

Filter Propagation in Dissemination Trees:
Trading Off Bandwidth and Processing in Continuous

Media Networks

Joseph C. Pasquale, George C. Polyzos
Eric W. Anderson, Vachaspathi P. Kompella

Computer Systems Laboratory
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92093-0114

{pasquale, polyzos, ewa, kompella}@cs.ucsd.edu

Abstract

We describe the concept of the

relocatable continuous media filter

. The
novelty of these filters is how they can propagate over a dissemination
tree in a network. We describe the filter propagation protocol to achieve
this. Execution of filters inside a network allows the network to be
viewed in a novel way, as a “processor” with its “instruction set” being
the various types of available filters. Since filters generally modify the
data rate of the continuous media stream, usually (but not necessarily)
reducing it, filters allow the trading off of bandwidth and processing in
a network.

1. Motivation

High performance workstations and high capacity networks have become enabling
technologies for distributed continuous media (CM) applications. For example, videocon-
ferencing and remote video services will be popular for business and home users, while
visualization of animations of remotely-located scientific data sets will be popular for sci-
entific users.

While the networks of the near future will offer gigabit per second and higher band-
widths, we believe there will always be a need for more bandwidth given the current
trends toward videoconferencing, hundreds of channels offered by cable television provid-
ers, as well as the desire for user-selectable on-demand “pay-per-view” home movies.
These video applications are highly I/O-intensive; for example, the data rate for a single

MPEG-compressed high definition television (HDTV) video-audio stream is 20-40 Mb/s
[1]. The problem is certain to be magnified once interactive virtual reality applications
gain widespread popularity.

In fact, network bandwidth will frequently be a scarce resource because, ultimately,
it is a shared resource whose consumption depends on all users. Workstations, on the other
hand, are private resources, whose load depends only on its own user. Workstations are
easily upgraded to ones that are faster, in turn making greater I/O-intensive distributed
applications possible and increasing the network load correspondingly. Networks, on the
other hand, are not easily upgraded.

Multicasting and filtering are tools for economizing bandwidth. There are various
arguments that can be made in favor of bandwidth conservation. First of all, users will
have to (eventually, if not now) pay for bandwidth usage. With ATM networks built and
run by the bandwidth provider, this is certainly going to be the case. This can actually hap-
pen earlier than expected; even the Internet is preparing for usage-based charges. There-
fore, it makes sense to conserve bandwidth even when it is possible to accommodate the
information flows at the full bandwidth to all destinations.

Furthermore, even though the goal of the networking community is to achieve ubiq-
uitous connectivity at “full” bandwidth, it is not clear if and how soon this goal will be
achieved. The difficulties in achieving “the last mile” for fiber to the home is a good exam-
ple of problems in this area. Therefore, it is reasonable to assume that for the foreseeable
future, connectivity between some endpoints will be provided through multiple networks
interconnected through gateways, i.e. internetworking will still be important in the future.
In many such situations, bandwidth and other resources might be relatively scarce in some
of the networks or the interconnection points.

Finally, even if it is technically feasible to distribute the full signal to all participants,
economics might introduce a significant difference among destinations. Consider for
example a mostly local videoconference with a few remote participants. Having the capa-
bility of incorporating the remote participants at reasonable cost without changing the
quality or character of the local part of the conference is a definite advantage. There could
be natural points where it might be helpful to throttle the bandwidth, e.g. at gateways
between different networks.

Fortunately, there exist opportunities for more efficiently managing network band-
width given distributed CM applications:

•

Dissemination Trees

: Many of these distributed CM applications have dissemination-
based communication models [2], where there is some source generating data for a
large number of receivers, e.g. cable television, home movies, etc. Multicast routing
based on source-rooted

dissemination trees

limits bandwidth consumption by avoiding
whenever possible the duplication of data streams.

•

Variable Resolution

: CM such as audio or video has the characteristic that its resolu-
tion can be varied to produce different levels of quality, many of which may be accept-
able to the application. Lowering resolution will lower the data rate of the continuous
media stream; therefore, given a mechanism which can dynamically control resolu-
tion, the data rate can be adjusted to meet special needs of receivers or to meet network
constraints, or even in response to special conditions of the network.

To elaborate on these points, we consider some examples. Usually, receivers will be

heterogeneous in their ability to consume data based on their local equipment. A CM
stream disseminated from a single point may be generated as a high-quality data stream,
particularly if the source is a commercial provider. HDTV with CD-quality sound might
be appropriate for a feature presentation. But some (possibly many) of the receivers will
lack the hardware required to take advantage of such rich data. Some receivers will only
be able to display black-and-white, or gray-scale, or 8-bit color, rather than 24-bit “true
color.” Not only may these receivers be unable to present the CM in its full detail, but they
may have difficulty merely receiving the full data stream and selecting an appropriate por-
tion for presentation. In such cases, there is no need to send full resolution video to these
receivers, and therefore, there is an opportunity to lower the required data rate.

On the other hand, there could be situations where it would be beneficial to have
bandwidth traded off for processing. For example, consider a set of similar workstations
lacking decompression hardware attached to a broadcast local area network (LAN) being
part of a dissemination tree. It is possible then to have the router attached to the LAN and,
being upstream in the dissemination tree, to use a filter to implement the decompression
function and thus provide a single common final version of the channel flow, ready to be
presented by the workstations.

Finally, consider that sending CM at a high resolution sometimes yields only mar-
ginal gain. For an audio stream of a single person speaking, the difference between so-
called “voice quality” audio, at 8 KBps, and “CD quality” audio, in stereo, at just over 160
KBps, is largely aesthetic. These two data rates, however, differ by a factor of 20. Users
who are faced with paying for their network bandwidth may be highly inclined to trade a
slight service reduction for a factor of 20 cost savings. Similar flexibility is possible with
video, where the frame size, frame rate, and color depth can all be varied, each by over an
order of magnitude. It is highly desirable if this can be done dynamically, at the discretion
of the receiver and without disturbing the source.

In this paper, we describe a concept called the

relocatable continuous media filter

(“filter” for short), used in networks to take advantage of these opportunities for manipu-
lating the required bandwidths of distributed CM applications. These filters can relocate
themselves in a dissemination tree by propagating from a receiver upstream towards the
source such that system resources are most efficiently and effectively utilized. While the
idea of filtering is not new, the relocation of filters is novel in that filters may now be
viewed as an abstraction for network processing power. Filters provide the ability to
achieve various trade-offs between bandwidth, the traditional resource offered by the net-
work, and processing, a non-traditional network resource.

2. Communication Model

We first describe a model for dissemination-based communication based on that described
in [3]. The basic objects in this model are segments, streams and multi-streams, channels
and dissemination trees, sources and receivers, and filters. A

segment

 is an application-
level unit of data comprised of a time-stamped sample or set of samples of continuous
media, such as a block of audio samples or a video frame. A

stream

 is a typed sequence of
segments. A

multi-stream

 is a set of related streams; typically, the relationship is based on
time-correlation, where segments of different streams are synchronized at playback time.

A

channel

 is the object which distributes a multi-stream from a source to multiple
receivers: a source transmits a multi-stream onto a channel; a receiver receives a multi-
stream by “tuning in” to a channel. Generally, many receivers can tune-in to a channel;

however, only one source can transmit onto a channel. A

dissemination tree

 is a directed
source-rooted tree which is a sub-graph of the network connecting a single source and
multiple receivers; this tree defines the paths over which a channel delivers a multi-stream.
To construct such a tree for continuous media applications, both bandwidth and delay
must be taken into account (see Figure 1). A routing algorithm which effectively mini-
mizes bandwidth while satisfying source-destination contraints (e.g. bounding delay) is
described in [4]. A channel’s dissemination tree can change over time (however, we ignore
this complication in this paper).

3. Filters

A

filter

 is a transformer of one or more input streams of a multi-stream into an output
stream; the output stream replaces the input streams in the multi-stream. A receiver which
has tuned in to a channel may place a filter on the channel,

1

 identifying which input stream
is to be filtered (see Figure 2).

There are a variety of functions which filters may implement. The simplest is a

selective

 filter, which can select which segments get forwarded and which do not (i.e.
which get dropped). For example, a selective filter may drop all segments on a stream. A
receiver which could only display lower frequency components of a hierarchically coded
video multi-stream would filter out the higher component streams. A more sophisticated
selective filter would select 1 out of n segments, as would be used by a receiver which
could not display video at the full frame rate offered by the source.

A yet more powerful filter is a

transforming

 filter, which would actually carry out
computations on a segment to produce a new segment. For example, many personal com-
puters do not have the capability of displaying 24-bit color, but are able to display 8-bit
color. A transforming filter may be applied to a video stream to reduce its resolution from
24-bit color pixels to 8-bit color using some form of dithering. Compression is a good

1. Actually, a filter is placed on a

port

, which is the receiver’s access point to a channel [3].

Source Receiver

(a) (b) (c)

Figure 1: Three dissemination trees. In (a), delay from source to either receiver is 2
hops, but total bandwidth usage is 4 links. In (b), total bandwidth usage is 3 links,
but maximum delay is 3 hops. In (c), both bandwidth (3 links) and delay (2 hops) are
minimized.

Router

example of a function carried out by a transforming filter (see Figure 2).

Finally, filters need not be limited to operation on a single input stream. A

mixing

 fil-
ter can accept multiple input streams, carry out some computation on them, and produce a
new stream. For example, a multi-stream may include separate audio streams for stereo
reproduction; a mixing filter can combine these audio streams to produce monaural audio
as would be appropriate if the receiver had only a single loudspeaker.

4. Filter Propagation

When a receiver places a filter on a channel, where should it execute? An obvious location
would be at the network’s edge nearest the receiver. In this case, the channel must provide
enough bandwidth to transport the input stream, even though the output stream may
require (perhaps significantly) less bandwidth. Note that the closer the filter’s location is to
the source, the less total bandwidth is required (see Figure 3).

2

To take advantage of this simple observation, filters are propagated upstream
towards the source in the dissemination tree, and stop whenever they reach a node with
more than one output link. At this node, when a segment arrives, a copy is filtered and then
transmitted over the link over which the filter propagated, while unfiltered copies of the
segment are forwarded on the other outgoing links. In this manner, bandwidth consump-
tion is minimized.

2. This assumes that the filter is bandwidth-reducing, otherwise, it may actually be disadvantageous
to propagate the filter. Thus, a non-bandwidth reducing filter will not be propagated unless there is
some other reason to do so, e.g. economizing on processing time.

Filter
unfiltered stream segments filtered stream segments

Figure 2: Example of a filter which reduces resolution of a continuous media stream
by dropping information, resulting in a stream requiring a lower data rate.

Figure 3: Let R and r be data rates, with R > r. The total utilized bandwidth of the
links in (a) is greater than that of (b), as a result of propagating a data rate-reducing
filter toward the source.

Source Receiver FilterRouter

R R R r

r r rR

(a)

(b)

A special situation arises when there exist filters of the same type on all the outgoing
links of an internal node in the dissemination tree. In this case, the filters can be combined
into a single filter, which if bandwidth reducing, may now propagate further upstream.
Figure 4 illustrates these concepts.

For the network to support the execution and propagation of filters, the executable
code for filters must be installed in routers and filter names must be standardized. Any net-
work router may provide an environment for the local execution of a filter. The required
network infrastructure is similar to that required for supporting remote procedure calls.

1

2

3

4

5

6

1

2

3-6

Filter

Figure 4: Example of filter propagation. All the filters are of the same type, and so
they may possibly combine. Filters 1 and 2 propagate upstream but cannot com-
bine because there is a receiver in that part of the dissemination tree which requires
an unfiltered stream. Filter 3 propagates, and filters 4, 5, and 6 propagate, combine,
and continue to propagate until they combine with filter 3, with the resulting filter
(denoted by filter “3-6”) finally propagating to the router closest to the source.

Before

After

Source Receiver

Router

5. The Filter Propagation Protocol

Filter propagation is established through a

filter propagation protocol

. The protocol
is straightforward, and implements the scheme described above. Whenever a receiver
issues a filter to be placed on a channel, some or all of the routers comprising the nodes of
the channel’s dissemination tree take part in the propagation protocol.

3

 The receiver’s
machine first contacts the upstream router

4

 to determine whether propagation is possible,
notifying the router of the particular filter and the stream to which it is being applied. The
router accepts the filter if (a) it recognizes the filter’s name and therefore has the filter’s
executable code installed, and (b) it has the resources (e.g. processing time, memory buff-
ers) to execute the filter. The latter decision is one of local policy established by the rout-
er’s manager; how such policies are formulated is outside the scope of this paper. If the
router accepts the filter, then it may apply the filter on a stream segment just before it is
forwarded.

A router may be required to forward a stream segment over multiple outgoing links,
i.e. a one-to-many forwarding operation. Thus, it is important to note that a filter’s

loca-
tion

 is associated with a particular outgoing link of a router (or more generally, with a sub-
set of all the outgoing links relative to the given dissemination tree) since filters are
initiated by receivers in the dissemination tree, and not the sender [3]. If an outgoing link’s
downstream receiver initiated the filter propagation, the filter is located on that link (see
Figure 5).

While the same filter may be located at multiple outgoing links, only one physical
copy of the filter exists. And, if the same filter is to be applied to the same segment multi-

3. This assumes that it is advantageous to propagate the filter upstream, e.g. resulting in bandwidth
reduction. This is specified as part of the filter definition.
4. There is exactly one upstream router relative to any node in a dissemination tree.

Forwarding
Mechanism

ROUTER

Figure 5: Filter location is associated with a particular outgoing link of a router.
Receivers 1 and 2 each placed the same type of filter on the same channel; both fil-
ters have propagated to this router, and are located at outgoing links 1 and 2. A seg-
ment is (physically) filtered only once; the same filtered segment is then
transmitted multiple times, over outgoing links 1 and 2. Since receiver 3 did not
place a filter on the channel, the original unfiltered version of the segment is trans-
mitted over outgoing link 3.

stream

to receiver 1

to receiver 2

to receiver 3

incoming link

outgoing
link 1

outgoing
link 2

outgoing
link 3

ple times, only a single execution of the filter on the segment occurs; the filtered segment
is then forwarded multiple times, each time over a different outgoing link.

In addition to deciding whether to accept a filter, the router determines whether it
should try to propagate the filter to the next router upstream. If the same filter is located on
all the outgoing links, then the filter is propagated. In the trivial case of a single outgoing
link, the filter is always propagated. The protocol is recursive in that, at this point, the
same steps described above are repeated with the router and the next upstream router as
the communicants. When the “next upstream router” is actually the channel’s source, the
protocol terminates after carrying out the above steps.

6. Operating System Issues

The filters presented here closely resemble the “stream modules” described in [5]. While
some of the concepts and even the interface are in principle similar, the issues of relocat-
ability and automatic propagation cause special concerns. In particular, propagated filters
will execute on machines (e.g. routers) which are shared resources, and can have a signifi-
cant impact on their performance; these effects may be felt by other users of the network.

Given the desired capabilities of selection, transformation, and mixing, a filter
requires varying degrees of processing power. In a network where processing power may
be limited (e.g. ATM networks), only selective filters may be supported. However, even
selective filters provide substantial flexibility, especially when the source can break down
continuous media data into many basic component streams which are amenable to selec-
tion.

Transforming and mixing filters require actual computation. If the computation is
substantial, it is useful for the filter’s execution to be preemptive in case higher priority
work needs to be done. Consequently, a transforming or mixing filter may be encapsulated
by a preemptable process whose execution is triggered by the arrival of a segment. Using
processes allows the standard resource management techniques for the scheduling of the
CPU and memory to be applicable.

Ultimately, these controls on resource usage are based on the following principle:
the network must always have discretion over how much work it is willing to carry out on
behalf of a receiver. Otherwise, the network is left open to abuse or, more simply, may per-
form poorly any time a router becomes overloaded with work. Consequently, we believe
that filter execution inside the network should always be optional and therefore must be
considered unreliable by the receiver.

To resolve this problem, if a filter propagates into the network an additional copy of
the filter can remain located at the receiver. When a segment arrives at the receiver, the
receiver’s filter determines whether the segment is already filtered; if not, the filter oper-
ates on the segment. Thus, it must be possible to inspect a segment and determine whether
a filter has been applied to it or not. This is achieved by including bits in the segment to be
used as tags indicating filtered or unfiltered, with each bit dynamically assigned to the dif-
ferent filters placed on the channel.

We are currently considering two strategies for locating filters at multiple nodes of a
dissemination tree:

• Locate a copy of the filter at the most upstream router (as determined by the filter
propagation protocol) as well as at the receiver. If the most upstream router decides not
to apply the filter to the stream, the filter located at the receiver must do so.

• Locate copies of the filter at each router along the path between the most upstream
router and the receiver. As a segment is forwarded by these routers, any of them may
apply the filter. Once a router applies the filter, the others will refrain from doing so.
This provides a form of load balancing by giving the routers the flexibility to off-load
work in response to local overloads.

7. The Network as a Processor

By executing filters “inside the network,” the network may be thought of as a “processor.”
All processors have instruction sets: the set of all types of filters may be thought of as the
network processor's set of instructions. The creation of this network processor instruction
set is based on the creation and adoption of new filters to be supported on routers.

We see the process of building this instruction set as an evolutionary one. Anyone
may design a new filter and propose it for adoption. The filter’s designer would provide a
description of the filter's function, the source code, and a unique name (some mechanism
is required to resolve naming conflicts). The filter is then submitted for acceptance, being
distributed to the various organizations which own the network's routers.

Thus, decisions to accept a filter as part of the instruction set are made in a decentral-
ized and incremental fashion. The manager of a router makes such a decision for that
router. If accepted, the manager installs the filter on the local router by arranging for the
filter source code to be compiled for local execution and to be recognized by name when
propagation occurs. Such filters can then execute on that router.

If the filter is not accepted (or for any reason not installed on a router), it must exe-
cute elsewhere. By default, the filter can always execute at the receiver, so there is never a
problem of not finding a place to execute the filter.

We expect that over a period of time, a collection of useful filters will be developed
which can be expected to be supported by a large set of routers.

8. Conclusions

We have described how relocatable continuous media filters can be used to trade off band-
width and processing in networks transporting continuous media. Continuous media, such
as video, have high bandwidth requirements, and so efficient allocation and management
of bandwidth is important. Distributed applications with continuous media I/O compo-
nents have several characteristics which can be used to advantage: many are dissemina-
tion-based, and they can accept continuous media of varying levels of resolution. Filters
can be used to lower resolution, either statically when a receiver’s resolution response is
limited, or even dynamically based on network overloading. By propagating filters
upstream, and by combining like filters at fork nodes in a dissemination tree, bandwidth
utilization is effectively reduced.

9. References

[1] D. Le Gall, “MPEG: A video compression standard for multimedia applications,”

CACM

, vol. 34, no. 4, April 1991.
[2] D. Cheriton, “Dissemination-oriented Communication Systems,” Distinguished Lec-

turer Series, Department of Computer Science and Engineering, University of Califor-
nia, San Diego, April 1992.

[3] J. Pasquale, G. Polyzos, E. Anderson, and V. Kompella, “The Multimedia Multicast
Channel,”

Proc. 3rd International Workshop on Network and Operating System Sup-
port for Digital Audio and Video

, San Diego, November 1992 (also in

Lecture Notes in
Computer Science #712

, pp. 197-208, Springer-Verlag).
[4] V. Kompella, J. Pasquale, and G. Polyzos, “Multicast routing for multimedia commu-

nication,”

IEEE/ACM Trans. on Networking

, vol. 1, no. 3, pp. 286-292, June 1993.
[5] D. M. Ritchie, “A stream input-output system,”

AT&T Bell Laboratories Technical
Journal

, vol. 62, no. 8, pp. 1897-1910, October 1984.

