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Abstract—This paper proposes a general framework for the op-
timization of orthonormal filterbanks (FBs) for given input statis-
tics. This includes as special cases, many recent results on FB op-
timization for compression. It also solves problems that have not
been considered thus far. FB optimization for coding gain maxi-
mization (for compression applications) has been well studied be-
fore. The optimum FB has been known to satisfy theprincipal com-
ponentproperty, i.e., it minimizes the mean-square error caused
by reconstruction after dropping the weakest (lowest variance)
subbands for any . In this paper, we point out a much stronger
connection between this property and the optimality of the FB.
The main result is that a principal component FB (PCFB) is op-
timum whenever the minimization objective is aconcave function
of the subband variances produced by the FB. This result has its
grounding in majorization and convex function theory and, in par-
ticular, explains the optimality of PCFBs for compression. We use
the result to show various other optimality properties of PCFBs, es-
pecially for noise-suppression applications. Suppose the FB input
is a signal corrupted by additive white noise, the desired output
is the pure signal, and the subbands of the FB are processed to
minimize the output noise. If each subband processor is a zeroth-
order Wiener filter for its input, we can show that the expected
mean square value of the output noise is a concave function of
the subband signal variances. Hence, a PCFB is optimum in the
sense of minimizing this mean square error. The above-mentioned
concavity of the error and, hence, PCFB optimality, continues to
hold even with certain other subband processors such as subband
hard thresholds and constant multipliers, although these are not
of serious practical interest. We prove that certain extensions of
this PCFB optimality result to cases where the input noise iscol-
ored, and the FB optimization is over a larger class that includes
biorthogonal FBs. We also show that PCFBs do not exist for the
classes of DFT and cosine-modulated FBs.

I. INTRODUCTION

T HE PROBLEM of optimization of filterbanks (FBs) has
been addressed by several authors, and many interesting

results have been reported in the last five years. Yet there are
a number of optimization problems that have not hitherto been
addressed. This paper proposes a general framework for the op-
timization of orthonormal FBs for given input statistics, which
includes many of the known results as special cases. It also pro-
duces solutions to a number of problems that have been regarded
as difficult or not considered thus far.

A generic signal processing scheme using an-channel uni-
form perfect reconstruction FB is shown in Fig. 1. The FB is
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said to beorthonormalif the analysis polyphase matrix
is unitary for all . The input vector is the -fold

blocked version of the scalar input . We assume that is
a zero mean wide sense stationary (WSS) random process with
a given power spectral density (psd) matrix . We are
also given a class of orthonormal uniform -channel FBs.
Examples are the class of FBs in which all filters are FIR with
a given bound on their order or the class of unconstrained FBs
(where there are no constraints on the filters besides those im-
posed by orthonormality). The problem with which this paper
is concerned is that offinding the best FB from for the given
input statistics for use in the system of Fig. 1. By “best
FB,” we mean one that minimizes a well-defined objective func-
tion over the class . To formulate this objective, we need to
describe the purpose or application of the FB in Fig. 1 and the
nature of the subband processors. This is done in detail in
Section II in a general setting.

A. Relevant Earlier Work

Consider, in particular, the case where theare quantizers
for signal compression. We use the model of [14] that replaces
the quantizer by additive noise of variance . Here

number of bits allotted to the quantizer;
its input variance;
normalized quantizer function, which is assumed not to
depend on the input statistics.

If all quantization noise processes are jointly stationary, we can
show that the overall mean square reconstruction error (which is
the minimization objective here) is .
Kirac and Vaidyanathan show [14] that for any given bit alloca-
tion (not necessarily optimum), the best FB for this problem
is aprincipal component FB (PCFB)for the given class and
input psd .

The concept of a PCFB is reviewed in Section III-B. PCFBs
for certain classes of FBs have been studied earlier. For example,
let denote the class of all -channel orthogonal transform
coders, i.e., FBs as in Fig. 1 where is a constant unitary
matrix . The KLT for the input is the transform that
diagonalizes the autocorrelation matrix of . It has been well
known [12] that the KLT is a PCFB for . For the class of
all (unconstrained) orthonormal -channel FBs, construction
of the PCFB has been studied by Tsatsanis and Giannakis [24]
and independently by Vaidyanathan [26]. The goal of [26] was
coding gain maximization for compression under the high bi-
trate quantizer noise model with optimum bit allocation. This
model is, in fact, a special case of the one described earlier,
where . In another work on PCFBs [25], Unser
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Fig. 1. Generic FB-based signal processing scheme. (a) Analysis and synthesis filters. (b) Polyphase representation.

correctly conjectures their optimality for another family of ob-
jective functions of the form , where is
any concave function. [This does not include the earlier objec-
tive since the depended on the subband index.] For this
family, optimality has been proved by Mallat [17, Th. 9.8, p.
398] using a theorem of Hardyet al. In the present paper, we
consider the more general form , where
arepossibly differentconcave functions. We show optimality of
PCFBs for all these objectives. This covers a wider class of ap-
plications, as shown in Section VI. It includes the conjecture of
[25] (proved in [17]) as a special case where for all .
It also includes the minimization objective of [14] as a special
case when for all .

FB design for quantization error minimization has also been
studied by Moulinet al. [19], [20]. The earlier stated form

of the error requires modification for
biorthogonalFBs. In an important paper [20], Moulinet al.
study the minimization of this modified objective over the class
of all (unconstrained) biorthogonal FBs for a broad class of

. The authors examine the role of the properties of the
PCFB for the unconstrainedorthonormalFB class in this
problem. It is also claimed that pre and post filters around such
a PCFB yield the optimal solution. In [19], an algorithm is pro-
posed for PCFB design for a certain class of FIR orthonormal
FBs. It involves a compaction filter design followed by a KLT
matrix completion and will produce the PCFB (which is known
to maximize coding gain)if it exists. However, it is shown nu-
merically that the designed filters do not always optimize the
coding gain (thus showing that in fact the PCFB does not exist).
The present paper studies the geometric structure of the op-
timization search space and thereby reveals several new opti-
mality properties of PCFBs, especially those connected with
noise reduction. Preliminary results of this work have been pre-
sented in [1] and [2].

B. Main Aims of This Paper

This paper points out a strong connection between or-
thonormal FB optimization and the principal component
property. The main message is as follows. Letdenote the
variance of the th subband signal. To every FB in the given
class , there then corresponds a set of subband variances

. The PCFB for , if it exists, is theoptimum FB in
for all problemsin which the minimization objective can be
expressed as aconcave functionof the subband variance vector

.
This result has its grounding in majorization and convexity

theory and will be elaborated in detail in later sections.
It shows PCFB optimality for all objectives of the form

, where are any concave functions. For
orthonormal FBs, this general form includes, as special cases,
all the objectives mentioned earlier. We show how such con-
cave objectives arise in many other situations besides coding
gain maximization, especially those connected with noise
suppression. Suppose the FB input is a signal buried in noise,
and the system of Fig. 1 aims to improve the signal-to-noise
ratio (SNR). We consider the case where each subband pro-
cessor is a zeroth-order Wiener filter. We show that under
suitable assumptions on the signal and noise statistics, the
problem of FB optimization for such a scheme reduces to the
minimization of a concave function of the subband variance
vector. Therefore, PCFBs, if they exist, are optimal for such a
scheme. PCFB optimality continues to hold even with certain
other types of subband processors for noise reduction, although
these are of no serious practical interest. Thus, we have a
general problem formulation (Section II) and a unified theory
of optimal FBs (Section III), which simultaneously explains
the optimality of PCFBs for progressive transmission (Section
III-B), compression (Section IV-C), and noise suppression
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(Section VI). To emphasize the fact that PCFBs do not always
exist, we also show in Section V that the classes of DFT and
cosine-modulated FBs do not have PCFBs.

C. Notations

Superscripts () and ( ) denote the complex conjugate and
matrix (or vector) transpose, respectively, whereas superscript
dagger () denotes the conjugate transpose. Boldface letters are
used for matrices and vectors. Lowercase letters are used for dis-
crete sequences, whereas uppercase letters are used for Fourier
transforms. denotes the set of -tuples of real numbers,
and denotes that of -tuples of non-negative real num-
bers. We denote by diag the column vector consisting of the
diagonal entries of the square matrix.

II. PROBLEM FORMULATION

We are given a class of orthonormal uniform -channel
FBs. Recall that an FB is fully specified by its analysis
polyphase matrix or, alternatively, by the ordered
set of analysis and synthesis filter pairs ,

(see Fig. 1). We are also given an ordered
set of subband processors, , where

denotes the processor acting on theth subband. Specific
instances of such will be discussed in later sections; in
general, each is simply a function that maps input sequences
to output sequences. The specification of this function may or
may not depend on the input statistics.

The system of Fig. 1 is built using an FB inand the proces-
sors . In all problems that we consider, this system is aimed
at producing a certaindesired signal at the FB output. For
example, in context of compression, the processorsare quan-
tizers, and the desired output equals the input, i.e., .
In the context of noise reduction, the input ,
where is additive noise, the desired output
(the pure signal), and the could, for instance, be Wiener fil-
ters. The FB optimization problem involves finding among all
FBs in the one minimizing some measure of the error signal

where is the true FB output. To formulate the error mea-
sure, we impose random process models on the FB input
and desired signal . We assume that , which is the

-fold blocked version of (see Fig. 1), is a WSS vector
process with given psd matrix . Equivalently, is
CWSS , i.e., wide sense cyclostationary with as period.1

All processes are assumed to be zero mean unless otherwise
stated. In all our problems, the and the are such that
the error is also a zero mean CWSS random process.
Thus, we choose as error measure the variance ofaveraged
over its period of cyclostationarity .

As shown in Fig. 1, we denote by the th subband
signal generated by feeding the scalar signal as input to
the FB. If the error is CWSS , the signals ,

1In particular,x(n) could be a WSS process with given power spectrum
S(e ). In this case,S (e ) is fully determined fromS(e ) and has the
special property of being pseudocirculant.

are jointly WSS, and orthonormality of the
FB can be used to show that the above-mentioned error measure
equals

(1)

where

(2)

Thus, the processor must try to produce an output “as
close to” as possible, in the sense of minimizing

. In many situations to be discussed in detail later,
the processors are such that

(3)

Here, denotes the variance of , and
is some function whose specification depends only on the

nature of the processor and not on the choice of FB from
. Thus, for such problems, with

denoting the subband variance vector, the objective defined on
the class becomes

(4)

Hence, the minimizationobjectiveis purely a function of the
subband variance vector. This function of (4) is fully spec-
ified, given the description of the processors. Let denote
the set of all subband variance vectors corresponding to all FBs
in . The optimization problem thus reduces to that of finding
the minima of the real-valued functionon the set . We will
hence refer to as the optimizationsearch space.

In later sections, we show that for a number of FB-based
signal processing schemes, the above formulation holds, and
further, the objective is a concavefunction (Section III-A).
The central result of the present paper, which is described in de-
tail in Section III, is that a PCFB is optimal for all such problems
where is concave. The main reason for this is that whenever a
PCFB exists, the search spacehas a very special structure; its
convex hull is a polytope(Section III-A). Since the set plays
an important role in the further discussion, we summarize the
main definitions and facts pertaining to it.

A. Summary of Definitions and Facts Related to the Search
Space

1) Definition: For each FB in the given class, thesubband
variance vectorassociated with the input process is
defined as the vector , where

is the variance of the process . Here,
is the th subband signal produced by feeding as the
FB input.

2) Computing the subband variance vector: Given the
FB analysis polyphase matrix and the psd matrix

of the vector input in Fig. 1, the vector
process has psd ma-
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trix . Thus, the subband variance
vector is

diag (5)

3) The optimizationsearch spaceis defined as the set of
all subband variance vectors corresponding to all FBs in
the given class . Therefore, is fully specified, given
the class and the input statistics . All entries
of any vector in are clearly non-negative. Thus,

.
4) The set is boundedandlies entirely on an dimen-

sional hyperplane in . This follows from (5), using
the fact that is unitary for all (orthonormality
of the FB). No matter what the class, there is always an
upper bound [depending only on ] on all entries
of all vectors . Thus, is bounded. Also, the sum
of the entries of is the same for all , i.e., it is the
trace of the matrix . So lies
on an dimensional hyperplane in .

5) Permutation symmetry of. An FB is defined by anor-
deredset of analysis and synthesis filters. Therefore, a
change of this ordering (or equivalently, interchanging of
rows of the analysis polyphase matrix) technically pro-
duces a different FB, which we will refer to as aper-
mutationof the original FB. However, clearly, all per-
mutations of a uniform FB are essentially the same, i.e.,
equally easy to implement. Therefore, we make the fol-
lowing very reasonable assumption on the given class
of FBs: Any permutation of any FB in is also in . This
assumption holds for all specific classesthat we will
encounter. Note that if two FBs are permutations of each
other, then so are their subband variance vectors; however,
the minimization objective may attain different values at
these vectors. Thus, we use the convention of defining an
FB as anorderedset of filter pairs because the ordering
affects the objective.

III. OPTIMALITY OF PCFBS

We now show that PCFBs are optimal whenever the objec-
tive function to be minimized is concave on the optimization
search space. The proof follows from strong connections be-
tween the notion of a PCFB and certain results in convexity and
majorization theory reviewed in Section III-A. PCFBs are de-
fined and described in Section III-B. In Section III-C, we show
the connection between PCFBs and special convex sets called
polytopes and thereby prove the main result of the paper.

A. Convexity Theory [21]

Convex Sets:A set is defined to be convex if
implies whenever .

Geometrically, is convex if any line segment with endpoints
in lies wholly in ; see Fig. 2. Aconvex combinationof a fi-
nite set of vectors is by definition a vector
of the form with and .
Thus, by definition, is convex if any convex combination of

Fig. 2. Convex sets and concave functions. (a) Convex sets. (b) Nonconvex
sets. (c) Concave functions of one variable.

any pair (or equivalently, by induction, anyfinite set) of ele-
ments of lies in [8], [23].

Concave Functions:Let be a real-valued function defined
on a convex set . The function is defined to be
concave on the domain if given any elements in ,

whenever (6)

Graphically, this means that the functionis always above its
chord; see Fig. 2(c). The domain of has to be convex to
ensure that the argument ofon the left side of (6) is in , i.e.,
to ensure that the above definition makes sense. For a concave
function , we can use (6) to show by induction that for any

whenever

and (7)

This is known asJensen’sinequality. The function is said to
bestrictly concaveif it is concave and further if equality in (6)
is achieved for distinct iff is either 0 or 1. For such,
equality is achieved in (7) for distinct iff one of the is
unity (and, hence, all the others are zero).

Convex Hulls: The convex hull of a set is denoted
by co and is defined as the set of all possible convex combi-
nations of elements of . Equivalently, it can be defined as the
“smallest” (i.e.,minimal) convex set containing or the inter-
section of all convex sets containing. Thus, co iff

is a convex set.
Polytopes: A convex polytope is defined as the convex hull

of a finite set. If is finite, co is a polytope.
We can assume that no vector inis a convex combination of
other vectors of , as deleting such vectors from does not
change . With this condition, the polytope is said to be gen-
erated by the elements of, and these elements are called the
extreme points(or vertices or corners) of ; see Fig. 3(a)–(c).
The following result on extreme points, which is illustrated by
Fig. 3(d), is vital in explaining PCFB optimality.

Theorem 1—Optimality of Extreme Points of Polytopes:Let
a function have a convex polytope as domain. If is con-
cave on , at least one extreme point of achieves the min-
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Fig. 3. M -dimensional polytopes, their extreme points, and their optimality.
(a)M = 1. (b)M = 2. (c)M = 3. (d) Optimality of extreme points.

imum of over . Further, if is strictly concave, its minimum
over is necessarily at an extreme point of.

Proof: Let be the set of extreme points of. Thus,
is finite, and co . Let , and
let attain the minimum of over the finite set .
Now, by definition of a polytope, for any , we have

for some such that and
. Thus

[by (7), i.e., Jensen's inequality] (8)

by definition of and using (9)

Thus, , i.e., the extreme point of attains the
minimum of over . Further, the are distinct; therefore,
if is strictly concave, then Jensen’s inequality becomes strict
unless one of the is unity. Thus, in this case, the minimum is
necessarily at an extreme point of.

Extreme Points of General Convex Sets:A point in a
convex set is said to be an extreme point of if it cannot be
expressed as a nontrivial convex combination of points of,
i.e., for and ,
implies . This definition can be verified
to be equivalent to the earlier definition of extreme points of
polytopes when is a polytope. Thus, a polytope is simply
a convex set with finitely many extreme points. We may note
(although we do not use) the fact that Theorem 1 holds even if
the domain is a generalcompactconvex set. This is proved
in a very similar manner, using one additional key result: Every
compact convex set is the convex hull of the set of its extreme
points (Krein–Milman theorem) [21]. Polytopes are special
compact convex sets (i.e., those with finitely many extreme
points). Another easily proved fact on extreme points that we
will use in Section III-C.3 is as follows: For any set, the
extreme points of co always lie in .

B. PCFBs and Majorization: Definitions and Properties

Definition—Majorization: Let
and be two sets each having real
numbers (not necessarily distinct). The setis defined toma-
jorize the set if the elements of these sets, when ordered so
that and , obey
the property that

for all

with equality holding when (10)

Given two vectors in , we will say that majorizes
when the set of entries of majorizes that of . Evidently,

in this case, any permutation of majorizes any permutation
of .

Definition—PCFBs: Let be the given class of orthonormal
uniform -channel FBs, and let be the power-spec-
trum matrix of the vector process input (shown in Fig. 1).
An FB in is said to be a PCFB for the classfor the input
psd , if its subband variance vector (which is defined
in Section II-A) majorizes the subband variance vector of every
FB in the class .

Remarks on the PCFB Definition:

1) A Simple Optimality Property: In Fig. 1, suppose the FB
has subbands numbered in decreasing order of their vari-
ances , i.e., , and the are
constant multipliers given by

for

for
(11)

for a fixed integer with . This system
keeps the strongest (largest variance) subbands and
discards the others. If the desired output signal
equals the input , then all assumptions of Section II
are satisfied, and the minimization objective indeed has
the form of (4). The optimum FB is the one minimizing

. Now, all FBs have the same value of
; therefore, the optimum FB is the one maxi-

mizing . Thus, from the definitions of PCFBs
and majorization , it follows that a PCFB, if it exists,
has the property of being optimum for this problem for
all values of . In fact, this property is the origin of
the concept of a PCFB [24] and is clearly equivalent to
its definition. PCFBs are also optimal for many other
problems, as Section III-C will show.

2) Existence of PCFB: Given the class of FBs and the input
power spectrum , a PCFB for may not always
exist. The PCFB and its existence depends on bothand

. For example, for white input (
identity matrix), all FBs in are PCFBs, no matter what
is. Section IV studies certain classesfor which PCFBs
always exist for any input psd [of course, the
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PCFB will depend on ]. Section V studies cer-
tain classes for which PCFBs do not exist for large fam-
ilies of input spectra.2

3) Nonuniqueness of PCFB: From the definition of ma-
jorization, any permutation of a PCFB is also a PCFB.
Further, it is possible that two FBs that are not permu-
tations of each other are both PCFBs, i.e., the PCFB
need not be unique. However, all PCFBs must have
the same subband variance vector up to permutation.
This is becausetwo sets majorizing each other must
be identical—a direct consequence of the definition of
majorization. As all our FB optimizations involve not the
actual FB but only its subband variance vector, we often
speak ofthePCFB, even though it may not be unique.

C. Principal Components, Convex Polytopes, and PCFB
Optimality

Let be the given class of orthonormal uniform-channel
FBs, and the psd matrix of the vector input of
Fig. 1. Let be the set of all subband variance vectors of all
FBs in for input . We have the following theorem.

Theorem 2—PCFBs and Convex Polytopes:A PCFB for the
class for input psd exists if and only if the convex
hull co is a polytope whose extreme points consist of all
permutations of a single vector . Under this condition, is
the subband variance vector produced by the PCFB.

Theorem 3—Optimality of PCFBs:The PCFB for the class
(if it exists) is the optimum FB in whenever the minimization
objective is a concave function on the domain co. Further if
this function is strictly concave, the optimum FB is necessarily
a PCFB.

Theorem 3 follows directly from Theorem 2 (which is proved
in Section III-C-3) and Theorem 1 of Section III-A. Note that the
FB optimization involves choosing the best vector from, but
Theorem 1 is used here to find the best vector from co .
However, Theorem 2 shows that the best vector from coin
fact lies in (and corresponds to the PCFB). Hence, it must
be optimum over . Note that all permutations of a PCFB are
PCFBs, and the above theorems do not specify which of these is
the optimum. All of them need not be equally good in general.
However, the optimum can be found by a finite search over these
PCFBs.

Theorem 3 shows optimality of PCFBs for a number of signal
processing problems. In Section II, we had a general formula-
tion of the FB optimization problem such that the minimization
objective was purely a function of the subband variance vector,
as in (4). If the functions in (4) are all concave on , then

is concave on the domain co [23]. This happens in sev-
eral problems, as we will see in later sections. Thus, Theorem
3 shows PCFB optimality for all these problems. To prove The-
orem 2 and, hence, Theorem 3, we first review some results on
majorization theory [11].

1) Relevant Definitions from Majorization Theory:

a) A doubly stochastic matrix is a square matrix with non-
negative real entries satisfying ,

2A question of possible interest is as follows: Given a classC, find all non-
white input spectra for which a PCFB forC exists.

, i.e., the sum of the entries in any row or column of
is unity. All convex combinations and products of

doubly stochastic matrices are also doubly stochastic
(Appendix A).

b) Permutation matricesare square matrices obtained by
permuting rows (or columns) of the identity matrix.
Thus, they are doubly stochastic. In fact, they are the
only unitarydoubly stochastic matrices. (This is because

for non-negative iff all but
one of the are zero.)

c) An orthostochastic matrix is one that can be obtained
from a unitary matrix by replacing each element
by . We will refer to as the orthostochastic
matrix corresponding to the unitary matrix . Since

for unitary , every
orthostochastic matrix is doubly stochastic. The converse
is true if but is false if (see Appendix B).

2) Relevant Results from Majorization Theory:

i) Majorization Theorem[10], [11]: If , ma-
jorizes iff for some doubly stochastic .

ii) Birkhoff ’s Theorem[11]: A matrix is doubly sto-
chastic if and only if it is a convex combination of finitely
many permutation matrices, i.e., there are finitely many
permutation matrices such that

where and

(12)
iii) Orthostochastic Majorization Theorem[11]: For

, the following statements are equivalent.

a) majorizes .
b) There exists an orthostochastic matrix(corre-

sponding to a unitary matrix ) such that .
c) There is a Hermitian matrix with entries of as

its eigenvalues and entries ofon its diagonal.

On the Proofs: The majorization theorem actually follows
from the orthostochastic majorization theorem (see [10] or [29]
for an independent proof). Regarding Birkhoff’s theorem, as all
permutation matrices are doubly stochastic, so is their convex
combination of (12) (see Appendix A). The converse proof
is more elaborate [11]. In the orthostochastic majorization
theorem, equivalence of b) and c) is easily proved. The key
idea is that for any diagonal matrix and unitary matrix ,
diag diag , where is the orthostochastic
matrix corresponding to . This is because if is the th
entry of and diag , the th
diagonal entry of is , which is exactly
the th entry of diag . Therefore, given b), we choose
diag and prove c) by setting . Conversely,
given c), we prove b) by letting be a unitary matrix diago-
nalizing , i.e., satisfying for diagonal .

That b) [or c)] implies a) follows from the majorization the-
orem since all orthostochastic matrices are doubly sto-
chastic. As the converse is false unless (see Appendix
B), the result that a) implies that b) [or c)] is stronger than the
corresponding result in the “plain” majorization theorem. This
result is not used until Section IV-B. Its proof is more involved
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[11]. The fact that c) implies a) is in fact precisely the statement
that the KLT is the PCFB for the class of transform coders, as
elaborated in Section IV-B.

Proof of Theorem 2:Let a PCFB for the class exist for
the given input psd . Let be the PCFB subband vari-
ance vector (unique up to permutation; see Section III-B). Let

be the permutation matrices for

(where ), and let . Thus,
is the (finite) set of all permutations of . We

have to prove that co co . For this, take any
. By definition of PCFBs, majorizes . Therefore, by the

majorization theorem (Section III-C1), for some
doubly stochastic matrix . By Birkhoff’s theorem (see Sec-
tion III-C.1), is some convex combination of the . Thus

for some

such that (13)

Therefore, every is a convex combination of the , i.e.,
co ; hence, co co co co . However,

by permutation-symmetry of (Section II-A), , and
therefore, co co . Combining, co co , as
desired.

Conversely, let be a vector such that with and

, we have co co . We then
have to prove that a PCFB for the classexists for the given
input psd and that is a PCFB subband variance vector. To
do this, note that co co . Thus, if , then

co so that can be written as a convex combination of
the elements . Therefore, there are such that

and

where (14)

Here, is a convex combination of permutation matrices;
therefore, it is doubly stochastic (Birkhoff’s theorem). As

, by the majorization theorem, majorizes . Thus, an
FB with subband variance vector will be a PCFB for the
given class and input psd. Indeed, there is such an FB in:
As co co and is a finite set, the extreme points of
the polytope co lie within , and they also lie in (Section
III-A). Thus, for at least one and, hence, for all (by
the permutation-symmetry of; see Section II-A).

Note that in general, all we can say about the extreme points
of a polytope co is that they lie in . Here , however, with
as the (finite) set of all permutations of, in factall points in

are extreme points of co , i.e., no vector in is expressible
as a convex combination of other vectors of. This is provable
by induction on the vector dimension . Let

with and . Then, the greatest entry of
is a convex combination of real numbers no greater than it-

self. Therefore, all these numbers must be equal. Deleting from
each the entry corresponding to this number yields the in-
duction hypothesis.

Functions Minimized by Majorization:Currently known in-
stances of PCFB optimality in signal processing problems arise
from minimization objectives of the form (4), where the func-
tions are concave on . Theorem 3, of course, shows PCFB
optimality for a more general family of objectives, namely, those
that are concave in the subband variance vector [and need not
necessarily have the special form of (4)]. In fact, even this is
not the complete family of objectives minimized by PCFBs. For
example, if is a monotone increasing function on, then for
any concave objective , clearly, is also minimized
by PCFBs. Unless is also concave, in general, this new func-
tion is not concave. A specific nonconcave example of this kind
is generated by and ,
giving .

If attention is restricted to symmetric functions [i.e., func-
tions obeying for all if is any permuta-
tion matrix], then the functions minimized by majorization are
said to beSchur-concave[18]. To be precise, is said to be
Schur-concave if whenever majorizes . (This
implies symmetry of since majorizes for any permu-
tation matrix .) Thus, symmetric concave functions are exam-
ples of Schur-concave functions, whereas the functiondefined
earlier is a Schur-concave function that is not concave. Clearly,
PCFBs minimize all Schur-concave objectives. Full characteri-
zations and several interesting examples of such functions can
be found in [18].

IV. PCFBS FORSTANDARD CLASSES ANDOPTIMALITY FOR

COMPRESSION

This section first shows existence of PCFBs for three spe-
cial classes of FBs, namely, classes with channels,
the class of -channel orthogonal transform coders, and that
of all -channel orthonormal FBs. This well-known result is
reviewed to show how it fits in the framework of the earlier sec-
tions, which have not yet been restricted to any specific class of
FBs. We also prove the convexity of the search-space for these
classes, which has not been observed earlier. We then review
PCFB optimality for data compression.

To begin, let be any class of uniform orthonormaltwo
channelFBs, e.g., that of FIR or IIR FBs with a given bound
on the filter order. Irrespective of the input psd matrix, all real-
izable subband variance vectors in the search-space

then have the same value of (Section II-A).
Thus, lies wholly on a line of slope 1 in . Therefore,
co is an interval on this line; see Fig. 4. Thus, co is a
polytope with two extreme points, namely, the endpoints of the
interval. By the definition, a PCFB is simply an FB maximizing
one subband variance, thereby minimizing the other. Therefore,
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Fig. 4. Search spaceS for a class of two-channel FBs.

it always exists for such classesand corresponds to the two
extreme points of co , irrespective of the input psd.3

A. Transform Coder Class

The transform coder class is defined as the class of uniform
-channel orthonormal FBs whose polyphase matrix [ in

Fig. 1] is a constant unitary matrix. In effect, we can speak of
as being the set of all unitary matrices. Let be

the autocorrelation matrix of the input of Fig. 1. We then
have the following theorem.

Theorem 4—Transform Coders—KLT, PCFBs, and Poly-
topes:

1) A PCFB always exists for . Hence, the set of real-
izable subband variance vectors forhas a convex hull
co that is a polytope, as stated by Theorem 2 in Sec-
tion III-C.

2) A unitary matrix is a PCFB for iff it diagonal-
izes , i.e., is diagonal. In other words,
is a PCFB for iff it is the Karhunen–Loeve transform
(KLT) for the input, i.e., it decorrelates the input [the sub-
band signals are uncorre-
lated for each time instant].

3) co . Therefore, itself is a polytope with ex-
treme points as permutations of the KLT subband vari-
ance vector.

Proof: The subband variance vector computation (5) be-
comes

diag where

where (15)

Here, is the autocorrelation matrix of the vector process
of Fig. 1. The input KLT

is defined as the FB with unitary polyphase matrixthat di-
agonalizes , i.e., such that is a diagonal
matrix. Thus, diag is the subband variance vector of
the KLT and has as entries the eigenvalues of . Now, the
Hermitian matrix has en-
tries of on its diagonal and entries of as its eigenvalues.
Hence, majorizes by the orthostochastic majorization the-
orem of Section III-C1 [specifically by the fact that c) implies
a) in its statement]. This shows that the KLT is a PCFB, which

3If co(S) is anopeninterval (i.e., one not containing its endpoints), no single
FB achieves the maximum subband variance; hence, there is no PCFB. However,
this situation is contrived and does not happen for most natural FB classes and
input psds.

is a well-known result. Conversely, if is a PCFB for , then
(up to permutation). Therefore, the Hermitian matrix

has its eigenvalues as its diagonal elements and is hence
necessarily diagonal, i.e., is the KLT for the input.

Finally, to show that is the polytope co , take any
co . Then, majorizes . We now make a stronger applica-
tion of the orthostochastic majorization theorem, i.e., that a) im-
plies c) in its statement in Section III-C.1. This shows that there
is a Hermitian matrix with the entries of as its eigen-
values and those of on its diagonal. As have the
same eigenvalues, they are “similar,” i.e., for
some unitary matrix . Therefore, the FB has subband
variance vector diag diag . Thus,
is a realizable subband variance vector for, i.e., . This
holds for any co , so that co .

B. Unconstrained Class

The class is defined to containall uniform -channel or-
thonormal FBs with no constraints on the filters besides those
imposed by orthonormality. Therefore, FBs in could have
ideal unrealizable filters. We could in effect think of as the set
of all matrices that are unitary for all . [
represents the analysis polyphase matrix.] An exact analog of
Theorem 4 holds for this class as well. The only difference is in
the construction of the PCFB from the given input psd matrix

, which was first described in [25] and [26]. This sec-
tion reviews this construction and proves the result co
for the class .

PCFB Construction:Let diagonalize
for each , i.e., ,

where is diagonal (for all ), and diag
, . Using (5), the subband

variance vector of an arbitrary FB is given by

diag

(16)

Here, at each , is the orthostochastic matrix corre-
sponding to the unitary matrix . Therefore,at
each frequency , the integrand vector of (16) produced by
the FB majorizes the corresponding vector of
any FB in . This holds no matter how we order the eigen-
values in (16). The integration process preserves this
majorization relation if and only if the are “ordered
consistently” at all . By this, we mean that if we number the

so that the entries of are in descending order, then
for all . Thus, an

FB is a PCFB for iff it causes two effects:
1) totally decorrelatingthe input, i.e., diagonalizing its psd ma-
trix , and 2) causingspectral majorization[26], which
is the said ordering of eigenvalues of . Note that the
PCFB for has uncorrelated subbandprocesses, unlike thein-
stantaneousdecorrelation produced by the KLT (Theorem 4).

Proving co : To prove this property for the class
, let be the PCFB subband variance vector, and let
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co . Then, majorizes . Therefore, by the orthostochastic
majorization theorem (Section III-C.1), for some or-
thostochastic matrix corresponding to a unitary matrix .
Thus, if is the polyphase matrix of the PCFB for ,
(16) shows that the FB in with polyphase matrix
produces subband variance vector, i.e., . This shows

co .

C. PCFB Optimality for Coding/Compression

Here, we consider the problems of [14] and [26], where
the processors of Fig. 1 are quantizers, and the desired
output equals the input . This situation fits the
general problem formulation of Section II under appropriate
quantizer models. The subband error signal of Section
II here represents theth subband quantization noise. Under the
quantizer model, we assume that this noise is zero mean with
variance

(17)

Here, is the number of bits allocated to theth quantizer, and
is a characteristic of the quantizer called the normalized quan-

tizer function [14]. We assume that does not depend on the
FB in any way and that the quantization noise processes in dif-
ferent subbands are jointly stationary. The problem then fits the
formulation of Section II. Comparing (17) with (3) reveals the
minimization objective to be as in (4), i.e.,

with (18)

Thus, the are linear (and hence concave); therefore,is in-
deed concave. Therefore, by Theorem 3, the PCFB if it exists
is optimal for this problem. This is trueno matter what the bit
allocation is.

It is important to note that for the validity of our assumptions
of Section II (and hence for PCFBs to be optimal), the func-
tion must not depend on the FBin any way.
This is often not the case. In quantizers optimized to their input
probability density function (pdf), depends on theth subband
pdf, which in turn is influenced by choice of FB. Even with the
model of [26], i.e., uniform quantization under the high bit rate
approximation, , where the constant (and
hence ) depends on theth subband pdf. If we further assume
the input to be aGaussianrandom process, then all subbands
have Gaussian pdf independent of choice of FB. For this spe-
cial case, all are equal and constant, and the PCFB is indeed
optimal. The need for these assumptions is illustrated by Feng
and Effros [9], who demonstrate that theKLT is not the optimal
orthogonal transform if the input has a uniform distribution.

For the case when (for which the PCFBisop-
timal), the optimal bit allocation (subject to a constraint on the
total bit budget ) is explicitly computable using
the arithmetic mean–geometric mean (AM–GM) inequality.
The objective under this bit allocation becomes the GM of the
subband variances, i.e., . Minimizing this

is equivalent to minimizing .
This is a concave function of the subband variance vector
because is concave in . For general quantizer functions

, the optimizations of the FB and the bit allocation have been
decoupledsince the PCFB is optimum forall bit allocations
[14]. However, note that different permutations of a PCFB may
be optimal for different bit allocations. In addition, computing
the optimum bit allocation may be more involved. We can,
however, prove one intuitive statement about the optimumin
the special case when all are equal to a decreasing function

. In this case, a subband with larger variance receives more
bits.

In (18), all are linear, i.e., for con-
stants , . In such cases, we can alge-
braically prove PCFB optimality [14] without using any result
on majorization. As are constants, the optimization is unaf-
fected by taking . With and

(19)

As the last term is constant for all FBs, and since
, the above is minimized by the PCFB, which, by definition,

maximizes all the partial sums for
. This proof shows two noteworthy facts not shown by the ear-

lier proof: 1) It exhibits the best permutation of the PCFB to be
used, namely, that in which the largest subband varianceis
associated with the least , and so on. 2) It shows that the op-
timum FB is necessarily a PCFB if the are distinct. However,
this simple approach works only forlinear and thus fails for
many of the problems of Section VI that result in nonlinear con-
cave .

V. FILTERBANK CLASSESHAVING NO PCFB

Existence of a PCFB for a classof orthonormal FBs implies
a very strong condition on the subband variance vectors of the
FBs in . There are many classesthat do not have PCFBs.
Indeed, it seems quite plausible that the classes of Section IV
are the only ones having PCFBs for all input power spectra. This
section reviews some known results on nonexistence of PCFBs
and shows that the classes of ideal DFT and cosine-modulated
FBs do not have PCFBs for several input spectra.

If a PCFB for the given class of FBs exists, it simultane-
ously optimizes over several functions of the subband vari-
ances (Section III). Therefore, we can show nonexistence of
PCFBs for by proving that no single FB in can optimize
two of such functions. This method is used in [15] and [19] for
certain classes of FIR FBs for a fixed input psd. The two func-
tions used are the largest subband variance and the coding gain,
which are both maximized by a PCFB if it exists. However, all
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optimizations are numerical. Nonexistence of PCFBs has not
yet beenprovedfor any reasonably general FIR class, say, the
class of all -channel ( ) FIR orthonormal FBs with
polyphase matrix of McMillan degree (although it seems
very likely that such classes do not have PCFBs). We now prove
nonexistence of PCFBs for the classes of DFT and cosine-mod-
ulated FBs.

Definition: The class of -channel orthonormalDFT
FBsis the one containing all FBs as in Fig. 1 where the analysis
filters are related by for some
filter called theprototype. For example, any that
has an alias-free support and has constant magnitude on its
support [and is thus Nyquist ] produces an FB in .

Definition: The class of -channel orthonormalco-
sine-modulatedFBs (CMFBs) is the one containing all FBs
as in Fig. 1 where

for some filter called thepro-
totype. For example, any having an alias-free sup-
port and with constant magnitude on its support is a valid pro-
totype.

Theorem 5—PCFB Nonexistence for DFT, Cosine-Modu-
lated FB Classes:There are families of input psds such that
the class defined above does not have a PCFB. The same
holds for the class .

Proof: Consider first the class . Fig. 5(a) shows an
input psd, two valid prototypes , and the zeroth fil-
ters , in the DFT FBs pro-
duced by the prototypes. For the input psd, the filter
produces the maximum subband variance achievable by any

-channel orthonormal FB, and, hence, by any FB in .
( is thecompaction filter[26] for the input psd.) Like-
wise, yields the minimum subband variance possible
by any -channel orthonormal FB, and, hence, by any FB in

. Now, a PCFB simultaneously maximizes the largest and
minimizes the least subband variance so that if a PCFB for

exists, it must contain both filters , .
This is impossible as these filters are not obtainable from each
other by shift of an integer multiple of ; therefore, an
FB having both of them cannot be in the class . Identical
arguments hold for the class , for the input psd, proto-
types , and corresponding filters , ,
which are shown in Fig. 5(b). The only difference is that we
no longer have . In addition, it takes
more effort to show that no FB in can have both fil-
ters , . We can show that if a CMFB has

as one of its filters, then the band edges of all its fil-
ters must be multiples of so that cannot be a
filter in it. In fact [4], a CMFB having of Fig. 5(b) as
one of its filters is necessarily the CMFB produced by
of Fig. 5(b) as a prototype.

VI. OPTIMAL NOISEREDUCTION WITH FILTERBANKS

Suppose the FB input of Fig. 1 is ,
where is a pure signal, and is zero mean additive
noise. The desired FB output is , and the goal of
the system of Fig. 1 is to produce output that approximates

Fig. 5. Nonexistence of PCFBs. (a) Class of DFT FBs. (b) Class of
cosine-modulated FBs.

as best as possible. We consider the case when all the sub-
band processors are memoryless multipliers , as shown in
Fig. 6. This problem fits the formulation of Section II if we as-
sume that and are uncorrelated and that is white
with a fixed known variance . Indeed, using the notation
of Section II, the th subband process contains a signal
component and a zero mean additive noise component

. Orthonormality of the FB ensures that the noise com-
ponents are again white with varianceand are uncorrelated
to the signal components. The subband error process is

(20)

Thus, the processes are jointly WSS, and since
is zero mean and uncorrelated to

(21)

where is the th signal subband variance.
The best choice of multiplier [minimizing the error (21)] is
thezeroth-order Wiener filter . This is imple-
mentable in practice as is known, and

can be estimated from the subband signal . With this
choice, (21) becomes , which
is as in (3) with

(22)

This function is plotted in Fig. 7 and is easily verified to
be concave on . Therefore, by Theorem 3, PCFBs are
optimal if the subband multipliers are zeroth-order Wiener
filters.



110 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 1, JANUARY 2001

Fig. 6. FB-based noise reduction.

Fig. 7. Subband error functions in noise reduction.

A. Remarks on PCFB Optimality for Noise Reduction

PCFBs for the Pure or the Noisy Signal?:Notice a differ-
ence between the argument of here and in (3). In (3),
was the variance of the subband signal corresponding
to the FB input . Here, it is the variance of the subband
signal corresponding to the pure
signal . Thus, use of Theorem 3 proves the optimality of a
PCFB for the signal , i.e., an FB that causes the subband
variance vector corresponding to to majorize the variance
vectors obtained by using other FBs in the given class. How-
ever, because is white with variance and uncorrelated
to , we have .
Thus, any PCFB for is also a PCFB for and vice versa.

Other Choices of Subband Multipliers:The Wiener filter is
the optimum choice of the multiplier in Fig. 6. However, we
may note that there are other choices that also result in an error
function (21) that is concave in the subband variance. Thus,
the PCFB will be optimal when the are any combination of
such choices. One such other choice is a constant multiplier that
is independent of the choice of FB (reminiscent of taps in a
graphic equalizer in audio equipment). The error is then (21),
which is, in fact, “linear” in . As the next remark shows, this
observation yields an alternative proof of PCFB optimality with
subband Wiener filtering. Another possible choice of multiplier

is the subband hard threshold

if
otherwise

(23)

The resulting subband error functionsare plotted in Fig. 7 for
different thresholds . For the unique value , which
is the optimum threshold in the sense of minimizing point-
wise at all , the resulting is concave on

(although not strictly concave) [23]. Unlike the Wiener
filter, however, these choices of multiplier are of no serious
practical interest and are mentioned here only to demonstrate an

academic implication of PCFB optimality. More practical hard
thresholding schemes for noise suppression [7] have a threshold
that is applied individually to each element of the subband signal
sequence (i.e., to each subband or “wavelet” coefficient) rather
than on a subband by subband basis.

PCFB Optimality for Subband Wiener Filtering—Another
Proof: One can prove PCFB optimality when all subband mul-
tipliers are Wiener filters without using any of the arguments
of Section III involving majorization theory or the concavity
of the function (22). To do this, observe that the PCFB is op-
timal if the subband multipliers are all constants independent of
the FB. This was noted in the earlier remark and can be proved
algebraically as in Section IV-C [see (19)] without using con-
vexity theory. This is possible since the in this case are
as in (21), which is “linear” (i.e., of the form , where

are constants). Since this optimality for constant multi-
pliers holds irrespective of the multiplier values, it continues to
hold if all these multipliers are optimized. Zeroth-order Wiener
filters are the optimum multiplier choices, and hence, PCFBs
are optimal when these are used in all subbands. This alternative
proof fails, however, if some of the multipliers are not Wiener
filters, e.g., they are other choices as mentioned in the earlier
remark.

We summarize the above-mentioned results on PCFB opti-
mality for noise reduction under Theorem 6.

Theorem 6—Optimum FB–Based White Noise Suppres-
sion: In Fig. 6, let be a CWSS random process, and
let be zero mean additive white noise that has variance
and is uncorrelated to . Let
denote the subband variance vector corresponding to.
Let each subband multiplier be a zeroth-order Wiener filter

. Consider the FB optimization problem
of minimizing the average mean square error between the
FB output and the desired signal . This is equiv-
alent to minimizing , where

. As these are all concave, a PCFB
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Fig. 8. Subband noise reduction: System of Section VI-B.

for is optimal for this situation. This PCFB is also a PCFB
for the input since the noise is white. This optimality
of the PCFB holds even with certain other choices of some
or all of the subband multipliers , namely subband hard
thresholders (with threshold ) and constants (independent of
choice of FB) since this merely changes the functional form of
the corresponding but preserves its concavity.

B. Subband Wiener Filtering: An Alternative Approach

Since the subband processors studied above were LTI sys-
tems, it is possible to take a linear systems approach to the
problem, as we elaborate here. While this approach does not
prove Theorem 6 (derived above) in its entirety, it allows us to
generalize some parts of its statement further. In particular, it
allows certain extensions to cases when the noise iscoloredand
the FBs arebiorthogonalas opposed to orthonormal.

Consider the system of Fig. 8, where the boldface vectors
and are all -fold blocked versions of

the corresponding scalar processes and ,
and the represents any LTI system. We assume
that and are uncorrelated WSS vector processes with
psd matrices and , respectively. The blocked
version of the error is then , which is WSS
with psd matrix as follows: ( denotes the identity
matrix)

(24)

where and of course

(25)

To see this, note that , where
are obtained by passing through

transfer matrices and , respectively. Since
are uncorrelated WSS, so are ; thus,

their sum is WSS with psd equal to the sum of their psds, and
each is easy to compute. Note that (24) and (25) do not assume
orthonormality of the FB [i.e., that is unitary for all

] or whiteness of the noise [i.e., that is the identity
matrix]. The average mean-square value of the error is

trace where

autocorrelation matrix of (26)

1) Memoryless : If the transfer matrices
and are all memoryless, then so

is , and

(27)

where are autocorrelation matrices of and ,
respectively. If is unconstrained, so is , and the optimum
is simply the zeroth-order vector Wiener filter for the noisy input

, i.e.,

(28)

Suppose the signal and noise have acommonKLT, i.e., for some
unitary , both and are
diagonal matrices. Then, substitution in (28) shows that

, where is diag-
onal. Therefore, the choice and is optimum
under these conditions. Clearly, with this choice, the diagonal
elements of the (diagonal) matrix are the scalar zeroth-order
Wiener filters for their corresponding inputs. Thus, we have
proved the following theorem.

Theorem 7—Optimum Memoryless Transform for Subband
Wiener Filtering: In Fig. 6, let the pure signal and the zero
mean additive noise be uncorrelated CWSS random
processes. The noise could be colored. Let all the subband
multipliers be zeroth-order Wiener filters for reducing the
noise component in their respective input. Suppose there is a
common KLT for the signal and noise, namely, the unitary ma-
trix . Then, the choice in Fig. 6 gives optimum
noise reduction among all choices where is a constant ma-
trix. In other words, thecommon KLTis theoptimum FB among
all memoryless biorthogonal transformsin the sense of maxi-
mizing the output SNR.

Relation Between Theorems 6 and 7:Theorem 6 proves op-
timality of a PCFB for a general classof orthonormal FBs
for many white noise suppression problems where the subband
multipliers could be any combination of Wiener filters, hard
thresholds, and constants. On the other hand, Theorem 7 fo-
cuses on the case whenall subband multipliers areWiener fil-
ters, and on aspecial classof FBs, namely, the class of all
FBs with aconstant(memoryless) polyphase matrix. Notice that

includes the orthogonal transform coder class. All The-
orem 6 says about this case is that a signal KLT is the optimum
FB within when the noise iswhite. Notice that this FB is a
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common signal and noise KLT since any orthogonal transform is
a KLT for a white input. Thus, Theorem 7 generalizes the result
to the situation when the noise iscoloredand shows optimality
of the common KLT among a larger classof all memoryless
biorthogonaltransforms. In summary, Theorems 6 and 7 have a
common element, which they generalize in different directions.

Further Generalizations:Attempts to combine Theorems 6
and 7 yield many interesting further generalizations and open
problems. For example, let us restrict attention toorthogonal
transforms in Theorem 7. The common signal and noise PCFB
(KLT), if it exists, can then be shown to be optimal even if the
subband multipliers are any combination of Wiener filters, hard
thresholds, and constants (as opposed to all being Wiener filters
as in Theorem 7). This result is shown in [3], using the con-
vexity of certain search spaces associated with the signal and
noise spectrum. As the input noise is colored, the subband noise
variances are no longer constant but depend on choice of FB;
hence, the approach used to prove Theorem 6 needs some modi-
fications, as shown in [3]. It also appears plausible that the above
optimality of the common KLT extends to the class ofall memo-
ryless biorthogonaltransforms.4 Verifying this is, however, cur-
rently an open problem.

2) Case When Have Memory—Higher Order
Subband Wiener Filters:Suppose the LTI systems
in Fig. 8 have memory. The FB optimization problem then
involves choosing from the given class of analysis polyphase
matrices the one minimizing the error of (26) where

is as in (24) and (25), and is an appropri-
ately constrained matrix. For example, ifth-order Wiener
filters are used in all subbands, then is a diagonal
matrix depending in an involved manner on . The FB
optimization for such cases appears to be extremely involved,
and no analytical results are known to the authors at this time.

th-order Wiener filters ( ) cannot be handled like
zeroth-order ones as in Section VI-A. This is because the
minimization objective now depends on not just the subband
variances but on more coefficients in the autocorrelation
sequences of the subband random processes.

If ideal Wiener filters are used in each subband, an analog
of Theorem 7 can be stated. In this case, any orthonormal FB
whose polyphase matrix diagonalizes both the signal
and noise psd matrices is optimal over the class of all uncon-
strainedbiorthogonalFBs. This result is obtained by repeating
the methods used to prove Theorem 7 at each frequency. We
may note that the optimal FB mentioned here need not be a
PCFB for either the signal or the noise. Diagonalization of the
psd matrices is sufficient, and there is no constraint on the or-
dering of the subband spectra. However, this result is not very
interesting when the scalar signal and noise input to the FB
are WSS [as opposed to CWSS ]. In this case, diagonaliza-
tion of psd matrices is trivial using any orthonormal FB with
nonoverlapping analysis filters. The resulting system is then
equivalent to an ideal scalar Wiener filter acting directly on the
scalar input without use of any FB.

4An analogous result is true for the high bitrate coding problem with optimal
bit-allocation (Section IV-C), i.e., the signal KLT is optimal over all memory-
less biorthogonal transforms. This is proved using the Hadamard inequality for
determinants.

VII. CONCLUSION

We have pointed out a strong connection between the opti-
mization of orthonormal filterbanks and the principal compo-
nent property. The main result is that a principal component fil-
terbank (PCFB) is optimal whenever the minimization objec-
tive is a concave function of the vector consisting of the sub-
band variances of the FB. We have shown various signal pro-
cessing systems in which the FB optimization involves mini-
mizing such a concave objective. In particular, the known re-
sults on optimality of PCFBs for compression can be explained
in this manner. PCFBs are also shown to be optimal for subband
domain white noise suppression using any combination of ze-
roth-order Wiener filters and hard thresholds in the subbands.
Some extensions have been made to biorthogonal FBs and to
the case when the noise is colored. We have also shown that
the classes of ideal DFT and cosine-modulated FBs do not have
PCFBs.

A companion paper [3] contains further results on colored
noise suppression. It proves optimality of the common signal
and noise KLT among the orthogonal transform coder class for
noise suppression using any combination of Wiener filters, hard
thresholds, and constants as subband multipliers. This further
generalizes some parts of Theorem 7 of the present work. It
is also shown in [3] that an analogous result on optimality of
a common signal and noise PCFB for the classof uncon-
strained FBs is false. We study the effect of absence of a PCFB
on the FB optimization and show that in general, the problem be-
comes analytically intractable. We examine the connection be-
tween compaction filters, PCFBs, and FB optimization. Exten-
sions of the PCFB concept to classes of nonuniform FBs have
been studied in [5]. We have also shown [28] that PCFBs are
optimal for maximizing the bit rate or minimizing the power re-
quirement in discrete multitone (DMT) communication systems
[13], again due to concavity of the relevant minimization objec-
tives.

APPENDIX A
DOUBLY STOCHASTIC MATRICES

Here, we prove that all convex combinations and products of
doubly stochastic matrices are also doubly stochastic. It

suffices to prove this for two matrices since we can continue by
induction. Define the vector as .
Then, by definition, an matrix is doubly stochastic iff
all its entries are non-negative, , and . Now,
consider a convex combination (where

) and a product of the doubly
stochastic matrices and . It is required to show that
are doubly stochastic. Clearly, since have non-negative
entries, so do . The proof is then completed by (29), shown
at the top of the next page. It also shows that the set of all
doubly stochastic matrices is convex.

APPENDIX B
ARE DOUBLY STOCHASTICMATRICESORTHOSTOCHASTIC?

Evidently, every orthostochastic matrix is doubly
stochastic. Here, we show that theconverse is true if
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and similarly

Likewise, and similarly
(29)

but is false if . The case is trivial. For , a
doubly stochastic matrix must have form

with . Now, for some real so that is
indeed the orthostochastic matrix corresponding to the unitary
matrix . For , take the doubly stochastic
matrix

If was the orthostochastic matrix corresponding to, then

for some nonzero . Thus, cannot be unitary as
no two of its rows can be orthogonal to each other. Therefore,

is not orthostochastic. Small perturbations of the entries of
can create other such examples. The doubly stochastic matrix

gives examples for , where are, respectively,
the zero and identity matrices of suitable size. This concludes
the proof. We may note here that the set of or-
thostochastic matrices is convex if (as it is then the
set of doubly stochastic matrices) but isnot convex if

. This is because all ( ) permutation matrices are
in , and every doubly stochastic matrix is a convex combi-
nation of these matrices (Birkhoff’s theorem). Therefore, if
were convex, it would contain all doubly stochastic matrices, but
it does not if .
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