FILTERING AND SYSTEM IDENTIFICATION

Filtering and system identification are powerful techniques for building models of complex systems in communications, signal processing, control, and other engineering disciplines. This book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Particular focus is placed on the least squares approach as applied to estimation problems of increasing complexity to retrieve missing information about a linear state-space model.

The authors start with key background topics including linear matrix algebra, signal transforms, linear system theory, and random variables. They then cover various estimation and identification methods in the state-space model. A broad range of filtering and systemidentification problems are analyzed, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics, and state estimator directly from the data. The final chapter on the systemidentification cycle prepares the reader for tackling real-world problems.

With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical, and aerospace engineering. It is also a useful reference for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.

MICHEL VERHAEGEN is professor and co-director of the Delft Center for Systems and Control at the Delft University of Technology in the Netherlands. His current research involves applying new identification and controller design methodologies to industrial benchmarks, with particular focus on areas such as adaptive optics, active vibration control, and global chassis control.

VINCENT VERDULT was an assistant professor in systems and control at the Delft University of Technology in the Netherlands, from 2001 to 2005, where his research focused on system identification for nonlinear state-space systems. He is currently working in the field of information theory.

Filtering and System Identification

A Least Squares Approach

Michel Verhaegen Technische Universiteit Delft, the Netherlands

Vincent Verdult Technische Universiteit Delft, the Netherlands

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521875127

© Cambridge University Press 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-87512-7 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pre_{j}	face	pa	ge xi
Not	ation a	nd symbols	xiii
List	of abb	reviations	xv
1	Introduction		
2	Linear algebra		
	2.1	Introduction	8
	2.2	Vectors	9
	2.3	Matrices	13
	2.4	Square matrices	18
	2.5	Matrix decompositions	25
	2.6	Linear least-squares problems	28
		2.6.1 Solution if the matrix F has full column rank	32
		2.6.2 Solutions if the matrix F does not have full	
		column rank	33
	2.7	Weighted linear least-squares problems	35
	2.8	Summary	37
3	Discrete-time signals and systems		42
	3.1	Introduction	42
	3.2	Signals	
	3.3	Signal transforms	47
		3.3.1 The <i>z</i> -transform	47
		3.3.2 The discrete-time Fourier transform	50
	3.4	Linear systems	55
		3.4.1 Linearization	58
		3.4.2 System response and stability	59
		3.4.3 Controllability and observability	64
		3.4.4 Input–output descriptions	69

vi	Contents				
	3.5	Interac	tion between systems	78	
	3.6	Summa	ary	82	
4	Random variables and signals			87	
	4.1	Introduction			
	4.2	Descrip	otion of a random variable	88	
		4.2.1	Experiments and events	90	
		4.2.2	The probability model	90	
		4.2.3	Linear functions of a random variable	95	
		4.2.4	The expected value of a random variable	95	
		4.2.5	Gaussian random variables	96	
		4.2.6	Multiple random variables	97	
	4.3		m signals	100	
		4.3.1	Expectations of random signals	100	
		4.3.2	Important classes of random signals	101	
		4.3.3	Stationary random signals	102	
		4.3.4	Ergodicity and time averages of random		
			signals	104	
	4.4		spectra	105	
	4.5		ties of least-squares estimates	108	
		4.5.1	The linear least-squares problem	109	
		4.5.2	The weighted linear least-squares problem	112	
		4.5.3	The stochastic linear least-squares problem	113	
		4.5.4	A square-root solution to the stochastic linear		
			least-squares problem	115	
		4.5.5	Maximum-likelihood interpretation of the	100	
		a	weighted linear least-squares problem	120	
	4.6	Summa	ary	121	
5	Kalman filtering			126	
	5.1	Introdu	action	127	
	5.2	The asymptotic observer		128	
	5.3	The Kalman-filter problem		133	
	5.4	The Kalman filter and stochastic least squares		135	
	5.5	The Ka	alman filter and weighted least squares	141	
		5.5.1	A weighted least-squares problem formulation	141	
		5.5.2	The measurement update	142	
		5.5.3	The time update	146	
		5.5.4	The combined measurement–time update	150	
		5.5.5	The innovation form representation	152	
	5.6	Fixed-i	nterval smoothing	159	

Cambridge University Press	
978-0-521-87512-7 - Filtering and System Identification: A	Least Squares Approach
Michel Verhaegen and Vincent Verdult	
Frontmatter	
Moreinformation	

		Contents	vii
	5.7	The Kalman filter for LTI systems	162
	5.8	The Kalman filter for estimating unknown inputs	166
	5.9	Summary	171
6	\mathbf{Esti}	mation of spectra and frequency-response	
	func	etions	178
	6.1	Introduction	178
	6.2	The discrete Fourier transform	180
	6.3	Spectral leakage	185
	6.4	The FFT algorithm	188
	6.5	Estimation of signal spectra	191
	6.6	Estimation of FRFs and disturbance spectra	195
		6.6.1 Periodic input sequences	196
		6.6.2 General input sequences	198
		6.6.3 Estimating the disturbance spectrum	200
	6.7	Summary	203
7	Out	put-error parametric model estimation	207
	7.1	Introduction	207
	7.2	Problems in estimating parameters of an LTI	
		state-space model	209
	7.3	Parameterizing a MIMO LTI state-space model	213
		7.3.1 The output normal form	219
		7.3.2 The tridiagonal form	226
	7.4	The output-error cost function	227
	7.5	Numerical parameter estimation	231
		7.5.1 The Gauss–Newton method	233
		7.5.2 Regularization in the Gauss–Newton method	237
		7.5.3 The steepest descent method	237
		7.5.4 Gradient projection	239
	7.6	Analyzing the accuracy of the estimates	242
	7.7	Dealing with colored measurement noise	245
		7.7.1 Weighted least squares	247
		7.7.2 Prediction-error methods	248
	7.8	Summary	248
8	Prec	diction-error parametric model estimation	254
	8.1	Introduction	254
	8.2	Prediction-error methods for estimating	
		state-space models	256
		8.2.1 Parameterizing an innovation state-space	
		model	257

Cambridge University Press	
978-0-521-87512-7 - Filtering and System Identification: A Least Squares Appr	oach
Michel Verhaegen and Vincent Verdult	
Frontmatter	
More information	

viii	Contents			
		8.2.2 The prediction-error cost function	259	
		8.2.3 Numerical parameter estimation	263	
		8.2.4 Analyzing the accuracy of the estimates	264	
	8.3	Specific model parameterizations for SISO systems	265	
		8.3.1 The ARMAX and ARX model structures	266	
		8.3.2 The Box–Jenkins and output-error model		
		structures	271	
	8.4	Qualitative analysis of the model bias for SISO		
	۰ ۲	systems	275	
	8.5	Estimation problems in closed-loop systems	283	
	8.6	Summary	286	
9	Subs	space model identification	292	
	9.1	Introduction	292	
	9.2	Subspace model identification for deterministic		
		systems	294	
		9.2.1 The data equation	294	
		9.2.2 Identification for autonomous systems	297	
		9.2.3 Identification using impulse input sequences	299 201	
	9.3	9.2.4 Identification using general input sequences Subspace identification with white measurement	301	
	9.5	noise	307	
	9.4	The use of instrumental variables	312	
	9.4 9.5	Subspace identification with colored measurement	012	
	0.0	noise	315	
	9.6	Subspace identification with process and	010	
		measurement noise	321	
		9.6.1 The PO-MOESP method	326	
		9.6.2 Subspace identification as a least-squares		
		problem	329	
		9.6.3 Estimating the Kalman gain K_T	333	
		9.6.4 Relations among different subspace		
		identification methods	334	
	9.7	Using subspace identification with closed-loop data	336	
	9.8	Summary	338	
10	The	system-identification cycle	345	
	10.1	Introduction	346	
	10.2	Experiment design	349	
		10.2.1 Choice of sampling frequency	349	
		10.2.2 Transient-response analysis	352	

Cambridge University Press	
978-0-521-87512-7 - Filtering and System	Identification: A Least Squares Approach
Michel Verhaegen and Vincent Verdult	
Frontmatter	
Moreinformation	

		Contents	ix
	10.2.3	Experiment duration	355
	10.2.4	Persistency of excitation of the input sequen	ce 356
	10.2.5	Types of input sequence	366
10.3	Data p	pre-processing	369
	10.3.1	Decimation	369
	10.3.2	Detrending the data	370
	10.3.3	Pre-filtering the data	372
	10.3.4	Concatenating data sequences	373
10.4	Selection	on of the model structure	373
	10.4.1	Delay estimation	373
	10.4.2	Model-structure selection in ARMAX	
		model estimation	376
	10.4.3	Model-structure selection in subspace	
		identification	382
10.5	Model	validation	387
	10.5.1	The auto-correlation test	388
	10.5.2	The cross-correlation test	388
	10.5.3	The cross-validation test	390
10.6	Summa	ary	390
References			395
Index			401

Preface

This book is intended as a first-year graduate course for engineering students. It stresses the role of linear algebra and the least-squares problem in the field of filtering and system identification. The experience gained with this course at the Delft University of Technology and the University of Twente in the Netherlands has shown that the review of undergraduate study material from linear algebra, statistics, and system theory makes this course an ideal start to the graduate course program. More importantly, the geometric concepts from linear algebra and the central role of the least-squares problem stimulate students to understand how filtering and identification algorithms arise and also to start developing new ones. The course gives students the opportunity to see mathematics at work in solving engineering problems of practical relevance.

The course material can be covered in seven lectures:

- (i) Lecture 1: Introduction and review of linear algebra (Chapters 1 and 2)
- (ii) Lecture 2: Review of system theory and probability theory (Chapters 3 and 4)
- (iii) Lecture 3: Kalman filtering (Chapter 5)
- (iv) Lecture 4: Estimation of frequency-response functions (Chapter 6)
- (v) Lecture 5: Estimation of the parameters in a state-space model (Chapters 7 and 8)
- (vi) Lecture 6: Subspace model identification (Chapter 9)
- (vii) Lecture 7: From theory to practice: the system-identification cycle (Chapter 10).

The authors are of the opinion that the transfer of knowledge is greatly improved when each lecture is followed by working classes in which the

xii

Preface

students do the exercises of the corresponding classes under the supervision of a tutor. During such working classes each student has the opportunity to ask individual questions about the course material covered. At the Delft University of Technology the course is concluded by a real-life case study in which the material covered in this book has to be applied to identify a mathematical model from measured input and output data.

The authors have used this book for teaching MSc students at Delft University of Technology and the University of Twente in the Netherlands. Students attending the course were from the departments of electrical, mechanical, and aerospace engineering, and also applied physics. Currently, this book is being used for an introductory course on filtering and identification that is part of the core of the MSc program Systems and Control offered by the Delft Center for Systems and Control (http://www.dcsc.tudelft.nl). Parts of this book have been used in the graduate teaching program of the Dutch Institute of Systems and Control (DISC). Parts of this book have also been used by Bernard Hanzon when he was a guest lecturer at the Technische Universität Wien in Austria, and by Jonas Sjöberg for undergraduate teaching at Chalmers University of Technology in Sweden.

The writing of this book stems from the attempt of the authors to make their students as enthusiastic about the field of filtering and system identification as they themselves are. Though these students have played a stimulating and central role in the creation of this book, its final format and quality has been achieved only through close interaction with scientist colleagues. The authors would like to acknowledge the following persons for their constructive and helpful comments on this book or parts thereof: Dietmar Bauer (Technische Universität Wien, Austria), Bernard Hanzon (University College Cork, Ireland), Gjerrit Meinsma (University of Twente, the Netherlands), Petko Petkov (Technical University of Sofia, Bulgaria), Phillip Regalia (Institut National des Télécommunications, France), Ali Sayed (University of California, Los Angeles, USA), Johan Schoukens (Free University of Brussels, Belgium), Jonas Sjöberg (Chalmers University of Technology, Sweden), and Rufus Fraanje (TU Delft).

Special thanks go to Niek Bergboer (Maastricht University, the Netherlands) for his major contributions in developing the Matlab software and guide for the identification methods described in the book. We finally would like to thank the PhD students Paolo Massioni and Justin Rice for help in proof reading and with the solution manual.

Notation and symbols

Z	the set of integers
\mathbb{N}	the set of positive integers
\mathbb{C}	the set of complex numbers
R	the set of real numbers
\mathbb{R}^{n}	the set of real-valued n -dimensional vectors
$\mathbb{R}^{m \times n}$	the set of real-valued m by n matrices
∞	infinity
Re	real part
Im	imaginary part
E	belongs to
=	equal
\approx	approximately equal
	end of proof
\otimes	Kronecker product
I_n	the $n \times n$ identity matrix
$[A]_{i,j}$	the (i, j) th entry of the matrix A
A(i,:)	the <i>i</i> th row of the matrix A
A(:,i)	the i th column of the matrix A
A^{T}	the transpose of the matrix A
A^{-1}	the inverse of the matrix A
$A^{1/2}$	the symmetric positive-definite square root of the
	matrix A
$\operatorname{diag}(a_1, a_2, \ldots, a_n)$	an $n \times n$ diagonal matrix whose $(i,i) \text{th entry is } a_i$
$\det(A)$	the determinant of the matrix A
$\operatorname{range}(A)$	the column space of the matrix A
$\operatorname{rank}(A)$	the rank of the matrix A
$\operatorname{trace}(A)$	the trace of the matrix A

xiii

xiv	Notation and symbols
$\operatorname{vec}(A)$	a vector constructed by stacking the columns of
	the matrix A on top of each other
$ A _2$	the 2-norm of the matrix A
$\ A\ _{\mathrm{F}}$	the Frobenius norm of the matrix A
$[x]_i$	the <i>i</i> th entry of the vector x
$\ x\ _{2}$	the 2-norm of the vector x
lim	limit
min	minimum
max	maximum
\sup	supremum (least upper bound)
$E[\cdot]$	statistical expected value
$\delta(t)$	Dirac delta function (Definition 3.8 on page 53)
$\Delta(k)$	unit pulse function (Definition 3.3 on page 44)
s(k)	unit step function (Definition 3.4 on page 44)
$X \sim (m, \sigma^2)$	Gaussian random variable X with mean m and
	variance σ^2

List of abbreviations

ARX	Auto-Regressive with eXogeneous input
ARMAX	Auto-Regressive Moving Average with eXogeneous input
BIBO	Bounded Input, Bounded Output
BJ	Box–Jenkins
CDF	Cumulative Distribution Function
DARE	Discrete Algebraic Ricatti Equation
DFT	Discrete Fourier Transform
DTFT	Discrete-Time Fourier Transform
ETFE	Empirical Transfer-Function Estimate
\mathbf{FFT}	Fast Fourier Transform
FIR	Finite Impulse Response
\mathbf{FRF}	Frequency-Response Function
IID	Independent, Identically Distributed
IIR	Infinite Impulse Response
LTI	Linear Time-Invariant
LTV	Linear Time-Varying
MIMO	Multiple Input, Multiple Output
MOESP	Multivariable Output-Error State-sPace
N4SID	Numerical algorithm for Subspace IDentification
PDF	Probability Density Function
PEM	Prediction-Error Method
PI	Past Inputs
PO	Past Outputs
OE	Output-Error
RMS	Root Mean Square
SISO	Single Input, Single Output
SRCF	Square-Root Covariance Filter
SVD	Singular-Value Decomposition
WSS	Wide-Sense Stationary