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Abstract—This paper proposes a general framework for the op- said to beorthonormalif the A x A analysis polyphase matrix
timization of orthonormal filterbanks (FBs) for given input statis- E(¢’*) is unitary for allw. The input vectox(r) is the A/ -fold
tics. This includes as special cases, many recent results on FB OPplocked version of the scalar inputn). We assume that(n) is

timization for compression. It also solves problems that have not id tati WSS d ith
been considered thus far. FB optimization for coding gain maxi- a zero mean wide sense stationary ( ) random process wi

mization (for compression applications) has been well studied be- @ given power spectral density (psd) mat8ix(¢’~). We are
fore. The optimum FB has been known to satisfy the@rincipal com-  also given a clas€ of orthonormal uniformA/-channel FBs
ponentproperty, i.e., it minimizes the mean-square error caused Examples are the class of FBs in which all filters are FIR with
by reconstruction after dropping the P weakest (lowest variance) 5 given hound on their order or the class of unconstrained FBs

subbands for any P. In this paper, we point out a much stronger . ) . .
connection between this property and the optimality of the FB. (where there are no constraints on the filters besides those im-

The main result is that a principal component FB (PCFB) is op- Posed by orthonormality). The problem with which this paper
timum whenever the minimization objective is aconcave function is concerned is that dinding the best FB frond for the given

of the subband variances produced by the FB. This result has its jnput statisticsS . (¢/*) for use in the system of Fig. 1. By “best
grounding in majorization and convex function theory and, in par- FB,” we mean one that minimizes a well-defined objective func-

ticular, explains the optimality of PCFBs for compression. We use . . ..
the result to show various other optimality properties of PCFBs, es- tion over the clas€’. To formulate this objective, we need to

pecially for noise-suppression applications. Suppose the FB input describe the purpose or application of the FB in Fig. 1 and the
is a signal corrupted by additive white noise, the desired output nature of the subband processéts This is done in detail in

is the pure signal, and the subbands of the FB are processed to Section Il in a general setting.

minimize the output noise. If each subband processor is a zeroth-

order Wiener filter for its input, we can show that the expected .

mean square value of the output noise is a concave function of A. Relevant Earlier Work

the subband signal variances. Hence, a PCFB is optimum in the o qiqer, in particular, the case where fReare quantizers
sense of minimizing this mean square error. The above-mentioned

concavity of the error and, hence, PCFB optimality, continues to F Signal compression. We use the model of [14] that replaces

hold even with certain other subband processors such as subband the quantizet; by additive noise of variancg (b;)o?. Here

hard thresholds and constant multipliers, although these are not b, number of bits allotted to the quantizer;

of serious practical interest. We prove that certain extensions of 2 tsin variance:

this PCFB optimality result to cases where the input noise igol- i ts pu.t ana ce,_ . L

ored, and the FB optimization is over a larger class that includes ~ fi ~ normalized qua_nt|zerfun_ct|_on, which is assumed not to

biorthogonal FBs. We also show that PCFBs do not exist for the depend on the input statistics.

classes of DFT and cosine-modulated FBs. If all quantization noise processes are jointly stationary, we can
show that the overall mean square reconstruction error (which is

. INTRODUCTION the minimization objective here) is= 3" o (1/M) f;(b;)o?.

HE PROBLEM of optimization of filterbanks (FBs) hasKirac and Vaidyanathan sh_ow [14] that for any given_ bit alloca-

T been addressed by several authors, and many interestiR§] b (not necessarily optimum), the best FB for this problem
results have been reported in the last five years. Yet there K&Principal component FB (PCFHpr the given class’ and
a number of optimization problems that have not hitherto bedHPUt PSdSsx (). o _ _
addressed. This paper proposes a general framework for the op-h€ concept of a PCFB is reviewed in Section I11-B. PCFBs
timization of orthonormal FBs for given input statistics, whicHor certain classes of FBs have been studied earlier. For example,
includes many of the known results as special cases. It also gR3C" denote the class of al-channel orthogonal transform
duces solutions to a number of problems that have been regar8@gers. i-e., FBS as in Fig. 1 whelz) is a constant unitary
as difficult or not considered thus far. matrix T. The KLT for the inputx(n) is the transforniI’ that

A generic signal processing scheme using&thannel uni- diagonalizes the autocorrelation matrixxgh.). It has been well

form perfect reconstruction FB is shown in Fig. 1. The FB jgnown [12] that the KLT is a PCFB fag*. For the class™ of
all (unconstrained) orthonormal/-channel FBs, construction
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Fig. 1. Generic FB-based signal processing scheme. (a) Analysis and synthesis filters. (b) Polyphase representation.

correctly conjectures their optimality for another family of obB. Main Aims of This Paper

jective functions of the forny = S"V ' h(c?), whereh is

any concave function. [This does not include the earlier objec-This paper points out a strong connection between or-
tive since thef;(b;) depended on the subband indéx¢For this thonormal FB optimization and the principal component
family, optimality has been proved by Mallat [17, Th. 9.8, pproperty. The main message is as follows. kgtdenote the
398] using a theorem of Hardst al. In the present paper, weVvariance of theith subband signal. To every FB in the given
consider the more general forn= "' h,(c2), whereh; classC, there then corresponds a set of subband variances
arepossibly differentoncave functions. We show optimality ofo7. The PCFB for C, if it exists, is theoptimum FB inC
PCFBs for all these objectives. This covers a wider class of ¢ all problemsin which the minimization objective can be

plications, as shown in Section VI. Itincludes the conjecture gkpressed as@ncave functioof the subband variance vector

[25] (proved in [17]) as a special case whére= h for all i. v 2 (03,02, .-+, 02, DT.
It also includes the minimization objective of [14] as a special This result has its grounding in majorization and convexity
case wherh;(z) = f;(b;)x for all <. theory and will be elaborated in detail in later sections.

FB design for quantization error minimization has also bedh shows PCFB optimality for all objectives of the form
studied by Mouliret al.[19], [20]. The earlier stated form= ¢ = Ej‘igl hi(o?), whereh; are any concave functions. For
Zf\igl(l/M)fi(bi)of of the error requires modification for orthonormal FBs, this general form includes, as special cases,
biorthogonal FBs. In an important paper [20], Mouliet al. all the objectives mentioned earlier. We show how such con-
study the minimization of this modified objective over the classave objectives arise in many other situations besides coding
of all (unconstrained) biorthogonal FBs for a broad class giin maximization, especially those connected with noise
fi(b;). The authors examine the role of the properties of treippression. Suppose the FB input is a signal buried in noise,
PCFB for the unconstrainearthonormal FB classC* in this and the system of Fig. 1 aims to improve the signal-to-noise
problem. It is also claimed that pre and post filters around suddtio (SNR). We consider the case where each subband pro-
a PCFB yield the optimal solution. In [19], an algorithm is proeessorF; is a zeroth-order Wiener filter. We show that under
posed for PCFB design for a certain class of FIR orthonormsiitable assumptions on the signal and noise statistics, the
FBs. It involves a compaction filter design followed by a KLTproblem of FB optimization for such a scheme reduces to the
matrix completion and will produce the PCFB (which is knowminimization of a concave function of the subband variance
to maximize coding gainif it exists However, it is shown nu- vector. Therefore, PCFBs, if they exist, are optimal for such a
merically that the designed filters do not always optimize trecheme. PCFB optimality continues to hold even with certain
coding gain (thus showing that in fact the PCFB does not existither types of subband processors for noise reduction, although
The present paper studies the geometric structure of the tpese are of no serious practical interest. Thus, we have a
timization search space and thereby reveals several new ogéneral problem formulation (Section 1l) and a unified theory
mality properties of PCFBs, especially those connected with optimal FBs (Section 1lI), which simultaneously explains
noise reduction. Preliminary results of this work have been prigte optimality of PCFBs for progressive transmission (Section
sented in [1] and [2]. [1I-B), compression (Section IV-C), and noise suppression
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(Section VI). To emphasize the fact that PCFBs do not alwags1, ---, M — 1 are jointly WSS, and orthonormality of the
exist, we also show in Section V that the classes of DFT afd can be used to show that the above-mentioned error measure

cosine-modulated FBs do not have PCFBs. equals
. M-1
. 1 e 2
C Notatlon.s | 1 Z E { ol ,)(n)‘ } )
Superscripts«) and (') denote the complex conjugate and M =0

matrix (or vector) transpose, respectively, whereas supersciigiere

dagger {) denotes the conjugate transpose. Boldface letters are U(e)(n) _ U(d)(n) _ U(y)(n)' )
used for matrices and vectors. Lowercase letters are used for dis- ! ! !

crete sequences, whereas uppercase letters are used for FOPHgE  the processoP; must try to produce an output “as
transforms R denotes the set af/-tuples of real numbers, close to” U(d)(n) as possible, in the sense of minimizing
and’RY denotes that of/-tuples of non-negative real num- , ; '
bers. We denote by dié4. ) the column vector consisting of the
diagonal entries of the square matax

(|05 (n)|2]. In many situations to be discussed in detail later,
the processor®; are such that

@ Pl 2
Il. PROBLEM FORMULATION E { v; (”)‘ } = hi(o7). 3)

We are given a class of orthonormal uniformaZ-channel

_ (=) ; x)
FBs Recall that an FB is fully specified by its analysidiere.e; = Eflv;"’(n)[*] denotes the variance of”(n), and
polyphase matrixE(z) or, alternatively, by the ordered h; is some function whose specification depends only on the

set of analysis and synthesis filter paif&y(z), Fi(2)), nature of the processar; and not on the choice of FB from

k=0,1,--, M—1(seeFig. 1). We are also given an orderefj- Thus, for such problems, with = (05, 0%, -, 0%y_)”
set of M subband processof%, i = 0, 1, ---, M — 1, where denoting the subband variance vector, the objective defined on

P, denotes the processor acting on #ie subband. Specific € clas<” becomes

instances of suctP; will be discussed in later sections; in ] M
general, eacl#; is simply afuncti_o_n that maps input sequences g(v) = i Z hi(a?). (4)
to output sequences. The specification of this function may or i=0

may not depend on the input statistics. L o .
The system of Fig. 1 is built using an FBGnand the proces- Hence, the minimizatiombjectiveis purely a function of the
sorsF;. In all problems that we consider, this system is aimegiPPand variance vectorhis functiong of (4) is fully spec-

at producing a certaidesired signati(n) at the FB output. For 'I€d, given the description of the processdis Let S denote
example, in context of compression, the procesgbese quan- the set of all subband variance vectors corresponding to all FBs

tizers, and the desired output equals the inputd(@.) = (). in C. The optimization problem thus reduces to that of finding

In the context of noise reduction, the inpufn) = s(n) + si(n), the minima of the real-val_ue_d fl,_lncticywon the setS. We will
wherey(n) is additive noise, the desired outpitn) = s(n) hence refer t<$_ as the optimizatiosearch space

(the pure signal), and th& could, for instance, be Wiener fil- In later sectl_ons, we show that for a number_of FB-based
ters. The FB optimization problem involves finding among affi9nal processing schemes, the above formulation holds, and

FBs inC the one minimizing some measure of the error signgHrther, the objectivey is a concavefunction (Section I11-A).
The central result of the present paper, which is described in de-

tail in Section lll, is that a PCFB is optimal for all such problems
whereg is concave. The main reason for this is that whenever a

wherey(n) is the true FB output. To formulate the error meal?CFB exists, the search spagéas a very special structure; its

sure, we impose random process models on the FB inpuit convex hullis a pqutop(iﬁection l!l'A)' Since the saf plays

and desired signaf(n). We assume that(n), which is the an !mpor'tal_r!t role in the further .d|'scuss!on, we summarize the
M-fold blocked version of:(n) (see Fig. 1), is a WSS vectorMain definitions and facts pertaining to it

process with given psd matri,,. (¢’*). Equivalently,z(n) is
CWSS M), i.e., wide sense cyclostationary wilh as period-
All processes are assumed to be zero mean unless other\/ﬁggce

stated. In all our problems, th&n) and theP; are such that 1) Definition: For each FB in the given clags thesubband

e(n) = d(n) — y(n)

A. Summary of Definitions and Facts Related to the Search

the errore(n) is also a zero mean CWSH ) random process. variance vectomssociated with the input proces:) is

Thus, we choose as error measure the varianegfaveraged defined as the vector = (o3, o7, ---, 03,_,)", where

over its period of cyclostationarity/ . o? is the variance of the procesé’”)(n). Here,vg“”)(n)
As shown in Fig. 1, we denote bzyé“”)(n) the 7th subband is thesth subband signal produced by feedir@) as the

signal generated by feeding the scalar sigral) as input to FB input.

the FB. If the error(n) is CWSS M), the signalsée)(n), i= 2) Computing the subband variance vectdBiven the

3 ficular,x(n) could be a WSS - . FB analysis polyphase matriE(z) and the psd matrix
n particular,z(n) could be a process with given power spectrum jw ; -

S(e’). In this caseSxx(e’*) is fully determined fromS(e’*) and has the S (e7) g) the Ve(g)tor mpuix(?g)g)m Fig. 1, the vector
special property of being pseudocirculant. procesgvy” (n), v;"' (n), -+, vyy 1 (n))* has psd ma-
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trix E(e7*)Sx (e’ )Ef(e/*). Thus, the subband variance violating chord
vector is Q > Iﬂ 9
1 [ . . .
v=oo diag (E(e’)Sxx (e’ )E (/) dw.  (5) (a) (b)
0 F(2) violating chord

3) The optimizatiorsearch spacés defined as the set of not
all subband variance vectors corresponding to all FBs in concave {
. . e . concave T
the given clas€. Therefore,S is fully specified, given &
the clas<C and the input statisticS,,(e’*). All entries (©)
Of}\?ny Veﬁor inS are clearly non-negative. Thus, C Fig. 2. Convex sets and concave functions. (a) Convex sets. (b) Nonconvex
RY C R™. sets. (c) Concave functions of one variable.

4) The setS isboundedandlies entirely on am/ — 1 dimen-
sional hyperplane irR**. This follows from (5), using any pair (or equivalently, by induction, anfnite sej of ele-
the fact thatlE(c’~) is unitary for allw (orthonormality . ants ofp lies in D 8], [23].
of the FB). No matter what the cla€sthere is always an '
upper bound [depending only &, (¢/“)] on all entries
of all vectorsv € S. Thus,S is bounded. Also, the sum
of the entries ok is the same for al € S, i.e., itis the
trace of the matrix1/2r) 027’ Sxx(e?“)dw. S0S lies Flux+ (1= p)y)
on anM — 1 dimensional hyperplane iR*. < _ <, <

5) Permutation symmetry &. An FB is defined by aror- = pfe) + (1 —mfly) wheneved <p<1. ()
deredset of analysis and synthesis filters. Therefore, raphically, this means that the functigris always above its
change of this orde_rmg (or equwalent!y, mterchangmg thord; see Fig. 2(c). The domaid of f has to be convex to
rows of the analysis polyphase matrix) technically praspsure that the argument pion the left side of (6) is iD, i.e.,
duces a different FB, which we will refer to asp@r- 5 ensure that the above definition makes sense. For a concave

mutationof the original FB. However, clearly, all per-fnction f, we can use (6) to show by induction that for any
mutations of a uniform FB are essentially the same, 1.8, ¢ D

equally easy to implement. Therefore, we make the fol-

Concave FunctionsLet f be a real-valued function defined
on a convex sel> C RM. The functionf is defined to be
concave on the domaib if given any elementsx, y in D,

lowing very reasonable assumption on the given dass N N

of FBs: Any permutation of any FB ifi is also inC. This f <Z aixi> > Z o; f(x;) wheneveO < «; <1
assumption holds for all specific classeghat we will i=1 i=1

encounter. Note that if two FBs are permutations of each al

other, then so are their subband variance vectors; however, and 2; a; =1 ()

the minimization objective may attain different values at
these vectors. Thus, we use the convention of defining &his is known aslensen’snequality. The functiory is said to
FB as anorderedset of filter pairs because the orderinge strictly concavef it is concave and further if equality in (6)

affects the objective. is achieved for distinck, y iff 1 is either O or 1. For sucl,
equality is achieved in (7) for distinet; iff one of the «; is
IIl. OPTIMALITY OF PCEBs unity (and, hence, all the others are zero).

Convex Hulls: The convex hull of a seb ¢ R is denoted

We now show that PCFBs are optimal whenever the objegy ¢« 1)) and is defined as the set of all possible convex combi-

tive function to be minimized is concave on the Opti_mizatioﬂations of elements ab. Equivalently, it can be defined as the
search spacs. The proof follows from strong connections bexg o jest” (i.e.,minima) convex set containing or the inter-

tween the notion of a PCFB and certain results in convexity a@dion of all convex sets containidg. Thus,D = co(D) iff
majorization theory reviewed in Section Ill-A. PCFBs are dey) 5 5 convex set. '

fined and dgscribed in Section 111-B. In Seqtion 11I-C, we show Polytopes: A convex polytope is defined as the convex hull
the connection between PCFBs and special convex sets call

d., . o A .
) of & finite set. IFE ¢ RM is finite, P 2 co(E) is a polytope.
polytopes and thereby prove the main result of the paper. We can assume that no vectorihis a convex combination of

_ other vectors off/, as deleting such vectors frofd does not

A. Convexity Theory [21] changeP. With this condition, the polytop® is said to be gen-

Convex SetsA set D ¢ R is defined to be convex if erated by the elements &f, and these elements are called the
x,y € Dimpliesux + (1 — p)y € D wheneveO < i < 1. extreme pointgor vertices or corners) aP; see Fig. 3(a)—(c).
Geometrically,D is convex if any line segment with endpointsThe following result on extreme points, which is illustrated by
in D lies wholly in D; see Fig. 2. Aconvex combinatioof a fi-  Fig. 3(d), is vital in explaining PCFB optimality.
nite set of vectorx,;, ¢ = 1, 2, ---, IV is by definition a vector =~ Theorem 1—Optimality of Extreme Points of Polytopést
of the form >~ | c;x; with 0 < «; < 1andY.)", o; = 1. afunctionf have a convex polytop£ as domain. Iff is con-
Thus, by definition,D is convex if any convex combination of cave onP, at least one extreme point &f achieves the min-
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Fig. 3.
@M =1.(b)M = 2.(c) M = 3. (d) Optimality of extreme points.
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B. PCFBs and Majorization: Definitions and Properties

Definition—Majorization: Let A = {ag, a1, -, ap—1}
andB = {bo, by, - -+, bys_1} be two sets each having real
numbers (not necessarily distinct). The deis defined toma-
jorize the setB if the elements of these sets, when ordered so
thatag > a1 > -+ > ap—1 andbg > by > -+ > by, Obey
the property that

r r
Zaiz Zbi foralP=0,1,---, M —1
=0 =0

M -dimensional polytopes, their extreme points, and their optimality.

with equality holding wher? = M/ — 1. (10)

imum of £ over P. Further, iff is strictly concave, its minimum Given two vectors/y, v, in R*, we will say thatv; majorizes

over P is necessarily at an extreme pointf

Proof: Let E be the set of extreme points éf Thus,E
is finite, andP = co(F). Let E = {vi, va, ---, vy}, and
let v; € E attain the minimum off over the finite set&.

Now, by definition of a polytope, for any € P, we have

v = Zf\;l o, v; for someq; such thatd < «; < 1 and

.

> i1 = 1. Thus

vo When the set of entries of, majorizes that of». Evidently,
in this case, any permutation ef majorizes any permutation
of vs.

Definition—PCFBs: LetC be the given class of orthonormal
uniform M-channel FBs, and 168, (¢’*) be the power-spec-
trum matrix of the vector process inpxifn) (shown in Fig. 1).

An FB in C is said to be a PCFB for the clagsfor the input
psd S, (e’@), if its subband variance vector (which is defined
in Section II-A) majorizes the subband variance vector of every

N N
fv)y=r <Z CYM‘) > aif(vi)
=1 =1

1
[by (7). i.e., Jensen's inequality] )

(8)
N

2> aif(vy) = f(v))
=1

~
<by definition ofv; and using _ «; = 1) NE)

=1

Thus,f(v) > f(v;), i.e., the extreme point, of P attains the
minimum of f over P. Further, thev, are distinct; therefore,
if fis strictly concave, then Jensen’s inequality becomes strict
unless one of the; is unity. Thus, in this case, the minimum is
necessarily at an extreme pointBf \AYAY)
Extreme Points of General Convex Sefs:point v in a
convex setD is said to be an extreme point of if it cannot be
expressed as a nontrivial convex combination of point®of
ie.,v= 227:1 o;x; forx; € Dand0 < a; < 1, 227:1 o; =1
impliesx; = --- = x; (=v). This definition can be verified
to be equivalent to the earlier definition of extreme points of
polytopes whenD is a polytope. Thus, a polytope is simply
a convex set with finitely many extreme points. We may note
(although we do not use) the fact that Theorem 1 holds even if
the domainP is a generatompactconvex set. This is proved
in a very similar manner, using one additional key result: Every 2)
compact convex set is the convex hull of the set of its extreme
points (Krein—Milman theorem) [21]. Polytopes are special
compact convex sets (i.e., those with finitely many extreme
points). Another easily proved fact on extreme points that we
will use in Section 1lI-C.3 is as follows: For any sét, the
extreme points of ad>) always lie inD.

FB in the clas<.
Remarks on the PCFB Definition:

A Simple Optimality Propertyin Fig. 1, suppose the FB
has subbands numbered in decreasing order of their vari-
ancess?, i.e., 02 > o2 > ... > o2, |, and theP; are
constant multipliersn; given by

=

for a fixed integerP with 0 < P < M. This system
keeps theP strongest (largest variance) subbands and
discards the others. If the desired output sigidat)
equals the input:(n), then all assumptions of Section Il
are satisfied, and the minimization objective indeed has
the form of (4). The optimum FB is the one minimizing
(1/M) M F 2. Now, all FBs have the same value of
Y M1 o2 therefore, the optimum FB is the one maxi-
mizing Zf:ol o2. Thus, from the definitions of PCFBs
and majorization , it follows that a PCFB, if it exists,
has the property of being optimum for this problem for
all values of P. In fact, this property is the origin of
the concept of a PCFB [24] and is clearly equivalent to
its definition. PCFBs are also optimal for many other
problems, as Section 11I-C will show.

Existence of PCFBGiven the clas€ of FBs and the input
power spectrun$,(c’*), a PCFB foiC may not always
exist. The PCFB and its existence depends on 6athd
Sxx(e?*). For example, for white inputSix(e’*) =
identity matrix), all FBs irC are PCFBs, no matter whét

is. Section IV studies certain classg$or which PCFBs
always exist for any input psf,,(¢’“) [of course, the

1, for0<i<P-1

’ (11)

0, forP<i<M-1
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3)

PCFB will depend o8, (¢/“)]. Section V studies cer-
tain classe€ for which PCFBs do not exist for large fam-
ilies of input spectra.

Nonuniqueness of PCEB-rom the definition of ma-

105

1, i.e., the sum of the entries in any row or column(pf

is unity. All convex combinations and products &f x

M doubly stochastic matrices are also doubly stochastic
(Appendix A).

jorization, any permutation of a PCFB is also a PCFB. b) Permutation matricesare square matrices obtained by

Further, it is possible that two FBs that are not permu-
tations of each other are both PCFBs, i.e., the PCFB
need not be unique. However, all PCFBs must have
the same subband variance vector up to permutation.
This is becausdwo sets majorizing each other must

permuting rows (or columns) of the identity matrix.
Thus, they are doubly stochastic. In fact, they are the
only unitary doubly stochastic matrices. (This is because
S pi =M p? = 1 for non-negativey; iff all but
one of thep; are zero.)

be identical—a direct consequence of the definition of ¢) An orthostochastic matrix) is one that can be obtained
majorization. As all our FB optimizations involve not the from a unitary matrixU by replacing each element;
actual FB but only its subband variance vector, we often by ¢;; = |u;;]?. We will refer toQ as the orthostochastic
speak othe PCFB, even though it may not be unique. matrix corresponding to the unitary matrid. Since
> luij|? =32, |uij|* = 1 for unitary U, everyM x M
orthostochastic matrix is doubly stochastic. The converse
is true if M < 2 but is false ifM > 2 (see Appendix B).
2) Relevant Results from Majorization Theory:

i) Majorization Theorenf10], [11]: If a, b € R, a ma-
jorizesb iff b = Qa for some doubly stochasti@.

ii) Birkhoff’s Theorem[11]: A matrix Q is doubly sto-
chastic if and only if it is a convex combination of finitely
many permutation matrices, i.e., there are finitely many
permutation matrice®; such that

C. Principal Components, Convex Polytopes, and PCFB
Optimality

Let C be the given class of orthonormal unifodfi-channel
FBs, andS, (¢’*) the psd matrix of the vector input(n) of
Fig. 1. LetS be the set of all subband variance vectors of all
FBs inC for inputx(n). We have the following theorem.

Theorem 2—PCFBs and Convex PolytopésPCFB for the
classC for input psdS,(e’*) exists if and only if the convex
hull co(S) is a polytope whose extreme points consist of all
permutations of a single vectst.. Under this conditiony.. is
the subband variance vector produced by the PCFB.

Theorem 3—Optimality of PCFBsThe PCFB for the class
(if it exists) is the optimum FB i€ whenever the minimization
objective is a concave function on the domaii&p Further if
this function is strictly concave, the optimum FB is necessarily
a PCFB.

Theorem 3 follows directly from Theorem 2 (which is proved
in Section llI-C-3) and Theorem 1 of Section I1l-A. Note that the
FB optimization involves choosing the best vector frémbut . - . ) .
Theorem 1 is used here to find the best vector frofSdm S. °) '_I'her_e Is a Hermitian ma’FnH W|th_entr_|es ofa as
However, Theorem 2 shows that the best vector frof&gan its e|genva|ue§ gnd .entnes ofon its diagonal.
fact lies inS (and corresponds to the PCFB). Hence, it must ON the Proofs: The majorization theorem actually follows
be optimum ovesS. Note that all permutations of a PCFB ardrom the orthostochastic majorlzat_lon th_eorem (see [10] or [29]
PCFBs, and the above theorems do not specify which of thesé&an independent proof). Regarding Birkhoff's theorem, as all
the optimum. All of them need not be equally good in generd?.erml_’tat'_on matrices are doubly st_ochastlc, S0 is their convex
However, the optimum can be found by a finite search over thez@mbinationQ of (12) (see Appendix A). The converse proof
PCFBs. is more elaborate [11]. In the orthostochastic majorization

Theorem 3 shows optimality of PCFBs for a number of sign&f€orem, equivalence of b) and c) is easily proved. The key
processing problems. In Section 11, we had a general formulg€@ is that for any diagonal matrix and unitary matrixT,
tion of the FB optimization problem such that the minimizatiofiad TAT") = QdiagA), whereQ is the orthostochastic
objectiveg was purely a function of the subband variance vectdfatrix corresponding td. This is because if;; is the;th
as in (4). If the functions; in (4) are all concave o, then €Nty of T and diagA) = (Ao, Ai, -~ Av-1)?, the ith
g is concave on the domain 8) [23]. This happens in sev- diagonal entry O‘T{XTT IS 2 =0 |tij|2)\ja which is exactly
eral problems, as we will see in later sections. Thus, Theord¢ ith entry of Qdiag'A). Therefore, given b), we choose
3 shows PCFB optimality for all these problems. To prove Théiag(A) = a and prove c) by settingl = UAU'. Conversely,
orem 2 and, hence, Theorem 3, we first review some results@Men ¢), we prove b) by lettingJ be a unitary matrix diago-
majorization theory [11]. nalizingH, i.e., sfatisfyingH = UAU" for diagonal{x. .

1) Relevant Definitions from Majorization Theory: That.b) [or c)] implies a) follows f'rom thg majorization the-

a) Adoubly stochastic matri® is a square matrix with non- orr]emt.sm;\e ?AM x M orthgs';oltzhastlcl:d? atr|(2:e(s are: OUbl)é.Sto_

: e amtief o ~_ chastic. As the converse is false unléds< 2 (see Appendix
negative real entrieg; satisfyingy, ¢;; = 1,>°, a;; = B), the result that a) implies that b) [or c)] is stronger than the
corresponding result in the “plain” majorization theorem. This
result is not used until Section I1V-B. Its proof is more involved

N
Z o P; = Q, where0 <a; <1,

i=1

N
and Z ;= 1.
=1

(12)
iii) Orthostochastic Majorization Theorefhl]: Fora, b €
RM , the following statements are equivalent.
a) a majorizesb.
b) There exists an orthostochastic mat€)x(corre-
sponding to a unitary matrikl) such thab = Qa.

2A question of possible interest is as follows: Given a clasénd all non-
whiteinput spectra for which a PCFB far exists.
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[11]. The fact that c) implies a) is in fact precisely the statemeate extreme points of ¢&), i.e., no vector inE is expressible
that the KLT is the PCFB for the class of transform coders, as a convex combination of other vectorsfThis is provable

elaborated in Section IV-B.
Proof of Theorem 2:Let a PCFB for the clas§ exist for

by induction on the vector dimensidd. Letv; = Z;’ 5 OV
with0 < a; <1 andz -, a; = 1. Then, the greatest entry of

the given input ps®.,.(¢’). Letv, be the PCFB subband vari-y, is a convex combination of real numbers no greater than it-
ance vector (unique up to permutation; see Section I1I-B). Lgglf. Therefore, all these numbers must be equal. Deleting from

P; be theM x M permutation matrices fof = 1, 2, -+, J
(whereJ = M), and letv; 2 P;v.. Thus, &/ 2 {vj: j =
1,2,---,.J} is the (finite) set of all permutations of.. We
have to prove that ¢&) = co(E). For this, take anw ¢

eachv; the entry corresponding to this number yields the in-
duction hypothesis.

Functions Minimized by MajorizationCurrently known in-
stances of PCFB optimality in signal processing problems arise

S. By definition of PCFBsy, majorizesv. Therefore, by the from minimization objectives of the form (4), where the func-

majorization theorem (Section 1lI-C1ly; = Qv, for some

tionsh; are concave o . Theorem 3, of course, shows PCFB

doubly stochastic matrif3. By Birkhoff's theorem (see Sec- optimality for a more general family of objectives, namely, those

tion 1I-C.1), Q is some convex combination of tl;. Thus

J J
v=Qv, = Z a;Piv, = Zajvj for someq;
j=1 j=1
J
suchthal < o; < 1, Y oy =1. (13)
j=1

Therefore, every € & is a convex combination of the;, i.e.,
S C co(F); hence, c6S) C co(co(E)) = co(F). However,
by permutation-symmetry of (Section llI-A), £ C &S, and
therefore, c@F) C co(S). Combining, c¢S) = co(E), as
desired.

Conversely, lev,. be a vector such that with, = P;v, and

that are concave in the subband variance vector [and need not
necessarily have the special form of (4)]. In fact, even this is
not the complete family of objectives minimized by PCFBs. For
example, ifg is a monotone increasing function @& then for

any concave objectivé(-), clearly, g(¢(-)) is also minimized

by PCFBs. Unlesg is also concave, in general, this new func-
tion is not concave. A specific nonconcave example of this kind
is generated by(xzq, - -, a:M) = >, log(z;) andg(y) = ¢,
giving g(¢(-)) = (1, -+ war) = [1, .

If attention is restrlcted to symmetric functions [i.e., func-
tions ¢ obeyingp(Px) = ¢(x) for all x if P is any permuta-
tion matrix], then the functions minimized by majorization are
said to beSchur-concav¢l8]. To be precise¢ is said to be
Schur-concave if(x) < ¢(y) wheneverx majorizesy. (This
implies symmetry ofp since Px majorizesx for any permu-
tation matrixP.) Thus, symmetric concave functions are exam-

E=2 {vj:7=1,2,---, J}, we have c6S) = co(E). We then
have to prove that a pCFB for the cladxists for the given Ples of Schur-concave functions, whereas the funatidefined

input psd and that, is a PCFB subband variance vector. T€arlier is a Schur-concave function that is not concave. Clearly,
do this, note thaS C co(S) = co(E). Thus, ifv € S, then PCFBs minimize all Schur-concave objectives. Full characteri-

v € co(E) so thatv can be written as a convex combination ofations and several interesting examples of such functions can

the elements; € £. Therefore, there are; such that

OSOéjS].,

J
ZO@' =1
j=1

and

J J
vV = E vV = E CMijV* = QV
j=1 j=1

J
whereQ = 3" a,P;

i=1

(14)

Here,Q is a convex combination of permutation matrides
therefore, it is doubly stochastic (Birkhoff’s theorem). As=
Qv,, by the majorization theoreny;, majorizesv. Thus, an
FB with subband variance vecter, will be a PCFB for the

given clasC and input psd. Indeed, there is such an FBin
As co(S) = co(E) and E is a finite set, the extreme points ofizable subband variance vectdrg, o3)7

the polytope c@S) lie within F, and they also lie i (Section
[1I-A). Thus, v; € S for at least ong and, hence, for alf (by
the permutation-symmetry &f; see Section II-A). \AYAY

be found in [18].

IV. PCFBs FORSTANDARD CLASSES ANDOPTIMALITY FOR
COMPRESSION

This section first shows existence of PCFBs for three spe-
cial classes of FBs, namely, classes with = 2 channels,
the class ofd/-channel orthogonal transform coders, and that
of all M-channel orthonormal FBs. This well-known result is
reviewed to show how it fits in the framework of the earlier sec-
tions, which have not yet been restricted to any specific class of
FBs. We also prove the convexity of the search-space for these
classes, which has not been observed earlier. We then review
PCFB optimality for data compression.

To begin, letC be any class of uniform orthonormaiwo
channelFBs, e.g., that of FIR or IIR FBs with a given bound
on the filter order. Irrespective of the input psd matrix, all real-
in the search-space
S C R? then have the same value @f + o2 (Section II-A).
Thus, S lies wholly on a line of slope-1 in R2. Therefore,
co(S) is an interval on this line; see Fig. 4. Thus,(89 is a

Note that in general, all we can say about the extreme poimtslytope with two extreme points, namely, the endpoints of the

of a polytope cOL) is that they lie in&. Here , however, witl/
as the (finite) set of all permutationsf, in factall points in¥

interval. By the definition, a PCFB is simply an FB maximizing
one subband variance, thereby minimizing the other. Therefore,



AKKARAKARAN AND VAIDYANATHAN: FILTERBANK OPTIMIZATION WITH CONVEX OBJECTIVES 107

azh 2 2 tant is a well-known result. Conversely, ¥ is a PCFB forCt, then
1 0g + 01 = constan v = v, (up to permutation). Therefore, the Hermitian matrix
co(S) R, has its eigenvalues as its diagonal elements and is hence

necessarily diagonal, i.€L is the KLT for the input.

Finally, to show thatS is the polytope c@S), take anyv €
co(S). Then,v, majorizesv. We now make a stronger applica-
tion of the orthostochastic majorization theorem, i.e., thata) im-

'ag plies c) in its statement in Section 111-C.1. This shows that there
is a Hermitian matrixR. with the entries ofv,, as its eigen-
Fig. 4. Search spac® for a class of two-channel FBs. values and those of on its diagonal. AR .., Rxx have the

same eigenvalues, they are “similar,” iFR,,.U' = Ry, for
it always exists for such class€sand corresponds to the twosome unitary matriXU. Therefore, the FBJ € C* has subband

extreme points of &), irrespective of the input psd. variance vector digdJR,, U") = diagRvy) = v. Thus,v
is a realizable subband variance vectordéri.e.,v € S. This
A. Transform Coder Class holds for anyv € co(S), so thatS = co(S).

The transform coder clag$ is defined as the class of uniform
M-channel orthonormal FBs whose polyphase malfi] in
Fig. 1] is a constant unitary matrik. In effect, we can speak of The clas€" is defined to contaiall uniform A/ -channel or-

C* as being the set of aM x M unitary matrices. LeR,, be thonormal FBs with no constraints on the filters besides those
the autocorrelation matrix of the inpstn) of Fig. 1. We then imposed by orthonormality. Therefore, FBsdtt could have

B. Unconstrained Class

have the following theorem. ideal unrealizable filters. We could in effect think®f as the set
Theorem 4—Transform Coders—KLT, PCFBs, and Polgfall M x M matricesE(e’* ) that are unitary for alb. [E(e’“)
topes: represents the analysis polyphase matrix.] An exact analog of

1) A PCFB always exists fo€t. Hence, the sef of real- Theorem 4 holds for this class as well. The only difference is in

izable subband variance vectors &rhas a convex hull the co'nstruction of the PCFB from the given input psd matrix
tion IlI-C. tion reviews this construction and proves the resui co(S)

2) Aunitary matrixT € C* is a PCFB foiC* iff it diagonal-  for the clas™. : _ _
izeSRyy, i.e., TR T is diagonal. In other wordg® ~ PCFB Construction:Let K(c/*) € C* diagonalize
is a PCFB forC* iff it is the Karhunen—Loeve transform Sxx(¢’*) for eachw, i.e. K (e/) Sy (¢/) KT (/) = A(e?),
(KLT) for the input, i.e., it decorrelates the input [the subWhere A(¢’) is diagonal (for/}gIIwT), and diagA(c’)) =
band signals ™ (n), i = 0, 1, ---, M — 1 are uncorre- (Ao(¢), Ai(e™), -~ Ayr—1(¢’))". Using (5), the subband

lated for each time instant]. variance vectow of an arbitrary FBE(¢/*) € C* is given by
3) S = co(S). Therefore,S itself is a polytope with ex- o ' ' '
treme points as permutations of the KLT subband vari-  2mv = diag E(e’)Ssx (¢’ )BT (7)) dw
ance vector. 0
Proof: The subband variance vector computation (5) be- = Q) (Mo(e), AL (),
comes 0

o Av—(@Ntdw. (16)
v =diagRyv), WhereR,, = TRy, T' '
1 g2 ' Here, at eaclw, Q(e?“) is the orthostochastic matrix corre-
whereRyx = 5 / Sax (€’ dw. (15) sponding to the unitary matrik(c’)K(c’). Therefore at
T Jo each frequency, the integrand vector of (16) produced by
Here, R, is the autocorrelation matrix of the vector procesthe FBK(c/) € C* majorizes the corresponding vector of
(U(()ac)(n)7 Ug“f)(n)’ . vg\?,l(n))T of Fig. 1. The input KLT any FB inC*. This holds no matter how we order the eigen-
is defined as the FB with unitary polyphase matixthat di- values;(¢’*) in (16). The integration process preserves this
agonalizesR ., i.e., such thakKR,,K' = Ais a diagonal majorization relation if and only if the\;(¢’) are “ordered
matrix. Thus,v, 2 diag/A) is the subband variance vector ofconsistently” at all.. By this, we mean that if we number the
the KLT and has as entries the eigenvalue®Rgf,. Now, the Ai(¢’~) S0 that the entries of are in descending order, then
Hermitian matrixRyy = TRyT! = TKIAKT' has en- Ao(¢/%) 2 Ai(e/¥) 2 - 2 Ay (¢?) for all w. Thus, an
tries of v on its diagonal and entries of, as its eigenvalues. FB K(¢/*) € C* is a PCFB forC iff it causes two effects:
Hence,v.. majorizesv by the orthostochastic majorization the-L) totally decorrelatinghe input, i.e., diagonalizing its psd ma-
orem of Section I1I-C1 [specifically by the fact that c) implied!iX Sxx(¢’*), and 2) causingpectral majorizatiori26], which

a) in its statement]. This shows that the KLT is a PCFB, whidf the said ordering of eigenvalues $§.(c’~). Note that the
PCFB forC* has uncorrelated subbapobcessesunlike thein-

3If co(S) is anopeninterval (i.e., one not containing its endpoints), no singlestantaneouslecorrelation produced by the KLT (Theorem 4)_
FB achieves the maximum subband variance; hence, there is no PCFB. However,

this situation is contrived and does not happen for most natural FB classes and‘ ProvingS = CO(S): To prove thi_s property for the class
input psds. c*, let v, be the PCFB subband variance vector, andviet
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co(S). Then,v, majorizesv. Therefore, by the orthostochastids equivalent to minimizindog(g) = (1/M) Zf\igl log(o?).

majorization theorem (Section 1lI-C.1y,= Qv, for some or- This is a concave function of the subband variance vector
thostochastic matriX) corresponding to a unitary matri®d. becauséog(z) is concave in:. For general quantizer functions
Thus, if K(c/*) is the polyphase matrix of the PCFB f6t, f;, the optimizations of the FB and the bit allocation have been
(16) shows that the FB iG“ with polyphase matritUK (c/*) decoupledsince the PCFB is optimum fall bit allocations
produces subband variance vectgri.e.,v € &. This shows [14]. However, note that different permutations of a PCFB may

S = co(S). be optimal for different bit allocations. In addition, computing
the optimum bit allocation may be more involved. We can,
C. PCFB Optimality for Coding/Compression however, prove one intuitive statement about the optinhpim

Here, we consider the problems of [14] and [26], wher@€ special case when gf] are equal to a decreasing function
the processors’; of Fig. 1 are quantizers, and the desired - In this case, a subband with larger variance receives more
output d(n) equals the inputz(n). This situation fits the PItS: _ _
general problem formulation of Section Il under appropriate N (18), all 7; are linear, i.e.hi(z) = miz + ¢ for con-
quantizer models. The subband error sigif&l(n) of Section SNS™; ¢ (mi = fi(bi), ci = 0). In such cases, we can alge-

Il here represents thi¢h subband quantization noise. Under thQramally prove PCFB optimality [14] without using any result

quantizer model, we assume that this noise is zero mean wih majorization. As:; are constants, the optimization is unaf-
fected by taking;; = 0. Withmg < m; < --- < my_; and

variance
of 2 0f 2 20
2
E UUZ(G)(”)‘ } = fi(bi)ffzz- (17) M—1
Mg(o—gvo—fv"'vo—?\l—l): Z miaiQ

Here,b; is the number of bits allocated to th#h quantizer, and i=0
/i is acharacteristic of the quantizer called the normalized quan- M—2 i
tizer function [14]. We assume thgt does not depend on the = Z (m; — miy1) Z 0]2»
FB in any way and that the quantization noise processes in dif- i= j=0
ferent subbands are jointly stationary. The problem then fits the M1
formulation of Section Il. Comparing (17) with (3) reveals the +mar—1 Z o | (19
minimization objectivey to be as in (4), i.e., =0

9(0’37 of, o oh_1) As the last term is constant for all FBs, and sineg— m;+1 <

] Ml 0, the abovey is minimized by the PCFB, which, by definition,
= Z hi(o?) with h;(x) = fi(b)z. (18) maximizes all the partial sunE}zO 0]2 fori=0,1, -, M—
i=0 2. This proof shows two noteworthy facts not shown by the ear-
lier proof: 1) It exhibits the best permutation of the PCFB to be

Thus, theh; are linear (and hence concave); therefgres in- . : e
deed concave. Therefore, by Theorem 3, the PCFB if it existged' namely, that in which the largest subband variatide

is optimal for this problem. This is trueo matter what the bit gssomateQ with the Ie.aeti, and S0 on. 2) It ;hqws that the op-
allocation b, is. tlmum FBis necessarily a PCFB if tm are distinct. Hovyever,
o - . this simple approach works only fiinear h; and thus fails for
Itis important to note that for the validity of our assumptlon?nany of the problems of Section VI that result in nonlinear con-
of Section Il (and hence for PCFBs to be optimal), the fun%'aveh
tion h;(z) = f;(b;)x must not depend on the FB any way. v
This is often not the case. In quantizers optimized to their input
probability density function (pdf)f; depends on thih subband
pdf, which in turn is influenced by choice of FB. Even with the Existence of a PCFB for a cla§of orthonormal FBs implies
model of [26], i.e., uniform quantization under the high bit rata very strong condition on the subband variance vectors of the
approximation,f;(b;) = ¢;272%, where the constant; (and FBs inC. There are many classésthat do not have PCFBs.
hencef;) depends on thé&h subband pdf. If we further assumelndeed, it seems quite plausible that the classes of Section IV
the input to be &aussianrandom process, then all subbandare the only ones having PCFBs for all input power spectra. This
have Gaussian pdf independent of choice of FB. For this spection reviews some known results on nonexistence of PCFBs
cial case, alk; are equal and constant, and the PCFB is indeetid shows that the classes of ideal DFT and cosine-modulated
optimal. The need for these assumptions is illustrated by FelRBs do not have PCFBs for several input spectra.
and Effros [9], who demonstrate that tKeT is not the optimal  If a PCFB for the given clas§ of FBs exists, it simultane-
orthogonal transform if the input has a uniform distribution. ously optimizes ove€ several functions of the subband vari-
For the case whefi(b;) = c272% (forwhichthe PCFBsop- ances (Section Ill). Therefore, we can show nonexistence of
timal), the optimal bit allocatioh; (subject to a constraint on thePCFBs forC by proving that no single FB if can optimize
total bit budgelzggl b; = B) is explicitly computable using two of such functions. This method is used in [15] and [19] for
the arithmetic mean—geometric mean (AM—-GM) inequalitgertain classes of FIR FBs for a fixed input psd. The two func-
The objective under this bit allocation becomes the GM of thi@ons used are the largest subband variance and the coding gain,
subband variances, i.g.= ([]2, " o2)(*/*). Minimizing this  which are both maximized by a PCFB if it exists. However, all

7=

V. FILTERBANK CLASSESHAVING No PCFB
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L 1= PO (i) = BP(e)

optimizations are numerical. Nonexistence of PCFBs has not ,
| = PO () = B ()

yet beenprovedfor any reasonably general FIR class, say, the
class of allA/-channel {4/ > 2) FIR orthonormal FBs with
polyphase matrix of McMillan degree > 0 (although it seems
very likely that such classes do not have PCFBs). We now prove
nonexistence of PCFBs for the classes of DFT and cosine-mod-
ulated FBs.

Definition: The clasC%* of A -channel orthonormdDFT
FBsis the one containing all FBs as in Fig. 1 where the analys~
filters are related by} (¢/*) = P(e/(«—@m*/M))) for some
filter P(e/*) called theprototype For example, any’(e/«) that = ST N T A3
has an alias-fre@\/) support and has constant magnitude on i \
support [and is thus Nyquigti/)] produces an FB ig%/*.

Definition: The class™/? of M-channel orthonormato-
sine-modulated-Bs (CMFBSs) is the one containing all FBs
as in Fig. 1 whereff;,(¢’*) = P(e/(w=(hm/M)=(x/2M)y 1
P (it kr/M)+(w/2M))) for some filterP(e/*) called thepro-
totype For example, any?(e¢’~) having an alias-fre€2M1 ) sup-
port and with constant magnitude on its support is a valid pro-
totype. Fig. 5. Nonexistence of PCFBs. (a) Class of DFT FBs. (b) Class of

Theorem 5—PCFB Nonexistence for DFT, Cosine-Modtesine-modulated FBs.
lated FB Classes:There are families of input psds such that
the clas¥* defined above does not have a PCFB. The sam
holds for the clasg*™/*.

Proof: Consider first the clas€¥*. Fig. 5(a) shows an
input psd, two valid prototype#(?)(¢i«), and the zeroth fil-
ters H{(e*) = PW(ei®), j = 1,2 in the DFT FBs pro-
duced by the prototypes. For the input psd, the fifﬁé?‘)(ej“)

input psd

N

~57 ~4x —3%x —27 —% T 2x 3w 4w 5w

input psd

m
2M 2M 2M 3M 3IM

(b) Class of cosine-modulated FB’s

L
0 23 sar

2M 2M 2M

Fn) as best as possible. We consider the case when all the sub-
band processorB; are memoryless multipliers;, as shown in

Fig. 6. This problem fits the formulation of Section Il if we as-
sume thas(n) andp(n) are uncorrelated and thafn ) is white

with a fixed known variance? > 0. Indeed, using the notation

of Section Il, theith subband proceaé’”)(n) contains a signal

produces the maximum subband variance achievabltiawby Wnponenmgs)(n) and a zero mean additive noise component
M-channel orthonormal FB, and, hence, by any FECH#', (”)(n). Orthonormality of the FB ensures that the noise com-

[ESVIRTN . . . o Y
(}_IO SJ(Q))(?t‘r)lecompactlon filteg26] for the input psd.) Like ponents are again white with variang& and are uncorrelated
wise, Hy™ (/¥

yields the minimum subband variance possiblg, 1, signal components. The subband error process is
by any Af-channel orthonormal FB, and, hence, by any FB in

C¥*. Now, a PCFB simultaneously maximizes the largest and
minimizes the least subband variance so that if a PCFB for
C¥t exists, it must contain both filter& ) (¢i+), j = 1, 2.

This is impossible as these filters are not obtainable from each
other by shift of an integer multiple ddr/M; therefore, an Thus, theM processes{”)(n) are jointly WSS, and since
FB having both of them cannot be in the clasét. Identical v;"’(n) is zero mean and uncorrelateddd’ (n)

arguments hold for the clags™/*, for the input psd, proto-
typesP (¢7*), and corresponding filtel S (e7+), j = 1, 2,
which are shown in Fig. 5(b). The only difference is that we
no longer haveH " (ci*) = PU)(e#). In addition, it takes
more effort to show that no FB if“"/* can have both fil- Wherea? = Ef[v{*)(n)[?] is theith signal subband variance.
ters H(e’*), j = 1, 2. We can show that if a CMFB has The best choice of multipliek; [minimizing the error (21)] is
HSP(e7~) as one of its filters, then the band edges of all its fithezeroth-order Wiener filtek; = o7 /(o7 +17). Th(is)is imple-
ters must be multiples of /M so thatH ? (¢’) cannot be a Mentable in practice ag is known, ands? = Efjv;" (n)|?] -
filter in it. In fact [4], a CMFB havingH_" (¢’*) of Fig. 5(b) as 1 can be estimated from the subband sigif&l (n). With this
one of its filters is necessarily the CMFB producedy’(¢/«) ~ choice, (21) becomes[jv) (n)[?] = (o712 /(o +17)), which

o0

(n) =vi(n) = v (n) = v{” (n) — ki (n)

= (1= ko (n) = ko™ (n). (20)

2
B[ | = - oz + P (1)

of Fig. 5(b) as a prototype.

VI. OPTIMAL NOISE REDUCTION WITH FILTERBANKS

Suppose the FB input(n) of Fig. 1 isz(n) = s(n) + p(n),

is as in (3) with
]}7’]2

hi(x) = oL

(22)

This functionh; is plotted in Fig. 7 and is easily verified to

wheres(n) is a pure signal, ang(n) is zero mean additive be concave on0, ~). Therefore, by Theorem 3, PCFBs are
noise. The desired FB outputd§n) = s(n), and the goal of optimal if the subband multipliers; are zeroth-order Wiener
the system of Fig. 1 is to produce outpiitz) that approximates filters.
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input output
z(n) = s(n) + p(n) o§(n) " v (n) .y y(n)
analysis ® ) synthesis
z polyphase| ;" (n) vi¥(n)  polyphase z
matrix ky matrix .
z [} [} e}
o E(z) o W R(z) = o
s () Jiy W) B |t

Fig. 6. FB-based noise reduction.

N

. For k; = Hard thresholder (Threshold = T'): h;(z) = { 2
|

e

v
-
-
g
.-

z ifz<T

n° otherwise
== L :T=Ti <y
e T =T> 7]2

: T =9, hi(z) = min(z,7?)

: Error curve hi(z) = ﬁ"s; for
ki = zeroth order Wiener filter

Fig. 7. Subband error functions in noise reduction.

A. Remarks on PCFB Optimality for Noise Reduction

PCFBs for the Pure or the Noisy SignalNotice a differ-
ence between the argumerft of 2, here and in (3). In (3)s7
was the variance of the subband signz%ﬁ)(n) corresponding

to the FB inputz(n). Here, it is the variance of the subban
vi(”)(n) corresponding to the pure
signals(n). Thus, use of Theorem 3 proves the optimality of
PCFBfor the signals(n), i.e., an FB that causes the subban
variance vector corresponding £0n) to majorize the variance

Signalng)(n) = vgw)(n) -

vectors obtained by using other FBs in the given clagdow-
ever, because'’ (n) is white with variancey? and uncorrelated
to [ (n), we haveE[|v”(n)[?] = oF = E[lv;” (n)|*] - .
Thus, any PCFB fog(n) is also a PCFB fog(n) and vice versa.
Other Choices of Subband Multipliersthe Wiener filter is
the optimum choice of the multiplidy; in Fig. 6. However, we

may note that there are other choices that also result in an er|5

function (21) that is concave in the subband variamgeThus,

academic implication of PCFB optimality. More practical hard
thresholding schemes for noise suppression [7] have a threshold
thatis applied individually to each element of the subband signal
sequence (i.e., to each subband or “wavelet” coefficient) rather

ahan on a subband by subband basis.

PCFB Optimality for Subband Wiener Filtering—Another
Proof: One can prove PCFB optimality when all subband mul-
Epliers k; are Wiener filters without using any of the arguments
of Section Il involving majorization theory or the concavity
of the function (22). To do this, observe that the PCFB is op-
timal if the subband multipliers are all constants independent of
the FB. This was noted in the earlier remark and can be proved
algebraically as in Section IV-C [see (19)] without using con-
vexity theory. This is possible since thg(o?) in this case are
as in (21), which is “linear” (i.e., of the form;o? + ¢;, where
m;, ¢; are constants). Since this optimality for constant multi-
Rérs holds irrespective of the multiplier values, it continues to
hold if all these multipliers are optimized. Zeroth-order Wiener

the PCFB will be optimal when thé; are any combination of fjers are the optimum multiplier choices, and hence, PCFBs

such choices. One such other choice is a constant multiplier that o ntimal when these are used in all subbands. This alternative

is independent of the choice of FB (reminiscent of taps in g fajls, however, if some of the multipliers are not Wiener
graphic equalizer in audio equipment). The error is then (25 ¢ g. they are other choices as mentioned in the earlier
which is, in fact, “linear” ino?. As the next remark shows, this e mark.

observation yields an alternative proof of PCFB optimality with \na summarize the above-mentioned results on PCEB opti-
subband Wiener filtering. Another possible choice of mu'tip”%amy for noise reduction under Theorem 6.

ki is the subband hard threshold Theorem 6—Optimum FB-Based White Noise Suppres-

sion: In Fig. 6, lets(n) be a CWS&M ) random process, and

if o2 >T o ) | i
let ;.(n) be zero mean additive white noise that has variayice

(23)

1
k=4
t

The resulting subband error functiolsare plotted in Fig. 7 for
different thresholdg” > 0. For the unique valu#& = 7?2, which
is the optimum threshold in the sense of minimizinge) point-
wise at allz, the resultingh;(z) = min(z, ) is concave on

otherwise’

and is uncorrelated te(n). Letv = (o3, 03, ---, 03, )7
denote the subband variance vector corresponding(i.

Let each subband multiplids; be a zeroth-order Wiener filter

k; = o?/(s? + n*). Consider the FB optimization problem
of minimizing the average mean square error between the

[0, o) (although not strictly concave) [23]. Unlike the WienelFB outputy(n) and the desired signal(n). This is equiv-

filter, however, these choices of multipligéy are of no serious

alent to minimizingg(v) = (1/M)Y Mot hi(o?

T

), where

practical interest and are mentioned here only to demonstratéhafw) = (zn*/(x + n*)). As theseh; are all concave, a PCFB
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noisy input subband signals subband signals
2(n) = corresponding to input corresponding to output output
s(n) + u(n) . / y(n)
o (n) o (n) ey
analysis subband synthesis
olyph (=) () lvph
polyphase| v’ (n) | processor|v;*’(n) polyphase z
matrix matrix matrix 1
z
o
E (©) D ) Ri)=1 °
@ | @ m ] P@ @) | gy W z
)
x(n) = s(n) + pu(n) y(n)

Fig. 8. Subband noise reduction: System of Section VI-B.

for s(n) is optimal for this situation. This PCFB is also a PCFB 1) Memoryless E, D, R: If the transfer matrices
for the inputz(n) since the noise is white. This optimalityE(c’*), D(¢/*) and R(e¢’*) are all memoryless, then so
of the PCFB holds even with certain other choices of sonieA = RDE, and

or all of the subband multiplier¢;, namely subband hard

thresholders (with thresholg?) and constants (independent of oo = [A-IZ,[A -1+ AZ, AT (27)
choice of FB) since this merely changes the functional form of

the corresponding, but preserves its concavity. whereXs;, X, are autocorrelation matricesff.) andp(n),
respectively. IfD is unconstrained, so ik, and the optimun

B. Subband Wiener Filtering: An Alternative Approach is simply the zeroth-order vector Wiener filter for the noisy input

Since the subband processors studied above were LTI s’ﬁg@)’ 8.,
tems, it is possible to take a linear systems approach to the A —RDE =S [S 5 171 o8
problem, as we elaborate here. While this approach does not oo [Bos + Tu] - (28)
prove Theorem 6 (derived above) in its entirety, it allows us ¥§ppose the signal and noise hav®mmorKLT, i.e., for some
generalize some parts of its statement further. In particularyi§itary T, both TS, Tf = A, and TS, TF = A, are
allows certain extensions to cases when the noisel@edand  gjagonal matrices. A'IA'hen, substitution in (28) shows that
the FBs aréiorthogonalas opposed to orthonormal. RDE = TIWT, whereW = A, [As + Ayl ! is diag-
Consider the system of Fig. 8, where the boldface vectq§ga|. Therefore, the choid = T andD = W is optimum
s(n), u(n), x(n) andy(n) are allM-fold blocked versions of nder these conditions. Clearly, with this choice, the diagonal
the corresponding scalar process@s), ji(n), «(n), andy(n),  elements of the (diagonal) matfi are the scalar zeroth-order
and theD(e’*) represents any/ x M LTI system. We assume \wiener filters for their corresponding inputs. Thus, we have
thats(n) andp(n) are uncorrelated WSS vector processes Withgved the following theorem.
psd matrices,, (¢/~') andS,,(c’*), respectively. The blocked  Theorem 7—Optimum Memoryless Transform for Subband
version of the error is thea(n) = y(n) — s(n), whichis WSS \jiener Filtering: In Fig. 6, let the pure signa(n) and the zero
with psd matrixSee (/) as follows: T denotes the identity mean additive noisg(n) be uncorrelated CWS8/) random
matrix) processes. The noigén) could be colored. Let all the subband
oy ey oo joy multipliers k; be zeroth-order Wiener filters for reducing the
Seo(c’) = [A(C ) I] Sss(c’) [A(C ) I] noise component in their respective input. Suppose there is a

+ A(7)S () AT (%) (24)  common KLT for the signal and noise, namely, the unitary ma-
whereA (¢*) = R(e’*)D(¢’*)E(¢’*), andof course  trix T. Then, the choic&(z) = T in Fig. 6 gives optimum
R(c’) = E~1 (/). (25) npise reduction among all choices whié) i_s a constant ma-
trix. In other words, theommon KLTis theoptimum FB among
To see this, note that(n) = ey(n) + e,(n), where all memoryless biorthogonal transfornrsthe sense of maxi-

es(n), e, (n) are obtained by passing(n), u(n) through mizing the output SNR.
transfer matricefA (¢/*) — I and A (¢?*), respectively. Since  Relation Between Theorems 6 and Theorem 6 proves op-
s(n), p(n) are uncorrelated WSS, so asg(n), e,(n); thus, timality of a PCFB for a general clags of orthonormal FBs
their sum is WSS with psd equal to the sum of their psds, afef many white noise suppression problems where the subband
each is easy to compute. Note that (24) and (25) do not assumdtipliers could be any combination of Wiener filters, hard
orthonormality of the FB [i.e., thaE(c’) is unitary for all thresholds, and constants. On the other hand, Theorem 7 fo-
w] or whiteness of the noise [i.e., th8},,.(¢’*) is the identity cuses on the case whafl subband multipliers aré/iener fil-
matrix]. The average mean-square value of the erfo} is ters and on aspecial clasof FBs, namely, the class® of all
. FBs with aconstan{memoryless) polyphase matrix. Notice that
e = itrace(Epp) wheres. — 1 Sea(¢) duw C* includes the orthogonal transform coder cléésAll The-
M o 2 Jo T orem 6 says about this case is that a signal KLT is the optimum
= autocorrelation matrix oé(n). (26) FB within C* when the noise isvhite Notice that this FB is a
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common signal and noise KLT since any orthogonal transform is VII. CONCLUSION
a KLT for a white input. Thus, Theorem 7 generalizes the result

tc; :Ee situation Vét_?_n the nms:aoslore?%réd fshlcl)ws optlmlahty mization of orthonormal filterbanks and the principal compo-
otthe common among a larger ¢ orall memoryless ,qnt property. The main result is that a principal component fil-

blorthogonaltransforms. In summary, '_I'he_ore_ms 6 and_? h"?wetgrbank (PCFB) is optimal whenever the minimization objec-
common element, .Wh'.Ch they generalize in dl_fferent d'reCt'Onﬁve is a concave function of the vector consisting of the sub-
Further Generalizations:Attempts to combine Theorems 6band variances of the FB. We have shown various signal pro-

and 7 yield many interesting further_ generali.zations and Op‘é@ssing systems in which the FB optimization involves mini-
problems. For example, let us restrict attentiorotthogonal mizing such a concave objective. In particular, the known re-

F@ . . .
e ; .. . stlts on optimality of PCFBs for compression can be explained
(KLT), if it exists, can then be shown to be optimal even if th this manner. PCFBs are also shown to be optimal for subband
subband multipliers are any combination of Wiener filters, har main white noise suppression using any combination of ze-
thrgsholds, and constants (as qpposed to all being. Wienerﬁlt%%—order Wiener filters and hard thresholds in the subbands.
as in Theorem 7). This result is show_n n [3]Z using the COEHme extensions have been made to biorthogonal FBs and to
vexity of certain search spaces associated with the signal ?ﬂémzase when the noise is colored. We have also shown that

hoise spectrum. As the input noise is colored, the subband n & classes of ideal DFT and cosine-modulated FBs do not have
variances are no longer constant but depend on choice of EB;

hence, the approach used to prove Theorem 6 needs some modj
fications, as shown in [3]. It also appears plausible that the abqygi
optimality of the common KLT extends to the classatfmemo-
ryless biorthogonatransformst Verifying this is, however, cur-
rently an open problem.

2) Case WhenE, D, R Have Memory—Higher Order

We have pointed out a strong connection between the opti-

\ companion paper [3] contains further results on colored
se suppression. It proves optimality of the common signal
and noise KLT among the orthogonal transform coder class for
noise suppression using any combination of Wiener filters, hard
thresholds, and constants as subband multipliers. This further

i . generalizes some parts of Theorem 7 of the present work. It
Subband Wiener RltersSuppose the LTI systenis, D, R is also shown in [3] that an analogous result on optimality of

in Fig. 8 have memory. The FB optimization problem the common signal and noise PCFB for the cld&sof uncon-

involyes choosing from th_e _gi\_/e_n class of analysis p0|ypha§ﬁained FBs is false. We study the effect of absence of a PCFB
matnggs]i_}(ef“)_the one minimizing the gqu of (26) where o the B optimization and show thatin general, the problem be-
Seo(c’™) is as in (24) z_;md (25), anid(e™) is an appropri- - .omes analytically intractable. We examine the connection be-
ately constrained matrix. For example,j}fu‘th-.order Wiener een compaction filters, PCFBs, and FB optimization. Exten-
f||ter§ are useq n al sgbbands, thax(c™) 'S,.wa diagonal giong of the PCFB concept to classes of nonuniform FBs have
ma.tn)f dependmg in an involved manner &{c’). The' FB been studied in [5]. We have also shown [28] that PCFBs are
optimization f(_)r such cases appears to be extremely 'n_\/0|_\%§timal for maximizing the bit rate or minimizing the power re-
and no analytical results are known to the authors at this ti irement in discrete multitone (DMT) communication systems

Nth-order Wiener f||ter.sj(\7 > 0) cannot l:_)e .handled like 13], again due to concavity of the relevant minimization objec-
zeroth-order ones as in Section VI-A. This is because t

minimization objective now depends on not just the subband -
variances but onV more coefficients in the autocorrelation
sequences of the subband random processes.

If ideal Wiener filters are used in each subband, an analog
of Theorem 7 can be stated. In this case, any orthonormal FBHere, we prove that all convex combinations and products of
whose polyphase matrik(c’) diagonalizes both the signal M x M doubly stochastic matrices are also doubly stochastic. It
and noise psd matrices is optimal over the class of all uncauffices to prove this for two matrices since we can continue by
strainedbiorthogonalFBs. This result is obtained by repeatingnduction. Define the vectak € R ask = (1, 1, ---, 1)T.
the methods used to prove Theorem 7 at each frequendye Then, by definition, a4 x M matrixQ is doubly stochastic iff
may note that the optimal FB mentioned here need not bealits entries are non-negativ®@k = k, andk” Q = k”. Now,
PCFB for either the signal or the noise. Diagonalization of tteonsider a convex combinatidd = «A + (1 — «)B (where
psd matrices is sufficient, and there is no constraint on the @r-< « < 1) and a producD = AB of the M x M doubly
dering of the subband spectra. However, this result is not vestpchastic matriceA andB. It is required to show that®, D
interesting when the scalar signal and noise input to the FEBe doubly stochastic. Clearly, sinéde, B have non-negative
are WSS [as opposed to CWE3)]. In this case, diagonaliza- entries, so d€, D. The proof is then completed by (29), shown
tion of psd matrices is trivial using any orthonormal FB wittat the top of the next page. It also shows that the set dffatiAf
nonoverlapping analysis filters. The resulting system is theloubly stochastic matrices is convex.
equivalent to an ideal scalar Wiener filter acting directly on the
scalar input without use of any FB. APPENDIX B

4An analogous result is true for the high bitrate coding problem with optimal ARE DOUBLY STOCHASTIC MATRICES ORTHOSTOCHASTIC?

bit-allqcation (Section IV-C), i.e.,_ the signal KLT is optimal over a[l memory- Evidently, everyM x M orthostochastic matrix is doubly
less biorthogonal transforms. This is proved using the Hadamard inequality for . . .
determinants. stochastic Here, we show that theonverse is true ift < 2

APPENDIX A
DOUBLY STOCHASTIC MATRICES
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Ck = aAk+ (1 —a)Bk=ak+ (1 - a)k =k, andsimilarly kTC=C

Likewise, Dk =ABk=Ak =Kk,

(29)
and similarly kD =D

but is false ifAM > 2. The caseV = 1is trivial. ForM = 2, a [7]
2 x 2 doubly stochastic matrix must have fo@=[,” 1P -
with 0 < p < 1. Now, p = cos?(#) for some reab so thatQ is
indeed the orthostochastic matrix corresponding to the unitary9]
matrix[_‘;?j((g)) ;I;((Z;] For M = 3, take the doubly stochastic
matrix [10]
(11]

— 1
A=s [12]

O = =
o
== O

If A was the orthostochastic matrix correspondindtahen [13]

a b 0 [14]
U=]|¢c 0 d

0 ¢ f [15]
for some nonzera, b, ¢, d, ¢, f. Thus,U cannot be unitary as [16]
no two of its rows can be orthogonal to each other. Therefore,
A is not orthostochastic. Small perturbations of the entries of [18]
can create other such examples. The doubly stochastic matrj X
[ ]g|ves examples fak4 > 3, where0, T are, respectively,
the zero and identity matrices of swtable size. This concludes
the proof. We may note here that the g&; of M x M or-
thostochastic matrices is convexM < 2 (as it is then the
set of M x M doubly stochastic matrices) butnst convex if
M > 2. Thisis because allf x M) permutation matrices are [21]
in Oy, and every doubly stochastic matrix is a convex combi{22]
nation of these matrices (Birkhoff’s theorem). Therefor&) if [23]
were convey, it would contain all doubly stochastic matrices, bu 4
it does not ifM > 2.
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