
Filtered Document Retrieval with Frequency-Sorted
Indexes’

Michael Persin

Department of Computer Science, RMIT, 723 Swanston St., Carlton 3053, Australia. E-mail: mp@kbs.citri.edu.au

Justin Zobel l

Department of Computer Science, RMIT, GPO Box 2476V, Melbourne 3007, Australia. E-mail: jz@cs.rmit.edu.au

Ron Sacks-Davis

Faculty of Applied Science, RMIT, GPO Box 2476V, Melbourne 3001, Australia. E-mail: rsd@cs.rmit.edu.au

Ranking techniques are effective at finding answers in
document collections but can be expensive to evaluate.
We propose an evaluation technique that uses early rec-
ognition of which documents are likely to be highly ranked
to reduce costs; for our test data, queries are evaluated in
2% of the memory of the standard implementation without
degradation in retrieval effectiveness. Cpu time and disk
traffic can also be dramatically reduced by designing in-
verted indexes explicitly to support the technique. The
principle of the index design is that inverted lists are sorted
by decreasing within-document frequency rather than by
document number, and this method experimentally re-
duces cpu time and disk traffic to around one third of the
original requirement. We also show that frequency sorting
can lead to a net reduction in index size, regardless of
whether the index is compressed.

1. Introduction

Ranking is used to retrieve documents from a data-

base and present them in order of estimated relevance to

the user’s query (Salton, 1989; Salton & McGill, 1983).
For the multi-gigabyte databases now available, ranking
is considered the best option for data access: Boolean
queries require expert formulation, and techniques such
as browsing are ineffective for the initial location of an-

’ Some of the material in this article appeared in preliminary form
in the 1994 ACM SIGIR Conference and the 1994 International Con-

ference on Applications Of Databases.

* To whom all correspondence should be addressed.

Received May I I. 1995; revised August 7, 1995: accepted August 7,

1995.

0 1996 John Wiley & Sons, Inc.

swers from among large numbers of documents. The

need for ranking has led to efforts such as the interna-
tional TREC project, a cooperative experiment involv-
ing a two gigabyte text database and manual checking of
over 300,000 documents for relevance to a test query set

(Harmon, 1992).

In comparison to Boolean queries, which retrieve ex-
actly those documents that contain the specified query
terms, ranked queries are statistically compared to the

documents. The statistical similarity of a document to a
query is assumed to correspond to the likely relevance of

the document to the query, so the answers to the query
are the documents with the highest similarity values.
Many functions have been proposed for computation of
similarities. One of the most successful functions-in

terms of retrieval e$ktiveness, or ability to locate an-
swers that humans judge to be correct-is the cosine

measure (Salton, 1989: Salton & McGill, 1983). In a

straightforward implementation of a similarity measure

such as the cosine measure, the document database has

an inverted index that contains, for each term in the da-

tabase, an inverted list of the identifiers ofthe documents

containing that term. The costs of ranked query evalua-

tion on such an index are: Memory, to store the sim-

ilarity values, usually requiring one accumulator per doc-
ument in the database; disk traffic, to transfer inverted
lists for each query term from disk to memory for pro-

cessing; and cpu time, to process this index information.

For a large document database, the cost of evaluation

of the cosine measure can be prohibitively high, because

ranked queries are usually expressed in natural language

and can therefore contain a large number of terms, some

of which will occur in a high proportion of the database’s

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE. 47(10):749-764, 1996 CCC 0002~8231/96/ 100749-l 6

documents, and because ranking techniques assign a
similarity value to every document containing any of the
query terms. As a consequence, typically most of the
documents in the database will have non-zero similarity,
and will hence be candidates for presentation to the user.
For this reason, only the top-ranked documents are re-
trieved-most of the candidate documents arc dis-
carded.

We propose a technique for filtering documents dur-
ing ranking, allowing a significant reduction in the vol-
ume of main memory required. The effect of the filter
is that a document’s accumulator is updated only if the
combination of the frequency of the term in the docu-
ment and the term’s importance is large enough to be
likely to have an impact on the final ordering of docu-
ments. Thus the inverted list of even a common term
may be processed, but only for those documents in which
the term is frequent will the accumulator be updated.
Our experiments in applying this technique to the cosine
measure show that it allows evaluation of the queries on
a large document collection in approximately 2% of
memory of previous techniques, and without deteriora-
tion in retrieval effectiveness.

We also show how to re-organize inverted files to sup-
port the filtering heuristic. Inverted lists are generally

document-sorted, that is, sorted by document identifier,
but for the filter this implies that the whole of each list
has to be processed, even when there are only a few doc-
uments in which the term is frequent. By sorting inverted
lists by decreasing within-document frequency, so that
they are frequency-sorted, the identifiers of the interest-
ing documents are brought to the start of the list, also
yielding a reduction in disk traffic because only part of
each inverted list must be retrieved. Frequency-sorting
can potentially have an adverse impact on index size, be-
cause index compression techniques rely on the small
differences between adjacent documents in longer in-
verted lists to achieve size reductions (Bell, Moffat, Nev-
ill-Manning, Witten, & Zobel, 1993; Moffat & Zobel, in
press). We show, however, that it is possible to use fre-
quency-sorting to achieve a net reduction in index size,
regardless of whether the index is compressed. Together,
these improvements make information retrieval possible
for small machines such as PCs, and for large multi-user
document systems such as library systems, which can
have thousands of simultaneous users.

Document databases and the cosine measure are de-
scribed in Section 2. The technique of document filtering
is described in Section 3, together with experimental re-
sults. In Section 4, we show how to structure inverted
lists to support filtering, and give experimental results for
both compressed and uncompressed inverted files. Con-
clusions are presented in Section 5.

2. Ranked Query Evaluation

The ranking technique we use to demonstrate our
techniques is the cosine measure (Salton, 1989; Salton

& McGill, 1983). For this measure, the similarity of

document d and query q is for practical purposes com-
puted by

where wd is the length of document d and sim,,d,, is the
partial similarity of q and d with respect to term t, de-
fined by

where w,,, is the weight oft in document or query x. The
accumulators are used to hold the running totals for the
expression 2, simy,d,t; the information for these totals is

extracted from the inverted lists. The lVd values are pre-
computed with the expression

w, = L
v I

and stored elsewhere.
Several term weighting systems have been proposed

and explored (Frakes & Baeza-Yates, 1992; Perry & Wil-

lett, 1983; Salton & McGill, 1983). We assign the weight
to a term in a query or a document using the frequency-
modified inverse document frequency, described by

u\,, = log&. log1 J!
“6’

where fx,, is the number of occurrences (or within-docu-
mentfrequency) of term t in X, N is the number of docu-
ments in the collection, and& is the number of docu-
ments containing t . The expression w, = log,(N/J;) is the
weight or importance oft in the collection. This function
assigns a high weight to terms which are encountered in
only a small number of documents in a collection. It is
supposed that rare terms have high discrimination value
and the presence of such a term in both a document and
a query is a good indication that the document is relevant

to the query.

Database Structure

We use inverted files to index documents (Salton,
1989; Salton & McGill, 1983; Zobel, Moffat, & Sacks-
Davis, 1992). An inverted index for a document data-
base typically has two components: A vocabulary and a
set of inverted lists. The vocabulary contains each term t
in the database and the numberA of documents contain-
ing t. Knowledge ofJ; allows the terms in a query to be
processed in order of decreasing weight (Buckley &
Lewit, 1995; Lucarella. 1988), as is necessary for the

750 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996

technique we shall describe. There is one inverted list for

each t, consisting of the identifiers of the documents con-
taining the term and, with each identifier d, the within-
document frequencyfi,, oft in d. Thus inverted lists con-
sist of document entries, that is, pairs of (d,f&) values.

Inverted lists are usually sorted by document identi-
fier, not only for convenience of processing but because
such sorting allows index compression-once sorted, the
differences (or run-lengths) between adjacent identifiers
can be computed, yielding small integers that are suitable
for compression. For example, consider the list consist-
ing of the following (d,f,,) pairs

(5,3)(9,2)(12,2)(16,5)(2L 1)(25,2)(32,4),

which represents the fact that the term being indexed oc-

curs three times in document 5, twice in document 9,
and so on. This list can be converted into the sequence
of run-lengths

(5,3)(4,2)(X 2)(4 5)(5,~)(3,2)(7,4).

Given that the number of documents containing a given
term can be used to compute the average run-length, us-
ing a parameterized code the run-lengths can be effi-
ciently compressed, as the run-lengths will conform to a
known distribution with a known mean. For high-fre-
quency terms, often only one or two bits are required
to represent a run-length if coded using integer coding
schemes such as those of Elias (1975) or Golomb
(1966) . Theh,, values are already a skew distribution of
small integers, and can be effectively represented in
unary or in an Elias code such as the gamma code (Elias,
1975). Overall, such inverted index compression tech-
niques can reduce index size by a factor of six or more
(Bell et al., 1993; Moffat & Zobel, in press).

For a large document database indexed by an inverted
file, the index can be used to simultaneously compute

the cosine correlation between each document in a col-
lection and the query as follows (Frakes & Baeza-Yates,
1992; Moffat & Zobel, in press; Salton, 1989; Salton &
McGill, 1983). An accumulator is created for each doc-
ument, either by initially allocating an accumulator for
every document in the database or by dynamically add-
ing an accumulator for a document when it is allocated
non-zero similarity. The similarity of each document to
the query q are then computed by retrieving the inverted
list for each query term and adding sim,,d,, to the accu-
mulator for every document din the term’s inverted list.
Then each accumulator is divided by the appropriate W,
value and the k documents with the highest cosine values
are chosen. A version of this algorithm, as given by
Moffat and Zobel (in press), is shown in Figure 1.

Evaluation of the cosine measure also requires a file
containing the length JV, for each document. These val-
ues are query independent and need to be computed

only once, at database creation time; and can be
effectively compacted and stored in a few bits each
(Moffat, Zobel, & Sacks-Davis, 1994). The reason they
are stored separately is to allow effective compression of
the inverted file. Storage of the within-document fre-
quencies normalized by the document lengths would im-
ply storage of floating point numbers rather than small
integers that can be effectively compressed and, hence, a
substantial increase in the size of the inverted file.

Thus the main costs of query evaluation are memory
space, for the accumulators; disk traffic, to retrieve in-
verted lists; and cpu time, to decode inverted lists. Re-
ducing all of these costs to levels suitable for a small ma-
chine is the subject of this article.

3. Reducing the Number of Accumulators

As we have described above, the usual approach to the
evaluation of ranked queries is consecutive processing of
every term in a query and of the whole inverted list for
each term. This technique computes, for each query
term and each document containing the term, a partial
similarity of the document and the query; each docu-

ment requires an accumulator.
Thus a particular shortcoming of this technique is the

memory required for the accumulators. The most com-
mon terms in a typical query are contained in a large
proportion of the documents in a collection. Processing
of all identifiers in these inverted lists leads to a large
number of accumulators. Moreover, most of the partial
similarities are given by common terms and thus have
very low weight. Processing of these values produces lit-
tle increase in accuracy and is expensive, particularly in
systems that use compression for inverted lists, since, to
evaluate queries, large volumes of data have to be de-
compressed.

There have been many attempts to improve the effi-
ciency of ranked query evaluation (Buckley & Lewit,
1995; Frakes & Baeza-Yates, 1992; Harman & Candela,
1990; Lucarella, 1988; Moffat & Zobel, in press). Elimi-
nation of stop-words-that is, of very frequent words or
closed-class words such as “and” and “of’‘-is often
used to reduce the number of uninformative terms pro-
cessed. But it is often difficult to determine the list of
stop-words. For example, in our test database the word
“text,” which is not especially common in English, is en-
countered in every document in the collection and hence
does not have any discrimination value. Another word,
“Washington,” is also common in the collection, but
does seem to provide useful discrimination.

More sophisticated algorithms implement some dy-
namic stopping condition. The typical approach taken
by these algorithms is to order terms in a query by de-
creasing weight, and then process terms in this order un-
til some stopping condition is met (Buckley & Lewit,
1995; Harman & Candela, 1990; Lucarella, 1988; Moffat

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996 751

1. For each document d in the collection, set accumulator Ad t 0

2. For each term t in the query.

(a) Retrieve the inverted list for t from disk.

(b) For each term entry (d, fd,t) in the inverted list, set Ad t Ad +

sim,,n,t.

3. Divide each non-zero accumulator Ad by the document length LVd

4. Identify the k highest accumulator values (where k is the number of

documents to be presented to the user) and retrieve the corresponding

documents.

FIG. I. Basic algorithm for computing a cosine measure.

& Zobel, in press). Moffat and Zobel (in press) imple-
mented the stopping condition by limiting the number
of accumulators. They tested two versions of the algo-
rithm. In the first version, processing of a query was

stopped as soon as the number ofaccumulators exceeded
a certain limit. In the second, processing of query was
continued after reaching the limit number of accumula-

tors but no new documents were inserted into the set of
candidates. The first version of this algorithm showed
dramatic improvement in response time but at the cost
of significant deterioration in retrieval effectiveness. The
second version gave the same retrieval effectiveness as
a basic version that processed all inverted lists, and in
conjunction with a modification to the index structure
discussed below approximately halved processing time.

Harman and Candela (1990) experimented with an-
other pruning algorithm. The accumulated partial simi-
larities given by all documents in all inverted lists (like
the second algorithm by Moffat and Zobel, in press) but
limited the number of accumulators by setting a condi-
tion for the insertion of new documents into the set of
relevant documents: Their algorithm only considered
those documents which contained terms with inverse

document frequency more than a certain fraction of the
maximum inverse document frequency of any term in
the database. An overview of pruning algorithms and
some additional references are given by Salton (1989)
and Frakes and Baeza-Yates (1992) .

These techniques have the effect of saving time. by
neither retrieving nor processing some inverted lists, and
of saving space, by having fewer accumulators. However,
there is often a penalty in retrieval effectiveness. The
property common to all of these techniques is that they
may process the inverted list for a term even if it is not
particularly important in any document, or not process
the inverted list for a discriminating term simply because
it is fairly frequent: and that they abruptly switch from
free addition of accumulators to allowing no addition of
accumulators at all. They yield a reduction in the num-
ber of processed term entries but usually lead to deterio-

ration in retrieval effectiveness, because the decision to
stop is based only on global parameters of the data set.
These algorithms select, for processing or rejection,
whole inverted lists rather than separate document en-

tries within these lists. and as a consequence these algo-
rithms cannot provide a gradual transition from accep-
tance of terms to rejection of terms.

Accumulator values cannot be effectively compressed
because they are unpatterned real numbers, so the only
way of reducing the space requirement is to reduce the
number of documents for which an accumulator is re-
quired. We propose use of afiltering technique that pro-
vides a gradual transition from inclusion to omission of

documents, by taking into consideration both the global
parameter of term importance across the collection and
the local parameter of the number of occurrences of a
term in each document. We modify the algorithm of Fig-
ure 1 in the following way.

As in the basic algorithm. query terms are sorted by
decreasing u!, , so that important terms are processed first.
Then. before each term t is processed, two thresholds are
computed, an insertion threshold s,,,, and an addition

threshold s,,/,/, where s,,I~ I s ,,,, . As we process the in-
verted list for t, the partial similarity si~7,~~,, of query q
and each document d in the list is compared to the

thresholds. If Sijr.5 I simq,d,l, document d is important
enough to be one of the candidates: If necessary an accu-
mulator is created, then sinzy,d., is added to d’s accumu-
lator’s value. If s,,/,/ 5 sinl,,d,, < s,,,,, document d is not
important enough to be interesting to the user by itself
but simq,d,, is likely to affect the final order of documents;
so if d already has an accumulator then sim,,d,, is added
to its value, but if not, no action is taken. And finally. if
~ztn~,~,, < sU~/~/, the information is unimportant and there-
fore discarded.

The rationale for the use of thresholds is that, if there
are a large enough number of candidate documents with

752 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996

high values of similarity to the query, it is not profitable

to consider small partial similarities-they are unlikely
to significantly change the final ranking. For example, in
the test database we used for our experiments (described
later in this section), a typical less common query term

had w, = 8, whereas a typical common query term had
w, = 1. After the first few query terms were processed,

the highest accumulator values were on the order of 500
to 5,000, with differences between adjacent accumulator
values of from 10 to 100 or more. In this context, the
slmy.d,l values of from 1 to 10 typically given by common

terms do not have much effect on the final ordering.
Using the threshold s,dd, we can ignore inverted list

entries that yield small partial similarities, thus saving
cpu time. Likewise, the threshold s,,, allows us to ignore
some documents, thus saving memory space. In other
words, the thresholds provide a mechanism for tuning

system load. Thresholds have previously been used to de-
cide whether to process or reject whole inverted lists
(Harman & Candela, 1990)) but not to decide whether
to process or reject individual documents.

The values of both thresholds for a term t are deter-
mined as a function of the accumulated partial similarity
of the currently most relevant document S,,,,, . This heu-
ristic supposes that if the current most relevant docu-
ment has a high weight, then we do not need to process a
document that has a small value of similarity to a query,
as it is unlikely to change the final ranking or identify an
important document that is not yet included in the set
of relevant documents. The values of the thresholds are

determined as

where 0 I c,dd I Gin,, are constants; choice of values for

these constants is discussed below. The effect is that, as
query terms are processed and the value of accumulated
similarity of documents in the set of answers grows, it
becomes increasingly difficult to update or add new ac-

cumulators.
We process term entry (d,f&) in the inverted list oft

only if the partial similarity simy,d,r of d and query q is
greater than the current value of threshold s, where s is

either sin.v or s,~+ Substituting the definitions of w,, and

w,,, into the definition of sim,,d.,, we obtain

The final condition is

thus expressing the decision of whether to process a term

entry (d, fd,,) as a condition on fd., . The thresholds can
now be directly expressed in terms of frequencies:

These threshold values are constant during processing of
an inverted list, so that the decision of whether to use a
term entry requires only a single integer comparison.

The use of thresholds provides a smooth transition
from acceptance to rejection of term entries in inverted
lists, as it is progressively more difficult for accumulators
to be added or updated. For the first terms processed, the
value of S,,,,, is small and the value of ~1~ is large, so that

most identifiers are considered. As S,,,, rises and w, falls,
the thresholds rise, until, in the limit, all fd,[values are
less than fudd, so that processing an inverted list has no
effect on accumulator values. The filtering algorithm for

computing the cosine measure is shown in Figure 2.
The constants c,,, and cadrl are used to control the re-

sources required by the algorithm. By increasing the con-
stant c,~~, we reduce the number of term entries (and,
correspondingly, reduce the number of partial similari-
ties of documents and a query) inspected and accumu-

lated by the algorithm, and hence decrease cpu time. By
increasing the constant tins, we reduce the number of
documents that can be candidates and hence decrease
memory usage. The constants should be chosen so that
the discarded information would, if included, have min-
imal impact on the final ordering. In a production sys-
tem, the constant values could simply be adjusted at each
query based on observation of system load, or occasional

queries could be run for several values of each constant,
and best values chosen according to the distortion intro-
duced into the answer set.

A potential weak point of the filtering technique is its
vulnerability to presence of documents with a large num-
ber of occurrences of a rare term. Such documents have

very large weight and can theoretically make the values
of the filters so large that no more documents will be able
to meet filtering conditions and be taken into consider-
ation. If this document contains the first (rarest) term in
a query, then the set of answers to the query will consist
only of the documents containing that term. To the test
robustness of the method of filtering, we have tried an-
other way of calculating the thresholds, in which S,,,. is
replaced by S,, defined by

s,= c log*E (1
2

I’EQ
5, ’

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996 753

1. Create an empty structure of accumulators.

2. Sort the query terms by decreasing weight

3. set s,,, to 0.

4. For each term t in the query,

(a) Compute the values of the thresholds j,,, and jadd.

(b) Retrieve the inverted list for t from the disk.

(c) For each term entry (d, jd,t) in the inverted list,

i. If fd,t 2 fh, create an accumulator for Ad if necessary,

and set Ad t An + +,d,t.

ii. Otherwise, if jd,l > jadd and Ad is present in the set of

accumulators, set Ad t Ad + sim,,d,l.

iii. Set S,,, t max(S,,,, Ad).

5. Divide each non-zero accumulator Ad by wd

6. Identify the k highest accumulator values and retrieve the correspond-

ing documents.

FIG. 2. Filtering algorithm for computing the cosine measure.

where Q is the set of query terms that have already been
processed. However, experimentally we have found that
the difference in performance of the two versions of the
filtering algorithm is insignificant, and we have used the

S,,,, approach in the experiments described below. An-
other possibility is to use the average similarity of several
top documents instead of the highest one, but this ver-
sion would be more expensive.

Document filtering sharply reduces the volume of
main memory needed for evaluation of ranked queries.

However, the filtering technique as it stands does not
yield substantial savings in either disk traffic or cpu time.
To perform a ranking, we still have to fetch and process
the whole inverted list for every query term, comparing
fd,,l for every document to the current threshold values.
For the long inverted lists only a few fd,,! values pass the

thresholds, so that most of the time spent processing
these lists has no effect on the final ranking. Section 4
describes techniques for avoiding these problems.

Experimental Results

The database we have used in our experiments is a
collection of Wall Street Journal articles, extracted from
the TREC data (Harman, 1992). The value of this data-
base is that it has a set of queries with manual relevance
judgements that can be used to determine retrieval
effectiveness. The database contains 173,000 docu-
ments, totalling 508 Mb; average document size is 510
term occurrences; the longest document consists of
22,200 terms. We have used queries 5 l-150 from the
TREC experiment, after stemming and removing

SGML markup; the length of the queries ranges from 66
to 3 13 terms. We measured the retrieval effectiveness of
algorithms-their ability to retrieve answers a human

judges to be relevant-from the recall (proportion of rel-

evant documents retrieved) and precision (proportion of
retrieved documents that are relevant), by averaging

precision at O%, lo%, . . . , 100% recall. For consistency
with the TREC experiments, we retrieved only the top
200 documents for each query, and pessimistically as-

sumed all recall values outside the top 200 to be zero. All
results shown are average values over all 100 queries.

Retrieval effectiveness is shown as a function of the
addition threshold in Figure 3. We depict two parame-
ters on the horizontal axis: The value of the constant c&d
and the percentage of term entries processed by the algo-
rithm for this value of c&d. For comparison, we also

show as a horizontal line the perfOrmanCe with Gins = c&d
= 0, that is, for the algorithm shown in Figure 1.

The value of the insertion threshold was fixed in this

experiment. Prior to these experiments, we measured re-
trieval effectiveness for different values of c,,,, and chose

0.12 because it gave good retrieval effectiveness using a
small number of accumulators. For this value of tins, we
can obtain an answer to a ranked query with the same
retrieval effectiveness as the basic algorithm (32.4%)
having processed only 10% of all term entries. Interest-
ingly, processing 15% of all term entries we obtain even

better retrieval effectiveness in comparison to the stan-

dard algorithm. We believe that this is because of the
pruning of common terms, which are encountered in al-

most every document and create informational noise
rather than help discriminate between documents. Note

754 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996

+ Filtering algorithm
33 - Basic algorithm

2

;i 30

t
‘I:
7 a: 29

30 10 7 4 2
c&(x1000)

1 0
1 I I I I

0 20 40 60 80 100

Processed term etiries (%)

FIG. 3. Retrieval effectiveness for different values of c,dd (c,,, = 0.12).

that it is only necessary to process a very small number ment collections; for example, similar results were ob-

of term entries to obtain a decent level of retrieval tained by Moffat and Zobel (in press) in their experi-
effectiveness. For example, while processing only 1% of ments with an explicit limit on the number of accumu-
the term entries, the deterioration in retrieval effective- lators, and in our own experiments with a different
ness is only 2.1%. version of the cosine measure.

Figure 4 shows the dependency of retrieval effective-
ness on the number of accumulators. The number of ac-

cumulators was varied by changing the insertion thresh-
old. Both the value of the constant cinS and the corre-

sponding number of accumulators is depicted on the
horizontal axis. We used c&d = 0 in this experiment to
prevent the skipping of common terms; that is, for each
document included in the set of candidate documents,
we accumulated all partial similarities given by all terms.
Note that using a relatively small number of candidate
documents, we obtain better retrieval effectiveness than
does the basic algorithm. Interestingly, this phenomenon
is consistent for different techniques and different docu-

The main saving yielded by this technique is a sharp
reduction in the number of accumulators. This is illus-
trated in Figure 4. On the horizontal axis, we vary tins,
which affects the number of accumulators; for example,

Gins = 0.12 results in roughly 4,000 accumulators,
whereas tins = 0 results in almost every document having
an accumulator, or around 173,000 accumulators in to-
tal. The vertical axis is retrieval effectiveness, which re-
mains high even when the number of accumulators is

small; until the number of accumulators drops below
4,000, retrieval effectiveness is constant and is equal to
that given by the basic algorithm. The technique also
yields a small saving of cpu time, as we do not have to

--A- Filtering algorithm
-.- Basic algorithm

number of doeumenls
in the database

c,(x100)

IS 12 10 8 6 4 2

1cml

Number of accumuldors

FIG. 4. Number of accumulators for different values of clnS (Cafe = 0).

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996 755

compute the ~im~,~,~ values for document identifiers that
are filtered out.

The filtering algorithm is reasonably insensitive to

both c,,,, and cUddr providing good performance across a
wide range of values. Moreover, per query the largest
number of accumulators used in our experiments was no
more than three times the average value, so that perfor-
mance does not greatly depend on characteristics of in-
dividual queries. Thus the major effect of the thresholds
is on system performance, with c,,, affecting memory us-
age and cUdrl affecting response time and disk traffic.

To confirm these results, we applied the filtering
method to another subset of the TREC data, the Associ-
ated Press subcollection. We observed almost identical
behavior: Excellent performance with only a few thou-
sand accumulators and little impact on cpu time.

The queries used in these experiments are quite long.
It might be argued that short queries of only a few terms
would be adversely affected by the information discarded
during filtering, but we believe that this would not be the
case. Filtering discards contributions that are small com-
pared to values accumulated so far, so that less informa-
tion is discarded for the first few query terms, with typi-
cally no information discarded for the first one to five
terms processed. While the performance gains for short
queries (which have modest resource requirements)
would be less spectacular than for long queries, we would
not expect effectiveness to degrade.

Other Term Weighting Systems

The cosine measure as described in Section 2 is not
the only similarity measure. There are other similarity
measures, for example those described by Lucarella
(1988) and Harman and Candela (1990). We tested the
robustness of document filtering by applying it to these
similarity measures.

Lucarella (1988) determined the similarity of a docu-
ment and the query using the formula

where q is the query, d is the document, and u:,,(is the
weight of the term t in a document or query X. The
weight of a term is determined as

WA,, = (0.5 + 0.5.~,,/f :‘“‘)- W[,

w, = log* E
f;’

where1;,, is the number of occurrences of the term t in
x, f-y”-‘ is the maximum occurrence frequency among
the terms associated with the document or query x, N is

the number of documents in the collection. andf; is the
number of documents containing t . This measure is sim-
ilar to our form of the cosine measure, but the impor-
tance of the within-document frequency of a term in a
document is smaller in Lucarella’s measure since it is
normalized (Lucarella, 1988).

Harman and Candela (1990) employed the similarity
measure

c
log*(h,,+ 1)-t%+ 1)

I lo&h&, ’

where Md is the total number of significant terms
(including duplicates) in the document d. This sim-
ilarity measure considers only a frequency of a term in

documents, not taking into account the number of term
occurrences in a query.

For these measures, we examined the reduction in the

number of accumulators. (We were not able measure
time savings that our technique would yield for these
similarity measures, as this would have required a reim-

plementation of the inverted index.) As the volume of
computation required for evaluation of the similarity of
the query and documents is approximately the same

both for our similarity measure and for the measures
used by Harman and Candela (1990) and by Lucarella
(1988), we expect that the time savings should be the
same as for the similarity measure used in our system.

Figure 5 shows, for these similarity measures, retrieval
effectiveness as a function of the number of accumula-

tors. The number of accumulators was varied by chang-
ing the constant tin., . As for the standard cosine measure,
document filtering allows queries to be evaluated with-
out deterioration in retrieval effectiveness, using only
about 1% and 6% of the previous memory requirement
for Harman and Candela’s (1990) and Lucarella’s

(1988) algorithms, respectively.

4. Inverted File Structures for Filtering

For our ranking technique, the decision about
whether to process or reject a term entry depends on the
within-document frequency fd,.r . For the usual structure
of inverted lists, where term entries are sorted by docu-
ment identifier, we have to process the whole list, com-
paringf& in every term entry to the current value of the
threshold. We propose that inverted lists instead befrc-
quency-sorted, that is, sorted by decreasing fd,, , so that the
time wasted processing small fd,,t Values can be entirely
avoided. First, once an fd., value is encountered that is
below the threshold, processing of the inverted list can
stop. Second, if the inverted list is longer than a disk
block, only one block of the list needs to be retrieved at a
time: Since the tail of a long inverted list will contain
only small& values, it is unlikely to be required, and

756 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996

--+- Ha-man and Candela
40 :

number of documents
--4- Lncarella in the coll.ection
- Standard cosine

1 35
9 . *
.g 30-

8,s: ,,a---
-+-.+---e-e c -F-----4

?i
2 .

_-4 --../&~:---* .“.-+“.-~ _

‘g 20-
,/A’--y/,w-

*,>x-
+-+--rb. . ..-.-.. ,..-* _____ i

d .
IS 1 I 1

loo 1000 10000 100000

Number of accumulaiors

FIG. 5. Retrieval effectiveness for different number ofaccumulators.

there is little cost associated with leaving it on disk until

requested.
It is also useful to store in the vocabulary the maximal

within-document frequency f‘:““‘ for each term t, to al-
low skipping of inverted lists. Before commencing the

processing of each term in a query, we compute the
threshold frequenciesj;,,,, andA,,, and compare them to
the maximal within-document frequency of the term
j’:““‘. IfJ i”“’ is less thanfl,,,, then no document contain-
ing this term will be processed and we can proceed to the
next term in the query without retrieving the inverted list
from disk.

Unfortunately, frequency sorting is incompatible
with compression of inverted lists. Ifthe document iden-
tifiers are unsorted, run-lengths cannot be taken and the
index size will dramatically increase. Besides the impact
on space requirements, an immediate effect of this in-
crease is in the real time required to compute a ranking:
Inverted lists become more expensive to retrieve from
disk. For some queries this penalty will outweigh the gain

of re-ordering.
Thus it is crucial that we find some way of maintain-

ing compression performance. A simple way of having
some compression within frequency-sorted inverted files
is to, for the term entries with the samef& value, sort by
document identifier. Inverted lists than consist of a series
of seqtlencc.7, where each sequence is a triple

(La,, (dl, . . . 3 &/)I

where f’is thefi,, value of the documents d,, . . . , d,,, in

the sequence and p/ is the number of documents. For a
sequence of several documents with the same frequency
there is a potential space saving, as the frequency only
has to be stored once. The identifiers in a sequence are
sorted, allowing run-lengths to be taken and hence allow-
ing compression. For example, the inverted list illus-

trated in Section 2 would under this scheme be repre-
sented as

5, 1,(16) 4, 1,(32) 3, 1, (5) 2, 3,(9,3,13) 1, 1,(21)

in which each box is a sequence, the first number is the
frequency, the second is the number of documents in the

sequence, and the expression in parentheses is the docu-
ments in that sequence. The expression (9,3,13) repre-
sents the document numbers 9, 12, and 25 after run-
lengths have been taken-these are the documents that
contain the term with frequency 2.

However, the sequence method might not yield as
good compression as for document-sorted inverted lists.
One reason for possible poorer compression is the pat-

tern of document identifiers within sequences. A run-
length of k can typically be compressed to a little over
log& bits: since the average run-length between identifi-
ers in a sequence is larger than the average run-length in
the sorted inverted list, compression performance de-
grades. Another reason for possible increase in size is
that, although many sequences are only one or two doc-
uments long, the per-sequence parameters still have to
be stored.

In a database of Ndocuments, the size of a document-
sorted inverted list of p identifiers can be estimated as
follows. The number of bits required to store the docu-
ment identifiers is approximately (Moffat & Zobel,
1992)

l&,(p) = p
(

1.5 + log, 4 .
1

In addition an,{;,, value must be stored for each docu-
ment. The space required for these values will depend
on the distribution of frequencies. We assume that the

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996 757

distribution is given by a integral function Z(p, f) for

which CJ=, Z(p,f) = p, where r is the largestf& value in
the distribution. We also assume that each fd,, value is
represented by a gamma code (Elias, 1975); the number
of bits required to represent frequency fusing gamma is

B,(f) = 1 + 2LlogJ.l.

Thus the space required for the& values is

i (OP,f)* B,(f))
/=I

and the total space for a document-sorted inverted list is
approximately

&x(P) = B,(P) + &i(P) + i (~(a,.f)-B,(“f))?
/=I

where B,(p) bits are needed to represent the length ofthe
list.

Based on the same assumptions, the size of a fre-
quency-sorted list can be determined as follows. In the
sequence for frequency fthere are Z(p,f) identifiers, so
each sequence requires &(Z(p,f)) bits for identifiers. In
addition each sequence requires approximately 1 bit for
the frequency (the frequencies are ordered so differences
can be taken, and usually the difference will be 1) and
B,(Z(p,f)) bits to store the number of identifiers in the
sequence. In total, the space required for a frequency-
sorted inverted list ofp identifiers is approximately

&S(P) = B,(r) + i (Bdl(~,f)) + 1 + B,(Z(p,f‘)))
/=I

where r is again the largest j& value in the inverted list

and B,(r) bits are needed to represent the number of se-
quences.

Whether BF.r or BDs is larger depends on the disttibu-
tion of frequencies. One extreme is that all documents
havefd,, = 1, that is,

Z(P,f) =
1

p if/= 1

0 otherwise

for which we have

&S(P) = B,(P) + &;(a) + PM 1)

= B,(a) + B,(P) + P

and

B&P) = B,(1) + B,(P) + 1 + B,(P)

= B,(P) + B,(P) + 2.

In the case of inverted lists in which alIf& values are 1,

therefore, frequency-sorting results in slightly better
compression. Another extreme is when p = r and each
document has a differentf,, value, that is,

OP,f) =
1 ifflp

0 otherwise

for which we have

B,(P) = B,(p) + B,;(P) + C B,(f)
.I= 1

and

BK~P) = B,(P) + P.(B,;(1) + 1 + B,(1)).

In this case, of each f$,, value occurring once, which is
better will depend on p, but the sizes will be similar.

For the Wbll Street Journal database, we have ob-
served that most of thef& values in most inverted lists
are 1. most of the remainder are 2, and so on-there is a
strong skew towards low frequencies. This distribution
can be modeled as follows. Suppose that for some integer
o, the distribution of frequencies is such that (V - 1)/Y
of the identifiers in each inverted list havef& = 1, of the
remainder (V - 1)/v have& = 2 (that is, (V - l)/v’of
the total), and so on. That is, the number of identifiers

with,f,, = .fis given by

p(u - 1)/v’ if f5 log,p

I(P,S) = 1 if f= log,p + 1

0 otherwise

for p such that log,p is integral. Estimated sizes for com-
pressed inverted lists are plotted in Figure 6 for u = 2 and
v = 4 for a database of 1 ,OOO,OOO records. As can be seen,
the sizes are almost identical, with the frequency-sorted
index very slightly smaller.

It is straightforward to extend the model developed
above to predict the volume of index data retrieved in
response to a query. but the result depends on several
estimates-the function Z(p,f), the distribution ofp val-
ues for query terms, and the likely S,,,, value-so the
predictions made by such a model are, at best, a broad
indicator of possible performance. What is clear is that
use of filtering reduces, and has the potential to drasti-
cally reduce, disk traffic. The scale of reduction is best
determined experimentally, as we do for the WaN Street
Journal later in this section.

A possible drawback of frequency-sorting of inverted
lists is the impact on update. The costs of update for an
inverted index are: Locating and fetching the list; iden-

tifying the part of the list to be modified; modifying the

758 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996

- frequency-softed. v=2

---*-.- frequency-sorted, -4
- dament-sorted, v=2
---0.--. docullent-salted, v=4

lo&o
Number of i&r@iers

FIG. 6. Estimated size ofcompressed inverted lists.

list; and writing the list to disk, making any reorganiza-
tion necessary to minimize space fragmentation if the
list’s length has changed. Of these costs, only the sec-
ond-searching the list-is affected by the change from
document sorting to frequency sorting; typically the
searching cost might double, while the other costs are un-
changed. We therefore believe that frequency sorting has
only a minor impact on update. However, as for most
indexing methods for text databases, update is expensive,
requiring disk accesses for every indexed term in each
modified or inserted document.

many term entries for which&, is 1 or 2, and a small
number of term entries for whichf& is large. That is, for
the high frequencies, many sequences will have only one
or two documents and the overheads of representing a
short sequence (the need to store the number of docu-
ments and the loss of compression due to the large run-
lengths) are high.

Our method of filtering and re-ordering inverted lists
into sequences of documents of the same frequency is
not the only possible solution to the problem of ignoring
the majority of document identifiers. Moffat and Zobel
(in press) have proposed that inverted lists be ordered
by identifier, but in addition contain pointers into the

inverted list at evenly-spaced intervals, to allow the
search to “skip” sections of the list without decompres-
sion. Such skipping provides the benefit of random ac-
cess (usually impossible in the context of compression)
while maintaining reasonable compression perfor-
mance. In conjunction with their scheme of a small,

fixed number of accumulators, the skipping reduces cpu
time without degrading retrieval effectiveness; however,
this scheme slightly increases disk costs, and does not
support filtering. As we show below, the gain they

achieve is limited compared to that given by the scheme
we describe here.

Other Representations of Sequences

These problems can be overcome by selective applica-
tion of the idea of sequences. As we have seen, there are
advantages to the long sequences of low frequencies, but
short sequences are inefficient. It follows that an efficient
form of inverted list is an initial sequence of (d, fd,!)
pairs, for the high frequencies that would lead to short
sequences, followed by a series of sequences, one for each
of the low frequencies. We therefore propose the follow-
ing structure for representing an inverted list. Each list
is split into n sequences (the problem of choice of n is
discussed later). The leading sequence is of (d, fd,,) pairs,
for all documents with&, 2 n. Each remaining sequence
is of documents of some frequency f& < n, and the se-
quences are ordered by decreasing frequency. Within
each sequence, the entries are sorted by document iden-
tifier. Within the leading sequence, rather than storingf&
values we storef& - n + 1. The minimum value of n is
1, in which case the whole list is stored in one sequence.
The final filtering algorithm, using sequences, is shown
in Figure 7. Such a scheme should be effective because,
for even the longer inverted lists of more common terms,
the distribution off& values is highly skew. Thus, in the
above scheme, each of the lowf& values would have its
own sequence, which would be long; whereas the high&
values would share a sequence.

The analysis above indicates that the sequence At the start of each inverted list that has been grouped
method for representing inverted lists should yield rea- into sequences, we store the number of sequences; each
sonable compression, but better compression may be sequence starts with the number of entries in it. The fre-
possible, particularly for the sequences of higher fre- quency of a sequence is determined by its ordinal num-

quency terms-a typical long inverted list will contain ber. This method means that, for all but the leading se-

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996 759

1. Create an empty structure of accumulators.

2. Sort the query terms hy decreasing weight.

4. For each term t in the query,

(a) Comput,e the values of the filters fins and fad,,.

(h) If j;‘“” < j&d go to step 4.

(c) For the leading sequence iu t’s inverted list and each document

d in the sequence,

i. If fd,t 2 fl,,, create an aCCllrrdatOr for Ad if necessary,

and set Ad t Ad + szmg d t.

ii. Otherwise, if jd,t 2 j,& arId ,4g is present in the set of

accumulators, set .4d t Ad + s~rrb,d,~.

iii. If ild was updated, set S,,,, + ma~(.S,,,~~, An).

(d) For CaCh remaining sequence in t’s inverted list with fd,L > jodd

and each document, d in the sc~qucr~ce,

i. If jd,t 2 j,,,, create an accurrlulator for Ad if necessary,

and set Ad t ,4d + s?v&,~,~.

ii. Otherwise, jd,t 2 j&d; if Ad is present in the set of accw

mulators, set Ad t /Id + smq,~.~.

iii. If Ad was updated, set, S,,,,, t max(Srnnrr Ad).

5. Divide each nowzero accumulator Ad by the document length 1Vd.

6. Identify the k highest values of accumulators (k is the rlurnber of

documents to he presented to the user) and retrieve the corresponding

documents.

-IG. 7. Filtering algorithm using sequences to compute the cosine measure.

quence, frequencies are not explicitly stored, and also
means that we have to store zero as the number of docu-
ments for an empty sequence. An example of this
method of storing inverted lists, using n = 3, is as follows.

1 3 1 31(5, 1) (11, 3) (162) (319,3,13 1 1121 1

This example corresponds to the inverted list shown
above. The first box is the number of sequences in the
list. The second box is the leading sequence and the third
and fourth boxes are the sequences for frequencies 2 and
1, respectively.

We now examine, for inverted lists compressed with
the sequence method, optimization for index size and
query evaluation time. Consider the effect of having the
same n for all inverted lists, and of the inverted file that
results from varying this ~1. As we increase n, we increase
the number of sequences in each inverted list. On the one
hand, this allows storage of more document identifiers
without their corresponding frequencies. On the other
hand, we have to store a sequence length for each sequence,

including zeros for sequences that do not contain docu-
ments. Sequence lengths are a significant overhead on the

size of the inverted file, and as n increases they quickly be-
come unacceptably large. Also, decrease in the length of
each sequence implies an increase in the average run-length
and, hence, a worse rate of compression.

Small n implies a small inverted file. But now consider
the problem of proper choice of n for fast query evalua-
tion. in which case we wish to stop processing term en-
tries (ordered by decreasing fd,.,) as soon asJi., < fad‘) is
found. If the value of thresholdfAdd is less than the mini-
mal frequency n of documents in the leading sequence,
we process the whole leading sequence and possibly
some subsequent sequences, and for all documents pro-
cessed, we update their accumulators; thus no decoding
time is wasted. But if&, is more than n, we must process
the whole of the leading sequence, even though some of
the documents in the sequence will be ignored. So, using
one value of n for all inverted lists, to achieve fast query
evaluation, we have to increase the size of n which will,
however, increase the size of the inverted file.

The other possibility is to allow n to vary between lists.

760 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996

A simple method would be to, for each list, set n to 1,

compress the list; then increment n and compress it
again; and so on until a minimum is found. The exis-
tence of a minimum is guaranteed, as the size of the se-
quence lengths will, in the limit, be dominant. (Note
that, in a scheme with varying n, in addition to the se-
quence lengths, the value of n must be stored in each list.)
However, such a scheme is impractical.

The heuristic scheme we chose for selection of n is
based on the observation that using a separate sequence
for each f& value when& is high (and the length of the
sequence is low) is expensive because of the per-se-
quence overheads. Let us call the number of identifiers
at which overall compression gains outweigh overheads

the sequence threshold T. (In fact T is a function of, not
just sequence length, but of thef& for the sequence; but
since in our test collection almost all inverted lists have
only a few frequencies with sequences of any length, this
approach is a reasonable approximation.) To achieve

good compression, we should avoid sequences of a
length less than T. We determine the size of n for the
inverted list for a term t using the following procedure.
Initially, for each distinct value off&, we find the num-
ber of documents that contain t this number of times.
Then we find the highestf& for which the number of doc-
uments is at least T. Let us denote this frequency asfr.
We then create the inverted list by having per-frequency
sequences for frequencies from I to f7. and a leading se-
quence that contains documents with all remaining fre-
quencies. The value of n for such an inverted list isfT + 1.

On the one hand, if T is 1, then every frequency in
every inverted list will have its own sequence, and the
value of n for an inverted list will be the highest&, value
in that list. On the other hand, for (say) a database of a
million documents, if T is 100,000, then most inverted
lists will have n of 1, and thus have only one sequence;
but the inverted lists for the most common terms will

probably have several sequences, because these terms
would in a typical database occur in almost every docu-
ment.

Having leading sequences of mixedf& allows us to

achieve two aims simultaneously. On one hand, we
avoid creation of inverted lists containing many short se-

quences that cannot be effectively compressed, and sim-
ilarly avoid storing many sequence lengths. On the other
hand, we are able to keep the leading sequences short
and, hence, have fast query evaluation.

Experimental Results

Using the Wall Street Journal database, we built a
document-sorted inverted file and a frequency-sorted in-
verted file and evaluated the TREC queries described
above. In all of these experiments we used filter values

c,~., = 0.12 and C,J~ = 0.007, as these gave good retrieval
effectiveness while requiring only a small number of ac-

cumulators. All times and volumes of disk traffic are per

query, averaged over the 100 TREC queries, on a Sun
SPARC 10 model 5 12, using local disks.

The size of the document-sorted compressed inverted
file is 35.4 Mb; that of the frequency-sorted inverted file
is 33.4 Mb, or only 6.6% of the size of the original data.
Overall, therefore, the cost of storing the per-sequence
parameters is more than offset by the saving of not stor-
ing duplicate&, values. On the document-sorted index,
average query evaluation is 3.18 cpu seconds for stopped
queries (from which closed-class words have been re-
moved, on the grounds that they have little impact on
retrieval effectiveness) and 10.18 cpu seconds for un-
stopped queries; on the frequency-sorted index, the com-
parable times are 1.20 cpu seconds and 1.73 cpu seconds,
respectively. These times are very similar, demonstrating
that the filtering method almost completely excludes
stop-words from consideration. That is, our method ob-
viates the need to manually select a list of stop-words.

Frequency-sorted indexes require far less data to be
fetched from disk than do document-sorted indexes,
since we usually have to read only the first block of each
inverted list. For document-sorted inverted files and
stopped queries, the volume of data fetched was 532 Kb;
for unstopped queries, it was 2,108 Kb. In contrast, using
our technique the volume of index fetched was just 157

Kb and 249 Kb, respectively. The number of disk ac-
cesses is also reduced, since deciding whether to reject a
term does not require a disk access.

These results compare well to those of the “skipping”
scheme of Moffat and Zobel (in press), who on a larger
database are only able to halve cpu time, and actually
increase disk traffic slightly. However, their scheme is
also applicable to Boolean queries, for which they
achieve much greater performance gains. The idea of
their scheme is to break usual identifier sorted indexes
into blocks and to store some additional information al-
lowing decoding algorithm to skip a block if necessary
without decoding its contents. The same scheme can be
applied to the frequency sorted index. Inverted lists in
such an index consist of sequences and store documents
ordered by their numbers inside of each sequence, as in
Moffat’s and Zobel’s scheme. Skipping information can
be inserted into each sequence, thus allowing efficient
searching for documents by their numbers during evalu-
ation of Boolean queries. We believe that this approach
should provide good performance of evaluating Boolean
queries at the cost of slightly decreased efficiency of pro-
cessing ranked queries due to necessity of decompressing
additional skipping information.

We also built a series of indexes using different values
of the sequence threshold T, to experiment with the
effect of Ton performance. The size of an inverted file is
shown as a function of the sequence threshold Tin Fig-
ure 8. At one extreme, assigning Tto I forces creation of
a separate sequence for every frequency with at least one

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996 761

FIG. 8. Size of compressed index for different values of sequence threshold.

document. Inverted lists in such a file do not have lead-
ing sequences. This leads to an increase in index size be-
cause of the shortness of the sequences and because the
number of sequence lengths to be stored is larger. Large
values of Talso lead to a gradual increase in inverted file
size, as the leading sequences becomes long and we have
to represent many large frequencies in these sequences.

We also examined query evaluation time for different
values of T. The time is almost constant for small values
of T (up to T = 100 or so) since the difference in size of
leading sequences is small. Performance deteriorates for
large values of T, because, during processing of common
terms, we have to process long leading sequences, search-
ing for the documents that pass the filter and ignoring the
rest. In the limit, of huge T, we have a document-sorted
index. Note that there are processing overheads that are

independent on the number of processed documents;
hence the decrease in the time of query evaluation is not
a linear function of the quantity of index processed.

The volume of inverted lists fetched and decom-
pressed during query evaluation is shown in Figure 9,
again for both stopped and unstopped queries. Fre-
quency-sorted inverted files built with small values of T
provide an almost constant amount of decompressed
data. This is because, on the one hand, the smaller the
value of T the smaller the leading sequence and, hence,
the smaller the number of documents which have to be
decompressed but ignored; on the other hand, small val-
ues of T give rise to inverted lists consisting of many
small sequences, so that the overheads for storing se-
quence parameters increase and the same number of
compressed identifiers occupy more space. For small val-
ues of Tthese phenomena are almost in balance, produc-
ing a plateau in the graph. On the other hand, inverted
files built with large values of T have long leading se-
quences, leading to increase in the amount of data that is
fetched and processed.

Overall, performance is excellent across a wide range
of T values, and for all T values performance is better
than for document-sorted compressed inverted files. Re-
trieval effectiveness is maintained, index size is reduced,
and cpu time and disk traffic are much reduced. We ex-
pect that relative performance would improve further
with growth in the database size. Since performance de-
pends only marginally on T, we conclude that T = 1 can
be used in a production system. Note, however, that the
majority of documents in the Wall Street Journal data-
base are short and average within-document frequency
is small. For databases of longer records, a higher T value

may be preferable.

Uncompressed Inverted Files

Our structure for inverted files, where documents in
inverted lists are ordered by decreasing&, , would also be
effective in systems that use uncompressed inverted files.
Using this structure yields significant reduction in the

size of inverted files. Typically, a (d,f,,) pair occupies 6
bytes, consisting of 4 bytes for storage of the document
number and 2 bytes for storage of the term frequency.
Using our structure of an inverted file allows decrease in
the size of the inverted file from 238 Mb for the basic
structure to 160 Mb; that is, we can almost completely
avoid storing.f>,, values. The size of the uncompressed
inverted file for different values of the sequence threshold
is shown in Figure 10.

5. Conclusions

We have shown how to make dramatic reductions
in the major costs of ranking a query on a large docu-
ment database-disk traffic, cpu time, and memory

762 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996

4 Unstopped queries

s’ 260-
?

.---k-- stopped queries
4

2 0 -:

3
-2

240-

z

-%
6 ml-
8 ----------~ I . ..* _____ * a;-..-.---.. --.--------6

G

200 1 8 7
I 10 100

Value of threshold

FIG. 9. Volume of inverted lists decoded during query evaluation.

usage-without degrading retrieval effectiveness. The
basis of these reductions is the filtering method, in
which only the documents with high within-document
frequency are considered as candidate answers; it is
this technique that reduces memory usage, as having

fewer candidates means that fewer accumulators are
required to store information about these candidates.
Despite the reduction in memory usage, there is no de-
terioration (and even some improvement) in retrieval
effectiveness.

The reductions in disk traffic and cpu time are based
on the simple observation that, by ordering inverted

lists by decreasing within-document frequency, only
the first part of each list will contain high frequencies,
and so the rest can be ignored. Frequency-sorted in-
verted lists can be effectively compressed by splitting
inverted lists into sequences of documents of the same
frequency and applying the existing compression tech-

niques within each sequence. Both modeling and ex-
periment have shown that change to frequency sorting
has no negative impact on index size.

For our test database, these techniques maintain re-
trieval effectiveness, reduce memory requirements

from 173,000 to 4,000 accumulators, reduce the quan-
tity of data requested from disk from 532 Kb to 157
Kb, and reduce cpu time from 3.18 to 1.20 seconds.
The gains for unstopped queries are even greater. The
time saving is most noticeable for systems that use
compression for storage of data, since the cost of de-
compression of long inverted lists is the major compo-
nent of processing time. There is also a slight reduction
in index size, from 35.4 Mb to 33.9 Mb, already a mas-
sive saving on the 238 Mb required for an uncom-
pressed index. Together, these dramatic improvements
allow ranking to be performed much faster, and on much
smaller machines, than was previously possible.

P 164000- ,

s'

s /“

,,.f"

5 ,/ 162000-

0

% 64

s
160000- . ..-... ~.-.rb...k.~-~---..--. ""‘--------*

.4.-.-4--
a+-

I I
1 10 100

Value of th reshold

FIG. 10. Size of uncompressed index for different values of sequence threshold.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996 763

Acknowledgments References

We thank Alistair Moffat. This research was sup-
ported by the Key Centre for Knowledge-Based Systems,
the Australian Research Council. and the Collaborative
Information Technology Research Institute CITRI.

Bell, T. C., Moffat. A.. Nevill-Manning. C. G., Witten. I. H., & Zobel.

J. (1993). Data compression in full-text retrieval systems. Jownul of
thcl Amwkun Socicty,/iw Iqfiwmution Science, 44. 508-53 1.

Buckley, C.. & Lewit. A. F. (1995, June). Optimisation of inverted vector

searches. In Procwdings of /he ACM-SIGIR Internutional Co@wxx~

on Rescwrc,h and Drwtopm~nt IN Irzfiw~~ufion Rctrioul (pp. 91-I 10).

Montreal, Canada: Association for Computing Machinery.

Elias, P. (1975). Universal codeword sets and representations of the inte-

gers. IEEE Transuctions on I&&nation Throrl: 17121(2), 194-203.

Frakes, W. B., & Baeza-Yates, R. (Eds.). (1992). I@wzution wtrirvul:

Da/u .s/rnc?nre~ und ufpxithms. Englewood Cliffs, NJ: Prentice-Hall.

Golomb, S. W. (1966). Run-length encodings. IEEE Transuc?ion.s on

Infirrmutron Thcor~~. IT-I,?(3). 399-401.

Harman. D. K. (Ed.). (1992, November). PrcrceedinXs ofthe 7kt Rc>-

tricvul C’onfwcncr (TRECj. Washington: National Institute of Stan-

dards and Technology (Special Publication 500-207).

Harman. D.. &Candela, G. (1990). Retrieving records from a gigabyte

of text on a minicomputer using statistical ranking. Jonmu/ of/he

Amcricun Swicqs fiw In/ormution Scicncr. 41. 58 I-589.

Lucarella, D. (1 Y 88) A document retrieval system based upon nearest

neighbour searching. Jownal qf‘I~/i,rmutior~ Science 14, 25-33.

Moffat, A., & Zobel, J. (1992. March). Coding for compression in full-

text retrieval systems. In Procwdinp ofthe IEEE Dutu Comprewion

Co~fkrcncc (pp. 72-8 1). Snowbird, Utah. Los Alamitos. CA: IEEE

Computer Society Press.

Appendix: Symbols Used

Symbol Meaning

k
N
4

T

Set of accumulators
Accumulator for document d
Cosine for document d
Threshold constants

Document identifier

Within-document frequency thresholds
Frequency oft in d
Frequency oft in q
Sequence frequency threshold
Number of documents containing

term t
Number of answers
Number of documents

Query
Current similarity threshold
Partial similarity thresholds

Partial similarity of q and d with
respect to t

Sequence threshold
Term
Weight oft in d
Weight oft in q

Weight oft in the collection
Weight or length of d

Moffat, A., & Zobel. J. (in press). Self-indexing inverted files for fast

text retrieval. A C;2/ Trurwuctions on Iq’ivmufion S~,stems.

Moffat, A.. Zobel. J.. &Sacks-Davis, R. (1994). Memory efficient rank-

ing. I~liwmution Procc.v.sin,q & Munupmwt. 30(6). 733-744.

Perry. S. A.. & Willett. P. (1983). A review of the use of inverted files

for best match searching in information retrieval systems. Jownulof

In/inwution Scirnw. 6, 59-66.

Salton. G. (1989). A~~tomufic‘ te.vt proccwin~: The? trun;c/i,rmution.

unu/j:k und wrricvul o/‘i~~/iwmution hj. compzrtcr. Reading, MA:

Addison-Wesley.

Salton. G.. & McGill. M. J. (1983). In/roduc,tion IO modern ir$wmu-

tion rctncvul. New York: McGraw-Hill.

Zobel. J., Moffat. A., & Sacks-Davis, R. (1992, August). An efficient

indexing technique for full-text database systems. In Procec~din~s cjf

the Internurionul Corzfiwnw on l’q, Large Dutahuses (pp. 352-

362). Vancouver, Canada: Morgan Kaufmann.

764 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1996

	1. Introduction
	2. Ranked Query Evaluation
	3. Reducing the Number of Accumulators
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.

	4. Inverted File Structures for Filtering
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.

	5. Conclusions
	FIG. 9.
	FIG. 10.

	Acknowledgments
	Appendix: Symbols Used
	References

