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Ranking techniques are effective at finding answers in 
document collections but can be expensive to evaluate. 
We propose an evaluation technique that uses early rec- 
ognition of which documents are likely to be highly ranked 
to reduce costs; for our test data, queries are evaluated in 
2% of the memory of the standard implementation without 
degradation in retrieval effectiveness. Cpu time and disk 
traffic can also be dramatically reduced by designing in- 
verted indexes explicitly to support the technique. The 
principle of the index design is that inverted lists are sorted 
by decreasing within-document frequency rather than by 
document number, and this method experimentally re- 
duces cpu time and disk traffic to around one third of the 
original requirement. We also show that frequency sorting 
can lead to a net reduction in index size, regardless of 
whether the index is compressed. 

1. Introduction 

Ranking is used to retrieve documents from a data- 

base and present them in order of estimated relevance to 

the user’s query (Salton, 1989; Salton & McGill, 1983 ). 
For the multi-gigabyte databases now available, ranking 
is considered the best option for data access: Boolean 
queries require expert formulation, and techniques such 
as browsing are ineffective for the initial location of an- 
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swers from among large numbers of documents. The 

need for ranking has led to efforts such as the interna- 
tional TREC project, a cooperative experiment involv- 
ing a two gigabyte text database and manual checking of 
over 300,000 documents for relevance to a test query set 

(Harmon, 1992). 

In comparison to Boolean queries, which retrieve ex- 
actly those documents that contain the specified query 
terms, ranked queries are statistically compared to the 

documents. The statistical similarity of a document to a 
query is assumed to correspond to the likely relevance of 

the document to the query, so the answers to the query 
are the documents with the highest similarity values. 
Many functions have been proposed for computation of 
similarities. One of the most successful functions-in 

terms of retrieval e$ktiveness, or ability to locate an- 
swers that humans judge to be correct-is the cosine 

measure (Salton, 1989: Salton & McGill, 1983). In a 

straightforward implementation of a similarity measure 

such as the cosine measure, the document database has 

an inverted index that contains, for each term in the da- 

tabase, an inverted list of the identifiers ofthe documents 

containing that term. The costs of ranked query evalua- 

tion on such an index are: Memory, to store the sim- 

ilarity values, usually requiring one accumulator per doc- 
ument in the database; disk traffic, to transfer inverted 
lists for each query term from disk to memory for pro- 

cessing; and cpu time, to process this index information. 

For a large document database, the cost of evaluation 

of the cosine measure can be prohibitively high, because 

ranked queries are usually expressed in natural language 

and can therefore contain a large number of terms, some 

of which will occur in a high proportion of the database’s 
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documents, and because ranking techniques assign a 
similarity value to every document containing any of the 
query terms. As a consequence, typically most of the 
documents in the database will have non-zero similarity, 
and will hence be candidates for presentation to the user. 
For this reason, only the top-ranked documents are re- 
trieved-most of the candidate documents arc dis- 
carded. 

We propose a technique for filtering documents dur- 
ing ranking, allowing a significant reduction in the vol- 
ume of main memory required. The effect of the filter 
is that a document’s accumulator is updated only if the 
combination of the frequency of the term in the docu- 
ment and the term’s importance is large enough to be 
likely to have an impact on the final ordering of docu- 
ments. Thus the inverted list of even a common term 
may be processed, but only for those documents in which 
the term is frequent will the accumulator be updated. 
Our experiments in applying this technique to the cosine 
measure show that it allows evaluation of the queries on 
a large document collection in approximately 2% of 
memory of previous techniques, and without deteriora- 
tion in retrieval effectiveness. 

We also show how to re-organize inverted files to sup- 
port the filtering heuristic. Inverted lists are generally 

document-sorted, that is, sorted by document identifier, 
but for the filter this implies that the whole of each list 
has to be processed, even when there are only a few doc- 
uments in which the term is frequent. By sorting inverted 
lists by decreasing within-document frequency, so that 
they are frequency-sorted, the identifiers of the interest- 
ing documents are brought to the start of the list, also 
yielding a reduction in disk traffic because only part of 
each inverted list must be retrieved. Frequency-sorting 
can potentially have an adverse impact on index size, be- 
cause index compression techniques rely on the small 
differences between adjacent documents in longer in- 
verted lists to achieve size reductions (Bell, Moffat, Nev- 
ill-Manning, Witten, & Zobel, 1993; Moffat & Zobel, in 
press). We show, however, that it is possible to use fre- 
quency-sorting to achieve a net reduction in index size, 
regardless of whether the index is compressed. Together, 
these improvements make information retrieval possible 
for small machines such as PCs, and for large multi-user 
document systems such as library systems, which can 
have thousands of simultaneous users. 

Document databases and the cosine measure are de- 
scribed in Section 2. The technique of document filtering 
is described in Section 3, together with experimental re- 
sults. In Section 4, we show how to structure inverted 
lists to support filtering, and give experimental results for 
both compressed and uncompressed inverted files. Con- 
clusions are presented in Section 5. 

2. Ranked Query Evaluation 

The ranking technique we use to demonstrate our 
techniques is the cosine measure (Salton, 1989; Salton 

& McGill, 1983). For this measure, the similarity of 

document d and query q is for practical purposes com- 
puted by 

where wd is the length of document d and sim,,d,, is the 
partial similarity of q and d with respect to term t, de- 
fined by 

where w,,, is the weight oft in document or query x. The 
accumulators are used to hold the running totals for the 
expression 2, simy,d,t; the information for these totals is 

extracted from the inverted lists. The lVd values are pre- 
computed with the expression 

w, = L 
v I 

and stored elsewhere. 
Several term weighting systems have been proposed 

and explored (Frakes & Baeza-Yates, 1992; Perry & Wil- 

lett, 1983; Salton & McGill, 1983). We assign the weight 
to a term in a query or a document using the frequency- 
modified inverse document frequency, described by 

u\,, = log&. log1 J! 
“6’ 

where fx,, is the number of occurrences (or within-docu- 
mentfrequency) of term t in X, N is the number of docu- 
ments in the collection, and& is the number of docu- 
ments containing t . The expression w, = log,( N/J;) is the 
weight or importance oft in the collection. This function 
assigns a high weight to terms which are encountered in 
only a small number of documents in a collection. It is 
supposed that rare terms have high discrimination value 
and the presence of such a term in both a document and 
a query is a good indication that the document is relevant 

to the query. 

Database Structure 

We use inverted files to index documents (Salton, 
1989; Salton & McGill, 1983; Zobel, Moffat, & Sacks- 
Davis, 1992). An inverted index for a document data- 
base typically has two components: A vocabulary and a 
set of inverted lists. The vocabulary contains each term t 
in the database and the numberA of documents contain- 
ing t. Knowledge ofJ; allows the terms in a query to be 
processed in order of decreasing weight (Buckley & 
Lewit, 1995; Lucarella. 1988), as is necessary for the 
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technique we shall describe. There is one inverted list for 

each t, consisting of the identifiers of the documents con- 
taining the term and, with each identifier d, the within- 
document frequencyfi,, oft in d. Thus inverted lists con- 
sist of document entries, that is, pairs of (d,f&) values. 

Inverted lists are usually sorted by document identi- 
fier, not only for convenience of processing but because 
such sorting allows index compression-once sorted, the 
differences (or run-lengths) between adjacent identifiers 
can be computed, yielding small integers that are suitable 
for compression. For example, consider the list consist- 
ing of the following (d,f,,) pairs 

(5,3)(9,2)( 12,2)( 16,5)(2L 1)(25,2)(32,4), 

which represents the fact that the term being indexed oc- 

curs three times in document 5, twice in document 9, 
and so on. This list can be converted into the sequence 
of run-lengths 

(5,3)(4,2)(X 2)(4 5)(5,~)(3,2)(7,4). 

Given that the number of documents containing a given 
term can be used to compute the average run-length, us- 
ing a parameterized code the run-lengths can be effi- 
ciently compressed, as the run-lengths will conform to a 
known distribution with a known mean. For high-fre- 
quency terms, often only one or two bits are required 
to represent a run-length if coded using integer coding 
schemes such as those of Elias ( 1975) or Golomb 
( 1966 ) . Theh,, values are already a skew distribution of 
small integers, and can be effectively represented in 
unary or in an Elias code such as the gamma code (Elias, 
1975). Overall, such inverted index compression tech- 
niques can reduce index size by a factor of six or more 
( Bell et al., 1993; Moffat & Zobel, in press). 

For a large document database indexed by an inverted 
file, the index can be used to simultaneously compute 

the cosine correlation between each document in a col- 
lection and the query as follows (Frakes & Baeza-Yates, 
1992; Moffat & Zobel, in press; Salton, 1989; Salton & 
McGill, 1983 ). An accumulator is created for each doc- 
ument, either by initially allocating an accumulator for 
every document in the database or by dynamically add- 
ing an accumulator for a document when it is allocated 
non-zero similarity. The similarity of each document to 
the query q are then computed by retrieving the inverted 
list for each query term and adding sim,,d,, to the accu- 
mulator for every document din the term’s inverted list. 
Then each accumulator is divided by the appropriate W, 
value and the k documents with the highest cosine values 
are chosen. A version of this algorithm, as given by 
Moffat and Zobel (in press), is shown in Figure 1. 

Evaluation of the cosine measure also requires a file 
containing the length JV, for each document. These val- 
ues are query independent and need to be computed 

only once, at database creation time; and can be 
effectively compacted and stored in a few bits each 
(Moffat, Zobel, & Sacks-Davis, 1994). The reason they 
are stored separately is to allow effective compression of 
the inverted file. Storage of the within-document fre- 
quencies normalized by the document lengths would im- 
ply storage of floating point numbers rather than small 
integers that can be effectively compressed and, hence, a 
substantial increase in the size of the inverted file. 

Thus the main costs of query evaluation are memory 
space, for the accumulators; disk traffic, to retrieve in- 
verted lists; and cpu time, to decode inverted lists. Re- 
ducing all of these costs to levels suitable for a small ma- 
chine is the subject of this article. 

3. Reducing the Number of Accumulators 

As we have described above, the usual approach to the 
evaluation of ranked queries is consecutive processing of 
every term in a query and of the whole inverted list for 
each term. This technique computes, for each query 
term and each document containing the term, a partial 
similarity of the document and the query; each docu- 

ment requires an accumulator. 
Thus a particular shortcoming of this technique is the 

memory required for the accumulators. The most com- 
mon terms in a typical query are contained in a large 
proportion of the documents in a collection. Processing 
of all identifiers in these inverted lists leads to a large 
number of accumulators. Moreover, most of the partial 
similarities are given by common terms and thus have 
very low weight. Processing of these values produces lit- 
tle increase in accuracy and is expensive, particularly in 
systems that use compression for inverted lists, since, to 
evaluate queries, large volumes of data have to be de- 
compressed. 

There have been many attempts to improve the effi- 
ciency of ranked query evaluation (Buckley & Lewit, 
1995; Frakes & Baeza-Yates, 1992; Harman & Candela, 
1990; Lucarella, 1988; Moffat & Zobel, in press). Elimi- 
nation of stop-words-that is, of very frequent words or 
closed-class words such as “and” and “of’‘-is often 
used to reduce the number of uninformative terms pro- 
cessed. But it is often difficult to determine the list of 
stop-words. For example, in our test database the word 
“text,” which is not especially common in English, is en- 
countered in every document in the collection and hence 
does not have any discrimination value. Another word, 
“Washington,” is also common in the collection, but 
does seem to provide useful discrimination. 

More sophisticated algorithms implement some dy- 
namic stopping condition. The typical approach taken 
by these algorithms is to order terms in a query by de- 
creasing weight, and then process terms in this order un- 
til some stopping condition is met (Buckley & Lewit, 
1995; Harman & Candela, 1990; Lucarella, 1988; Moffat 
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1. For each document d in the collection, set accumulator Ad t 0 

2. For each term t in the query. 

(a) Retrieve the inverted list for t from disk. 

(b) For each term entry (d, fd,t) in the inverted list, set Ad t Ad + 

sim,,n,t. 

3. Divide each non-zero accumulator Ad by the document length LVd 

4. Identify the k highest accumulator values (where k is the number of 

documents to be presented to the user) and retrieve the corresponding 

documents. 

FIG. I. Basic algorithm for computing a cosine measure. 

& Zobel, in press). Moffat and Zobel (in press) imple- 
mented the stopping condition by limiting the number 
of accumulators. They tested two versions of the algo- 
rithm. In the first version, processing of a query was 

stopped as soon as the number ofaccumulators exceeded 
a certain limit. In the second, processing of query was 
continued after reaching the limit number of accumula- 

tors but no new documents were inserted into the set of 
candidates. The first version of this algorithm showed 
dramatic improvement in response time but at the cost 
of significant deterioration in retrieval effectiveness. The 
second version gave the same retrieval effectiveness as 
a basic version that processed all inverted lists, and in 
conjunction with a modification to the index structure 
discussed below approximately halved processing time. 

Harman and Candela ( 1990) experimented with an- 
other pruning algorithm. The accumulated partial simi- 
larities given by all documents in all inverted lists (like 
the second algorithm by Moffat and Zobel, in press) but 
limited the number of accumulators by setting a condi- 
tion for the insertion of new documents into the set of 
relevant documents: Their algorithm only considered 
those documents which contained terms with inverse 

document frequency more than a certain fraction of the 
maximum inverse document frequency of any term in 
the database. An overview of pruning algorithms and 
some additional references are given by Salton ( 1989) 
and Frakes and Baeza-Yates ( 1992 ) . 

These techniques have the effect of saving time. by 
neither retrieving nor processing some inverted lists, and 
of saving space, by having fewer accumulators. However, 
there is often a penalty in retrieval effectiveness. The 
property common to all of these techniques is that they 
may process the inverted list for a term even if it is not 
particularly important in any document, or not process 
the inverted list for a discriminating term simply because 
it is fairly frequent: and that they abruptly switch from 
free addition of accumulators to allowing no addition of 
accumulators at all. They yield a reduction in the num- 
ber of processed term entries but usually lead to deterio- 

ration in retrieval effectiveness, because the decision to 
stop is based only on global parameters of the data set. 
These algorithms select, for processing or rejection, 
whole inverted lists rather than separate document en- 

tries within these lists. and as a consequence these algo- 
rithms cannot provide a gradual transition from accep- 
tance of terms to rejection of terms. 

Accumulator values cannot be effectively compressed 
because they are unpatterned real numbers, so the only 
way of reducing the space requirement is to reduce the 
number of documents for which an accumulator is re- 
quired. We propose use of afiltering technique that pro- 
vides a gradual transition from inclusion to omission of 

documents, by taking into consideration both the global 
parameter of term importance across the collection and 
the local parameter of the number of occurrences of a 
term in each document. We modify the algorithm of Fig- 
ure 1 in the following way. 

As in the basic algorithm. query terms are sorted by 
decreasing u!, , so that important terms are processed first. 
Then. before each term t is processed, two thresholds are 
computed, an insertion threshold s,,,, and an addition 

threshold s,,/,/, where s,,I~ I s ,,,, . As we process the in- 
verted list for t, the partial similarity si~7,~~,, of query q 
and each document d in the list is compared to the 

thresholds. If Sijr.5 I simq,d,l, document d is important 
enough to be one of the candidates: If necessary an accu- 
mulator is created, then sinzy,d., is added to d’s accumu- 
lator’s value. If s,,/,/ 5 sinl,,d,, < s,,,,, document d is not 
important enough to be interesting to the user by itself 
but simq,d,, is likely to affect the final order of documents; 
so if d already has an accumulator then sim,,d,, is added 
to its value, but if not, no action is taken. And finally. if 
~ztn~,~,, < sU~/~/, the information is unimportant and there- 
fore discarded. 

The rationale for the use of thresholds is that, if there 
are a large enough number of candidate documents with 
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high values of similarity to the query, it is not profitable 

to consider small partial similarities-they are unlikely 
to significantly change the final ranking. For example, in 
the test database we used for our experiments (described 
later in this section), a typical less common query term 

had w, = 8, whereas a typical common query term had 
w, = 1. After the first few query terms were processed, 

the highest accumulator values were on the order of 500 
to 5,000, with differences between adjacent accumulator 
values of from 10 to 100 or more. In this context, the 
slmy.d,l values of from 1 to 10 typically given by common 

terms do not have much effect on the final ordering. 
Using the threshold s,dd, we can ignore inverted list 

entries that yield small partial similarities, thus saving 
cpu time. Likewise, the threshold s,,, allows us to ignore 
some documents, thus saving memory space. In other 
words, the thresholds provide a mechanism for tuning 

system load. Thresholds have previously been used to de- 
cide whether to process or reject whole inverted lists 
( Harman & Candela, 1990)) but not to decide whether 
to process or reject individual documents. 

The values of both thresholds for a term t are deter- 
mined as a function of the accumulated partial similarity 
of the currently most relevant document S,,,,, . This heu- 
ristic supposes that if the current most relevant docu- 
ment has a high weight, then we do not need to process a 
document that has a small value of similarity to a query, 
as it is unlikely to change the final ranking or identify an 
important document that is not yet included in the set 
of relevant documents. The values of the thresholds are 

determined as 

where 0 I c,dd I Gin,, are constants; choice of values for 

these constants is discussed below. The effect is that, as 
query terms are processed and the value of accumulated 
similarity of documents in the set of answers grows, it 
becomes increasingly difficult to update or add new ac- 

cumulators. 
We process term entry (d,f&) in the inverted list oft 

only if the partial similarity simy,d,r of d and query q is 
greater than the current value of threshold s, where s is 

either sin.v or s,~+ Substituting the definitions of w,, and 

w,,, into the definition of sim,,d.,, we obtain 

The final condition is 

thus expressing the decision of whether to process a term 

entry (d, fd,,) as a condition on fd., . The thresholds can 
now be directly expressed in terms of frequencies: 

These threshold values are constant during processing of 
an inverted list, so that the decision of whether to use a 
term entry requires only a single integer comparison. 

The use of thresholds provides a smooth transition 
from acceptance to rejection of term entries in inverted 
lists, as it is progressively more difficult for accumulators 
to be added or updated. For the first terms processed, the 
value of S,,,,, is small and the value of ~1~ is large, so that 

most identifiers are considered. As S,,,, rises and w, falls, 
the thresholds rise, until, in the limit, all fd,[ values are 
less than fudd, so that processing an inverted list has no 
effect on accumulator values. The filtering algorithm for 

computing the cosine measure is shown in Figure 2. 
The constants c,,, and cadrl are used to control the re- 

sources required by the algorithm. By increasing the con- 
stant c,~~, we reduce the number of term entries (and, 
correspondingly, reduce the number of partial similari- 
ties of documents and a query) inspected and accumu- 

lated by the algorithm, and hence decrease cpu time. By 
increasing the constant tins, we reduce the number of 
documents that can be candidates and hence decrease 
memory usage. The constants should be chosen so that 
the discarded information would, if included, have min- 
imal impact on the final ordering. In a production sys- 
tem, the constant values could simply be adjusted at each 
query based on observation of system load, or occasional 

queries could be run for several values of each constant, 
and best values chosen according to the distortion intro- 
duced into the answer set. 

A potential weak point of the filtering technique is its 
vulnerability to presence of documents with a large num- 
ber of occurrences of a rare term. Such documents have 

very large weight and can theoretically make the values 
of the filters so large that no more documents will be able 
to meet filtering conditions and be taken into consider- 
ation. If this document contains the first (rarest) term in 
a query, then the set of answers to the query will consist 
only of the documents containing that term. To the test 
robustness of the method of filtering, we have tried an- 
other way of calculating the thresholds, in which S,,,. is 
replaced by S,, defined by 

s,= c log*E ( 1 
2 

I’EQ 
5, ’ 
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1. Create an empty structure of accumulators. 

2. Sort the query terms by decreasing weight 

3. set s,,, to 0. 

4. For each term t in the query, 

(a) Compute the values of the thresholds j,,, and jadd. 

(b) Retrieve the inverted list for t from the disk. 

(c) For each term entry (d, jd,t) in the inverted list, 

i. If fd,t 2 fh, create an accumulator for Ad if necessary, 

and set Ad t An + +,d,t. 

ii. Otherwise, if jd,l > jadd and Ad is present in the set of 

accumulators, set Ad t Ad + sim,,d,l. 

iii. Set S,,, t max(S,,,, Ad). 

5. Divide each non-zero accumulator Ad by wd 

6. Identify the k highest accumulator values and retrieve the correspond- 

ing documents. 

FIG. 2. Filtering algorithm for computing the cosine measure. 

where Q is the set of query terms that have already been 
processed. However, experimentally we have found that 
the difference in performance of the two versions of the 
filtering algorithm is insignificant, and we have used the 

S,,,, approach in the experiments described below. An- 
other possibility is to use the average similarity of several 
top documents instead of the highest one, but this ver- 
sion would be more expensive. 

Document filtering sharply reduces the volume of 
main memory needed for evaluation of ranked queries. 

However, the filtering technique as it stands does not 
yield substantial savings in either disk traffic or cpu time. 
To perform a ranking, we still have to fetch and process 
the whole inverted list for every query term, comparing 
fd,,l for every document to the current threshold values. 
For the long inverted lists only a few fd,,! values pass the 

thresholds, so that most of the time spent processing 
these lists has no effect on the final ranking. Section 4 
describes techniques for avoiding these problems. 

Experimental Results 

The database we have used in our experiments is a 
collection of Wall Street Journal articles, extracted from 
the TREC data ( Harman, 1992 ). The value of this data- 
base is that it has a set of queries with manual relevance 
judgements that can be used to determine retrieval 
effectiveness. The database contains 173,000 docu- 
ments, totalling 508 Mb; average document size is 510 
term occurrences; the longest document consists of 
22,200 terms. We have used queries 5 l-150 from the 
TREC experiment, after stemming and removing 

SGML markup; the length of the queries ranges from 66 
to 3 13 terms. We measured the retrieval effectiveness of 
algorithms-their ability to retrieve answers a human 

judges to be relevant-from the recall (proportion of rel- 

evant documents retrieved) and precision (proportion of 
retrieved documents that are relevant), by averaging 

precision at O%, lo%, . . . , 100% recall. For consistency 
with the TREC experiments, we retrieved only the top 
200 documents for each query, and pessimistically as- 

sumed all recall values outside the top 200 to be zero. All 
results shown are average values over all 100 queries. 

Retrieval effectiveness is shown as a function of the 
addition threshold in Figure 3. We depict two parame- 
ters on the horizontal axis: The value of the constant c&d 
and the percentage of term entries processed by the algo- 
rithm for this value of c&d. For comparison, we also 

show as a horizontal line the perfOrmanCe with Gins = c&d 
= 0, that is, for the algorithm shown in Figure 1. 

The value of the insertion threshold was fixed in this 

experiment. Prior to these experiments, we measured re- 
trieval effectiveness for different values of c,,,, and chose 

0.12 because it gave good retrieval effectiveness using a 
small number of accumulators. For this value of tins, we 
can obtain an answer to a ranked query with the same 
retrieval effectiveness as the basic algorithm (32.4%) 
having processed only 10% of all term entries. Interest- 
ingly, processing 15% of all term entries we obtain even 

better retrieval effectiveness in comparison to the stan- 

dard algorithm. We believe that this is because of the 
pruning of common terms, which are encountered in al- 

most every document and create informational noise 
rather than help discriminate between documents. Note 
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FIG. 3. Retrieval effectiveness for different values of c,dd (c,,, = 0.12). 

that it is only necessary to process a very small number ment collections; for example, similar results were ob- 

of term entries to obtain a decent level of retrieval tained by Moffat and Zobel (in press) in their experi- 
effectiveness. For example, while processing only 1% of ments with an explicit limit on the number of accumu- 
the term entries, the deterioration in retrieval effective- lators, and in our own experiments with a different 
ness is only 2.1%. version of the cosine measure. 

Figure 4 shows the dependency of retrieval effective- 
ness on the number of accumulators. The number of ac- 

cumulators was varied by changing the insertion thresh- 
old. Both the value of the constant cinS and the corre- 

sponding number of accumulators is depicted on the 
horizontal axis. We used c&d = 0 in this experiment to 
prevent the skipping of common terms; that is, for each 
document included in the set of candidate documents, 
we accumulated all partial similarities given by all terms. 
Note that using a relatively small number of candidate 
documents, we obtain better retrieval effectiveness than 
does the basic algorithm. Interestingly, this phenomenon 
is consistent for different techniques and different docu- 

The main saving yielded by this technique is a sharp 
reduction in the number of accumulators. This is illus- 
trated in Figure 4. On the horizontal axis, we vary tins, 
which affects the number of accumulators; for example, 

Gins = 0.12 results in roughly 4,000 accumulators, 
whereas tins = 0 results in almost every document having 
an accumulator, or around 173,000 accumulators in to- 
tal. The vertical axis is retrieval effectiveness, which re- 
mains high even when the number of accumulators is 

small; until the number of accumulators drops below 
4,000, retrieval effectiveness is constant and is equal to 
that given by the basic algorithm. The technique also 
yields a small saving of cpu time, as we do not have to 

--A- Filtering algorithm 
-.- Basic algorithm 

number of doeumenls 
in the database 

c,(x100) 

IS 12 10 8 6 4 2 

1cml 

Number of accumuldors 

FIG. 4. Number of accumulators for different values of clnS (Cafe = 0). 
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compute the ~im~,~,~ values for document identifiers that 
are filtered out. 

The filtering algorithm is reasonably insensitive to 

both c,,,, and cUddr providing good performance across a 
wide range of values. Moreover, per query the largest 
number of accumulators used in our experiments was no 
more than three times the average value, so that perfor- 
mance does not greatly depend on characteristics of in- 
dividual queries. Thus the major effect of the thresholds 
is on system performance, with c,,, affecting memory us- 
age and cUdrl affecting response time and disk traffic. 

To confirm these results, we applied the filtering 
method to another subset of the TREC data, the Associ- 
ated Press subcollection. We observed almost identical 
behavior: Excellent performance with only a few thou- 
sand accumulators and little impact on cpu time. 

The queries used in these experiments are quite long. 
It might be argued that short queries of only a few terms 
would be adversely affected by the information discarded 
during filtering, but we believe that this would not be the 
case. Filtering discards contributions that are small com- 
pared to values accumulated so far, so that less informa- 
tion is discarded for the first few query terms, with typi- 
cally no information discarded for the first one to five 
terms processed. While the performance gains for short 
queries (which have modest resource requirements) 
would be less spectacular than for long queries, we would 
not expect effectiveness to degrade. 

Other Term Weighting Systems 

The cosine measure as described in Section 2 is not 
the only similarity measure. There are other similarity 
measures, for example those described by Lucarella 
( 1988) and Harman and Candela ( 1990). We tested the 
robustness of document filtering by applying it to these 
similarity measures. 

Lucarella ( 1988) determined the similarity of a docu- 
ment and the query using the formula 

where q is the query, d is the document, and u:,,( is the 
weight of the term t in a document or query X. The 
weight of a term is determined as 

WA,, = (0.5 + 0.5.~,,/f :‘“‘)- W[, 

w, = log* E 
f;’ 

where1;,, is the number of occurrences of the term t in 
x, f-y”-‘ is the maximum occurrence frequency among 
the terms associated with the document or query x, N is 

the number of documents in the collection. andf; is the 
number of documents containing t . This measure is sim- 
ilar to our form of the cosine measure, but the impor- 
tance of the within-document frequency of a term in a 
document is smaller in Lucarella’s measure since it is 
normalized (Lucarella, 1988). 

Harman and Candela ( 1990) employed the similarity 
measure 

c 
log*(h,,+ 1)-t%+ 1) 

I lo&h&, ’ 

where Md is the total number of significant terms 
(including duplicates) in the document d. This sim- 
ilarity measure considers only a frequency of a term in 

documents, not taking into account the number of term 
occurrences in a query. 

For these measures, we examined the reduction in the 

number of accumulators. (We were not able measure 
time savings that our technique would yield for these 
similarity measures, as this would have required a reim- 

plementation of the inverted index.) As the volume of 
computation required for evaluation of the similarity of 
the query and documents is approximately the same 

both for our similarity measure and for the measures 
used by Harman and Candela ( 1990) and by Lucarella 
( 1988), we expect that the time savings should be the 
same as for the similarity measure used in our system. 

Figure 5 shows, for these similarity measures, retrieval 
effectiveness as a function of the number of accumula- 

tors. The number of accumulators was varied by chang- 
ing the constant tin., . As for the standard cosine measure, 
document filtering allows queries to be evaluated with- 
out deterioration in retrieval effectiveness, using only 
about 1% and 6% of the previous memory requirement 
for Harman and Candela’s ( 1990) and Lucarella’s 

( 1988) algorithms, respectively. 

4. Inverted File Structures for Filtering 

For our ranking technique, the decision about 
whether to process or reject a term entry depends on the 
within-document frequency fd,.r . For the usual structure 
of inverted lists, where term entries are sorted by docu- 
ment identifier, we have to process the whole list, com- 
paringf& in every term entry to the current value of the 
threshold. We propose that inverted lists instead befrc- 
quency-sorted, that is, sorted by decreasing fd,, , so that the 
time wasted processing small fd,,t Values can be entirely 
avoided. First, once an fd., value is encountered that is 
below the threshold, processing of the inverted list can 
stop. Second, if the inverted list is longer than a disk 
block, only one block of the list needs to be retrieved at a 
time: Since the tail of a long inverted list will contain 
only small& values, it is unlikely to be required, and 
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FIG. 5. Retrieval effectiveness for different number ofaccumulators. 

there is little cost associated with leaving it on disk until 

requested. 
It is also useful to store in the vocabulary the maximal 

within-document frequency f‘:““‘ for each term t, to al- 
low skipping of inverted lists. Before commencing the 

processing of each term in a query, we compute the 
threshold frequenciesj;,,,, andA,,, and compare them to 
the maximal within-document frequency of the term 
j’:““‘. IfJ i”“’ is less thanfl,,,, then no document contain- 
ing this term will be processed and we can proceed to the 
next term in the query without retrieving the inverted list 
from disk. 

Unfortunately, frequency sorting is incompatible 
with compression of inverted lists. Ifthe document iden- 
tifiers are unsorted, run-lengths cannot be taken and the 
index size will dramatically increase. Besides the impact 
on space requirements, an immediate effect of this in- 
crease is in the real time required to compute a ranking: 
Inverted lists become more expensive to retrieve from 
disk. For some queries this penalty will outweigh the gain 

of re-ordering. 
Thus it is crucial that we find some way of maintain- 

ing compression performance. A simple way of having 
some compression within frequency-sorted inverted files 
is to, for the term entries with the samef& value, sort by 
document identifier. Inverted lists than consist of a series 
of seqtlencc.7, where each sequence is a triple 

(La,, (dl, . . . 3 &/)I 

where f’is thefi,, value of the documents d,, . . . , d,,, in 

the sequence and p/ is the number of documents. For a 
sequence of several documents with the same frequency 
there is a potential space saving, as the frequency only 
has to be stored once. The identifiers in a sequence are 
sorted, allowing run-lengths to be taken and hence allow- 
ing compression. For example, the inverted list illus- 

trated in Section 2 would under this scheme be repre- 
sented as 

5, 1,(16) 4, 1,(32) 3, 1, (5) 2, 3,(9,3,13) 1, 1,(21) 

in which each box is a sequence, the first number is the 
frequency, the second is the number of documents in the 

sequence, and the expression in parentheses is the docu- 
ments in that sequence. The expression (9,3,13) repre- 
sents the document numbers 9, 12, and 25 after run- 
lengths have been taken-these are the documents that 
contain the term with frequency 2. 

However, the sequence method might not yield as 
good compression as for document-sorted inverted lists. 
One reason for possible poorer compression is the pat- 

tern of document identifiers within sequences. A run- 
length of k can typically be compressed to a little over 
log& bits: since the average run-length between identifi- 
ers in a sequence is larger than the average run-length in 
the sorted inverted list, compression performance de- 
grades. Another reason for possible increase in size is 
that, although many sequences are only one or two doc- 
uments long, the per-sequence parameters still have to 
be stored. 

In a database of Ndocuments, the size of a document- 
sorted inverted list of p identifiers can be estimated as 
follows. The number of bits required to store the docu- 
ment identifiers is approximately (Moffat & Zobel, 
1992) 

l&,(p) = p 
( 

1.5 + log, 4 . 
1 

In addition an,{;,, value must be stored for each docu- 
ment. The space required for these values will depend 
on the distribution of frequencies. We assume that the 
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distribution is given by a integral function Z(p, f) for 

which CJ=, Z(p,f) = p, where r is the largestf& value in 
the distribution. We also assume that each fd,, value is 
represented by a gamma code (Elias, 1975); the number 
of bits required to represent frequency fusing gamma is 

B,(f) = 1 + 2LlogJ.l. 

Thus the space required for the& values is 

i (OP,f)* B,(f)) 
/=I 

and the total space for a document-sorted inverted list is 
approximately 

&x(P) = B,(P) + &i(P) + i (~(a,.f)-B,(“f))? 
/=I 

where B,( p) bits are needed to represent the length ofthe 
list. 

Based on the same assumptions, the size of a fre- 
quency-sorted list can be determined as follows. In the 
sequence for frequency fthere are Z(p,f) identifiers, so 
each sequence requires &(Z(p,f)) bits for identifiers. In 
addition each sequence requires approximately 1 bit for 
the frequency (the frequencies are ordered so differences 
can be taken, and usually the difference will be 1) and 
B,( Z(p,f)) bits to store the number of identifiers in the 
sequence. In total, the space required for a frequency- 
sorted inverted list ofp identifiers is approximately 

&S(P) = B,(r) + i (Bdl(~,f)) + 1 + B,(Z(p,f‘))) 
/=I 

where r is again the largest j& value in the inverted list 

and B,(r) bits are needed to represent the number of se- 
quences. 

Whether BF.r or BDs is larger depends on the disttibu- 
tion of frequencies. One extreme is that all documents 
havefd,, = 1, that is, 

Z(P,f) = 
1 

p if/= 1 

0 otherwise 

for which we have 

&S(P) = B,(P) + &;(a) + PM 1) 

= B,(a) + B,(P) + P 

and 

B&P) = B,( 1) + B,(P) + 1 + B,(P) 

= B,(P) + B,(P) + 2. 

In the case of inverted lists in which alIf& values are 1, 

therefore, frequency-sorting results in slightly better 
compression. Another extreme is when p = r and each 
document has a differentf,, value, that is, 

OP,f) = 
1 ifflp 

0 otherwise 

for which we have 

B,(P) = B,(p) + B,;(P) + C B,(f) 
.I= 1 

and 

BK~P) = B,(P) + P.(B,;( 1) + 1 + B,( 1)). 

In this case, of each f$,, value occurring once, which is 
better will depend on p, but the sizes will be similar. 

For the Wbll Street Journal database, we have ob- 
served that most of thef& values in most inverted lists 
are 1. most of the remainder are 2, and so on-there is a 
strong skew towards low frequencies. This distribution 
can be modeled as follows. Suppose that for some integer 
o, the distribution of frequencies is such that (V - 1 )/Y 
of the identifiers in each inverted list havef& = 1, of the 
remainder (V - 1)/v have& = 2 (that is, (V - l)/v’of 
the total), and so on. That is, the number of identifiers 

with,f,, = .fis given by 

p(u - 1)/v’ if f5 log,p 

I(P,S) = 1 if f= log,p + 1 

0 otherwise 

for p such that log,p is integral. Estimated sizes for com- 
pressed inverted lists are plotted in Figure 6 for u = 2 and 
v = 4 for a database of 1 ,OOO,OOO records. As can be seen, 
the sizes are almost identical, with the frequency-sorted 
index very slightly smaller. 

It is straightforward to extend the model developed 
above to predict the volume of index data retrieved in 
response to a query. but the result depends on several 
estimates-the function Z(p,f ), the distribution ofp val- 
ues for query terms, and the likely S,,,, value-so the 
predictions made by such a model are, at best, a broad 
indicator of possible performance. What is clear is that 
use of filtering reduces, and has the potential to drasti- 
cally reduce, disk traffic. The scale of reduction is best 
determined experimentally, as we do for the WaN Street 
Journal later in this section. 

A possible drawback of frequency-sorting of inverted 
lists is the impact on update. The costs of update for an 
inverted index are: Locating and fetching the list; iden- 

tifying the part of the list to be modified; modifying the 
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FIG. 6. Estimated size ofcompressed inverted lists. 

list; and writing the list to disk, making any reorganiza- 
tion necessary to minimize space fragmentation if the 
list’s length has changed. Of these costs, only the sec- 
ond-searching the list-is affected by the change from 
document sorting to frequency sorting; typically the 
searching cost might double, while the other costs are un- 
changed. We therefore believe that frequency sorting has 
only a minor impact on update. However, as for most 
indexing methods for text databases, update is expensive, 
requiring disk accesses for every indexed term in each 
modified or inserted document. 

many term entries for which&, is 1 or 2, and a small 
number of term entries for whichf& is large. That is, for 
the high frequencies, many sequences will have only one 
or two documents and the overheads of representing a 
short sequence (the need to store the number of docu- 
ments and the loss of compression due to the large run- 
lengths) are high. 

Our method of filtering and re-ordering inverted lists 
into sequences of documents of the same frequency is 
not the only possible solution to the problem of ignoring 
the majority of document identifiers. Moffat and Zobel 
(in press) have proposed that inverted lists be ordered 
by identifier, but in addition contain pointers into the 

inverted list at evenly-spaced intervals, to allow the 
search to “skip” sections of the list without decompres- 
sion. Such skipping provides the benefit of random ac- 
cess (usually impossible in the context of compression) 
while maintaining reasonable compression perfor- 
mance. In conjunction with their scheme of a small, 

fixed number of accumulators, the skipping reduces cpu 
time without degrading retrieval effectiveness; however, 
this scheme slightly increases disk costs, and does not 
support filtering. As we show below, the gain they 

achieve is limited compared to that given by the scheme 
we describe here. 

Other Representations of Sequences 

These problems can be overcome by selective applica- 
tion of the idea of sequences. As we have seen, there are 
advantages to the long sequences of low frequencies, but 
short sequences are inefficient. It follows that an efficient 
form of inverted list is an initial sequence of (d, fd,!) 
pairs, for the high frequencies that would lead to short 
sequences, followed by a series of sequences, one for each 
of the low frequencies. We therefore propose the follow- 
ing structure for representing an inverted list. Each list 
is split into n sequences (the problem of choice of n is 
discussed later). The leading sequence is of (d, fd,,) pairs, 
for all documents with&, 2 n. Each remaining sequence 
is of documents of some frequency f& < n, and the se- 
quences are ordered by decreasing frequency. Within 
each sequence, the entries are sorted by document iden- 
tifier. Within the leading sequence, rather than storingf& 
values we storef& - n + 1. The minimum value of n is 
1, in which case the whole list is stored in one sequence. 
The final filtering algorithm, using sequences, is shown 
in Figure 7. Such a scheme should be effective because, 
for even the longer inverted lists of more common terms, 
the distribution off& values is highly skew. Thus, in the 
above scheme, each of the lowf& values would have its 
own sequence, which would be long; whereas the high& 
values would share a sequence. 

The analysis above indicates that the sequence At the start of each inverted list that has been grouped 
method for representing inverted lists should yield rea- into sequences, we store the number of sequences; each 
sonable compression, but better compression may be sequence starts with the number of entries in it. The fre- 
possible, particularly for the sequences of higher fre- quency of a sequence is determined by its ordinal num- 

quency terms-a typical long inverted list will contain ber. This method means that, for all but the leading se- 
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1. Create an empty structure of accumulators. 

2. Sort the query terms hy decreasing weight. 

4. For each term t in the query, 

(a) Comput,e the values of the filters fins and fad,,. 

(h) If j;‘“” < j&d go to step 4. 

(c) For the leading sequence iu t’s inverted list and each document 

d in the sequence, 

i. If fd,t 2 fl,,, create an aCCllrrdatOr for Ad if necessary, 

and set Ad t Ad + szmg d t. 

ii. Otherwise, if jd,t 2 j,& arId ,4g is present in the set of 

accumulators, set .4d t Ad + s~rrb,d,~. 

iii. If ild was updated, set S,,,, + ma~(.S,,,~~, An). 

(d) For CaCh remaining sequence in t’s inverted list with fd,L > jodd 

and each document, d in the sc~qucr~ce, 

i. If jd,t 2 j,,,, create an accurrlulator for Ad if necessary, 

and set Ad t ,4d + s?v&,~,~. 

ii. Otherwise, jd,t 2 j&d; if Ad is present in the set of accw 

mulators, set Ad t /Id + smq,~.~. 

iii. If Ad was updated, set, S,,,,, t max(Srnnrr Ad). 

5. Divide each nowzero accumulator Ad by the document length 1Vd. 

6. Identify the k highest values of accumulators (k is the rlurnber of 

documents to he presented to the user) and retrieve the corresponding 

documents. 

-IG. 7. Filtering algorithm using sequences to compute the cosine measure. 

quence, frequencies are not explicitly stored, and also 
means that we have to store zero as the number of docu- 
ments for an empty sequence. An example of this 
method of storing inverted lists, using n = 3, is as follows. 

1 3 1 31(5, 1) (11, 3) (162) ( 319,3,13 1 1121 1 

This example corresponds to the inverted list shown 
above. The first box is the number of sequences in the 
list. The second box is the leading sequence and the third 
and fourth boxes are the sequences for frequencies 2 and 
1, respectively. 

We now examine, for inverted lists compressed with 
the sequence method, optimization for index size and 
query evaluation time. Consider the effect of having the 
same n for all inverted lists, and of the inverted file that 
results from varying this ~1. As we increase n, we increase 
the number of sequences in each inverted list. On the one 
hand, this allows storage of more document identifiers 
without their corresponding frequencies. On the other 
hand, we have to store a sequence length for each sequence, 

including zeros for sequences that do not contain docu- 
ments. Sequence lengths are a significant overhead on the 

size of the inverted file, and as n increases they quickly be- 
come unacceptably large. Also, decrease in the length of 
each sequence implies an increase in the average run-length 
and, hence, a worse rate of compression. 

Small n implies a small inverted file. But now consider 
the problem of proper choice of n for fast query evalua- 
tion. in which case we wish to stop processing term en- 
tries (ordered by decreasing fd,.,) as soon asJi., < fad‘) is 
found. If the value of thresholdfAdd is less than the mini- 
mal frequency n of documents in the leading sequence, 
we process the whole leading sequence and possibly 
some subsequent sequences, and for all documents pro- 
cessed, we update their accumulators; thus no decoding 
time is wasted. But if&, is more than n, we must process 
the whole of the leading sequence, even though some of 
the documents in the sequence will be ignored. So, using 
one value of n for all inverted lists, to achieve fast query 
evaluation, we have to increase the size of n which will, 
however, increase the size of the inverted file. 

The other possibility is to allow n to vary between lists. 
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A simple method would be to, for each list, set n to 1, 

compress the list; then increment n and compress it 
again; and so on until a minimum is found. The exis- 
tence of a minimum is guaranteed, as the size of the se- 
quence lengths will, in the limit, be dominant. (Note 
that, in a scheme with varying n, in addition to the se- 
quence lengths, the value of n must be stored in each list.) 
However, such a scheme is impractical. 

The heuristic scheme we chose for selection of n is 
based on the observation that using a separate sequence 
for each f& value when& is high (and the length of the 
sequence is low) is expensive because of the per-se- 
quence overheads. Let us call the number of identifiers 
at which overall compression gains outweigh overheads 

the sequence threshold T. (In fact T is a function of, not 
just sequence length, but of thef& for the sequence; but 
since in our test collection almost all inverted lists have 
only a few frequencies with sequences of any length, this 
approach is a reasonable approximation.) To achieve 

good compression, we should avoid sequences of a 
length less than T. We determine the size of n for the 
inverted list for a term t using the following procedure. 
Initially, for each distinct value off&, we find the num- 
ber of documents that contain t this number of times. 
Then we find the highestf& for which the number of doc- 
uments is at least T. Let us denote this frequency asfr. 
We then create the inverted list by having per-frequency 
sequences for frequencies from I to f7. and a leading se- 
quence that contains documents with all remaining fre- 
quencies. The value of n for such an inverted list isfT + 1. 

On the one hand, if T is 1, then every frequency in 
every inverted list will have its own sequence, and the 
value of n for an inverted list will be the highest&, value 
in that list. On the other hand, for (say) a database of a 
million documents, if T is 100,000, then most inverted 
lists will have n of 1, and thus have only one sequence; 
but the inverted lists for the most common terms will 

probably have several sequences, because these terms 
would in a typical database occur in almost every docu- 
ment. 

Having leading sequences of mixedf& allows us to 

achieve two aims simultaneously. On one hand, we 
avoid creation of inverted lists containing many short se- 

quences that cannot be effectively compressed, and sim- 
ilarly avoid storing many sequence lengths. On the other 
hand, we are able to keep the leading sequences short 
and, hence, have fast query evaluation. 

Experimental Results 

Using the Wall Street Journal database, we built a 
document-sorted inverted file and a frequency-sorted in- 
verted file and evaluated the TREC queries described 
above. In all of these experiments we used filter values 

c,~., = 0.12 and C,J~ = 0.007, as these gave good retrieval 
effectiveness while requiring only a small number of ac- 

cumulators. All times and volumes of disk traffic are per 

query, averaged over the 100 TREC queries, on a Sun 
SPARC 10 model 5 12, using local disks. 

The size of the document-sorted compressed inverted 
file is 35.4 Mb; that of the frequency-sorted inverted file 
is 33.4 Mb, or only 6.6% of the size of the original data. 
Overall, therefore, the cost of storing the per-sequence 
parameters is more than offset by the saving of not stor- 
ing duplicate&, values. On the document-sorted index, 
average query evaluation is 3.18 cpu seconds for stopped 
queries (from which closed-class words have been re- 
moved, on the grounds that they have little impact on 
retrieval effectiveness) and 10.18 cpu seconds for un- 
stopped queries; on the frequency-sorted index, the com- 
parable times are 1.20 cpu seconds and 1.73 cpu seconds, 
respectively. These times are very similar, demonstrating 
that the filtering method almost completely excludes 
stop-words from consideration. That is, our method ob- 
viates the need to manually select a list of stop-words. 

Frequency-sorted indexes require far less data to be 
fetched from disk than do document-sorted indexes, 
since we usually have to read only the first block of each 
inverted list. For document-sorted inverted files and 
stopped queries, the volume of data fetched was 532 Kb; 
for unstopped queries, it was 2,108 Kb. In contrast, using 
our technique the volume of index fetched was just 157 

Kb and 249 Kb, respectively. The number of disk ac- 
cesses is also reduced, since deciding whether to reject a 
term does not require a disk access. 

These results compare well to those of the “skipping” 
scheme of Moffat and Zobel (in press), who on a larger 
database are only able to halve cpu time, and actually 
increase disk traffic slightly. However, their scheme is 
also applicable to Boolean queries, for which they 
achieve much greater performance gains. The idea of 
their scheme is to break usual identifier sorted indexes 
into blocks and to store some additional information al- 
lowing decoding algorithm to skip a block if necessary 
without decoding its contents. The same scheme can be 
applied to the frequency sorted index. Inverted lists in 
such an index consist of sequences and store documents 
ordered by their numbers inside of each sequence, as in 
Moffat’s and Zobel’s scheme. Skipping information can 
be inserted into each sequence, thus allowing efficient 
searching for documents by their numbers during evalu- 
ation of Boolean queries. We believe that this approach 
should provide good performance of evaluating Boolean 
queries at the cost of slightly decreased efficiency of pro- 
cessing ranked queries due to necessity of decompressing 
additional skipping information. 

We also built a series of indexes using different values 
of the sequence threshold T, to experiment with the 
effect of Ton performance. The size of an inverted file is 
shown as a function of the sequence threshold Tin Fig- 
ure 8. At one extreme, assigning Tto I forces creation of 
a separate sequence for every frequency with at least one 
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FIG. 8. Size of compressed index for different values of sequence threshold. 

document. Inverted lists in such a file do not have lead- 
ing sequences. This leads to an increase in index size be- 
cause of the shortness of the sequences and because the 
number of sequence lengths to be stored is larger. Large 
values of Talso lead to a gradual increase in inverted file 
size, as the leading sequences becomes long and we have 
to represent many large frequencies in these sequences. 

We also examined query evaluation time for different 
values of T. The time is almost constant for small values 
of T (up to T = 100 or so) since the difference in size of 
leading sequences is small. Performance deteriorates for 
large values of T, because, during processing of common 
terms, we have to process long leading sequences, search- 
ing for the documents that pass the filter and ignoring the 
rest. In the limit, of huge T, we have a document-sorted 
index. Note that there are processing overheads that are 

independent on the number of processed documents; 
hence the decrease in the time of query evaluation is not 
a linear function of the quantity of index processed. 

The volume of inverted lists fetched and decom- 
pressed during query evaluation is shown in Figure 9, 
again for both stopped and unstopped queries. Fre- 
quency-sorted inverted files built with small values of T 
provide an almost constant amount of decompressed 
data. This is because, on the one hand, the smaller the 
value of T the smaller the leading sequence and, hence, 
the smaller the number of documents which have to be 
decompressed but ignored; on the other hand, small val- 
ues of T give rise to inverted lists consisting of many 
small sequences, so that the overheads for storing se- 
quence parameters increase and the same number of 
compressed identifiers occupy more space. For small val- 
ues of Tthese phenomena are almost in balance, produc- 
ing a plateau in the graph. On the other hand, inverted 
files built with large values of T have long leading se- 
quences, leading to increase in the amount of data that is 
fetched and processed. 

Overall, performance is excellent across a wide range 
of T values, and for all T values performance is better 
than for document-sorted compressed inverted files. Re- 
trieval effectiveness is maintained, index size is reduced, 
and cpu time and disk traffic are much reduced. We ex- 
pect that relative performance would improve further 
with growth in the database size. Since performance de- 
pends only marginally on T, we conclude that T = 1 can 
be used in a production system. Note, however, that the 
majority of documents in the Wall Street Journal data- 
base are short and average within-document frequency 
is small. For databases of longer records, a higher T value 

may be preferable. 

Uncompressed Inverted Files 

Our structure for inverted files, where documents in 
inverted lists are ordered by decreasing&, , would also be 
effective in systems that use uncompressed inverted files. 
Using this structure yields significant reduction in the 

size of inverted files. Typically, a (d,f,,) pair occupies 6 
bytes, consisting of 4 bytes for storage of the document 
number and 2 bytes for storage of the term frequency. 
Using our structure of an inverted file allows decrease in 
the size of the inverted file from 238 Mb for the basic 
structure to 160 Mb; that is, we can almost completely 
avoid storing.f>,, values. The size of the uncompressed 
inverted file for different values of the sequence threshold 
is shown in Figure 10. 

5. Conclusions 

We have shown how to make dramatic reductions 
in the major costs of ranking a query on a large docu- 
ment database-disk traffic, cpu time, and memory 
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FIG. 9. Volume of inverted lists decoded during query evaluation. 

usage-without degrading retrieval effectiveness. The 
basis of these reductions is the filtering method, in 
which only the documents with high within-document 
frequency are considered as candidate answers; it is 
this technique that reduces memory usage, as having 

fewer candidates means that fewer accumulators are 
required to store information about these candidates. 
Despite the reduction in memory usage, there is no de- 
terioration (and even some improvement) in retrieval 
effectiveness. 

The reductions in disk traffic and cpu time are based 
on the simple observation that, by ordering inverted 

lists by decreasing within-document frequency, only 
the first part of each list will contain high frequencies, 
and so the rest can be ignored. Frequency-sorted in- 
verted lists can be effectively compressed by splitting 
inverted lists into sequences of documents of the same 
frequency and applying the existing compression tech- 

niques within each sequence. Both modeling and ex- 
periment have shown that change to frequency sorting 
has no negative impact on index size. 

For our test database, these techniques maintain re- 
trieval effectiveness, reduce memory requirements 

from 173,000 to 4,000 accumulators, reduce the quan- 
tity of data requested from disk from 532 Kb to 157 
Kb, and reduce cpu time from 3.18 to 1.20 seconds. 
The gains for unstopped queries are even greater. The 
time saving is most noticeable for systems that use 
compression for storage of data, since the cost of de- 
compression of long inverted lists is the major compo- 
nent of processing time. There is also a slight reduction 
in index size, from 35.4 Mb to 33.9 Mb, already a mas- 
sive saving on the 238 Mb required for an uncom- 
pressed index. Together, these dramatic improvements 
allow ranking to be performed much faster, and on much 
smaller machines, than was previously possible. 
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FIG. 10. Size of uncompressed index for different values of sequence threshold. 
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Number of documents containing 

term t 
Number of answers 
Number of documents 

Query 
Current similarity threshold 
Partial similarity thresholds 
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Weight oft in d 
Weight oft in q 
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