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Abstract—With identity fraud in our society reaching un-
precedented proportions and with an increasing emphasis on the
emerging automatic personal identification applications, biomet-
rics-based verification, especially fingerprint-based identification,
is receiving a lot of attention. There are two major shortcomings
of the traditional approaches to fingerprint representation.
For a considerable fraction of population, the representations
based on explicit detection of complete ridge structures in the
fingerprint are difficult to extract automatically. The widely
used minutiae-based representation does not utilize a significant
component of the rich discriminatory information available in
the fingerprints. Local ridge structures cannot be completely
characterized by minutiae. Further, minutiae-based matching has
difficulty in quickly matching two fingerprint images containing
different number of unregistered minutiae points. The proposed
filter-based algorithm uses a bank of Gabor filters to capture
both local and global details in a fingerprint as a compact fixed
length FingerCode. The fingerprint matching is based on the
Euclidean distance between the two corresponding FingerCodes
and hence is extremely fast. We are able to achieve a verification
accuracy which is only marginally inferior to the best results of
minutiae-based algorithms published in the open literature [1].
Our system performs better than a state-of-the-art minutiae-based
system when the performance requirement of the application
system does not demand a very low false acceptance rate. Finally,
we show that the matching performance can be improved by
combining the decisions of the matchers based on complementary
(minutiae-based and filter-based) fingerprint information.

Index Terms—Biometrics, FingerCode, fingerprints, flow pat-
tern, Gabor filters, matching, texture, verification.

I. INTRODUCTION

W
ITH THE advent of electronic banking, e-commerce,

and smartcards and an increased emphasis on the pri-

vacy and security of information stored in various databases,

automatic personal identification has become a very important

topic. Accurate automatic personal identification is now needed

in a wide range of civilian applications involving the use of

passports, cellular telephones, automatic teller machines, and

driver licenses. Traditional knowledge-based [password or per-

sonal identification number (PIN)] and token-based (passport,

driver license, and ID card) identifications are prone to fraud be-

cause PIN’s may be forgotten or guessed by an imposter and the

tokens may be lost or stolen. As an example, Mastercard credit

card fraud alone now amounts to more than 450 million U.S.
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Fig. 1. Ridges and automatically detected minutiae points in a fingerprint
image. The core is marked with a �.

dollars annually [2]. Biometrics, which refers to identifying an

individual based on his or her physiological or behavioral char-

acteristics has the capability to reliably distinguish between an

authorized person and an imposter.

A biometric system can be operated in two modes: 1) veri-

fication mode and 2) identification mode. A biometric system

operating in the verification mode either accepts or rejects a

user’s claimed identity while a biometric system operating in the

identification mode establishes the identity of the user without

a claimed identity information. In this work, we have focused

only on a biometric system operating in the verification mode.

Among all the biometrics (e.g., face, fingerprints, hand ge-

ometry, iris, retina, signature, voice print, facial thermogram,

hand vein, gait, ear, odor, keystroke dynamics, etc. [2]), finger-

print-based identification is one of the most mature and proven

technique.

A fingerprint is the pattern of ridges and valleys on the sur-

face of the finger [3]. The uniqueness of a fingerprint can be de-

termined by the overall pattern of ridges and valleys as well as

the local ridge anomalies [a ridge bifurcation or a ridge ending,

called minutiae points (see Fig. 1)]. Although the fingerprints

possess the discriminatory information, designing a reliable au-

tomatic fingerprint matching algorithm is very challenging (see

Fig. 2). As fingerprint sensors are becoming smaller and cheaper

[4], automatic identification based on fingerprints is becoming

an attractive alternative/complement to the traditional methods

of identification. The critical factor in the widespread use of fin-

gerprints is in satisfying the performance (e.g., matching speed

and accuracy) requirements of the emerging civilian identifi-

cation applications. Some of these applications (e.g., finger-

print-based smartcards) will also benefit from a compact rep-

resentation of a fingerprint.

1057-7149/00$10.00 © 2000 IEEE
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Fig. 2. Difficulty in fingerprint matching. (a) and (b) have the same global
configuration but are images of two different fingers.

The popular fingerprint representation schemes have evolved

from an intuitive system design tailored for fingerprint experts

who visually match the fingerprints. These schemes are either

based on predominantly local landmarks (e.g., minutiae-based

fingerprint matching systems [1], [5]) or exclusively global

information (fingerprint classification based on the Henry

system [6]–[8]). The minutiae-based automatic identification

techniques first locate the minutiae points and then match their

relative placement in a given finger and the stored template

[1]. A good quality fingerprint contains between 60 and 80

minutiae, but different fingerprints have different number of

minutiae. The variable sized minutiae-based representation

does not easily lend itself to indexing mechanisms. Further,

typical graph-based [9]–[11], and point pattern-based [1],

[12], [13] approaches to match minutiae from two fingerprints

need to align the unregistered minutiae patterns of different

sizes which makes them computationally expensive. Corre-

lation-based techniques [14], [15] match the global patterns

of ridges and valleys to determine if the ridges align. The

global approach to fingerprint representation is typically used

for indexing [6]–[8], and does not offer very good individual

discrimination. Further, the indexing efficacy of existing global

representations is poor due to a small number of categories that

can be effectively identified and a highly skewed distribution of

the population in each category. The natural proportion of fin-

gerprints belonging to categories whorl (whorl and double loop

put together), loop (right and left loop put together), and arch

(arch and tented arch put together), is 0.279, 0.655, and 0.066,

respectively. Both these approaches utilize representations

which cannot be easily extracted from poor quality fingerprints.

The smooth flow pattern of ridges and valleys in a fingerprint

can be viewed as an oriented texture field [16]. The image inten-

sity surface in an ideal fingerprint image is comprised of ridges

whose direction and height vary continuously, which consti-

tutes an oriented texture. Most textured images contain a limited

range of spatial frequencies, and mutually distinct textures differ

significantly in their dominant frequencies [17]–[19]. Textured

regions possessing different spatial frequency, orientation, or

phase can be easily discriminated by decomposing the texture

in several spatial frequency and orientation channels. For typical

fingerprint images scanned at 500 dpi, there is a little variation

in the spatial frequencies (inter-ridge distances) among different

fingerprints. This implies that there is an optimal scale (spatial

frequency) for analyzing the fingerprint texture. Every point in

a fingerprint image is associated with a dominant local orien-

tation and a local measure of coherence of the flow pattern. A

symbolic description of a fingerprint image can be derived by

computing the angle and coherence at each point in the image.

Fingerprints can be identified by using quantitative measures as-

sociated with the flow pattern (oriented texture) as features.

It is desirable to explore representation schemes which com-

bine global and local information in a fingerprint. We present

a new representation for the fingerprints which yields a rela-

tively short, fixed length code, called FingerCode [6] suitable

for matching as well as storage on a smartcard. The matching

reduces to finding the Euclidean distance between these Finger-

Codes and hence the matching is very fast and the representa-

tion is amenable to indexing. We utilize both the global flow

of ridge and valley structures and the local ridge characteristics

to generate a short fixed length code for the fingerprints while

maintaining a high recognition accuracy.

The proposed scheme of feature extraction tessellates the re-

gion of interest of the given fingerprint image with respect to

a reference point (Fig. 3). A feature vector is composed of an

ordered enumeration of the features extracted from the (local)

information contained in each subimage (sector) specified by

the tessellation. Thus, the feature elements capture the local in-

formation and the ordered enumeration of the tessellation cap-

tures the invariant global relationships among the local patterns.

The local discriminatory information in each sector needs to be

decomposed into separate components. Gabor filterbanks are a

well-known technique to capture useful information in specific

bandpass channels as well as to decompose this information into

biorthogonal components in terms of spatial frequencies. A fea-

ture vector, which we call FingerCode, is the collection of all

the features (for every sector) in each filtered image. These fea-

tures capture both the global pattern of ridges and valleys and

the local characteristics. Matching is based on the Euclidean dis-

tance between the FingerCodes.

II. FILTER-BASED FEATURE EXTRACTION

It is desirable to obtain representations for fingerprints which

are scale, translation, and rotation invariant. Scale invariance is

not a significant problem since most fingerprint images could

be scaled as per the dpi specification of the sensors. The rota-

tion and translation invariance could be accomplished by estab-

lishing a reference frame based on the intrinsic fingerprint char-

acteristics which are rotation and translation invariant. It is also

possible to establish many frames of reference based upon sev-

eral landmark structures in a fingerprint to obtain multiple repre-

sentations. At the expense of additional processing and storage

cost, the multiple representations offer robust matching perfor-

mance when extraction algorithm fails to detect one or more

frames of reference. In the proposed feature extraction scheme,

translation is handled by a single reference point location during

the feature extraction stage. The present implementation of fea-

ture extraction assumes that the fingerprints are vertically ori-
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Fig. 3. System diagram of our fingerprint authentication system.

ented. In reality, the fingerprints in our database are not exactly

vertically oriented; the fingerprints may be oriented up to

away from the assumed vertical orientation. This image rotation

is partially handled by a cyclic rotation of the feature values

in the FingerCode in the matching stage; in future implemen-

tations, the image rotation will be correctly handled by auto-

matically determining the fingerprint orientation from the image

data. The current scheme of feature extraction tessellates the re-

gion of interest in the given fingerprint image with respect to the

point of reference. The four main steps in our feature extraction

algorithm are

1) determine a reference point and region of interest for the

fingerprint image;

2) tessellate the region of interest around the reference point;

3) filter the region of interest in eight different directions

using a bank of Gabor filters (eight directions are required

to completely capture the local ridge characteristics in

a fingerprint while only four directions are required to

capture the global configuration [6]);

4) compute the average absolute deviation from the mean

(AAD) of gray values in individual sectors in filtered im-

ages to define the feature vector or the FingerCode.

In the current implementation, we have used the AAD features

which give slightly better performance than variance features

[6] on both the MSU_DBI and NIST 9 databases. Although

AAD features perform reasonably well, we believe that a sig-

nificantly better performance can be achieved by using more

discriminative features.

Let denote the gray level at pixel in an

fingerprint image and let denote the reference point.

The region of interest is defined as the collection of all the sec-

tors , where the th sector is computed in terms of param-

eters as follows:

(1)
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Fig. 4. Reference point (�), the region of interest, and 80 sectors
superimposed on a fingerprint.

where

(2)

(3)

(4)

(5)

is the width of each band, is the number of sectors considered

in each band, and , where is the number

of concentric bands considered around the reference point for

feature extraction. These parameters depends upon the image

resolution and size. In our first experiment with MSU_DBI data-

base (image size = pixels, scanned at 500 dpi), we

considered five concentric bands ( ) for feature extraction.

Each band is 20-pixels wide ( ), and segmented into six-

teen sectors ( ) (Fig. 4). A 20-pixel wide band captures

an area spanning about one ridge and valley pair, on an average,

in a 500 dpi fingerprint image. A band with a width of 20 pixels

is necessary to capture a single minutia in a sector, allowing our

low-level features to capture this local information. If the sector

width is more than 20 pixels, then the local information may

be modulated by more global information. The innermost band

(circle) is not used for feature extraction because the flow field

in a region around a very high curvature point (core) has poor co-

herence. Thus, absolute deviations of oriented Gabor responses

to this region would be expected to be unreliable matching fea-

tures. Thus, we have a total of sectors ( through

) and the region of interest is a circle of radius 120 pixels,

centered at the reference point. Eighty features for each of the

eight filtered images provide a total of 640 ( ) features per

fingerprint image. Each feature can be quantized into 256 values

and requires 1 byte of storage, so the entire feature vector re-

quires only 640 bytes of storage. In our second experiment with

NIST 9 database (image size = pixels, scanned at

500 dpi), we used seven concentric bands ( ), , and

, giving us an 896 byte FingerCode.

Fig. 5. Concave and convex ridges in a fingerprint image when the finger is
positioned upright.

It is difficult to rely on feature extraction based on explicit de-

tection of structural features in fingerprints, especially in poor

quality images. Features based on statistical properties of im-

ages are likely to degrade gracefully with the image quality de-

terioration. For this study, we use grayscale variance-based fea-

tures. The average absolute deviation of the gray levels from the

mean value in an image sector is indicative of the overall ridge

activity in that sector which we claim to be useful for finger-

print verification. As noted in Section IV, our matcher based on

this simple statistical feature performs well and we expect to

achieve significantly better accuracies with more discriminative

attributes.

A. Reference Point Location

Fingerprints have many conspicuous landmark structures and

a combination of them could be used for establishing a reference

point. We define the reference point of a fingerprint as the point

of maximum curvature of the concave ridges (see Fig. 5) in the

fingerprint image.

Many previous approaches to determination of a reference

point ( ) critically relied on the local features like Poincaré

index or some other similar properties of the orientation field.

While these methods work well in good quality fingerprint

images, they fail to correctly localize reference points in

poor quality fingerprints with cracks and scars, dry skin, or

poor ridge and valley contrast. Recently, Hong and Jain have

attempted to judiciously combine the orientation field informa-

tion with available ridge details in a fingerprint [8]. However,

this method does not reliably handle poor quality fingerprints

when the orientation field is very noisy and can be misled by

poor structural cues in the presence of finger cracks.

In order that a reference point algorithm gracefully handle

local noise in a poor quality fingerprint, the detection should

necessarily consider a large neighborhood in the fingerprint.

On the other hand, for an accurate localization of the reference

point, the approach should be sensitive to the local variations in

a small neighborhood. To meet these conflicting requirements of

an accurate and reliable localization, we propose a new method

of reference point determination based on multiple resolution

analysis of the orientation fields. Our new method locates the

reference point more precisely than the algorithm proposed by

Hong and Jain [8].

Let us first define the orientation field, , for a fingerprint

image. The orientation field, , is defined as a image,

where represents the local ridge orientation at pixel

. Local ridge orientation is usually specified for a block

rather than at every pixel; an image is divided into a set of

nonoverlapping blocks and a single orientation is defined for
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Fig. 6. Estimating the reference point. (a) Smoothed orientation field overlapped on the original image. (b) Orientation field (w = 10) shown as intensity
distribution; the background has been segmented. (c) sine component of the orientation field; the darkest pixel marks the detected reference point. Images have
been scaled for viewing.

each block [see Fig. 6(a) and (b)]. Note that there is an ambi-

guity of in fingerprint orientation, i.e., local ridges oriented at

and ridges oriented at cannot be differentiated from

each other. A number of methods have been developed to esti-

mate the orientation field in a fingerprint [20]–[23]. The least

mean square orientation estimation algorithm [33] has the fol-

lowing steps.

1) Divide , the input image, into nonoverlapping blocks of

size .

2) Compute the gradients and at each pixel

. Depending on the computational requirement, the

gradient operator may vary from the simple Sobel oper-

ator to the more complex Marr–Hildreth operator [24].

3) Estimate the local orientation of each block centered at

pixel using the following equations [23]:

(6)

(7)

(8)

where is the least square estimate of the local

ridge orientation at the block centered at pixel .

Mathematically, it represents the direction that is orthog-

onal to the dominant direction of the Fourier spectrum

of the window.

A summary of our reference point location algorithm is pre-

sented below.

1) Estimate the orientation field as described above using

a window size of .

2) Smooth the orientation field in a local neighborhood. Let

the smoothed orientation field be represented as . In

order to perform smoothing (low-pass filtering), the ori-

entation image needs to be converted into a continuous

vector field, which is defined as follows:

(9)

and

(10)

andwhere and , are the and components of the

vector field, respectively. With the resulting vector field,

the low-pass filtering can then be performed as follows:

(11)

and

(12)

where is a two-dimensional low-pass filter with unit

integral and specifies the size of the filter. Note

that the smoothing operation is performed at the block

level. For our experiments, we used a mean filter.

The smoothed orientation field at is computed

as follows:

(13)

3) Compute , an image containing only the sine component

of [see Fig. 6(c)]

(14)

4) Initialize , a label image used to indicate the reference

point.

5) For each pixel in , integrate pixel intensities (sine

component of the orientation field) in regions and

shown in Fig. 7 and assign the corresponding pixels in

the value of their difference

(15)

The regions and (see Fig. 7) were determined em-

pirically by applying the reference point location algo-

rithm over a large database. The geometry of regions

and is designed to capture the maximum curvature
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Fig. 7. Regions for integrating E pixel intensities for A(i; j).

Fig. 8. Examples of the results of our reference point location algorithm. Our
reference point location algorithm fails on very poor quality fingerprints.

in concave ridges (see Fig. 5). Although this successfully

detects the reference point in most of the cases, including

double loops [see Fig. 8(a)], the present implementation

is not very precise and consistent for the arch type finger-

prints.

6) Find the maximum value in and assign its coordinate

to the core, i.e., the reference point.

7) For a fixed number of times, repeat steps 1–6 by using a

window size of , where and restrict the

search for the reference point in step 6 in a local neighbor-

hood of the detected reference point. In our experiments,

we used three iterations with , and pixels,

respectively, and hence the precision of the detected ref-

erence point is 5 pixels.

Our representation scheme is able to tolerate the imprecision

in the reference point estimates of up to 10 pixels (approxi-

Fig. 9. Fingerprints have well defined local frequency and orientation. (a)
Ridges in a local region and (b) Fourier spectrum of (a).

mately 1 inter-ridge distance unit) away from its “true” loca-

tion. Fig. 8 shows the results of our reference point location al-

gorithm.

B. Filtering

Fingerprints have local parallel ridges and valleys, and well-

defined local frequency and orientation (Fig. 9). Properly tuned

Gabor filters [25], [26], can remove noise, preserve the true

ridge and valley structures, and provide information contained

in a particular orientation in the image. A minutia point can be

viewed as an anomaly in locally parallel ridges and it is this

information that we are attempting to capture using the Gabor

filters.

Before filtering the fingerprint image, we normalize the re-

gion of interest in each sector separately to a constant mean and

variance. Normalization is performed to remove the effects of

sensor noise and gray level deformation due to finger pressure

differences. Let denote the gray value at pixel ,

and , the estimated mean and variance of sector , respec-

tively, and , the normalized gray-level value at pixel

. For all the pixels in sector , the normalized image is

defined as

if

otherwise

(16)

where and are the desired mean and variance values, re-

spectively. Normalization is a pixel-wise operation which does

not change the clarity of the ridge and valley structures. If nor-

malization is performed on the entire image, then it cannot com-

pensate for the intensity variations in different parts of the image

due to the elastic nature of the finger. Separate normalization of

each individual sector alleviates this problem. Fig. 10 shows an

example of this normalization scheme. For our experiments, we

set the values of both and to 100.
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Fig. 10. Normalized, filtered, and reconstructed fingerprint images: (a) area of interest, (b) normalized image, (c)–(j) 0 , 22.5 , 45 , 67.5 , 90 , 112.5 , 135 ,
157.5 filtered images, respectively, (k) reconstructed image with four filters, and (l) reconstructed image with eight filters. While four directions are sufficient to
capture the global structure of the fingerprint, eight directions are required to capture the local characteristics.

An even symmetric Gabor filter has the following general

form in the spatial domain:

(17)

(18)

(19)

where is the frequency of the sinusoidal plane wave along the

direction from the -axis, and and are the space con-

stants of the Gaussian envelope along and axes, respec-

tively. The spatial characteristics of Gabor filters can be seen in

[6].

We perform the filtering in the spatial domain with a mask

size of . However, to speed up the filtering process,

we convolve a pixel only with those values in the filter mask

whose absolute value is greater than 0.05. This speeds up the
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convolution process significantly while maintaining the infor-

mation content as the convolution with small values of the filter

mask does not contribute significantly to the overall convolu-

tion. We also make use of the symmetry of the filter to speed up

the convolution. However, convolution with Gabor filters is still

the major contributor to the overall feature extraction time.
In our experiments, we set the filter frequency to the av-

erage ridge frequency ( ), where is the average inter-ridge
distance. The average inter-ridge distance is approximately 10
pixels in a 500 dpi fingerprint image. If is too large, spu-
rious ridges are created in the filtered image whereas if is
too small, nearby ridges are merged into one. We have used
eight different values for (0 , 22.5 , 45 , 67.5 , 90 , 112.5 ,
135 , and 157.5 ) with respect to the -axis. The normalized
region of interest in a fingerprint image is convolved with each
of these eight filters to produce a set of eight filtered images. A
fingerprint convolved with a -oriented filter accentuates those
ridges which are parallel to the -axis and smoothes the ridges
in the other directions. Filters tuned to other directions work in
a similar way. These eight directional-sensitive filters capture
most of the global ridge directionality information as well as
the local ridge characteristics present in a fingerprint. We illus-
trate this through reconstructing a fingerprint image by adding
together all the eight filtered images. The reconstructed image is
very similar to the original image and only been slightly blurred
(degraded) [Fig. 10(a)] due to lack of orthogonality among the
filters. At least four directional filters are required to capture the
entire global ridge information in a fingerprint [Fig. 10(k)], but
eight directional filters are required to capture the local charac-
teristics. So, while four directions are sufficient for classifica-
tion [6], eight directions are needed for matching. Our empir-
ical results support our claim, we could get better accuracy by
using eight directions for matching as compared to only four di-
rections. By capturing both the global and local information, the
verification accuracy is improved although there is some redun-
dancy among the eight filtered images. If and (standard
deviations of the Gaussian envelope) values are too large, the
filter is more robust to noise, but is more likely to smooth the
image to the extent that the ridge and valley details in the fin-
gerprint are lost. If and values are too small, the filter is
not effective in removing the noise. The values for and
were empirically determined and each is set to 4.0 (about half
the average inter-ridge distance).

C. Feature Vector

Let be the -direction filtered image

for sector . Now, and

, the

feature value, , is the average absolute deviation from

the mean defined as

(20)

where is the number of pixels in and is the mean of

pixel values of in sector . The average absolute de-

viation of each sector in each of the eight filtered images de-

fines the components of our feature vector. Our empirical results

show that using AAD features give slightly better performance

than variance features as used in [6]. The 640-dimensional fea-

ture vectors (FingerCodes) for fingerprint images of two dif-

ferent fingers from the MSU_DBI database are shown as gray

level images with eight disks, each disk corresponding to one

filtered image in Fig. 11. The gray level in a sector in a disk

represents the feature value for that sector in the corresponding

filtered image. Note that Fig. 11(c) and (d) appear to be visually

similar as are Fig. 11(g) and (h), but the corresponding disks for

two different fingers look very different.

III. MATCHING

Fingerprint matching is based on finding the Euclidean dis-

tance between the corresponding FingerCodes. The translation

invariance in the FingerCode is established by the reference

point. However, in our present implementation, features are not

rotationally invariant. An approximate rotation invariance is

achieved by cyclically rotating the features in the FingerCode

itself. A single step cyclic rotation of the features in the Fin-

gerCode described by (21)–(23) corresponds to a feature vector

which would be obtained if the image were rotated by .

A rotation by steps corresponds to a rotation of

the image. A positive rotation implies clockwise rotation while

a negative rotation implies counterclockwise rotation. The

FingerCode obtained after steps of rotation is given by

(21)

div (22)

(23)

where ( ) is the number of sectors in a band,

, and , , , , ,

, , .
For each fingerprint in the database, we store five templates

corresponding to the following five rotations of the corre-
sponding FingerCode: , , , , and . The input
FingerCode is matched with the five templates stored in the
database to obtain five different matching scores. The minimum
matching score corresponds to the best alignment of the input
fingerprint with the database fingerprint. Since a single cyclic
rotation of the features in the FingerCode corresponds to a
rotation of in the original image, we can only generate
those representations of the fingerprint which are in steps of

. Due to the nature of the tessellation, our features are
invariant to only small perturbations that are within .
Therefore, we generate another feature vector for each finger-
print during the time of registration which corresponds to a
rotation of . The original image is rotated by an angle
of and its FingerCode is generated. Five templates
corresponding to the various rotations of this FingerCode are
also stored in the database. Thus, the database contains ten
templates for each fingerprint. These ten templates correspond
to all the rotations on the fingerprint image in steps of .
As a result, we have generated FingerCodes for every
rotation of the fingerprint image. This takes care of the rotation
while matching the input FingerCode with the stored templates.
The final matching distance score is taken as the minimum of
the ten scores, i.e., matching of the input FingerCode with each
of the ten templates. This minimum score corresponds to the
best alignment of the two fingerprints being matched. Since the
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Fig. 11. Examples of 640-dimensional feature vectors: (a) First impression of finger 1, (b) second impression of finger 1, (c) FingerCode of (a), (d) FingerCode
of (b), (e) first impression of finger 2, (f) second impression of finger 2, and (g) FingerCode of (e), and (h) FingerCode of (f).

template generation for storage in the database is an off-line
process, the verification time still depends on the time taken to
generate a single template.

IV. EXPERIMENTAL RESULTS

We have collected fingerprint images from 167 nonhabituated

cooperative subjects using a Digital Biometrics’s optical sensor

(image size pixels) in our laboratory. The subjects

mainly consisted of students at Michigan State University and

their relatives and friends. Approximately 35% of the subjects

were women; the age distribution of the subjects was as follows:

1) younger than 25 years: 46.5%;

2) between the ages of 25 and 50: 51%;

3) older than 50 years: 2.5%.
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Each person was asked to provide fingerprint images for four

fingers, namely, right index, right middle, left index, and left

middle, in this order. This process was repeated to obtain a

second impression of all the four fingers. This resulted in a total

of 1336 ( ) fingerprint images. The subjects were re-

quested to provide their fingerprint images again after a period

of 6 weeks. At this second time instant, the above procedure

was repeated to collect another 1336 ( ) fingerprint

images. So, our database (called MSU_DBI) consists of a total

of 2672 fingerprint images. The data acquisition process was

carried out by several volunteers who are research assistants

in the Pattern Recognition and Image Processing Laboratory

at Michigan State University. A live feedback of the acquired

image was provided and the volunteers guided the subjects in

placing their fingers in the center of the sensor and in an upright

position. Due to this assistance provided to the subjects, most of

the fingerprints were reasonably well centered. Despite the su-

pervised image acquisition, there is a significant intra-class de-

formation and up to deviation from the assumed vertical

upright orientation in the acquired images. However, the images

are not as noisy as the traditional inked fingerprints. The finger-

print images which were captured after a period of six weeks

have significant nonlinear distortions due to finger pressure dif-

ferences. This presents a challenge to our matching algorithm.

We also evaluated our system on 1800 images of the com-

mercially available standard database NIST 9 (Vol. 1, CD. no.

1). NIST 9 (Vol. 1, CD no. 1) contains 1800 fingerprint images

(image size = pixels) from 900 different fingers. The

complete NIST 9 fingerprint database contains 1350 mated fin-

gerprint card pairs (13 500 fingerprint image pairs) that approx-

imate a natural distribution of the National Crime and Infor-

mation Center fingerprint classes. The database is divided into

multiple volumes. Each volume has three compact discs (CD’s).

Each CD contains 900 images of card type 1 and 900 images of

card type 2. Fingerprints on the card type 1 were scanned using

a rolled method, and fingerprint on card type 2 were scanned

using a live-scan method. The fingerprint images in the NIST 9

database are difficult compared to the live-scan fingerprint im-

ages because the two impressions from the same finger are cap-

tured using different methods (rolled and live-scan) and hence

the two images have large discrepancy in their ridge structures.

A large number of NIST 9 images are of much poorer quality

than a typical live-scan fingerprint image and NIST 9 images

often contain extraneous objects like handwritten characters and

other artifacts common to inked fingerprints.

A total of 100 images (approximately 4% of the database)

were rejected from the MSU_DBI database because of the fol-

lowing reasons: 1) the reference point was located at a corner of

the image and therefore an appropriate region of interest could

not be established and 2) the quality of the image was poor. See

Fig. 12 for examples of images which were rejected. A total

of 100 images (approximately 5.6% of the database) were re-

jected from the NIST 9 database based on the same criteria. Our

quality checker algorithm estimates the dryness of the finger (or

smudginess of the fingerprint image) and the extent to which

the surface of the finger tip is imaged. The estimate of the dry-

ness/smudginess is based on the variance of the grayscale in the

captured image and a partial fingerprint is detected by tracking

Fig. 12. Examples of rejected images: (a) a poor quality image and (b) the
reference point is (correctly) detected at a corner of the image and so an
appropriate region of interest could not be established.

the ridge structure in the image. For algorithm development and

parameter selection, an independent database of 250 impres-

sions from ten different fingers was collected. The algorithm

thus developed was tested on the MSU_DBI database. However,

for NIST 9 database, we changed one parameter, i.e., the number

of concentric circles considered around the reference point. We

considered seven concentric circles around the reference point

for NIST 9 database as compared to five circles for MSU_DBI

database. This is because the images in the NIST 9 database are

bigger in size and more information can be captured by con-

sidering more number of sectors. Consequently, the number of

features for the NIST 9 database was 896 while there were only

640 features for images in the MSU_DBI database.

To establish the verification accuracy of our fingerprint

representation and matching approach, each fingerprint image

in the database is matched with all the other fingerprints in the

database. A matching is labeled correct if the matched pair

is from the same finger and incorrect, otherwise. None of the

genuine (correct) matching scores was zero; the images from

the same finger did not yield an identical FingerCode because

of the rotation and inconsistency in reference point location. For

the MSU_DBI database, a total of 6 586 922 matchings were

performed. The probability distribution for genuine (correct)

matches was estimated with 7472 matches and the imposter

distribution was estimated with 6 579 450 matches. Fig. 13(a)

shows the two distributions. For the NIST 9 database, a total

of 722 419 matchings were performed and the genuine and

imposter distributions were estimated with 1640 and 720 779

matching scores, respectively. Fig. 13(b) shows the imposter

and genuine distributions for the NIST 9 database.

In a biometric system operating in a verification mode, there

are four possible outcomes:

1) genuine acceptance;

2) imposter rejection;

3) genuine rejection (false reject);

4) imposter acceptance (false accept).

The first and the second outcomes are correct while the third

and the fourth outcomes are errors. The performance of a bio-

metric system is specified in terms of false accept rate (FAR).

The decision scheme should establish a decision boundary

which minimizes the false reject rate (FRR) for the specified

FAR. If the Euclidean distance between two FingerCodes is
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Fig. 13. Genuine and imposter distributions for the proposed verification
scheme: (a) MSU_DBI database and (b) NIST 9 (Vol. 1, CD no. 1).

less than a threshold, then the decision that “the two images

come from the same finger” is made, otherwise a decision that

“the two images come from different fingers” is made. There is

a tradeoff between the two types of errors. If a higher threshold

is chosen, the genuine rejection rate is lower but the false accept

rate may be higher, and vice versa. Given a matching distance

threshold, the genuine acceptance rate is the fraction of times

the system correctly identifies two fingerprints representing

the same finger. Similarly, false acceptance rate is the fraction

of times the system incorrectly identifies two fingerprints

representing the same finger. The given biometric application

dictates the FAR and FRR requirements. For example, access

to an ATM machine generally needs a small FRR, but access

to a military installation requires a very small FAR. Different

decision thresholds lead to different FAR and FRR (see Table I).

A receiver operating characteristic (ROC) curve is a plot of

genuine acceptance rate (1-FRR) against false acceptance rate

TABLE I
FALSE ACCEPTANCE AND FALSE REJECT RATES WITH DIFFERENT THRESHOLD

VALUES FOR THE MSU_DBI DATABASE

for all possible system operating points (i.e., matching distance

threshold) and measures the overall performance of the system.

Each point on the curve corresponds to a particular decision

threshold. In the ideal case, both the error rates, i.e., FAR and

FRR should be zero and the genuine distribution and imposter

distribution should be disjoint. In such a case, the “ideal” ROC

curve is a step function at the zero False Acceptance Rate. On

the other extreme, if the genuine and imposter distributions are

exactly the same, then the ROC is a line segment with a slope of

with an end point at zero False Acceptance Rate. In prac-

tice, the ROC curve behaves in between these two extremes.

Fig. 14(a) and (b) compare the ROC’s of a state-of-the-art

minutiae-based matcher [1] with our filter-based matcher on

the MSU_DBI and the NIST 9 databases, respectively. Since

the ROC curve of the minutiae-based matcher is above the

filter-based matcher, we conclude that our matcher does not

perform as well as the state-of-the-art minutiae-based matcher

on these databases.

Most of the false accepts in our system occur among the

same “type” (class) of fingerprints; a whorl is confused with

another whorl and not a loop. This confirms that the proposed

approach captures more of the global information and hence is

suitable for indexing as shown in [6]. An added advantage of an

“independent” fingerprint representation such as one proposed

here is that it captures discriminatory information that is com-

plementary to the information used by commonly used minu-

tiae-based fingerprint matchers. Consequently, the overall per-

formance of fingerprint matching can be significantly improved

by combining results of several matchers based on different rep-

resentations. A combination of classifiers to improve the classi-

fication accuracy has been a common practice in building clas-

sifier systems [27], [28]. Many researchers have combined mul-

tiple biometrics (i.e., fingerprint and face) to improve the per-

formance of a verification system [29], [30], but this involves

the cost of additional sensors and inconvenience to the user

in providing multiple cues. Jain et al. [31] have shown that

matching accuracy can be improved by combining “indepen-

dent” matchers. Fig. 14(a) and (b) show such an improvement

in matching accuracy results by using the Neyman–Pearson [32]

rule to combine scores obtained from the proposed filter-based

and minutiae-based [1] matchers. The Neyman–Pearson rule

used for this combination can be summarized as follows.

Let the scores from the two matching algorithms for matching

the input fingerprint with the stored template be indicated by

the random vectors and , respectively. Let )

and ) be the genuine class-conditional density func-

tions for and , respectively. Similarly, let ) and
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Fig. 14. ROC curves for several matchers: (a) MSU_DBI database and (b)
NIST 9 (Vol. 1, CD no. 1).

) be the imposter class-conditional density functions

for and , respectively. Under the assumption that

and are statistically independent, the joint class-conditional

probability density functions of and are

(24)

(25)

Let denote the two-dimensional space spanned by

; and denote the -region and -region,

respectively, ( ); denote the pre-specified

FAR. According to the Neyman–Pearson rule, a given observa-

tion, , is classified as

if

otherwise

(26)

where is the minimum value that satisfies the following two

conditions:

(27)

and

(28)

For the MSU_DBI database, the training for the combina-

tion was performed using the scores from the first 83 subjects

and the testing on the scores obtained by generating all the

matching scores from the rest of the 84 users. For the NIST 9

database, the training was performed using the scores from the

first 450 users and the testing on the scores obtained by gener-

ating all the matching scores from the rest of the 450 users. A

two-dimensional plot of the scores from the two matchers for the

MSU_DBI database is shown in Fig. 15. The performance im-

provement resulting from a combination of matchers is shown

in Fig. 14(a) and (b).

V. SUMMARY AND CONCLUSIONS

We have developed a novel filter-based representation tech-

nique for fingerprint verification. The technique exploits both

the local and global characteristics in a fingerprint image to

verify an identity. Each fingerprint image is filtered in a number

of directions and a fixed-length feature vector is extracted in

the central region of the fingerprint. The feature vector (Finger-

Code) is compact and requires only 640 (or 896, depending on

image size) bytes. The matching stage computes the Euclidean

distance between the template FingerCode and the input Finger-

Code. On MSU_DBI database of 2672 fingerprints from 167

different subjects, four impressions per finger, we are able to

achieve a verification accuracy which is only marginally infe-

rior to the performance of a state-of-the-art minutiae-based fin-

gerprint matcher. Our system, however, performs better than the

minutiae-based system when the system performance require-

ments are less demanding on FAR (for example, in accessing

ATM machines). Similar performance is obtained on the more

challenging NIST 9 database. The minutiae-based technique is

a very mature technology while the proposed filter-based ap-

proach is being developed and refined. We expect to improve

the performance significantly by developing algorithms to over-

come the following main shortcomings of our technique: 1) the

reference point cannot be located accurately in noisy images and

2) the matching scheme is not able to tolerate large deforma-

tion in the ridge pattern due to finger pressure differences (see

Fig. 16). About 99% of the total compute time for verification

( 3 s on a SUN ULTRA 10) is taken by the convolution of the

input image with eight Gabor filters.

The primary advantage of our approach is its computation-

ally attractive matching/indexing capability. For instance, if the

normalized (for orientation and size) FingerCodes of all the en-

rolled fingerprints are stored as templates, the identification ef-

fectively involves a “bit” comparison. As a result, the identifi-

cation time would be relatively insensitive to the database size.

Further, our approach to feature extraction and matching is more

amenable to hardware implementation than, say, a string-based

fingerprint matcher [1].
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Fig. 15. Two-dimensional distribution of genuine and imposter scores from the proposed filter-based and the minutiae-based matchers for the MSU_DBI database.
The matching distance obtained from the filter-based method was inverted (100-distance) to obtain a matching score for making the outputs of the two matchers
consistent.

Fig. 16. Errors in filter-based matching; fingerprint images from the same
finger which do not match: (a) and (b) do not match because of failure of
reference location, and (c) and (d) do not match because of change in inter-ridge
distance due to finger pressure difference.

There are a number of limitations of the initial implemen-

tation described in this paper. The representation and matching

schemes assume that the reference point can be determined with

a reasonable accuracy. A more realistic approach would con-

sider a combination of frame determination methods and then

verify the accuracy of the frame positioning by a consistency

check among the results of several methods. As mentioned ear-

lier, multiple frames could also be used to obtain multiple rep-

resentations for a more robust performance. The current imple-

mentation requires that the entire region of interest be available

and does not take into account occlusion or obliteration of a part

of the fingerprint. This situation could be remedied by incorpo-

ration of “don’t care” options for the components of the rep-

resentation which do not correspond to fingerprint area. While

the present approach tolerates small magnitudes of elastic dis-

tortion and local scaling (due to finger-pressure variations), it

does not take care of significant nonlinear elastic distortion in

the fingerprints. The inter-ridge densities in a fingerprint could

be used to obtain a canonical representation to compensate for

the large distortions due to shear and pressure variations caused

by the contact of the finger with the sensing device. Further,

indices composed from the attributes of the neighboring cells

could also be used to compensate for the nonlinear distortions

and inaccuracies in the determination of reference frame.

We are currently working on

1) handling nonlinear distortion;

2) refinements of initial strategies for feature extraction and

matching;

3) indexing techniques based on the proposed representa-

tion.
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