∑

θ=1

pθ (φ(t))

⎛

⎝AT
θασα +


∑

β=1

αβσβ

⎞

⎠.

By the use of Dynkin’s formula, it gives rise to

E[S(x(t), α)] − S(x0, ω0)

= E
[∫ t

0
�S(x(s), ωs)ds

]

≤ −μ0E
[∫ t

0
‖x(s)‖1ds|(x0, ω0)

]

which implies

μ0E
[∫ t

0
‖x(s)‖1ds|(x0, ω0)

]

≤ S(x0, ω0) − E[S(x(t), α)] ≤ S(x0, ω0).

Then

E
[∫ ∞

0
‖x(t)‖1dt|(x0, ω0)

]

≤ S(x0, ω0)

μ0
< ∞.

Therefore, system (6) with (η(t) = 0) realizes SSY .
Remark 2: The SSY theory is the basis for studying S-

MJSs. Sufficient conditions are proposed to realize SSY for
the corresponding S-MJSs in Theorem 1, which can lay the
foundation for the later studies about L1 performance analysis
and filter design.

Remark 3: For Q1, compared with special MJSs [34], [34],
[35], [38]–[42] subject to exponential distribution, phase-type
S-MJSs are transformed into MJSs via the supplementary vari-
able and the plant transformation technique. Then, with the
help of the normalized membership function, the associated
nonlinear MJSs are transformed into the local linear MJSs with
specific T–S fuzzy rules. Furthermore, the corresponding SSY
criteria are constructed by choosing the LCLF [see (10)–(12)].

Sufficient conditions are proposed to realize SSY with L1
performance for the system (6) in Theorem 2.

Theorem 2: If there exists σα ∈ Rn+ ∀α ∈ ℘, such that

AT
θασα +


∑

β=1

αβσβ + DT
θα1p << 0 (13)

CT
θασα + ET

θα1p − γ 1m << 0 (14)

then system (6) realizes SSY with L1 performance.
Proof: From (13), we can get (9). Therefore, system (6)

(η(t) = 0) realizes SSY.
For LCLF (10), one has

�S(x(t), α) + ‖y(t)‖L1 − γ ‖η(t)‖L1

≤
�∑

θ=1

pθ (φ(t))

⎡

⎣xT(t)

⎛

⎝AT
θασα +


∑

β=1

αβ(h)σβ

⎞

⎠

+ ηT(t)CT
θασα + 1T

pDθαx(t) + 1T
pEθαη(t) − γ 1T

mη(t)

⎤

⎦

=
�∑

θ=1

pθ (φ(t))

⎡

⎣xT(t)

⎛

⎝AT
θασα +


∑

β=1

αβ(h)σβ

+DT
θα1p

⎞

⎠ + ηT(t)
(CT

θασα + ET
θα1p − γ 1m

)
⎤

⎦. (15)

For the zero-initial condition, it follows from (13) and (14)
that:

�S(x(t), α) + ‖y(t)‖L1 − γ ‖η(t)‖L1 < 0 (16)

which means

E
[∫ ∞

0
||y(s)||1ds

]

= lim
υ→∞ E

[∫ υ

0
||y(s)||1ds|(x0, ω0)

]

≤ γ E
[∫ ∞

0
||η(s)||1ds

]

.

Therefore, system (6) realizes SSY with L1 performance
index.
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IV. L1 FILTER

In this section, the positive L1 fuzzy upper-bounding filter
and lower-bounding filter are constructed for positive nonlinear
S-MJSs. Consider the following fuzzy systems:

ẋ(t) =
�∑

θ=1

pθ (φ(t))(Aθαx(t) + Cθαη(t))

y(t) =
�∑

θ=1

pθ (φ(t))(Dθαx(t) + Eθαη(t))

z(t) =
�∑

θ=1

pθ (φ(t))Lθαx(t) (17)

where x(t) ∈ Rn, η(t) ∈ Rm, y(t) ∈ Rp, and z(t) ∈ Rq

mean the state, the disturbance input, the output signal, and
the estimated signal.

Remark 4: As shown previously, the premise variables φ(t)
depend on the system states. For partly available system states,
the premise variables φ(t) can be designed to be related to
these available system states. Then, it is suitable to construct
the fuzzy filter by using the premise variables φ(t) dependent
on available system states.

Furthermore, a pair of positive full-order L1 filters is
constructed as follows.

Plant Rule θ : IF φ1(t) is Qθ
1, φ2(t) is Qθ

2, and · · · and φl(t)
is Qθ

l , THEN

˙̂x(t) = Āθα x̂(t) + B̄θαy(t), ẑ(t) = C̄θα x̂(t) (18)

and

˙̆x(t) = Aθα x̆(t) + Bθαy(t), z̆(t) = Cθα x̆(t) (19)

where x̂(t) ∈ Rn, x̆(t) ∈ Rn, ẑ(t) ∈ Rq, and z̆(t) ∈ Rq.
Āθα , B̄θα , Aθα , Bθα , C̄θα , and C̄θα denote the filter parame-
ters. Then, one has the overall fuzzy upper-bounding filter and
lower-bounding filter model as

˙̂x(t) =
�∑

θ=1

pθ (φ(t))
(Āθα x̂(t) + B̄θαy(t)

)

ẑ(t) =
�∑

θ=1

pθ (φ(t))C̄θα x̂(t) (20)

and

˙̆x(t) =
�∑

θ=1

pθ (φ(t))
(Aθα x̆(t) + Bθαy(t)

)

z̆(t) =
�∑

θ=1

pθ (φ(t))Cθα x̆(t). (21)

Remark 5: In the practical industrial process, the sensors
are adopted to measure the physical quantities of the system.
For example, the speed of the elevator in the operating process
can be measured by a high-speed rotary encoder; the voltage,
current, and power in power systems can be measured by the
corresponding transmitter; and the temperature, pressure, and
liquid level in the chemical process can be measured by ther-
mocouple, pressure sensor, and liquid level sensor. When the
system states are measurable, the state-feedback controller is

constructed to obtain dynamical performance. However, due to
the limitation of the sensor and special working environment,
it is difficult to measure the state signals directly. In such a
case, it needs the input and output information to reconstruct
the state variables of the system or estimate a linear combi-
nation of the state variables of the system. This idea is not
only used in the control of the system but also is applied in
the development of measurement technology to form a new
direction, i.e., soft measurement technology. In order to real-
ize this idea, the proposed observer and filter provide potential
methods and techniques.

Remark 6: It is well known that the state observer and fil-
ter are always adopted to estimate the system states. When
the original systems do not contain the external disturbance,
if the original systems are observable, we can obtain the
estimation value of system states through the state observer.
Different from the state observer, the filter focuses on the
optimal estimation of system states under the external dis-
turbance. In this article, the external disturbance exists in the
dynamical systems, and it is reasonable to consider the filter
design. For positive systems, when the statistical character-
istics of system disturbances are difficult to be determined,
the disturbance can be regarded as any signal belonging to
L1[0,+∞). Then, the L1 norm of the disturbance input to
the estimation error can be seen as the performance index of
the filter [56], [57]. Furthermore, the L1 filter is designed by
making the performance index less than a given value and is
widely applied in radar design [56], fault detection [29], and
signal processing [57].

Remark 7: For Q2, the aforementioned paper [40] presents
the L1 filter design for positive systems and only provides
an estimation of system states, which means that there is no
information about the transient performance under its frame-
work. However, results that do not consider the transient
behavior of positive systems may not be suitable in practical
applications. For example, the biological population should
be limited to a certain number, not too many and not too
few. In such a case, it can maintain the balance and stability
of the ecosystems. Here, the upper-bounding filter and lower-
bounding filter are utilized to estimate the states of positive
systems at all times under the transient performance.

Remark 8: Compared with some existing
works [34], [35], [38]–[55], the new filter design algorithms
have many advantages. First, in contrast with traditional
MJSs [34], [35], [38]–[42], there exists one unrealistic
assumption, i.e., the ST in MJSs follows an exponential
distribution. S-MJSs with the ST obeying a nonexponential
distribution relax this strict restriction, which are more
suitable to describe practical systems subject to sudden
change of the parameters or structures. Thus, MJSs can be
regarded as a special case of S-MJSs. Second, compared with
the traditional positive filter design method [40], the proposed
filter named as the upper-bounding filter and lower-bounding
filter makes full consideration of the transient performance
in practical systems. Third, different from S-MJSs without
positive constraint [43]–[55], the positive constraint is adopted
to study S-MJSs, which can describe positive systems subject
to complex stochastic factors.
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Remark 9: Here, two positive L1 fuzzy filters are con-
structed to estimate the states of system (6). It follows from
Lemma 1 that the filters (20) and (21) are positive if Āθα and
Aθα are Metzler matrices, B̄θα ≥≥ 0, Bθα ≥≥ 0, C̄θα ≥≥ 0,
and Cθα ≥≥ 0.

Define the error states x̂e(t) = x̂(t) − x(t), ξ̂ (t) =[
xT(t) x̂T

e (t)
]T

, and ê(t) = ẑ(t) − z(t). Combining (17)
with (20) yields

˙̂
ξ(t) =

�∑

θ=1

�∑

ϑ=1

pθ (φ(t))pϑ(φ(t))
(
Āξθϑαξ̂ (t) + B̄ξθϑαη(t)

)

ê(t) =
�∑

θ=1

pθ (φ(t))C̄ξθαξ̂ (t) (22)

where Āξθϑα =
[ Aθα 0
B̄θαDϑα + Āθα − Aθα Āθα

]

, B̄ξθϑα =
[ Cθα

B̄θαEϑα − Cθα

]

, C̄ξθα = [C̄θα − Lθα C̄θα

]
.

Then, a positive L1 fuzzy upper-bounding filter (20) is
designed to realize positivity and SSY with L1 performance
for system (22).

Similarly, we can define x̆e(t) = x(t) − x̆(t), ξ̆ (t) =[
xT(t) x̆T

e (t)
]T

, and ĕ(t) = z(t) − z̆(t) to get

˙̆
ξ(t) =

�∑

θ=1

�∑

ϑ=1

pθ (φ(t))pϑ(φ(t))
(
Aξθϑαξ̆ (t) + Bξθϑαη(t)

)

ĕ(t) =
�∑

θ=1

pθ (φ(t))Cξθαξ̆ (t) (23)

where Aξθϑα =
[ Aθα 0
Aθα − Aθα − BθαDϑα Aθα

]

, Bξθϑα =
[ Cθα

Cθα − BθαEϑα

]

, and Cξθα = [Lθα − Cθα Cθα

]
.

Then, a positive L1 fuzzy lower-bounding filter (21) is
designed to realize positivity and SSY with L1 performance
for system (23).

Next, it follows from Theorem 2 that we can realize L1
SSY for system (22) with a positive fuzzy upper-bounding
filter (20) directly.

Corollary 1: If there exists σ̄α ∈ R2n+ ∀α ∈ ℘, such that

ĀT
ξθϑασ̄α +


∑

β=1

αβσ̄β + C̄T
ξθα1q << 0 (24)

B̄T
ξθϑασ̄α − γ 1m << 0 (25)

then system (22) realizes SSY with L1 performance
satisfying E{∫ ∞

0 ||ê(s)||1ds} ≤ γ E{∫ ∞
0 ||η(s)||1ds}

when ξ̂ (0) = 0.
Substituting (22) into Corollary 1, it will result in the

solution for positive L1 fuzzy upper-bounding filter (20) in
Theorem 3.

Theorem 3: Consider

Aθα = [Aθα1 Aθα2 · · · Aθαn
]T

Cθα = [Cθα1 Cθα2 · · · Cθαn
]T

Lθα = [Lθα1 Lθα2 · · · Lθαq
]T

e1 = [
1 0 · · · 0

]T
, e2 = [

0 1 · · · 0
]T

, . . . , en = [
0 0 · · · 1

]T (26)

with Aθαs ∈ Rn, Cθαs ∈ Rm, Lθαt ∈ Rn, θ = 1, 2, . . . , � ,
s = 1, 2, . . . , n, t = 1, 2, . . . , q ∀α ∈ �. If there exist σ̄1α ∈
Rn+, σ̄2α ∈ Rn+, ςθα ∈ Rn+, āθαs ∈ Rn, b̄θαs ∈ Rp

+, and
c̄θαt ∈ Rn+ ∀α ∈ ℘, such that

AT
θασ̄1α +

n∑

s=1

āθαs + DT
ϑα

n∑

s=1

b̄θαs − AT
θασ̄2α

+

∑

β=1

αβσ̄1β +
q∑

t=1

c̄θαt − LT
θα1q << 0 (27)

n∑

s=1

āθαs +

∑

β=1

αβσ̄2β +
q∑

t=1

c̄θαt << 0 (28)

n∑

s=1

āθαs +

∑

β=1

̄αβ σ̄2β +
q∑

t=1

c̄θαt << 0 (29)

CT
θασ̄1α + ET

ϑα

n∑

s=1

b̄θαs − CT
θασ̄2α − γ 1m << 0 (30)

Aθαsσ̄2αs − āθαs − DT
ϑα b̄θαs ≤≤ 0 (31)

Cθαsσ̄2αs − ET
ϑα b̄θαs ≤≤ 0, Lθαt − c̄θαt ≤≤ 0 (32)

āθαs + ςθαses ≥≥ 0 (33)

where ςθα = [ςθα1 ςθα2 · · · ςθαn]T and σ̄2α =
[σ̄2α1 σ̄2α2 · · · σ̄2αn]T , then system (22) realizes positivity
and SSY with L1 performance satisfying E{∫ ∞

0 ||ê(s)||1ds} ≤
γ E{∫ ∞

0 ||η(s)||1ds} when ξ̂ (0) = 0. Moreover, the upper-
bounding filter parameters are given as

Āθα = [
σ̄−1

2α1āθα1 σ̄−1
2α2āθα2 · · · σ̄−1

2αnāθαn
]T

B̄θα = [
σ̄−1

2α1b̄θα1 σ̄−1
2α2b̄θα2 · · · σ̄−1

2αnb̄θαn
]T

C̄θα = [
c̄θα1 c̄θα2 · · · c̄θαq

]T
. (34)

Proof: From (33), we obtain that Āθα is the Metzler matrix.
From (34), it implies that B̄θα ≥≥ 0 and C̄θα ≥≥ 0, which
means positivity of the filter (20).

From (31) and (32), we have

B̄θαDϑα + Āθα − Aθα ≥≥ 0

B̄θαEϑα + C̄θα − Cθα ≥≥ 0, C̄θα − Lθα ≥≥ 0. (35)

Together with Metzler matrices Aθα and Āθα , (34) implies
positivity of system (22). Then, letting σ̄α = [

σ̄ T
1α σ̄ T

2α

]T
and

substituting Āξ iϑα , B̄ξ iϑα , and C̄ξθα into (9), (24), and (25),
we can get (27)–(30).

Similar to Theorem 3, we can get the fuzzy lower-bounding
filter (21) in Theorem 4.

Theorem 4: Consider

Aθα = [Aθα1 Aθα2 · · · Aθαn
]T

Cθα = [Cθα1 Cθα2 · · · Cθαn
]T

Lθα = [Lθα1 Lθα2 · · · Lθαq
]T

e1 = [
1 0 · · · 0

]T
, e2 = [

0 1 · · · 0
]T

, . . . , en = [
0 0 · · · 1

]T
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with Aθαs ∈ Rn, Cθαs ∈ Rm, Lθαt ∈ Rn, θ = 1, 2, . . . ,� ,
s = 1, 2, . . . , n, t = 1, 2, . . . , q ∀α ∈ �. If there exist σ 1α ∈
Rn+, σ 2α ∈ Rn+, ςθα ∈ Rn+, aθαs ∈ Rn, bθαs ∈ Rp

+, and
cθαt ∈ Rn+ ∀α ∈ ℘, such that

AT
θασ 1α −

n∑

s=1

aθαs − DT
ϑα

n∑

s=1

bθαs + AT
θασ 2α

+

∑

β=1

αβσ 1β −
q∑

t=1

cθαt + LT
θα1q << 0 (36)

n∑

s=1

aθαs +

∑

β=1

αβσ 2β +
q∑

t=1

cθαt << 0 (37)

CT
θασ 1α − ET

ϑα

n∑

s=1

bθαs + CT
θασ 2α − γ 1m << 0 (38)

−Aθαsσ 2αs + aθαs + DT
ϑαbθαs ≤≤ 0 (39)

−Cθαsσ 2αs + ET
ϑαbθαs ≤≤ 0, −Lθαt + cθαt ≤≤ 0 (40)

aθαs + ςθαses ≥≥ 0 (41)

where ςθα = [ςθα1 ςθα2 · · · ςθαn]T and σ 2α =
[σ 2α1 σ 2α2 · · · σ 2αn]T , then system (23) realizes positivity
and SSY with L1 performance satisfying E{∫ ∞

0 ||ĕ(s)||1ds} ≤
γ E{∫ ∞

0 ||η(s)||1ds} when ξ̆ (0) = 0. Moreover, the lower-
bounding filter parameters are given as

Aθα = [
σ−1

2α1aθα1 σ−1
2α2aθα2 · · · σ−1

2αnaθαn

]T

Bθα = [
σ−1

2α1bθα1 σ−1
2α2bθα2 · · · σ−1

2αnbθαn

]T

Cθα = [
cθα1 cθα2 · · · cθαq

]T
. (42)

Remark 10: In Section III, sufficient conditions are
proposed for SSY with L1 performance of system (6).
In Section IV, the positive L1 fuzzy upper-bounding fil-
ter and lower-bounding filter are constructed to obtain the
overall error systems (22) and (23). Then, Corollary 1 for
SSY with L1 performance of system (22) is derived via
Theorem 2. Furthermore, substituting the parameters of (22)
into Corollary 1 results in the solution for L1 fuzzy upper-
bounding filter (20) in Theorem 3. Similarly, we directly obtain
the solution for positive L1 fuzzy lower-bounding filter (21)
in Theorem 4.

Remark 11: In this article, linear programming is developed
to solve the filter gains. It is noted that all the computa-
tions are offline, and so with the help of existing convex
optimization softwares, it is not difficult to solve the cor-
responding linear programming. Moreover, the computation
complexity will also increase along with increasing the size
of linear programming. Therefore, it is important to select the
tradeoff value between the size of linear programming and
the system performance such that the optimal results for the
computational burden can be obtained. In addition, the linear
programming in Theorems 3 and 4 is feasible, which can be
illustrated by the practical epidemiological model in Section V.

Remark 12: For the filter design of S-MJSs, it is an old
topic without taking positive constraint into account [52], [53].
However, the L1 filter is first investigated for nonlinear phase-
type S-MJSs subject to positive constraint, which becomes

a new topic worth studying. Different from the traditional
quadratic Lyapunov method combining with linear matrix
inequality technique [52], [53], linear Lyapunov function com-
bining with the linear programming technique is proposed to
get the solution for filter parameters in this article, which
can make full use of the features of positive systems and
save the operational time. Moreover, the upper-bounding filter
and lower-bounding filter are constructed to focus on transient
performance. Due to the constraint conditions of positivity and
the transient performance, it is full of challenges to investigate
this kind of system.

Remark 13: SSY is first investigated for phase-type S-MJSs
in [43], and then extended to sliding-mode control [48]. In this
article, with the help of the supplementary variable and the
plant transformation technique [43], [48], phase-type S-MJSs
are transformed into MJSs. However, there are three key dif-
ferences between this article and [48]. First, the considered
problems are quite different, that is, this article is concerned
with filter design for nonlinear phase-type S-MJSs while [48]
studied the sliding-mode control for S-MJSs. Second, one
highlight of our work is a positive constraint; this is not
involved in [48]. Third, the investigated plant is composed
of nonlinear subsystems, while only linear subsystems are
considered in [48].

Remark 14: In this article, the TR is completely known,
which may have some conservatism. However, in practice, it
is difficult to obtain such available knowledge for TR, and the
cost is probably huge. Therefore, it is of great significance
to carry out the research for phase-type S-MJSs under the
framework of incomplete TR. How to built SSY criteria for
phase-type S-MJSs with incomplete TR is an interesting topic
for future study.

V. CASE STUDY

In this section, a practical application to the epidemiological
model will be given to show the effectiveness of the theoretical
findings. With the development of modern science and tech-
nology, various epidemiological viruses, such as the SARS
virus, Ebola virus, and Covid-19, are endangering the health
of mankind and bringing immeasurable loss to human society.
Thus, it is of great significance to carry out epidemiologi-
cal research for the prevention, control, and eradication of
diseases.

In practical systems, there always exists the random param-
eters change, which will lead to a sudden change of the
parameters or structures of the system. Positive S-MJSs play
an important part in the analysis and synthesis of the epidemio-
logical model. Due to the number of infectives and susceptives
satisfying non-negative property and the abrupt change of liv-
ing environment, the epidemiological model can be described
by nonlinear positive S-MJSs.

Consider an epidemiological model from [34] as

ẋχ (t) = (
1 − xχ (t)

) n∑

π=1

νχπRπ

Rχ

xπ (t)

−(
ρχ + ςχ

)
xχ (t) (43)
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where n is the number of groups, νχπ is the rate standing
for susceptibles of group χ infected by infectives of group
π , ρχ is the rate standing for an infective individual cured,
and ςχ is the death rate of group χ . xχ (t) = (Zχ (t))/(Rχ ),
Zχ (t) + Vχ (t) = Rχ , where the total number Rχ is con-
stant and Zχ (t) and Vχ (t) are the numbers of infectives and
susceptives, and 0 ≤ xχ (t) ≤ 1.

For the epidemiological model, there exist some random
factors, such as random circumstance variation. The phase-
type SMP ω̂t is adopted to describe the SP in S = {1, 2}.
For the first state, the ST is subject to a negative exponen-
tial distribution with parameter λ1. For the second state, the
ST is subject to a two-order Erlang distribution. During the
second state, the ST is divided into two parts and follows neg-
atively exponentially distribution with parameters λ2 and λ3.
We assume that π12 = π21 = 1. Obviously, one has

P =
[
π11 π12
π21 π22

]

=
[

0 1
1 0

]

, δ1 =
(
δ1

1

)
= (1)

Q1 =
(
Q1

11

)
= (−λ1), δ

2 =
(
δ2

1, δ2
2

)
= (1, 0)

Q2 =
[Q2

11 Q2
12

Q2
21 Q2

22

]

=
[−λ2 λ2

0 −λ3

]

.

It is easy to know that the state space of O(t) = (ω̂t,J (t))
is G = ((1, 1), (2, 1), (2, 2)). Furthermore, all the elements of
G are listed as

ϒ((1, 1)) = 1, ϒ((2, 1)) = 2, ϒ((2, 2)) = 3.

Hence, the IG of ϒ(O(t)) is
⎡

⎣
−λ1 λ1 0

0 −λ2 λ2
λ3 0 −λ3

⎤

⎦. (44)

Define ωt = ϒ(O(t)). Then, ωt is the associated MP of ω̂t in
{1, 2, 3} and the IG of ωt is proposed in (44). Therefore, when
n = 2, phase-type S-MJSs can be expressed by the associated
MJSs as

ẋ1(t) =
(

ν11(ωt) − (ρ1 + ς1(ωt))x1(t) + ν12(ωt)R2

R1
x2(t)

−ν11(ωt)x
2
1(t) − ν12(ωt)R2

R1
x1(t)x2(t) + b1η(t)

ẋ2(t) =
(

ν22(ωt) − (ρ2 + ς2(ωt))x2(t) + ν21(ωt)R1

R2
x1(t)

−ν22(ωt)x
2
2(t) − ν21(ωt)R1

R2
x1(t)x2(t) + b2η(t)

y(t) = x1(t) + x2(t) (45)

where η(t) and y(t) mean the disturbance signal and output
signal. For ωt = α ∈ ℘, ν11(ωt), ν12(ωt), ν21(ωt), ν22(ωt),
ς1(ωt), and ς2(ωt) are, respectively, denoted as ν11α , ν12α ,
ν21α , ν22α , ς1α , and ς2α .

Next, the T–S fuzzy model is adopted to describe
system (45).

Choose φ1(t) = x1(t) and φ2(t) = x2(t) with the following.
Rule 1: IF φ1(t) = 0 and φ2(t) = 0, THEN

ẋ(t) = A1αx(t) + C1αη(t), y(t) = D1αx(t).

Rule 2: IF φ1(t) = 0 and φ2(t) = 1, THEN

ẋ(t) = A2αx(t) + C2αη(t), y(t) = D2αx(t).

Rule 3: IF φ1(t) = 1 and φ2(t) = 0, THEN

ẋ(t) = A3αx(t) + C3αη(t), y(t) = D3αx(t).

Rule 4: IF φ1(t) = 1 and φ2(t) = 1, THEN

ẋ(t) = A4αx(t) + C4αη(t), y(t) = D4αx(t)

where

A1α =
[
ν11α − (ρ1 + ς1α)

ν12αW2
W1

ν21αW1
W2

ν22α − (ρ2 + ς2α)

]

A2α =
[
ν11α − (ρ1 + ς1α)

ν12αW2
W1

0 −(ρ2 + ς2α)

]

A3α =
[−(ρ1 + ς1α) 0

ν21αW1
W2

ν22α − (ρ2 + ς2α)

]

A4α =
[−(ρ1 + ς1α) 0

0 −(ρ2 + ς2α)

]

C1α = C2α = C3α = C4α =
[

b1
b2

]

D1α = D2α = D3α = D4α = [
1 1

]
.

Then, we can get the normalized membership functions
h1(φ(t)) = (1−φ1(t))(1−φ2(t)), h2(φ(t)) = φ2(t)(1−φ1(t)),
h3(φ(t)) = φ1(t)(1 − φ2(t)), h4(φ(t)) = φ1(t)φ2(t), and

ẋ(t) =
4∑

θ=1

pθ (φ(t))(Aθαx(t) + Cθαη(t))

y(t) =
4∑

θ=1

pθ (φ(t))Dθαx(t). (46)

In this example, we design a pair of positive L1 fuzzy filters
to realize positivity and SSY with L1 performance index. For
given ν111 = 0.4, ν121 = ν211 = 0.2, ν221 = 0.3, ς11 = ς12 =
0.1, ρ1 = ρ2 = 0.9, ν112 = 0.4, ν122 = ν212 = 0.5, ν222 = 0.3,
ς21 = ς22 = 0.2, R1 = 200, R2 = 400, b1 = b2 = 0.1, γ =
0.75, λ1 = 0.5, λ2 = 0.8, and λ3 = 1.2, solving Theorems 3
and 4 results in the upper-bounding filter parameters as

Ā11 =
[
−302.3727 121.4154
122.0028 −320.5451

]

, B̄11 =
[

94.1069
97.4527

]

Ā12 =
[
−282.8843 115.4182
116.6706 −321.4207

]

, B̄12 =
[

88.8369
95.9435

]

Ā21 =
[
−335.5093 130.1400
129.5759 −317.7431

]

, B̄21 =
[

103.3071
99.9830

]

Ā22 =
[
−315.9290 128.4350
128.9693 −333.1110

]

, B̄22 =
[

99.3677
102.2645

]

Ā31 =
[
−333.3204 134.6720
134.7916 −337.2606

]

, B̄31 =
[

105.3043
105.9725

]

Ā32 =
[
−370.7321 138.8333
137.4146 −317.6937

]

, B̄32 =
[

113.9058
105.4865

]

Ā41 =
[
−336.1857 134.9032
134.8754 −335.0191

]

, B̄41 =
[

105.8201
105.5870

]
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Fig. 1. System mode.

Ā42 =
[
−357.2635 139.8319
139.1801 −332.1714

]

, B̄42 =
[

112.3770
108.7454

]

C̄11 =
[
245.6154 245.6154

]
, C̄12 =

[
247.6667 247.6667

]

C̄21 =
[
226.4216 226.4216

]
, C̄22 =

[
247.6667 247.6667

]

C̄31 =
[
226.4216 226.4216

]
, C̄32 =

[
247.6667 247.6667

]

C̄41 =
[
245.6154 245.6154

]
, C̄42 =

[
247.6667 247.6667

]

and the lower-bounding filter parameters as

A11 =
[
−310.2328 123.1140
123.3476 −318.1023

]

, B11 =
[

96.0482
97.3694

]

A12 =
[
−286.2784 118.1835
119.6304 −330.1813

]

, B12 =
[

90.2895
98.4778

]

A21 =
[
−318.2043 127.3531
127.5774 −325.9682

]

, B21 =
[

99.0951
100.3563

]

A22 =
[
−306.0753 128.2436
129.5469 −347.2548

]

, B22 =
[

97.6072
104.9350

]

A31 =
[
−340.7930 135.7346
135.5236 −333.5147

]

, B31 =
[

107.0646
105.8599

]

A32 =
[
−383.4960 137.5949
135.4871 −306.2357

]

, B32 =
[

115.2054
102.8026

]

A41 =
[
−336.8392 135.0682
135.0292 −335.3160

]

, B41 =
[

105.9674
105.6728

]

A42 =
[
−357.0106 138.6530
137.8872 −328.7307

]

, B42 =
[

111.4045
107.0840

]

C11 =
[
245.8530 245.8530

]
, C12 =

[
248.1580 248.1580

]

C21 =
[
226.4641 226.4641

]
, C22 =

[
248.1580 248.1580

]

C31 =
[
226.4641 226.4641

]
, C32 =

[
248.1580 248.1580

]

C41 =
[
245.8530 245.8530

]
, C42 =

[
248.1580 248.1580

]
.

For given η(t) = e−t(1 − sin(t)), ω0 = 1, x(0) =[
0.6 0.8

]T , x̂(0) = [
0.8 0.9

]T , and x̆(0) = [
0.2 0.2

]T ,
Fig. 1 describes the stochastic switching rule. Figs. 2 and 3
show the state responses x(t) and the estimated states x̂(t),
x̆(t) of the RCLAS. Fig. 4 plots the error signals ê(t) and ĕ(t).
From Figs. 2 and 3, the system states are bounded by x̆(t) and
x̂(t). And also, one can clearly see that x̂(t), x(t), x̆(t), ê(t),

Fig. 2. Estimated state x̂1 , system state x1, and estimated state x̆1.

Fig. 3. Estimated state x̂2, system state x2, and estimated state x̆2.

Fig. 4. Estimated errors ê(t) and ĕ(t).

and ĕ(t) could arrive at the equilibrium point, which means
that positivity and SSY with L1 performance can be realized.

Remark 15: For the filter solution, there are several open
parameters that should be chosen beforehand. First, the system
parameters ν11α , ν12α , ν21α , ν22α , ς1α , ς2α , R1, R2, b1, and b2
are known a priori according to the practical situation. Second,
the transition rate parameters λ1, λ2, and λ3 are selected
according to the practical statistical measurement. Finally, for
given L1-gain performance γ , we can get the filter gains Āθα ,
B̄θα , C̄θα , Aθα , Bθα , and Cθα by finding feasible solutions of
vectors σ̄2α , āθαs, b̄θαs, c̄θαt, σ 2α , aθαs, bθαs, and cθαt ∀α ∈ ℘.
During the whole solution process, the above parameters are
given in advance without line search.

Remark 16: Compared with [34], this article is concerned
with the filter design for S-MJSs while the observer design is
studied for positive MJSs [34]. Second, the epidemiological
model is described as positive MJSs that belong to the simple
stochastic switching systems [34]. However, considering the
complex stochastic living environment, the epidemiological
model is described as S-MJSs to make the modeling process
more accordant with practical circumstances in this article.
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Remark 17: In the above simulation part, we give a detailed
modeling process of the epidemiological model that illustrates
the effectiveness of the proposed filter design. However, it is
based on the positive filter design theory analysis without tak-
ing the real experimental test into account. Unfortunately, we
have not carried out a real experimental test in the epidemio-
logical model. How to build the real experimental test for the
epidemiological model to show the feasibility of filter design
is an interesting topic in future works.

VI. CONCLUSION

In this article, we have investigated positive L1 fuzzy fil-
ter design for positive nonlinear stochastic switching systems
subject to phase-type semi-Markov jump parameters. By the
use of LCLF, sufficient conditions for positivity and SSY
with L1 performance index are proposed via the T–S fuzzy
method. A pair of positive L1 filters design problem has
been addressed in standard linear programming. Moreover, for
reducing the occupancy of network bandwidth resources, filter
design for positive S-MJSs via the event-triggered communi-
cation scheme is significant in future works.

A drawback is that the positive filter does not guaran-
tee SSY with L1 performance of T–S fuzzy S-MJSs under
stochastic disturbance, which may be an issue under some
circumstances. How to apply the proposed method to posi-
tive filter design under stochastic disturbance is an important
subject that requires further investigation.
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