
Filtered Runahead Execution with a Runahead Buffer

Milad Hashemi
The University of Texas at Austin
miladhashemi@utexas.edu

Yale N. Patt
The University of Texas at Austin

patt@ece.utexas.edu

ABSTRACT
Runahead execution dynamically expands the instruc-
tion window of an out of order processor to generate
memory level parallelism (MLP) while the core would
otherwise be stalled. Unfortunately, runahead has the
disadvantage of requiring the front-end to remain ac-
tive to supply instructions. We propose a new struc-
ture (the Runahead Buffer) for supplying these instruc-
tions. We note that cache misses are often caused by
repetitive, short dependence chains. We store these de-
pendence chains in the runahead buffer. During runa-
head, the runahead buffer is used to supply instructions.
This generates 2x more MLP than traditional runahead
on average because the core can run further ahead.
It also saves energy since the front-end can be clock-
gated, reducing dynamic energy consumption. Over a
no-prefetching/prefetching baseline, the result is a per-
formance benefit of 17.2%/7.8% and an energy reduc-
tion of 6.7%/4.5% respectively. Traditional runahead
with additional energy optimizations results in a perfor-
mance benefit of 12.1%/5.9% but an energy increase of
9.5%/5.4%. Finally, we propose a hybrid policy that
switches between the runahead buffer and traditional
runahead, maximizing performance.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles
- Microprocessors and Microcomputers

Keywords
Runahead Execution, Memory Wall, Energy Efficiency

1. INTRODUCTION
The latency of accessing off-chip memory is a key im-

pediment to improving single-thread performance.
Figure 1 demonstrates the magnitude of the problem
across the SPEC CPU2006 benchmark suite. We sim-
ulate a 4-wide superscalar, out-of-order processor with a

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
MICRO-48, December 05 - 09, 2015, Waikiki, HI, USA
Copyright is held by the owner/authors. Publication rights licensed to ACM.
ACM 978-1-4503-4034-2/15/12 $15.00
DOI: http://dx.doi.org/10.1145/2830772.2830812.

192-entry reorder buffer (ROB) and 1MB of last level
cache (LLC).The percent of total core cycles that the
core is stalled waiting for memory is displayed on the y-
axis. The benchmarks are sorted from lowest to highest
memory intensity, defined by LLC misses per thousand
instructions (MPKI).

ca
lc

u
lix

p
ov

ra
y

n
am

d
g
am

es
s

p
er

lb
en

ch
to

n
to

g
ro

m
ac

s
g
ob

m
k

d
ea

lII
sj

en
g

g
cc

h
m

m
er

h
2
6
4

b
zi

p
2

as
ta

r
xa

la
n
c

ze
u
sm

p
ca

ct
u
s

w
rf

G
em

sF
D

TD
le

sl
ie

om
n
et

p
p

m
ilc

so
p
le

x
sp

h
in

x
b
w

av
es

lib
q

lb
m

m
cf

0

20

40

60

80

100

%
 T

ot
al

 C
or

e
C

yc
le

s
3.0

1.8

2.2

2.4

2.7

2.0

1.8

1.6
2.3

1.61.41.7
1.42.10.9

1.4

1.4
1.3

1.5

0.9

1.2

0.7
1.2

0.9

0.8
0.9

0.40.7
0.3

Figure 1: Percent of total cycles where the core is stalled
and waiting for memory for the SPEC CPU2006 bench-
mark suite. The benchmarks are sorted by memory
intensity. The average instructions per cycle (IPC) of
each benchmark is listed on top of each bar.

As Figure 1 exhibits, the applications with the low-
est IPC also generally spend the most time waiting for
memory. We define any application to have high mem-
ory intensity if it has a MPKI of over 10. This includes
roughly one third of the SPEC06 applications (any ap-
plication to the right of GemsFDTD in Figure 1). All of
these memory intensive applications spend over half of
their total cycles stalled waiting for memory and largely
have an IPC of under one.

This memory latency problem is commonly referred
to as the memory wall [38, 37]. One technique that
has been proposed to reduce the effect of the memory
wall on single-thread performance is runahead execu-
tion [10, 25]. In runahead, once a core is stalled and
waiting for memory, the processor’s architectural state
is checkpointed and the front-end continues to fetch and
execute instructions. This creates a prefetching effect.
The processor is able to use the application’s own code
to uncover additional cache misses when it would other-
wise be stalled, thereby reducing the effective memory
access latency of the subsequent demand request.

Runahead targets cache misses that have source data
available on-chip but cannot be issued by the core due to
limitations on the size of the reorder buffer. Therefore,
instructions executed in runahead cannot be dependent

on a prior instruction that is a cache miss. We define
“source data” as all of the data that is necessary for a
memory instruction to generate an address that results
in a cache miss. Figure 2 displays the fraction of all
cache misses that have source data available on-chip for
the SPEC06 benchmark suite.

ca
lc

u
lix

p
o
v
ra

y
n
a
m

d
g
a
m

e
ss

p
e
rl

b
e
n
ch

to
n
to

g
ro

m
a
cs

g
o
b
m

k
d
e
a
lII

sj
e
n
g

g
cc

h
m

m
e
r

h
2

6
4

b
zi

p
2

a
st

a
r

x
a
la

n
c

ze
u
sm

p
ca

ct
u
s

w
rf

G
e
m

s
le

sl
ie

o
m

n
e
t

m
ilc

so
p
le

x
sp

h
in

x
b
w

a
v
e
s

lib
q

lb
m

m
cf

0%

20%

40%

60%

80%

100%

%
 T

o
ta

l
C

a
ch

e
 M

is
se

s

Figure 2: Percent of all cache misses that have source
data available on chip.

We find that runahead targets the large majority of
all cache misses for the SPEC06 benchmark suite, as
Figure 2 shows that most source data is available on
chip. However, runahead execution requires the front-
end to remain on throughout the period of time when
the core would be otherwise stalled. As front-end power
consumption can reach 40% of total core power [1], this
can result in a significant energy overhead. We seek to
reduce this overhead with a new mode for runahead.
In this work, we observe that most of the dependence
chains that lead to cache misses in runahead execu-
tion are repetitive. We propose dynamically identifying
these chains and using them to runahead with a new
structure that we call a runahead buffer. This results
in two benefits. First, by targeting only the filtered de-
pendence chain, we frequently generate more MLP than
the baseline runahead scheme by running further ahead.
Second, by clock-gating the front-end during runahead
we incur a much lower energy cost than the baseline
runahead scheme.
We make the following contributions in this paper:

• We propose a mechanism to automatically identify
a dependence chain to use during runahead exe-
cution, based on the PC of an outstanding cache
miss.

• Using this mechanism, we dynamically fill depen-
dence chains into a structure we call a Runahead
Buffer. The operations in this buffer are then used
to runahead when the core is otherwise stalled. We
show that a system with a runahead buffer results
in up to a 17.2% average performance increase
along with a 6.7% decrease in energy consumption
over the memory intensive SPEC06 benchmarks.
This is compared to a 14.3% average performance
increase and 9.0% increase in energy consumption
for a system that uses traditional runahead exe-
cution. When a stream prefetcher is added to the

system, we observe a 37.5% performance increase
over the baseline. Traditional runahead and the
runahead buffer result in speedups of 48.3% and
48.2% respectively with a stream prefetcher.

• We propose a policy to dynamically switch be-
tween traditional runahead and the runahead buffer.
This policy maximizes the benefits of each mode,
selecting the runahead buffer when it is best to do
so and traditional runahead otherwise. With this
hybrid policy we observe a 21.0% performance in-
crease and 2.3% decrease in energy consumption
without prefetching and a 51.5% performance in-
crease with a stream prefetcher over the
no-prefetching baseline.

This paper is organized as follows. We discuss prior
related work in Section 2. Section 3 details the back-
ground of runahead execution and several observations
that lead to the runahead buffer. We discuss the mi-
croarchitecture of the runahead buffer in Section 4 and
our experimental methodology in Section 5. Our eval-
uation is in Section 6 and we conclude with Section 7.

2. RELATED WORK
There is a large body of prior work that uses hard-

ware prefetching to reduce data-access latency for de-
mand requests. This work can be generally divided into
two categories: prefetchers that predict future addresses
based on current and prior memory access patterns, and
prefetching effects that are based on pre-execution of
code. We first discuss prior work related to memory
address prediction.

Prefetchers that uncover stream or stride patterns
[11, 14, 27] require a small amount of hardware over-
head and are commonly implemented in modern pro-
cessors today [2]. These prefetchers can significantly
reduce data access latency for predictable data access
patterns, but can have heavy memory bandwidth re-
quirements as well as difficulties with complex access
patterns.

More advanced hardware prefetching techniques such
as correlation prefetching [5, 13, 17, 31, 28] aim to re-
duce average memory access latency for more unpre-
dictable cache misses. These prefetchers work by main-
taining large tables that correlate past cache miss ad-
dresses to future cache misses. The global-history buffer
[26] is a form of prefetching that uses a two-level in-
dexing scheme to reduce the need for large correlation
tables. Content-directed prefetching [8] does not re-
quire additional state to store pointers, but greedily
prefetches using values that it believes to be addresses.
This can result in a large number of inaccurate prefetch
requests and poor prefetch timeliness.

Prior work has also pre-executed code segments from
the running application with the goal of prefetching fu-
ture addresses. These “helper threads” can be either
obtained dynamically, or are generated by the compiler
or programmer, and can run on a core or specialized
hardware. Many prior works have researched statically
generated helper threads: Collins et al. [7] generate

helper-threads with compiler analysis and require free
hardware thread-contexts to execute them. Other work
also constructs helper threads manually or with a com-
piler [40, 4, 20]. Kim and Yeung [16] discuss tech-
niques for the static compiler to generate helper threads.
Statically-generated helper threads have also been pro-
posed to run on idle-cores of a multi-core processor [15,
3].

Dynamic generation of helper threads has also been
explored. Collins et al. [6] propose a mechanism to ex-
tract helper-threads dynamically from the back-end of a
processor by identifying dependence-chains. To remove
helper-thread generation from the critical path of the
processor, they propose adding large, post-retirement,
hardware structures that all operations are filtered
through. Once the helper threads are generated, they
run on free SMT thread contexts, requiring the front-
end to fetch and decode operations.

Slipstream [34] dynamically uses two threads to exe-
cute an application. The A-stream runs a filtered ver-
sion of the application ahead of the R-stream. The A-
stream can then communicate performance hints such
as branch-directions or memory addresses for prefetch-
ing back to the R-stream. However, Slipstream does
not target dependence chains during instruction filter-
ing, instead removing unimportant stores and highly
biased branches. Dynamic compilation techniques have
also been pursued for generating helper threads [39, 19].

We propose an extension to runahead execution for
out-of-order processors [24, 25]. Runahead allows the
core to continue fetching and executing operations while
the core is stalled and has the advantage over other
dynamic pre-execution techniques of not requiring free
hardware thread contexts to execute helper threads.
Runahead discards all completed work when data for
the blocking cache miss returns from memory. Tech-
niques similar to runahead have also been proposed that
do not discard completed work [33, 12]. We propose a
new runahead policy that identifies the exact depen-
dence chains to runahead with. We show that this in-
creases performance and energy-efficiency.

3. BACKGROUND
As Figure 2 shows, the majority of all cache misses

have source data available on-chip. Two main factors
prevent an out-of-order processor from issuing these
cache misses early enough to hide the effective memory
access latency of the operation. The first factor is the
limited resources of an out-of-order processor. An out-
of-order core can only issue operations up to the size of
its reorder buffer. Once this buffer is full, generally due
to a long-latency memory access, the core can not issue
additional operations that may result in a cache miss.
The second factor is branch prediction. Assuming that
limited resources are not an issue, the out-of-order pro-
cessor would have to speculate on the instruction stream
that generates the cache misses. However, prior work
has shown that even wrong-path memory requests are
generally beneficial for performance [23]. We consider
solutions to the first factor in this work.

Runahead execution for out-of-order processors [25] is
one solution to the first factor, the limited resources of
an out-of-order processor. Runahead is a dynamic hard-
ware mechanism that effectively expands the reorder
buffer. Once the retirement of instructions is stalled
by a long-latency memory access, the processor takes
several steps.

First, architectural state, along with the branch his-
tory register and return address stack, are checkpointed.
Second, the result of the memory operation that caused
the stall is marked as poisoned in the physical regis-
ter file. Once this has occurred, the processor continues
fetching and executing instructions with the goal of gen-
erating additional cache misses.

Any operation that uses poisoned source data prop-
agates the poison flag to its destination register. Store
operations cannot allow data to become globally observ-
able, as runahead execution is speculative. Therefore,
a special runahead cache is maintained to hold the re-
sults of stores and forward this data to runahead loads.
While runahead execution allows the core to generate
additional MLP, it has the downside of requiring the
front-end to be on and remain active when the core
would be otherwise stalled, using energy. We examine
this tradeoff in Section 3.1.

3.1 Runahead Observations
To uncover new cache misses, traditional runahead is-

sues all of the operations that are fetched by the front-
end to the back-end of the processor. Many of these
operations are not relevant to calculating the address
necessary for a subsequent cache miss. The operations
required to execute a cache miss are encapsulated in the
dependence chain of the miss. These are the only opera-
tions that are necessary to generate the memory address
that causes the cache miss. In Figure 3 we compare the
total number of operations executed in runahead to the
number of operations that are actually in a dependence
chain that is required to generate a cache miss.

ca
lc

ul
ix

po
vr

ay
na

m
d

ga
m

es
s

pe
rl

be
nc

h
to

nt
o

gr
om

ac
s

go
bm

k
de

al
II

sj
en

g
gc

c
hm

m
er

h2
64

bz
ip

2
as

ta
r

xa
la

nc
bm

k
ze

us
m

p
ca

ct
us w
rf

G
em

sF
D

TD
le

sl
ie

om
ne

tp
p

m
ilc

so
pl

ex
sp

hi
nx

bw
av

es
lib

qu
an

tu
m

lb
m

m
cf

0%

20%

40%

60%

80%

100%

To
ta

l O
pe

ra
ti

on
s

Ex
ec

ut
ed

 D

ur
in

g
R

un
ah

ea
d

Dependence Chain Other Operation

Figure 3: The average percentage of operations exe-
cuted in runahead that are necessary to cause cache
misses.

As Figure 3 shows, there are cases (omnetpp) where
all of the executed instructions in runahead are neces-
sary to uncover a cache miss. However, for most appli-
cations, this is not the case. For example, in mcf only

36 % of the instructions executed in runahead are neces-
sary to cause a new cache miss. Ideally, runahead would
only fetch and execute these required instructions, exe-
cuting other operations is a waste of energy.

To observe how often these dynamic dependence chains
vary, during each runahead interval, we trace the depen-
dence chain for each generated cache miss. This chain
is compared to all of the other dependence chains for
cache misses generated during that particular runahead
interval. Figure 4 shows how often each dependence
chain is unique, i.e. how often a dependence chain has
not been seen before in the current runahead interval.

ca
lc

ul
ix

po
vr

ay
na

m
d

ga
m

es
s

pe
rlb

en
ch

to
nt

o
gr

om
ac

s
go

bm
k

de
al

II
sj

en
g

gc
c

hm
m

er
h2

64
bz

ip
2

as
ta

r
xa

la
nc

bm
k

ze
us

m
p

ca
ct

us w
rf

G
em

sF
D

TD
le

sl
ie

om
ne

tp
p

m
ilc

so
pl

ex
sp

hi
nx

bw
av

es
lib

qu
an

tu
m

lb
m

m
cf

0%

20%

40%

60%

80%

100%

To
ta

l C
ac

he
 M

is
s

D
ep

en
de

nc
e

Ch
ai

ns

Repeated Chain Unique Chain

Figure 4: The average percentage of unique and re-
peated dependence chains leading to a cache miss in
a given runahead interval.

As Figure 4 demonstrates, we find that most depen-
dence chains are repeated, not unique, in a given runa-
head interval. This means that if an operation with
a given dependence chain generates a cache miss, it is
highly likely that a different dynamic instance of that
instruction with the same dependence chain will gen-
erate another cache miss in the same interval. This is
particularly true for the memory intensive applications
on the right side of Figure 4.

We also find that each of these dependence chains are
on average, reasonably short. Figure 5 lists the average
length of the dependence chains for the cache misses
generated during runahead in micro-operations (uops).

With the exception of omnetpp, all of the memory
intensive applications in Figure 5 have an average de-
pendence chain length of under 32 uops. Several bench-
marks, including mcf, libquantum, bwaves, and soplex,
have dependence chains of under 20 operations. Con-
sidering that the dependence chains that lead to cache
misses during runahead are short and repetitive, we pro-
pose dynamically identifying these chains from the re-
order buffer when the core is stalled. Once the chain is
determined, we runahead by executing operations from
this dependence chain. To accomplish this, we place
the chains in a runahead buffer, similar to a loop buffer
[9]. As the dependence chain is made up of decoded
uops, the runahead buffer is able to feed these decoded
ops directly into the back-end. Section 4 discusses how
the chains are identified and the hardware structures
required to support the runahead buffer.

ca
lc

u
lix

p
ov

ra
y

n
am

d
g
am

es
s

p
er

lb
en

ch
to

n
to

g
ro

m
ac

s
g
ob

m
k

d
ea

lII
sj

en
g

g
cc

h
m

m
er

h
2

6
4

b
zi

p
2

as
ta

r
xa

la
n
c

ze
u
sm

p
ca

ct
u
s

w
rf

G
em

s
le

sl
ie

om
n
et

m
ilc

so
p
le

x
sp

h
in

x
b
w

av
es

lib
q

lb
m

m
cf

A
ve

ra
g
e0

10

20

30

40

50

60

70

80

D
ep

en
d
en

ce
 C

h
ai

n
 L

en
g
th

Figure 5: The average length of a dependence chain
leading to a cache miss during runahead in uops.

4. RUNAHEAD BUFFER
MICROARCHITECTURE

4.1 Hardware Modifications
To support the runahead buffer, small modifications

are required to the traditional runahead scheme. A
high-level view of a standard out-of-order processor is
shown in Figure 6. We consider the front-end to in-
clude the fetch and decode stages of the pipeline. The
back-end consists of the rename, select/wakeup, regis-
ter read, execute and commit stages. To support tradi-
tional runahead execution, the shaded modifications are
required. The physical register file must include poison
bits so that poisoned source and destination operands
can be marked. This is denoted in the register read
stage. Additionally, the pipeline must support check-
pointing architectural state, so that normal execution
can recommence when the blocking operation returns
from memory, and a runahead cache for forwarding store
data as in [25]. These two changes are listed in the ex-
ecute stage.

The runahead buffer requires two further modifica-
tions to the pipeline: the ability to dynamically gener-
ate dependence chains in the back-end and the runahead
buffer, which holds the dependence chain itself. We also
describe a small dependence chain cache in Section 4.4
to reduce how often chains are generated.

To generate and read filtered dependence chains out
of the ROB, we use a pseudo-wakeup process. This re-
quires every decoded uop to be available in the ROB and
for the PC and destination register field to be search-
able. Both the PC and destination register are already
part of the ROB entry of an out-of-order processor. Des-
tination register IDs are necessary to reclaim physical
registers at retirement. Program counters are stored to
support rolling back mispredicted branches and excep-
tions [30]. However, decoded uop information can be
discarded upon instruction issue. We add 4-bytes per
ROB entry to maintain this information until retire-
ment.

We use both architectural register ids and physical
register ids during the psuedo-wakeup process and runa-
head buffer execution. Physical register ids are used

Fetch Decode Rename Select/

Wakeup

Register

 Read
Execute Commit

Figure 6: The runahead buffer pipeline.

LD [R1] -> R2

LD [R3] -> R5

ADD R4, R5 -> R9

LD [R7] -> R8

MOV R6->R7

ADD R9, R1 ->R6

Cycle 0
PC

0xA

0xD

0xE

0x7

0x8

0xA

Source Register

Search List: R7

Figure 7: The dependence chain generation process. Listed register IDs correspond to physical registers. Only
relevant uops are shown, other uops are hashed out.

during the dependence chain generation process. The
runahead buffer itself is placed in the rename stage, as
operations issued from the buffer are decoded but need
to be renamed for out-of-order execution. Architectural
register ids are used by the renamer once the operations
are issued from the runahead buffer into the back-end of
the processor. We describe the pseudo-wakeup process
for generating dependence chains in Section 4.2.

4.2 Entering Runahead
Once a miss has propagated to the top of the reorder

buffer, as in the traditional runahead scheme, runahead
execution begins and the state of the architectural reg-
ister file is checkpointed. This also triggers creation of
the dependence chain for the runahead buffer. Figure 7
shows an example of this process with code from mcf.
Control instructions are omitted in Figure 7 and not
included in the chain, as the ROB contains a branch-
predicted stream of operations. The dependence chain
does not need to be contiguous in the ROB, only rel-
evant operations are shown and other operations are
hashed out.

In Figure 7, the load stalling the ROB is at PC:0xA.
This load cannot be used for dependence chain genera-
tion as its source operations have likely retired. Instead,
we speculate that a different dynamic instance of that
same load is present in the ROB. This is based on the
data from Figure 4 that showed that if a dependence
chain generates a cache miss, it is very likely to gener-
ate additional cache misses.

Therefore, in cycle 0, we search the ROB for a dif-
ferent load with the same PC. To accomplish this, we
modify the ROB to include a program-order based pri-

ority content addressable memory (CAM) for the PC
and destination register ID field. This is similar to the
CAM employed by the store-queue.

If the operation is found with the CAM, it is included
in the dependence chain (denoted by shading in Figure
7). We track the uops that are included in the depen-
dence chain with a bit-vector that includes one bit for
every operation in the ROB. The source physical reg-
isters for the included operation (in this case R7) are
maintained in a source register search list. These regis-
ters are used to generate the dependence chain.

During the next cycle, the destination registers in the
ROB are searched using a CAM to find the uop that
produces the source register for the miss. In this case,
R7 is generated by a move from R6. In cycle 1, this is
identified. R6 is added to the source register search list
while the move operation is added to the dependence
chain.

This process continues in cycle 2. The operation that
produces R6 is located in the reorder buffer, in this case
an ADD, and its source registers are added to the search
list (R9 and R1). Assuming that only one source reg-
ister can be searched for per cycle, in cycle 3 R4 and
R5 are added to the search list and the second ADD is
included in the dependence chain. This process is con-
tinued until the source register search list is empty, or
the maximum dependence chain length (32 uops, based
on Figure 5) is met. In Figure 7, this process takes 7
cycles to complete. In cycle 4 R1 finds no producers and
in cycle 5 R4 finds no producing operations. In cycle 6,
the load at address 0xD is included in the dependence
chain, and in cycle 7 R3 finds no producers.

As register spills and fills are common in x86, loads
additionally check the store queue to see if the load
value is dependent on a prior store. If so, the store is
included in the dependence chain and its source regis-
ters are added to the source register search list. We
note that as runahead is speculative, the dependence
chains are not required to be exact. We seek to gen-
erate a prefetching effect. While using the entire de-
pendence chain is ideal, we find that capping the chain
at 32 uops is sufficient for most applications. This de-
pendence chain generation algorithm is summarized in
Algorithm 1.

Once the chain is generated, the operations are read
out of the ROB with the superscalar width of the back-
end (4 uops in our evaluation) and placed in the runa-
head buffer. Runahead execution then commences as in
the traditional runahead policy.

Algorithm 1 Runahead Buffer dependence chain
generation.
SRSL: Source Register Search List
ROB: Reorder Buffer
DC: Dependence Chain
MAXLENGTH: 32

if ROB Full then
Get PC of op causing stall.
Search ROB for another op with same PC.
if Matching PC found then

Add oldest matching op to DC.
Enqueue all source registers to SRSL.
while SRSL != EMPTY and
DC < MAXLENGTH do

Dequeue register from SRSL.
Search ROB for op that produces register.
if Matching op found then

Add matching op to DC.
Enqueue all source registers to SRSL.
if Matching op is load then

Search store buffer for load address.
if Store buffer match then

Add matching store to DC.
Enqueue all source registers to SRSL.

end if
end if

end if
end while
Fill runahead buffer with DC from ROB.
Start runahead execution.

end if
end if

4.3 Runahead Buffer Execution
Execution with the runahead buffer is similar to tra-

ditional runahead execution except operations are read
from the runahead buffer as opposed to the front-end.
The runahead buffer is placed in the rename stage. Since
the dependence chain is read out of the ROB, operations
issued from the runahead buffer are pre-decoded, but
must be renamed to physical registers to support out-

of-order execution. Operations are renamed from the
runahead buffer at up to the superscalar width of the
processor. Dependence chains in the buffer are treated
as loops, once one iteration of the dependence chain is
completed the buffer starts issuing from the beginning
of the dependence chain once again. As in traditional
runahead, stores write their data into a runahead cache
so that data may be forwarded to runahead loads. The
runahead buffer continues issuing operations until the
data of the load that is blocking the ROB returns. The
core then exits runahead, as in [25], and regular execu-
tion commences.

4.4 Dependence Chain Cache
We find that a cache to hold generated dependence

chains can significantly reduce how often chains need
to be generated prior to using the runahead buffer. We
use a very small cache that is indexed by the PC of
the operation that is blocking the ROB. Dependence
chains are inserted into this cache after they are fil-
tered out of the ROB. The chain cache is checked for
a hit before beginning the construction of a new de-
pendence chain. We disallow any path-associativity, so
only one dependence chain may exist in the cache for
every PC. As dependence chains can vary between dy-
namic instances of a given static load, we find that it is
important for this cache to remain small. This allows
old dependence chains to age out of the cache. Note
that chain cache hits do not necessarily match the ex-
act dependence chains that would be generated from the
reorder buffer, we explore this further in Section 6.1.

4.5 Runahead Buffer Hybrid Policies
Algorithm 1 describes the steps necessary to generate

a dependence chain for the runahead buffer. In addi-
tion to this algorithm, we propose a hybrid policy that
chooses between traditional runahead and the runahead
buffer with a chain cache. For this policy, if one of
two events occur during the chain generation process,
the core begins traditional runahead execution instead
of using the runahead buffer. These two events are:
an operation with the same PC as the operation that
is blocking the ROB is not found in the ROB, or the
generated dependence chain is too long (more than 32
operations).

If an operation with the same PC is not found in the
ROB, we predict that the current PC will not gener-
ate additional cache misses in the near future. There-
fore, traditional runahead will likely be more effective
than the runahead buffer. Similarly, if the dependence
chain is longer than 32 operations, we predict that the
dynamic instruction stream leading to the next cache
miss is likely to differ from the dependence chain that
will be obtained from the ROB (due to a large number
of branches). Once again, this means that traditional
runahead is preferable to the runahead buffer, as tradi-
tional runahead can dynamically predict the instruction
stream with the core’s branch predictor, while the runa-
head buffer executes a simple loop. This hybrid policy
is summarized in Figure 8 and evaluated in Section 6.1.

Core 4-Wide Issue, 192 Entry ROB, 92 Entry Reservation Station, Hybrid Branch Predictor,
3.2 GHz Clock Rate.

Runahead Buffer 32-entry. Micro-op size: 8 Bytes. 256 Total Bytes.
Runahead Cache 512 Byte, 4-way Set Associative, 8 Byte Cache Lines.
Chain Cache 2-entries, Fully Associative, 512 Total Bytes.
L1 Caches 32 KB I-Cache, 32 KB D-Cache, 64 Byte Cache Lines, 2 Ports, 3 Cycle Latency,

8-way Set Associative, Write-back.

Last Level Cache 1MB, 8-way Set Associative, 64 Byte Cache Lines, 18-cycle Latency, Write-back, Inclusive.
Memory Controller 64 Entry Memory Queue.
Prefetcher Stream [35]: 32 Streams, Distance 32, Degree 2. Prefetch into Last Level Cache. Prefetcher

Throttling: FDP [32]
DRAM DDR3[21], 1 Rank of 8 Banks/Channel, 8KB Row-Size, CAS 13.75ns, Bank-Conflicts &

Queuing Delays Modeled, 800 MHz Bus. 2 Channels.

Table 1: System Configuration

High (MPKI >= 10) mcf, libquantum, bwaves, lbm, sphinx3, omnetpp, milc, soplex, leslie3d, GemsFDTD
Medium (MPKI >2) zeusmp, cactusADM, wrf
Low (MPKI <= 2) perlbench, bzip2, gcc, gobmk, hmmer, sjeng, h264ref, astar, xalancbmk, gamess, gromac,

namd, dealII, povray, calculix, tonto

Table 2: SPEC06 Workload Classification by Memory Intensity

Begin Runahead

Execution

Matching PC

Found in

ROB

Dependence

Chain found

in Chain Cache

Yes

No
Use Traditional

Runahead

Use Cached

Chain in Runahed

Buffer

Dependence

Chain found

in Chain Cache

No

Yes

Dependence

Chain < 32

micro-ops

Yes

No

Use Dependence

Chain in Runahead

Buffer

Figure 8: A flow chart of the hybrid policy.

4.6 Runahead Enhancements
We find that the traditional runahead execution pol-

icy significantly increases the total dynamic instruction
count. This is due to repetitive and unnecessary runa-
head intervals as discussed in [24]. We implement the
two hardware controlled policies from that paper. These
policies limit how often the core can enter runahead
mode. The first policy states that the core does not
enter runahead mode unless the operation blocking the
ROB was issued to memory less than a threshold num-
ber of instructions ago (we use 250). The goal of this op-
timization is to ensure that the runahead interval is not
too short. It is important for there to be enough time

to enter runahead mode and generate MLP. The sec-
ond policy states that the core does not enter runahead
unless it has executed further than the last runahead
interval. The goal of this optimization is to eliminate
overlapping runahead intervals. This policy helps en-
sure that runahead does not waste energy uncovering
the same cache miss over and over again.

These policies are implemented in the runahead en-
hancements policy evaluated in Section 6.3 and the Hy-
brid policy described in Section 4.5. As the runahead
buffer does not use the front-end during runahead, we
find that these enhancements do not noticeably effect
energy consumption for the runahead buffer policies.

5. METHODOLOGY
We use an execution driven, x86 cycle-level accurate

simulator to model the runahead buffer. The front-end
of the simulator is based on Multi2Sim [36]. The simula-
tor faithfully models core microarchitectural details, the
cache hierarchy, wrong-path execution, and includes a
detailed non-uniform access latency DDR3 memory sys-
tem. System details are listed in Table 1. The core uses
a 192 entry reorder buffer. The cache hierarchy contains
a 32KB instruction cache and a 32KB data cache with
1MB of last level cache. We model a stream prefetcher
(based on the stream prefetcher in the IBM POWER4
[35]).

The runahead buffer we use in our evaluation can
hold up to 32 micro-ops, this number was determined
as best through sensitivity analysis. The dependence
chain cache for the runahead buffer consists of two 32
micro-op entries. We additionally require a 24 byte bit
vector to mark the operations in the ROB that are in-
cluded in the dependence chain during chain genera-
tion, a sixteen element source register search list, and
add 4-bytes per ROB entry to store micro-ops. The to-
tal storage overhead for the runahead buffer system is
estimated at 1.7 kB.

We evaluate on the SPEC CPU2006 benchmark suite,
but focus on the medium and high memory intensive
applications (Table 2). Each application is simulated
for 50 million instructions from a representative Sim-
Point [29]. Chip energy is modeled using McPAT 1.3
[18] and computed using total execution time, “runtime
dynamic” power, and “total leakage power”. McPAT
models clock-gating the front-end during idle cycles for
all simulated systems. DRAM power is modeled using
CACTI 6.5 [22].

To enter runahead, both runahead and the runahead
buffer require checkpointing the current architectural
state. This is modeled by copying the physical regis-
ters pointed to by the register alias table (RAT) to a
checkpoint register file. This occurs concurrently with
dependence chain generation for the runahead buffer or
before runahead can commence in the baseline runahead
scheme. For dependence chain generation, we model a
CAM for the destination register id field where up to
two registers can be matched every cycle.

We model the runahead buffer dependence chain gen-
eration process with the following additional energy
events. Before entering runahead, a single CAM on
PCs of operations in the ROB is required to locate a
matching load for dependence chain generation. Each
source register included in the source register search list
requires a CAM on the destination register ids of opera-
tions in the ROB to locate producing operations. Each
load instruction included in the chain requires an addi-
tional CAM on the store queue to search for source data
from prior stores. Each operation in the chain requires
an additional ROB read when it is sent to the runahead
buffer. The energy events corresponding to entering
runahead are: a register alias table (RAT) and physical
register reads for each architectural register and a write
into a checkpoint register file.

6. RESULTS
We use instructions per cycle (IPC) as the perfor-

mance metric for our single core evaluation. During our
performance evaluation we compare to performance op-
timized runahead (without the enhancements discussed
in Section 4.6) as these enhancements negatively impact
performance. During our energy evaluation, we com-
pare to energy optimized runahead, which uses these
enhancements. We begin by evaluating the runahead
buffer without prefetching in Section 6.1 and then with
a stream prefetcher in Section 6.2.

6.1 Runahead Buffer Performance Results
Figure 9 shows the results of our experiments on the

SPEC2006 benchmark suite. Considering only the low
memory intensity applications in Table 2, we observe an
average 0.8% speedup with traditional runahead. These
benchmarks are not memory-limited and the techniques
that we are evaluating have little to no-effect on perfor-
mance. We therefore concentrate and the medium and
high memory intensity benchmarks for this evaluation.

We evaluate four different systems against a
no-prefetching baseline based on the parameters in Ta-

ble 1. The “Runahead” system utilizes traditional out-
of-order runahead execution. The “Runahead Buffer”
system utilizes our proposed mechanism and does not
have the ability to traditionally runahead. The “Runa-
head Buffer + Chain Cache” is the Runahead Buffer
system but with an added cache that stores up to two,
32-operation dependence chains. The final system uses
a “Hybrid” policy that combines the Runahead Buffer
+ Chain Cache system with traditional Runahead.

ca
lc

u
lix

p
o
v
ra

y
n
a
m

d
g
a
m

e
ss

p
e
rl

b
e
n
ch

to
n
to

g
ro

m
a
cs

g
o
b
m

k
d
e
a
lII

sj
e
n
g

g
cc

h
m

m
e
r

h
2

6
4

b
zi

p
2

a
st

a
r

x
a
la

n
c

ze
u
sm

p
ca

ct
u
s

w
rf

G
e
m

s
le

sl
ie

o
m

n
e
t

m
ilc

so
p
le

x
sp

h
in

x
b
w

a
v
e
s

lib
q

lb
m

m
cf

G
M

e
a
n5

0
5

10
15
20
25
30
35
40

%
 I
P
C

 D
if
fe

re
n
ce

 o

v
e
r

N
o
-P

F
B

a
se

lin
e

Runahead

Runahead Buffer

Runahead Buffer + Chain Cache

Hybrid

Figure 9: Performance of runahead configurations nor-
malized to a No-Prefetching system. Benchmarks are
sorted from lowest to highest memory intensity.

Considering only the medium and high memory in-
tensity benchmarks, we observe performance improve-
ments of 14.3%, 14.4%, 17.2% and 21.0% with tradi-
tional Runahead, the Runahead Buffer, Runahead Buffer
+ Chain Cache and Hybrid policy systems respectively.
Traditional runahead performs well on omnetpp and
sphinx, two benchmarks with longer average dependence
chain lengths in Figure 5. The runahead buffer does
particularly well on mcf, an application with short de-
pendence chains, as well as lbm and milc, which have
longer average dependence chains but a large number
of unnecessary operations executed during traditional
runahead (Figure 3).

By not executing these excess operations we find that
the runahead buffer is able to generate more MLP than
traditional runahead. Figure 10 shows the average num-
ber of cache-misses that are generated by runahead ex-
ecution and the runahead buffer for the medium and
high memory intensity SPEC06 benchmarks.

We observe that the runahead buffer generates over
twice as many cache misses on average when compared
to traditional runahead execution. Benchmarks where
the runahead buffer shows performance gains over tra-
ditional runahead such as zeusmp, cactus, milc, bwaves,
and mcf all show large increases in the number of cache
misses produced by the runahead buffer. One appli-
cation that does not perform well with the runahead
buffer, sphinx, also shows a large increase in generated
MLP. Figure 16, shows that this traffic is due to inaccu-
rate memory requests. We mitigate this problem with
our hybrid policy.

ze
us

m
p

ca
ct

us w
rf

G
em

s

le
sl

ie

om
ne

t

m
ilc

so
pl

ex

sp
hi

nx

bw
av

es lib
q

lb
m

m
cf

A
ve

ra
ge

0
2
4
6
8

10
12
14
16
18

C
ac

he
-M

is
se

s
pe

r
R

un
ah

ea
d

In
te

rv
al

Runahead

Runahead Buffer

Runahead + PF

Runahead Buffer + PF

Figure 10: The average number of memory accesses
per runahead interval generated by traditional runa-
head and the runahead buffer.

In addition to generating more MLP than traditional
runahead on average, the runahead buffer also has the
advantage of not using the front-end during runahead.
The percent of total cycles that the front-end is idle and
can be clock-gated with the runahead buffer are shown
in Figure 11 for the medium and high memory intensity
SPEC06 benchmarks.

ze
u
sm

p

ca
ct

u
s

w
rf

G
e
m

s

le
sl

ie

o
m

n
e
t

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
ve

s

lib
q

lb
m

m
cf

A
ve

ra
g
e0%

20%

40%

60%

80%

100%

%
 T

o
ta

l C
yc

le
s

Figure 11: The percent of total cycles that the core is
in runahead buffer mode.

On average, 47% of total execution cycles are spent in
runahead buffer mode. By not using the front-end dur-
ing this time, we reduce the dynamic energy consump-
tion vs. traditional runahead execution on average, as
discussed in the energy evaluation in Section 6.3.

Dependence Chain Cache: Looking beyond the
simple runahead buffer policy, Figure 9 additionally shows
the result of adding a small dependence chain cache to
the runahead buffer system. This chain cache generally
improves performance when added to the system, par-
ticularly for mcf, soplex, and GemsFDTD. Figure 12
shows the hit rate for the medium and high memory
intensity applications in the chain cache.

The applications that show the highest performance
improvements with a chain cache show very high hit
rates in Figure 12, generally above 95%. The chain
cache broadly improves performance over using a runa-
head buffer alone. We observe a slight performance drop
in sphinx, an application where the runahead buffer does
not perform better than traditional runahead.

The dependence chains in the chain cache do not nec-
essarily match the exact dependence chains that would
be generated from the reorder buffer. A chain cache
hit is speculation that it is better to runahead with a
previously generated chain than it is to take the time
to generate a new chain. We find that this is an ac-
ceptable trade-off. In Figure 13, we analyze all chain
cache hits to determine if the stored dependence chain
matches the dependence chain that would be generated
from the ROB.

ze
u
sm

p

ca
ct

u
s

w
rf

G
e
m

s

le
sl

ie

o
m

n
e
t

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
ve

s

lib
q

lb
m

m
cf

A
ve

ra
g
e0%

20%

40%

60%

80%

100%

C
h
a
in

 C
a
ch

e
 H

it
 R

a
te

Figure 12: The chain cache hit-rate.

ze
u
sm

p

ca
ct

u
s

w
rf

G
e
m

s

le
sl

ie

o
m

n
e
t

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
ve

s

lib
q

lb
m

m
cf

A
ve

ra
g
e0%

20%

40%

60%

80%

100%
%

 T
o
ta

l C
h
a
in

-C
a
ch

e
 H

it
s

Figure 13: The percent of total chain cache hits that
exactly match the dependence chain that would be gen-
erated from the ROB.

On average, the chain cache is reasonably accurate,
with 53% of all dependence chains matching exactly.
The two applications where the runahead buffer is not
ideal, omnetpp and sphinx, show significantly less accu-
rate chain cache hits than the other benchmarks.

Hybrid Policy: Lastly, the hybrid policy results in
a average performance gain of 21.0% over the baseline.
Figure 14 displays the fraction of time spent using the
runahead buffer during the hybrid policy.

As Figure 14 shows, the hybrid policy favors the runa-
head buffer. 71% of the time the policy executes using
the runahead buffer, the remainder is spent in tradi-
tional runahead. Applications that do not do well with
the runahead buffer either the majority of the time (om-
netpp), or a large fraction of the time (sphinx), execut-
ing traditional runahead execution. We conclude that
the hybrid policy improves performance over the other
schemes by using traditional runahead when it is best
to do so (as in omnetpp) and leveraging the runahead
buffer otherwise (as in mcf).

ze
u
sm

p

ca
ct

u
s

w
rf

G
e
m

s

le
sl

ie

o
m

n
e
t

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
ve

s

lib
q

lb
m

m
cf

A
ve

ra
g
e0%

20%

40%

60%

80%

100%
%

 R
u
n
a
h
e
a
d
 C

yc
le

s

Figure 14: The percentage of cycles spent in runahead
where the runahead buffer is used for the hybrid policy.

6.2 Comparison to Stream Prefetching
Figure 15 shows the effect of adding a stream prefetcher

to the system for the memory intensive SPEC06 bench-
marks.

ze
u
sm

p

ca
ct

u
s

w
rf

G
e
m

s

le
sl

ie

o
m

n
e
t

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

G
M

e
a
n20

0

20

40

60

80

100

120

140

%
 I
P
C

 D
if
fe

re
n
ce

 o

v
e
r

N
o
-P

F
 B

a
se

lin
e

PF

Runahead + PF

Runahead Buffer + PF

Runahead Buffer + Chain Cache + PF

Hybrid + PF

Figure 15: Performance with prefetching normalized to
a No-Prefetching (No-PF) baseline system.

The stream prefetcher improves performance by 37.5%
on average. Traditional runahead execution improves
performance by 48.3% when combined with a stream
prefetcher. The runahead buffer improves performance
by 47.1% without a chain cache and 48.2% with a chain
cache. The hybrid policy improves performance by 51.5%.

Runahead and the runahead buffer do well in cases
where the stream prefetcher does not, such as zeusmp,
cactus, and mcf. In the other cases, not including wrf,
the hybrid policy is the highest performing policy on
average. Runahead does not improve performance over
prefetching in wrf. In general, we find that the runahead
buffer in combination with prefetching improves core
performance beyond using only a prefetcher. However,
in addition to performance, the effect of prefetching on
memory bandwidth is an important design considera-
tion, as prefetching requests are not always accurate.
Figure 16 quantifies the memory system overhead for
prefetching and runahead.

On average, we find that the memory bandwidth re-
quirements of runahead execution are small, especially
when compared to a stream prefetcher. Traditional

ze
u
sm

p

ca
ct

u
s

w
rf

G
em

s

le
sl

ie

om
n
et

m
ilc

so
p
le

x

sp
h
in

x

b
w

av
es

lib
q

lb
m

m
cf

G
M

ea
n0%

10%

20%

30%

40%

50%

%
 M

em
or

y
Tr

af
fi
c

In
cr

ea
se

75.2 76.3 76.9 62.4

Runahead

Runahead Buffer

Runahead Buffer + Chain Cache

Hybrid

PF

Figure 16: The number of additional DRAM requests
generated by runahead and prefetching, normalized to
the no-prefetching baseline.

runahead has a very small impact of memory traffic,
increasing the total number of DRAM requests by 4%.
This highlights the accuracy benefit of using fragments
of the application’s own code to prefetch. Using the
runahead buffer alone increases memory traffic by 12%,
including outliers like omnetpp and sphinx where the
runahead buffer does not work well and increases mem-
ory traffic with inaccurate requests. The hybrid policy
reduces overall DRAM traffic from 12% to 9%. Even
with prefetcher throttling, the stream prefetcher has the
highest DRAM overhead, issuing 38% more requests
than in the baseline. While a stream prefetcher can
significant increase performance, it also significantly in-
creases memory traffic. We show in Section 6.3 that this
excess memory traffic does not have a negative impact
of energy-consumption in a single-core setting.

Figure 10 shows the effect that prefetching has on the
amount of MLP that runahead can generate. As the
prefetcher is able to prefetch some of the addresses that
runahead generates, we find that a stream prefetcher
reduces the MLP generated by traditional runahead by
27% on average and the runahead buffer by 36% on av-
erage. However, the runahead buffer is able to generate
80% more MLP than traditional runahead on average.

6.3 Energy Analysis
As discussed in Section 5, we evaluate system energy

consumption using McPAT 1.3. The normalized results
for the system without/with prefetching are shown in
Figure 17/Figure 18 respectively.

Runahead alone drastically increases energy consump-
tion due to very high dynamic instruction counts, as the
front-end fetches and decodes instructions during peri-
ods where it would be otherwise idle. This observation
has been made before [24], and several mechanisms have
been proposed to reduce the dynamic instruction count,
as discussed in Section 4.6. From this work, we imple-
ment the two hardware-based mechanisms that reduce
the dynamic instruction count the most in “Runahead
Enhancements”. These mechanisms seek to eliminate
short and overlapping runahead intervals.

ze
u
sm

p

ca
ct

u
s

w
rf

G
e
m

s

le
sl

ie

o
m

n
e
t

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

G
M

e
a
n20

10

0

10

20

30

40

50

60
%

 E
n
e
rg

y
 D

if
fe

re
n
ce

 o

v
e
r

N
o
-P

F
B

a
se

lin
e

105.0 126.2 120.3 75.4

Runahead

Runahead Enhancements

Runahead Buffer

Runahead Buffer + Chain Cache

Hybrid

Figure 17: Normalized energy consumption for the sys-
tem without prefetching.

ze
u
sm

p

c
a
c
tu

s

w
rf

G
e
m

s

le
sl

ie

o
m

n
e
t

m
il
c

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

li
b
q

lb
m

m
c
f

G
M

e
a
n60

40

20

0

20

40

%
 E

n
e
rg

y
 D

if
fe

re
n
c
e

 o
v
e
r

N
o
-P

F
 B

a
se

li
n
e

108.43

PF

Runahead + PF

Runahead Enhancements + PF

Runahead Buffer + PF

Runahead Buffer + Chain Cache + PF

Hybrid + PF

Figure 18: Normalized energy consumption for the sys-
tem with prefetching.

With these enhancements, we observe drastically lower
energy consumption with a 2.1% average degradation
of runahead performance vs. the baseline (2.6% with
prefetching). Traditional runahead increases system en-
ergy consumption by 44% and the system with the runa-
head enhancements increases energy consumption by
9% on average.

The runahead buffer reduces dynamic energy con-
sumption by leaving the front-end idle during runahead
periods. This allows the runahead buffer system to de-
crease average energy consumption by 4.4% without a
chain cache and 6.7% with a chain cache. The hybrid
policy decreases energy consumption by 2.3% on aver-
age. The runahead buffer decreases energy consumption
more than the hybrid policy because the hybrid policy
spends time in the more inefficient traditional runahead
mode to maximize performance.

When prefetching is added to the system, we find
that runahead + prefetching decreases energy consump-
tion by 1.7% on average. Adding the runahead en-
hancements to traditional runahead decreases energy
consumption by 15.4% over the no-prefetching baseline.
As prefetching decreases energy consumption by 19.5%
on average, both traditional runahead schemes increase

energy consumption over a prefetching baseline. The
runahead buffer designs further decrease energy con-
sumption when combined with a stream prefetcher. The
runahead buffer, runahead buffer + chain cache, and
hybrid policy result in 20.8%, 22.5%, and 19.9% en-
ergy reductions from the baseline respectively. As in
the no-prefetching scenario, we conclude that the runa-
head buffer + chain cache is the most energy efficient
form of runahead execution.

7. CONCLUSION
We present an approach to increase the effectiveness

of runahead execution for out-of-order processors. We
identify that many of the operations that are executed
in traditional runahead execution are unnecessary to
generate cache-misses. Using this insight, we instead
dynamically generate filtered dependence chains that
only contain the operations that are required for a cache-
miss. We find these chains to generally be short. The
operations in a dependence chain are read into a buffer
and speculatively executed as if they were in a loop
when the core would be otherwise idle. This allows the
front-end to be idle for 47% of the total execution cy-
cles of the medium and high memory intensity SPEC06
benchmarks on average.

With this runahead mechanism, we generate over twice
as much MLP on average as traditional runahead exe-
cution. This leads to a 17.2% performance increase and
6.7% decrease in energy consumption over a system with
no-prefetching. Traditional runahead execution results
in a 14.3% performance increase and 9.5% energy in-
crease, assuming additional optimizations. Addition-
ally, we propose a hybrid policy that uses traditional
runahead alongside the runahead buffer when it is ad-
vantageous to do so. This policy increases performance,
resulting in a 21.0% performance gain, but consumes
additional energy, leading to a 2.3% energy reduction
against a no-prefetching baseline. With prefetching, we
observe an additional 10.7% and 14% performance gain
for the runahead buffer and hybrid policy and a 3.0%
and .4% energy decrease respectively. We observe that
our policies require a fraction of the bandwidth con-
sumption of a stream prefetcher.

Overall, we find that dynamically identifying specific
instructions to runahead with results in a more capable
and energy efficient version of runahead execution. The
Runahead Buffer is a small structure, requiring 1.7 kB
of total storage, that increases performance for memory
latency-bound, single-threaded applications.

8. ACKNOWLEDGMENTS
We thank the members of the HPS research group

and the anonymous reviewers for their comments and
suggestions. Many thanks to Onur Mutlu, Khubaib,
and Doug Carmean for helpful technical discussions.
We gratefully acknowledge the support of the Cockrell
Foundation and Intel Corporation.

9. REFERENCES
[1] “NVIDIA Tegra 4 Family CPU Architecture,”

http://www.nvidia.com/docs/IO/116757/NVIDIA Quad
a15 whitepaper FINALv2.pdf, 2013, [Online; Page 13;
Accessed 8-May-2015].

[2] “Intel 64 and IA-32 Architectures Optimization Reference
Manual,” http://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-architectures-
optimization-manual.pdf, 2014, [Online; Page 54; Accessed
4-May-2015].

[3] J. A. Brown, H. Wang, G. Chrysos, P. H. Wang, and J. P.
Shen, “Speculative precomputation on chip
multiprocessors,” in In Proceedings of the 6th Workshop on
Multithreaded Execution, Architecture, and Compilation,
2001.

[4] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and
Y. N. Patt, “Simultaneous subordinate microthreading
(SSMT),” in ISCA-26, 1999.

[5] M. J. Charney and A. P. Reeves, “Generalized
correlation-based hardware prefetching,” Cornell Univ.,
Tech. Rep. EE-CEG-95-1, 1995.

[6] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen,
“Dynamic speculative precomputation,” in MICRO-34,
2001.

[7] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F.
Lee, D. Lavery, and J. P. Shen, “Speculative
precomputation: long-range prefetching of delinquent
loads,” in ISCA-28, 2001.

[8] R. Cooksey, S. Jourdan, and D. Grunwald, “A stateless,
content-directed data prefetching mechanism,” in
ASPLOS-10, 2002.

[9] Cray Research, Inc., “Cray-1 computer systems, hardware
reference manual 2240004,” 1977.

[10] J. Dundas and T. Mudge, “Improving data cache
performance by pre-executing instructions under a cache
miss,” in ICS-11, 1997.

[11] J. D. Gindele, “Buffer block prefetching method,” IBM
Technical Disclosure Bulletin, vol. 20, no. 2, pp. 696–697,
Jul. 1977.

[12] A. Hilton and A. Roth, “Bolt: Energy-efficient out-of-order
latency-tolerant execution,” in HPCA-16, 2010.

[13] D. Joseph and D. Grunwald, “Prefetching using markov
predictors,” in ISCA-24, 1997.

[14] N. Jouppi, “Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch
buffers,” in ISCA-17, 1990.

[15] M. Kamruzzaman, S. Swanson, and D. M. Tullsen,
“Inter-core prefetching for multicore processors using
migrating helper threads,” in ASPLOS-16, 2011.

[16] D. Kim and D. Yeung, “Design and evaluation of compiler
algorithms for pre-execution,” in ASPLOS-10, 2002.

[17] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction
and dead-block correlating prefetchers,” in ISCA-28, 2001.

[18] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: an integrated power,
area, and timing modeling framework for multicore and
manycore architectures,” in MICRO-42, 2009.

[19] J. Lu, A. Das, W.-C. Hsu, K. Nguyen, and S. G. Abraham,
“Dynamic helper threaded prefetching on the Sun
UltraSPARC CMP Processor,” in MICRO-38, 2005.

[20] C.-K. Luk, “Tolerating memory latency through
software-controlled pre-execution in simultaneous
multithreading processors,” in ISCA-28, 2001.

[21] “MT41J512M4 DDR3 SDRAM Datasheet Rev. K Micron
Technology, Apr. 2010,,” http://download.micron.com/pdf/
datasheets/dram/ddr3/2Gb DDR3 SDRAM.pdf.

[22] N. Muralimanohar and R. Balasubramonian, “Cacti 6.0: A
tool to model large caches,” in HP Laboratories, Tech. Rep.
HPL-2009-85, 2009.

[23] O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt,
“Understanding the effects of wrong-path memory
references on processor performance,” in Third Workshop
on Memory Performance Issues, 2004.

[24] O. Mutlu, H. Kim, and Y. N. Patt, “Techniques for efficient
processing in runahead execution engines,” in ISCA-32,
2005.

[25] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt,
“Runahead execution: An alternative to very large
instruction windows for out-of-order processors,” in
HPCA-9, 2003.

[26] K. J. Nesbit and J. E. Smith, “Data cache prefetching using
a global history buffer,” in HPCA-10, 2004.

[27] S. Palacharla and R. E. Kessler, “Evaluating stream buffers
as a secondary cache replacement,” in ISCA-21, 1994.

[28] A. Roth, A. Moshovos, and G. S. Sohi, “Dependence based
prefetching for linked data structures,” in ASPLOS-8, 1998.

[29] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically characterizing large scale program
behavior,” in ASPLOS-10, 2002.

[30] J. Smith and G. Sohi, “The microarchitecture of
superscalar processors,” Proceedings of the IEEE, vol. 83,
no. 12, pp. 1609–1624, Dec 1995.

[31] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Spatial memory streaming,” in ISCA-33,
2006.

[32] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback
directed prefetching: Improving the performance and
bandwidth-efficiency of hardware prefetchers,” in
HPCA-13, 2007.

[33] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and
M. Upton, “Continual flow pipelines,” in ASPLOS-11, 2004.

[34] K. Sundaramoorthy, Z. Purser, and E. Rotenberg,
“Slipstream processors: improving both performance and
fault tolerance,” in ASPLOS-9, 2000.

[35] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and
B. Sinharoy, “POWER4 system microarchitecture,” IBM
Technical White Paper, Oct. 2001.

[36] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli,
“Multi2Sim: a simulation framework for cpu-gpu
computing,” in PACT-21, 2012.

[37] M. V. Wilkes, “The memory gap and the future of high
performance memories,” SIGARCH Comput. Archit. News,
vol. 29, no. 1, pp. 2–7, 2001.

[38] W. A. Wulf and S. A. McKee, “Hitting the memory wall:
implications of the obvious,” in SIGARCH Comput. Archit.
News, March 1995.

[39] W. Zhang, D. M. Tullsen, and B. Calder, “Accelerating and
adapting precomputation threads for effcient prefetching,”
ser. HPCA-13, 2007.

[40] C. Zilles and G. Sohi, “Execution-based prediction using
speculative slices,” in ISCA-28, 2001.

http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf
http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_SDRAM.pdf
http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_SDRAM.pdf

	Introduction
	Related Work
	Background
	Runahead Observations

	Runahead Buffer Microarchitecture
	Hardware Modifications
	Entering Runahead
	Runahead Buffer Execution
	Dependence Chain Cache
	Runahead Buffer Hybrid Policies
	Runahead Enhancements

	Methodology
	Results
	Runahead Buffer Performance Results
	Comparison to Stream Prefetching
	Energy Analysis

	Conclusion
	Acknowledgments
	References

