
Filtered Component Analysis to Increase Robustness

to Local Minima in Appearance Models

Fernando De la Torre† Alvaro Collet† Manuel Quero† Jeffrey F. Cohn‡ Takeo Kanade†
†, Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

ftorre@cs.cmu.edu acollet@cs.cmu.edu mquero@andrew.cmu.edu tk@cs.cmu.edu

‡, University of Pittsburgh. Department of Psychology. Pittsburgh, Pennsylvania 15260.

jeffcohn@pitt.edu

Abstract

Appearance Models (AM) are commonly used to model

appearance and shape variation of objects in images. In

particular, they have proven useful to detection, tracking,

and synthesis of people’s faces from video. While AM have

numerous advantages relative to alternative approaches,

they have at least two important drawbacks. First, they are

especially prone to local minima in fitting; this problem be-

comes increasingly problematic as the number of parame-

ters to estimate grows. Second, often few if any of the local

minima correspond to the correct location of the model er-

ror. To address these problems, we propose Filtered Compo-

nent Analysis (FCA), an extension of traditional Principal

Component Analysis (PCA). FCA learns an optimal set of

filters with which to build a multi-band representation of the

object. FCA representations were found to be more robust

than either grayscale or Gabor filters to problems of local

minima. The effectiveness and robustness of the proposed

algorithm is demonstrated in both synthetic and real data.

1. Introduction

Component Analysis (CA) methods such as Principal

Component Analysis (PCA) have been widely applied in

visual, graphics, and signal processing tasks over the last

two decades. PCA is a key learning component of Appear-

ance Models (AM). AM have proven especially powerful

for face tracking and synthesis relative to alternative ap-

proaches (e.g. optical flow) [4, 15, 25, 1, 6, 8, 3].

In applications such as face detection and tracking, the

goal is to search for a minimum residual between the image

and the model across rigid (e.g. rotation and translation)

and non-rigid parameters. For instance, consider fig. (1), in

which a face has been placed in an arbitrary image. In fig.

(1.a), we plot the normalized correlation surface error be-

tween the ideal template (face) and the image in a 101×101

patch centered in the middle of the face. This surface error

has nice local properties: it has just one well defined global

minimum that corresponds to the expected location of the

face. However, if we learn a generic PCA model of the fa-

cial appearance variation from training data and try to locate

the face again, two undesirable effects may occur. First, the

location of the optimal parameter (translation) fails to corre-

spond to the location of the face (delineated by the the black

dot in the figure), see fig. (1.b). Second, many local minima

may be found. Even if a gradient descent algorithm begins

close to the correct solution, the occurrence of local minima

is likely to divert convergence from the desired solution.

The aim of this paper is to explore the use of a new tech-

nique, Filtered Component Analysis (FCA). FCA learns a

multiband representation of the image that reduces the num-

ber of local minima and improves generalization relative to

using PCA on grayscale. Fig. (1.c) shows the main point

of the paper. By building a multiband representation with

FCA, we are able to locate the minimum in the right lo-

cation (black dot) and reduce the number of local minima

close to the optimal one.

2. Previous Work

This section reviews previous work on subspace tracking

and the role of representation in subspace analysis.

2.1. Subspace detection and tracking

Subspace trackers build the object’s appearance/shape

representation from the PCA of a set of training samples.

Let di ∈ ℜd×1 (see notation 1) be the ith sample of a

1Bold capital letters denote a matrix D, bold lower-case letters a col-

umn vector d. dj represents the j column of the matrix D. dij denotes

the scalar in the row i and column j of the matrix D and the scalar i-th el-

ement of a column vector dj . All non-bold letters will represent variables

of scalar nature. ||x||2 =
√

xT x designates Euclidean norm of x. The

vec(D) operator transforms D ∈ ℜd×n into an dn-dimensional vector

by stacking the columns. ◦ denotes the Hadamard or point-wise product.
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Figure 1. a). Normalized correlation error surface of the image with the face (94 × 97) in a 101 × 101 patch. b) Error function with

a generic grayscale appearance model. The black dot denotes the optimal position of the face. c) Error function of a multiband learned

representation using FCA. The location of the face corresponds to the minimum of the function.

training set D ∈ ℜd×n and B ∈ ℜd×k the first k princi-

pal components. The k principal components B maximize

maxB

∑n

i=1 ||B
T
di||

2
2 = ||BT

ΓB||F under the constraint

B
T
B = I, where Γ = DD

T =
∑

i did
T
i is the covari-

ance matrix (zero mean data). The columns of B form an

orthonormal basis that spans the principal subspace. If the

effective rank of D is much less than d, we can approxi-

mate the column space of D with k << d principal compo-

nents. The sample di can be approximated as a linear com-

bination of the principal components as di ≈ Bci where

ci = B
T
di.

Once the model has been learned (i.e. B is known),

tracking is achieved by finding the parameters a of the

geometric transformation f(x, a) that aligns the data w.r.t.

the subspace. In the case of an affine transformation,

f(x, a) =

(

a1

a2

)

+

(

a3 a4

a5 a6

) (

x − xc

y − yc

)

where

a = (a1, a2, a3, a4, a5, a6) are the affine parameters and

x = (x1, y1, · · · , xn, yn) is a vector containing the coor-

dinates of the pixels to track. Given an image di, sub-

space trackers or detectors find a and ci that minimize:

minci,a||di(f(x, a))−Bci||
2
2 (or other normalized error). If

a = (a1, a2), i.e. just translation, the search can be done ef-

ficiently over the whole image using the Fast Fourier Trans-

form (FFT). Searching for a = (a3 = a6, a5 = a4), that is,

rotation and scale, can also be done efficiently in the log-

polar representation of the image with the FFT [13].

⊗ denotes convolution. 1k ∈ ℜk×1 is a vector of ones. Ik ∈ ℜk×k is the

identity. ||A||F = tr(AT A) = tr(AAT ) designates the Frobenious

norm of a matrix. tr(A) =
P

i aii is the trace of the matrix A.

It is important to notice that f can also model non-

rigid motion. For instance, consider f(BS
c

s, a) =
∑k

i=1 cs
i f(bS

i , a), where B
S is a non-rigid shape model

learned by computing PCA on a set of registered shapes [6]

and c
s the non-rigid parameters. In this case, f(BS

c
s, a)

will account for rigid and non-rigid motion. A standard

approach to efficiently search over the rigid a and non-

rigid c
s parameters, is to use gradient descent methods

[1, 6, 15, 3, 8].

2.2. Representation in subspace analysis

Most work on AM uses some sort of normalized

grayscale to build the representation. However, regions of

graylevel values can suffer from large ambiguities, camera

noise, and changes in illumination. More robust representa-

tion can be achieved by local combination of pixels through

filtering. Filtering of the visual array is a key element of the

primate visual system [19].

Using different representations for subspace recognition

were explored by Bischof et al. [2]. In the training stage, the

authors built a subspace by filtering the PCA-grayscale ba-

sis with steerable filters [10]. In the recognition phase, they

filtered the test images and performed robust matching, ob-

taining improved recognition performance over grayscale.

Yilmaz et al [27] show how to improve face recognition un-

der illumination changes using PCA filtered images. On

the other hand, multiband representations (e.g. Gabor) have

been typically used as features for many visual classifica-

tion tasks [19]. In related work on component analysis,



several tensor factorization of image ensembles have been

proposed over the past few years [18, 22, 26]. These ap-

proaches avoid the vectorization effect of the image and find

a reduced rank multi-linear approximation of the graylevel

images.

In the context of AM, Mckenna et al. [16] pro-

posed a facial feature tracker based on Gabor wavelets

and shape models, showing improved tracking performance

over grayscale approaches. Cootes et. al [5] found that a

non-linear representation of edge structure could improve

subspace matching. Stegmann and Larsen [24] report that

building subspaces for AM in an augmented space of inten-

sity, hue and edges performed better in the task of localizing

faces. In similar fashion, [7] make use of wedgelet regres-

sion trees to reduce the computational complexity of stan-

dard Active AM. De la Torre et al. [9] found that subspace

tracking was improved by using a multiband representation

created by filtering the images with a set of Gaussian filters

and its derivatives.

This work differs in several aspects from previous work.

First, we explicitly learn a set of optimal spatial filters

adapted to the object of interest, rather than using hand-

picked ones. Once the filters are learned, we build a multi-

band representation of the image that has improved error

surfaces with which to fit AM. We evaluate quantitatively

the properties of the error surfaces and show how FCA

outperforms current methods in appearance based detection

and tracking applications.

3. Filtered Component Analysis

Many component analysis methods (e.g. PCA, LDA)

build data models based on the second order statistics (co-

variance matrices) of the signal. In particular, PCA finds a

linear transformation that decorrelates the data by exploit-

ing the correlation across samples. PCA models the corre-

lation across pixels of different images, but not the spatial

statistics within each of the images. In this section, we pro-

pose Filtered Component Analysis (FCA) that learns a bank

of orthogonal filters that decorrelate the spatial statistics of

a set of images. Once the FCA filters are learned, we build a

multi-band representation that provides more robust match-

ing and generalizes better than grayscale.

3.1. Learning spatial correlation

Previous research [9, 2, 5] has shown the importance

of representation in AM. However, researchers have used

hand-picked filters to represent the signal. Instead, FCA

will learn a set of orthogonal spatial filters optimal for

variance preservation. Variance preservation of image spa-

tial statistics is a realistic assumption to build a generative

model for detection or tracking appearance. For instance,

active AM [5, 15] build a model of shape/appearance based

on variance preservation of the training images.

Given a set of training images, D ∈ ℜd×n, our aim is

to model the spatial statistics of the signal by learning the

filter F that minimizes:

E1(F,µ) = min
F,µ

n
∑

i=1

||di ⊗ F − µ||22 (1)

Recall that ⊗ denotes convolution, and µ = 1
n

∑n

i=1 di⊗F

is the mean of the filtered signal. If µ is known, the optimal

F can be achieved by solving:

Avec(F) = b A =
∑n

i=1

∑

(x,y) d
(x,y)
i d

(x,y)
i

T

b =
∑n

i=1

∑

(x,y) µ
(x,y) ◦ d

(x,y)
i (2)

where (x, y) is the domain where the convolution is valid

and d
(x,y)
i is a patch of the filter size (fx, fy) centered at

the coordinates (x, y). The matrix A can be computed

efficiently in space or frequency from the autocorrelation

function of di. Analogously, b is estimated from the cross-

correlation between di and µ. Alternatively, one could use

the integral image [12] to efficiently compute eq. 2.

Without imposing any constraints on the filter coeffi-

cients, the optimal solution of eq. 1 is given by µ = 0

and F = 0 (although an iterative algorithm will rarely

converge to this solution). To avoid this trivial solution,

we impose that the sum of squared coefficients is 1, i.e.

vec(F)T vec(F) = 1. The latter constraint can be elegantly

solved by noticing that the convolution is a linear operator,

and eq. 2 can be rewritten as:

E2(F) = min
F

n
∑

i=1

||(di − µ
′) ⊗ F||22 (3)

where µ
′ = 1

n

∑n

i=1 di is the sample mean. Now eq. 3 can

be solved by finding the eigenvector with smallest eigen-

value of A =
∑n

i=1

∑

(x,y)(di − µ
′)(x,y)(di − µ

′)(x,y)T
.

3.2. Learning a multiband representation

In this section, we show how to find a set of filters

F
1, ··· ,F that decorrelates the spatial statistics of the image

and are orthogonal to each other. Observe that FCA is anal-

ogous to PCA but now rather than decorrelating the signal

with the covariance of the data, we decorrelate the spatial

statistics over a set of images.

In our particular tracking application, we are interested

in finding a set of filters that preserve the spatial statis-

tics of the object of interest and has minimal response to

background. This filter set can be obtained by maximizing

EFCA(F1, ··· ,F ):

EFCA =
F

∑

f=1

n
∑

i=1

||di ⊗ F
f ||22 − λ

n2
∑

j=1

||db
j ⊗ F

f ||22 (4)



where db
j denotes the jth sample of the background. Let

T = [vec(F1) vec(F2) · · · vec(FF )] be a matrix of all

the vectorized filters, the filters should satisfy T
T
T =

IF×F . After taking the derivatives with respect to F
f , it

can be shown that the optimal solution satisfies the follow-

ing eigenvalue problem:

(A − λUα)T = TΩ (5)

A =
∑n

i=1

∑

(x,y) d
(x,y)
i d

(x,y)
i

T
α = max(A)

max(U)

U =
∑n2

j=1

∑

(x,y) db
j

(x,y)
db

j

(x,y)T

If λ is large, the set of filters will predominantly cancel the

background. If λ is small the filters will be adapted to the

object.With λ close to one the filters will achieve trade-off

between modeling the signal (i.e object) and removing the

background. Typically 0 ≤ λ ≤ 2. α is an artificially

introduced parameter to normalize the energies of A and

U.

The solution to eq. 5 is given by the leading eigen-

vectors of (A − λαU). At this point, it is interesting

to consider again the analogy with PCA. PCA will find

the leading eigenvectors of
∑n

i=1 did
T
i whereas FCA will

find the leading eigenvectors (assuming λ = 0) of A =
∑n

i=1

∑

(x,y) d
(x,y)
i d

(x,y)
i

T
. While PCA finds the direc-

tions of maximum variation of the covariance matrix, FCA

finds the directions of maximum variation of the sum of all

overlapping patches.

Also recall that FCA is different from previous tensor

factorization approaches [18, 22, 26] in several aspects.

First, our goal is to build a multi-band signal representation

by concatenating filtered versions of images and computing

PCA after that, rather than performing tensor factorization

on graylevel images. Tensor approaches explore the corre-

lation between all rows and columns, but do not explore the

correlation between overlapping patches. Also, note that

our particular filters are not separable.

Figure 2. a) Training images of faces and background (top image).

b) FCA filters for λ = 0, λ = 1 and size 11× 11.

Fig. (2.a) shows many examples of faces and back-

ground patches. Fig. (2.b) shows the set of FCA filters for

λ = 0 and λ = 1 for size 11×11. Observe that the first FCA

filter is an average filter (left corner), and the other filters are

differential filters at different orientations and scales.

3.3. Multiband subspace detection

In traditional subspace detection, PCA is computed from

a set of training images. After the training stage, the goal

is to detect the object of interest over different orienta-

tion, scales and translations. If the scale and orientation is

known, detection can be achieved finding the translational

parameters a = (a1, a2) that minimize:

E3 = minci,a
||di(x + a) − Bci||

2
2

||di(x + a)||22
(6)

Evaluating eq. 6 at each location (x, y) can be computa-

tionally expensive. For a particular position (x, y) com-

puting the coefficients (i.e. ci) is equivalent to correlat-

ing the image with each basis of subspace B, and stacking

all values for each pixel. For large regions, this correla-

tion is performed efficiently in the frequency domain us-

ing the Fast Fourier Transform (FFT) (i.e. C1 = bT
1 I =

IFFT (FFT (b1) ◦ FFT (I))). Similarly, the local energy

term, ||di(x + a)||22, can be computed efficiently using the

convolution in the space or frequency domain. Alterna-

tively, these expressions can be computed efficiently using

the integral image [12].

In multiband tracking, we represent an image as a con-

catenation of filtered images. For a particular image di and

a set of filters (F1, · · · ,Ff ), there are several ways to mod-

ify eq. 6:

E4 =
∑F

f=1 Ωf
||di⊗F

f−B
f
ci||

2

2

||di⊗Ff ||2
2

(7)

E5 =
∑F

f=1 Ωf
||di⊗F

f−B
f
c

f
i
||2

2

||di⊗Ff ||2
2

(8)

Parameters Ωf are the eigenvalues of (A−λαU), obtained

by FCA. E4 filters the training images and builds PCA

based on the set of stacked filtered images. On the other

hand, E5 computes an independent PCA for each represen-

tation such that the coefficients for each filtered image are

uncoupled (i.e. c
f
i differs for each filtered image).

4. Experiments

To test the validity of our approach, we have performed

several sets of experiments in face detection and facial fea-

ture tracking. The first set of experiments consists on detect-

ing a face embedded in an arbitrary image (see fig. 1) using

a generic model. In the second set, we test the ability of

FCA to improve tracking in Active AM [6, 1, 25, 4, 15, 9].

In all experiments a generic face model is built from 150
subjects from the IBM ViaVoice AV database [17] and the

CMU Multi-PIE Database [11], after aligning the data with



Procrustes Analysis [6]. Once the FCA filters are learned,

a multi-band representation is built for each of the 150 im-

ages, and PCA is computed retaining 80% of the total en-

ergy. For comparison purposes, multi-band PCA is also

calculated for other representations (e.g. Gabor, graylevel

and derivatives, oriented pair filters [14]). In the experi-

ments, we consider Gabor Filters because of the good re-

sults reported by other researchers in the area. In addition,

these filters have been shown to provide optimal localiza-

tion properties in both spatial and frequency domain and

thus are well suited for tracking problems.

4.1. Understanding FCA

In order to compute a FCA filter set, 400 images con-

taining faces and 400 background patches are randomly se-

lected from the IBM database. Using these training sam-

ples, FCA filters are computed at 5 different scales (3 × 3,

5 × 5, 7 × 7, 9 × 9 and 11 × 11 pixels), using eq. 5 for

different λ values.

Given a new face image not present in the training set,

we embedded it in a bigger background image (see fig. 3).

We efficiently compute the error in all possible translations

with the FFT. Fig. (3) shows an example of the resulting

error surface for each FCA band, in comparison with the er-

ror surfaces given by normalized grayscale. The grayscale

representation has several local minima and the global min-

imum is misplaced. On the other hand, the sum of the

three FCA bands produces an error surface with a correctly-

placed global minimum. The first band is an average filter

that smoothes the error surface and decreases its variabil-

ity (avoids some spurious saddle points and local minima),

already giving a reasonable approximation to the desired

output. The second and third bands (derivative filters in

different orientations) also have the global minimum in the

correct position; in addition, they cancel out other spurious

local minima and widen the gap from the global minimum

to the closest local minimum.

4.2. Robustness to noise and illumination

This experiment is designed to test the robustness of

FCA to noise and varying illumination conditions. A subset

of 100 subjects from the IBM database (not in the training

set) are randomly chosen and embedded in background im-

ages. Then, random impulsional noise is added (see fig. 4.a)

and the error in each location is efficiently computed (orien-

tation and scale are known) with the FFT. To quantitatively

compare each filter bank, three different surface error statis-

tics have been computed. Given a patch of 101×101 pixels

around the optimal location of the face (which is known be-

forehand), we compute the following statistics: 1) distance

between the global minimum and the face center, 2) dis-

tance between the correct minimum and closest local mini-

mum, and 3) Amount of local minima. The amount of local

Figure 3. Error surfaces for grayscale and for each FCA band

minima in an error surface is calculated by counting those

pixels with sign change in x and y derivatives and positive

values in the second derivatives.

Figure 4. a) (left) Original image and test image with added im-

pulsional noise. b) (right) FCA(11,4) and Gabor(8,4) .

Table 1 shows the average results for the described er-

ror statistics for three representations: a set of four 11 × 11
pixels FCA filters (see fig. 4.a (top)), the best-performing

Gabor filter set (see fig. 4.b (bottom)) and the normalized

grayscale. In all our experiments, we report the results of

the set of Gabor filters with the same spatial domain than

the corresponding FCA filter set. A global minimum is said

to be correct if it falls within a region of 3×3 pixels around

the theoretical minimum. All the representations have sim-

ilar accuracy; however, the amount of local minima is very

high in the grayscale, and both grayscale and Gabor fail to

provide a sufficiently high global-closest minimum margin

in comparison with FCA filters. These results are quite sta-

ble across spatial domains of the FCA filter sets and have

therefore been omitted in the interest of space.

The second experiment tests the robustness of FCA to il-

lumination changes. A total of 120 faces (30 subjects, 4 im-

ages each) under varying illumination conditions (see fig.

5) are taken from the CMU PIE database [23]. Using the

same approach as in the previous experiment, each face is

embedded in a background image and the error surfaces are



gray FCAλ=0 FCAλ=0.5 Gabor(8,4)

(1) 98 99 99 99
(2) 9.73 24.36 24.03 19.01
(3) 30.06 1.45 1.49 2.46

Table 1. Experiments on noisy data. Statistics: (1) Percentage of

correct global minimum. (2) distance between correct and closest

local minimum. (3) Average number of local minima.

computed for each filter set. Results from this experiment

are shown in table 2. In this case, FCA clearly outperforms

any other technique in all three statistics of the error func-

tions. Accuracy is higher than grayscale and Gabor by 33%
and 12% respectively, while keeping the closest minimum

at least 25.37% further away and having the lowest density

of local minima. It is worth noting that the best-performing

filter set has been FCAλ=0 due to the different background

training and testing statistical properties. Fig. (6) shows the

error surface for a particular subject; as we can observe, the

properties of FCA are more desirable than grayscale or Ga-

bor filters in terms of location and density of local minima.

Figure 5. Changes in illumination on the PIE database.

gray FCAλ=0 FCAλ=0.5 Gabor(8,4)

(1) 41 74 73 62
(2) 14.59 26.37 26.04 19.68
(3) 3.28 1.4 1.41 1.92

Table 2. Experiments on illumination. (1),(2),(3) see table1.

The last experiment of this section explores FCA per-

formance on real images. 10 images have been collected

in the lab (see Fig. 7) with an inexpensive webcam, and

roughly manually-selecting the same scale in the faces as

in the training images. Table 3 shows the detection re-

sults of this experiment. As we can see FCA consistently

outperforms other representations that included Gabor and

grayscale in all metrics.

gray FCAλ=0 FCAλ=0.5 Gabor(8,4)

(1) 20 80 80 70
(2) 15.71 18.05 25.52 13.53
(3) 2 2 1.2 2.4

Table 3. Experiments on images taken in the lab.(1), (2), (3) see

table 1

4.3. Tracking with Active Appearance Models

In this experiment, we test the ability of FCA to over-

come local minima problems in Active Appearance Models

Figure 7. Some test images.

[6, 15]. In this case, we have constructed a multiresolution

model of appearance patches around each of the 68 land-

marks from 150 different subjects [9], taking 3 images per

subject. The image samples were randomly chosen from

the CMU PIE database [11] and aligned with Procrustes

Analysis [6]. Once the shape and appearance FCA mod-

els are built (see fig. 8) retaining 80% of the energy, we

use standard gradient descent methods to fit a new image to

the model [9], although more efficient methods could use

inverse composition [15, 1].

Figure 8. Multiband representation for each FCA filter.

In the case of AAM, evaluating the performance of the

algorithm in terms of density of local minima is harder due

to the high dimensionality of the parameter space. To eval-

uate the algorithm, we run two different tests: first, shape

and rigid motion coefficients are randomly perturbed and

the algorithm convergence ratio is measured, as well as the

mean squared error between the final solution and the ini-

tial landmarks. Second, we test if the ideal solution is a

local minimum of the model as follows: starting in the cor-

rect position, deviation after convergence is compared to

the ground truth. In both tests, FCA have shown superior

performance w.r.t. grayscale, Gabor filters, gradient com-

binations and oriented pair filters [14] that we omit in the

interest of space.

4.3.1 Convergence analysis

In this section, we report results on convergence after per-

turbing the ground truth parameters with gaussian noise

(up to 7 pixels/landmark). Fig. (9) shows a perturbed

ground truth image (9.a) and the same image after conver-

gence (9.b). The convergence threshold has been set to 3
pixels/landmark w.r.t. the ground truth in terms of mean

squared error. Table 4 shows the average results, for 100
random faces using different filtering techniques. The test-

ing images do not include any of the subjects used in the

training stage. All results are reported after 50 iterations of

the algorithm.

As it is shown in Table 4, FCAλ=1(11, 4) is the best per-

forming representation, outperforming grayscale by 35%



Figure 6. (1) Error surface for grayscale. (2) Error surface for Gabor(8,4). (3) Error surface for F CAλ=0(11, 4).

Filter set Conv(%) Mean Error

Grayscale 36 3.52

Grayscale+Gradient(X,Y) 40 3.45

Gabor(8,4) 43 3.42

FCAλ=0(11, 4) 69 2.84

FCAλ=1(11, 4) 71 2.82
Table 4. AAM convergence tests for the CMU PIE database after

random perturbation of the initial parameters. Gabor(X,Y) and

FCA(X,Y) denote a set of Y filters with spatial scale X.

and Gabor(8,4) by 28% in the CMU PIE database [11].

Fig. (10) shows the corresponding error distributions for

this test.

Figure 9. a)Random perturbation of the ground truth. b) Con-

verged image.
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Figure 10. Error distribution for several filters in PIE database.

4.3.2 Stability of local minima

In this experiment, we test the stability of local minima.

That is, we verify if there is a local minimum in the cor-

rect location (ground truth). The AAM model and fitting

strategy is the same as the previous experiment [9]. We

randomly select 100 subjects not present in the training set,

and the fitting algorithm is initialized to the correct position

(manually labeled). Table 5 shows the non-diverged tests

percentage after 50 iterations.

Filter set Conv(%) Mean Error

Grayscale 60 3.28

Grayscale+Gradient(X,Y) 51 3.40

Gabor(8,4) 56 3.46

FCAλ=0(11, 4) 75 2.80

FCAλ=1(11, 4) 86 2.69
Table 5. AAM stability tests for the CMU PIE database. Ga-

bor(X,Y) and FCA(X,Y) denote a set of Y filters with scale X.

In this test, FCA also outperforms any other single or

multiband representation at any scale. Particularly, it is 26%
better than grayscale and 30% than the best Gabor set. Fig.

(11) shows the error distributions for different filters in this

test.
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Figure 11. Stability test error distribution for several filters in PIE

database.



5. Conclusions and Future Work

In this paper, we have proposed FCA to build a multi-

band representation for appearance models that provides a

more robust matching. FCA outperforms Gabor, oriented

pair filters and grayscale representations. Additionally, we

have introduced quantitative metrics for evaluating the error

surface.

FCA has shown promising results, however future work

should consider the use of different constraints for the filters

(e.g. vec(F)T 1fx×fy
= 1). Also, it will be worth to explore

the use of some recently proposed non-linear filters (e.g.

[21, 20]) in the context of appearance models.
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