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Filtering Bayesian Optimization Approach in Weakly Specified

Search Space

Vu Nguyen · Sunil Gupta · Santu Rana · Cheng

Li · Svetha Venkatesh

Abstract Bayesian optimization (BO) has recently emerged as a powerful and flexible

tool for hyper-parameter tuning and more generally for the efficient global optimization

of expensive black-box functions. Systems implementing BO has successfully solved diffi-

cult problems in automatic design choices and machine learning hyper-parameters tunings.

Many recent advances in the methodologies and theories underlying Bayesian optimiza-

tion have extended the framework to new applications and provided greater insights into

the behavior of these algorithms. Still, these established techniques always require a user-

defined space to perform optimization. This pre-defined space specifies the ranges of hyper-

parameter values. In many situations, however, it can be difficult to prescribe such spaces,

as a prior knowledge is often unavailable. Setting these regions arbitrarily can lead to ineffi-

cient optimization - if a space is too large, we can miss the optimum with a limited budget,

on the other hand, if a space is too small, it may not contain the optimum point that we want

to get. The unknown search space problem is intractable to solve in practice. Therefore, in

this paper, we narrow down to consider specifically the setting of “weakly specified” search

space for Bayesian optimization. By weakly specified space, we mean that the pre-defined

space is placed at a sufficiently good region so that the optimization can expand and reach

to the optimum. However, this pre-defined space need not include the global optimum. We

tackle this problem by proposing the filtering expansion strategy for Bayesian optimization.

Our approach starts from the initial region and gradually expands the search space. We de-

velop an efficient algorithm for this strategy and derive its regret bound. These theoretical

results are complemented by an extensive set of experiments on benchmark functions and

two real-world applications which demonstrate the benefits of our proposed approach.
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1 Introduction

Global optimization is fundamental to diverse real-world problems where parameter settings

and design choices are pivotal - as an example, in algorithm hyper-parameter tuning [42,39]

or engineering design [9,8,2]). This requires us to optimize a non-concave objective func-

tion using sequential and noisy observations. Critically, the objective functions are unknown

and expensive to evaluate. The challenge is to find the maximum of such expensive objective

functions in few sequential queries to minimize time and cost.

Bayesian optimization (BO) [16,13,12,33] is an approach to optimize these above ex-

pensive functions. BO finds a solution of an expensive black-box function x⇤ = argmax f (x)
x2X

by making a series of evaluations x1, ...,xT of f such that the optimum of f is found in the

fewest iterations. As more data are observed, BO finds the optimum by sequentially updat-

ing the model, typically through a Gaussian process (GP) [34]. Using this GP posterior, BO

builds a surrogate model - known as acquisition function - to select a next point to evaluate.

Existing Bayesian optimization approaches are restricted to a pre-defined and fixed

space of search wherein it is assumed to contain the global optimum. Unfortunately, set-

ting these regions so that it encapsulates the global optimum is non-trivial and often done

arbitrarily. The main reason is that in many situations specifying a search space X is hard

for a new problem or where domain knowledge is limited. This remain a key challenge that

hinders us from getting the best performance for global optimization.

To ensure that a global optimum is found, BO requires good coverage of X by sufficient

evaluations, but as the space increases, the number of evaluations needed also increases ac-

cordingly. Given the same evaluation budget, it is harder to find the optimum in larger search

spaces compared to smaller ones. For example, finding a missing aircraft would usually take

longer if a search space is the whole ocean instead of only a small island. Therefore, a search

space greatly influences the performance of Bayesian optimization and its judicious choice

remains an open problem.

As solving a general unknown space in Bayesian optimization is intractable, we focus

on a scenario in BO where the search space is “weakly known“ by the domain experts [28].

Although this user-specified space may not contain the global optimum, it is specified in a

sufficiently good region so that the optimization can expand and reach to the optimum loca-

tion under limited evaluation budget. This assumption is essential for efficient optimization

and to avoid the situations where the optimum location is unreachable from the initial region

due to budgetary constraints.

To address the weakly specified problem for Bayesian optimization, we propose a fil-

tering expansion strategy that starts from an initial region and gradually expands it to find

the optimum. Our filtering expansion for Bayesian optimization (FBO) includes two steps.

It first utilizes the posterior mean and variance of the GP to guide the selection of promising

regions to explore. Next, within the expanded region, it maximizes the acquisition function

to select the next point to evaluate. We derive the regret bound for convergence analysis

of the model. We demonstrate the efficacy of our approach in expanding a search space by

optimizing several benchmark functions and hyper-parameter tuning of multi-label classi-

fication algorithm. Next, we show the most compelling example which is the experimental

design for the aeronautical alloy AA2050. Although BO [45,23,15] is the ideal method

for optimizing advanced materials, it is not clear for the domain experts to define the right

region for search 1. Therefore, we make use of the weakly defined region by our metallur-

1 a trivial range of is too large and defect the purpose of Bayesian optimization by easily exceeding the

evaluation budget.
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gist collaborators and show how our algorithm can be successfully employed for this alloy

design. Our contributions are:

– Formulation of the novel method for a weakly specified space setting in Bayesian opti-

mization;

– Derivation of the regret bound providing guarantee for convergence analysis under the

expanding space setting;

– Demonstration of the proposed method for optimizing both benchmark functions and

hyper-parameter tuning of machine learning algorithms;

– Application to advanced material optimization on the aeronautical alloy design where

the region of search is only weakly specified.

We structure our paper as follows. In Sec. 2, we present the preliminary background on

Bayesian optimization including Gaussian process and acquisition function. We also present

the algorithm and illustrative example of Gaussian process and Bayesian optimization. Next,

we discuss the impact of the search space toward optimization and the possible problem of

unknown search space in Sec. 3. Then, we present our proposed framework in Sec. 4 with the

algorithm and convergence analysis. In Sec. 5, we present the experiments on benchmark

functions and real-world applications. Finally, we provide the discussion, conclusion and

future work.

2 Bayesian Optimization

We use f to denote a black-box function for which we have no closed-form expression. Fur-

thermore, this black-box function is expensive to evaluate. Perturbed evaluations of the form

yi = f (xi)+ εi are available, where we assume the perturbations to follow a Gaussian dis-

tribution, i.e. εi ⇠ N
�
0,σ2

�
. Formally, let f : X ! R be a well-behaved function defined

on a subset X ✓ Rd . Our goal is to solve the following global optimization problem

x⇤ = argmax f (x)
x2X

. (1)

As in other kinds of optimization, Bayesian optimization aims to find the global op-

timum of the black-box function f (x). What makes Bayesian optimization different from

other procedures is that it constructs a probabilistic model for f (x) and then exploits this

model to make decisions about where in X to next evaluate the function, while integrating

out uncertainty. The essential philosophy is to use all of the information available from pre-

vious evaluations of f (x) and not simply rely on local gradient and Hessian approximations.

This results in a procedure that can find the minimum of difficult non-convex functions with

relatively few evaluations, at the cost of performing more computation to determine the next

point to try [5,38,37,24]. We summarize the routine for BO in Algorithm .1.

There are three major choices that must be made when performing Bayesian optimiza-

tion. First, one must select a prior over functions that will express assumptions about the

function being optimized. For this we choose the Gaussian process prior, due to its flex-

ibility and tractability. Second, we must choose an acquisition function, which is used to

construct a utility function from the model posterior, allowing us to determine the next point

to evaluate. Third, we need to specify the search space to perform optimization. For this

requirement, we note that the existing BO approaches assume the argmax to be restricted to

a bounded subset X ⇢ Rd while our approach will flexibly open this bound.
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2.1 Gaussian Process

Bayesian optimization reasons about f by building a Gaussian process through evaluations

[34]. This flexible distribution allows us to associate a normally distributed random vari-

able at every point in the continuous input space. Formally, the function is modelled by

f (x) ⇠ GP(m(x) ,k (x,x0)), where m is the mean and k (x,x0) contains the covariance of

any two observations. A popular choice for the covariance function is the squared exponen-

tial: k (x,x0) = σ2
f exp


�(x�x0)

2

2l2

�

where l is the length scale and σ2
f is the output variance.

The length scale defines the “region of influence” of a point within the parameter space that

the influence of an observation decreases as one considers points farther away from this

observation. The output variance σ2
f defines the expected deviation of the function output y

away from its average value. In practice, we can standardize the output y ⇠N (0,1) and set

σ2
f = 1 for simplicity.

We get the predictive distribution for a new observation x0 that also follows a Gaussian

distribution [34] - its mean and variance are given by:

µ
�
x0
�
= k(x0,X)K(X ,X)�1y (2)

σ2
�
x0
�
= k(x0,x0)�k(x0,X)K(X ,X)�1k(x0,X)T (3)

where K(U,V ) is a covariance matrix whose element (i, j) is calculated as ki, j = k(xi,x j)
with xi 2U and x j 2V .

Although we have analytic expressions, exact inference in GP is O(N3) where N is

the number of observations. This cost is due to the inversion of the covariance matrix. In

practice, the Cholesky decomposition can be computed once and saved so that subsequent

predictions are O(N2). However, this Cholesky decomposition must be recomputed every

time the kernel hyper-parameters changed, which usually happens at every iteration. For

large data sets, or large function evaluation budgets in the Bayesian optimization setting,

the cubic cost of exact inference is prohibitive and there have been many attempts at reduc-

ing this computational burden via approximation techniques, such as using sparse Gaussian

process [32,21]. Alternative solution to Gaussian process, people have used Bayesian deep

learning [40], deep neural network [39] or random forest [4]. We provide an illustrative

example of Gaussian process in Fig. 1.

2.2 Acquisition functions

As the original function f (x) is expensive to evaluate, we seek to replace it by the acquisi-

tion function α(x) which is cheaper. Built on a Gaussian process, this acquisition function

determines a next point to evaluate. Therefore, instead of maximizing the original function,

we maximize the acquisition function to select the next point

xt+1 = argmax
x2X

αt (x) .

In this auxiliary maximization problem, the objective is known and can be easily optimized

by standard numerical techniques such as multi-start or DIRECT [19] which typically re-

quires a fixed region X . Although the acquisition functions can be constructed using various

regression models, such as Gaussian process [34,21], random forest [17], neural networks
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Fig. 1: Example of Gaussian Process and Bayesian Optimization. Red dots are the observa-

tions x. Blue line is the true function y = f (x). Black dash line is the GP predictive mean

µ(x). Blue shaded area is the GP predictive variance σ(x). The GP predictive mean is more

accurate and the GP predictive variance is reducing when we have more observations. (best

viewed in color).
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Algorithm .1 Bayesian Optimization.

Input: initial data D0, #iter T

1: for t = 1 to T do

2: Fit a GP from Dt to get the predictive mean µ(x) and predictive variance σ(x).
3: Obtain xt = argmax

x2X

αt (x,µ,σ).

4: Evaluate the function yt = f (xt).
5: Augment the data Dt = Dt�1 [ (xt ,yt).
6: end for

Output: xmax,ymax

[39,40], in this paper we consider specifically the case of constructing the acquisition func-

tion α (x) from the posterior distribution of GP.

The acquisition functions are carefully designed to trade off between exploration of

the search space and exploitation of current promising regions. Although many acquisition

functions have been proposed [25,13,18,41,43,27], no single acquisition strategy provides

the best performance over all problem. We review common acquisition functions: GP-UCB

and EI in the following.

2.2.1 Gaussian process upper confidence bound (GP-UCB)

The GP-UCB [41] algorithm is defined as

αUCB (x) = µ (x)+
p

βσ (x)

where β is a parameter to balance exploration and exploitation. There are theoretically mo-

tivated guidelines [41] for setting β to achieve sublinear regret.

2.2.2 Expected improvement (EI)

The expected improvement (EI) [25] measures the amount of improvement over the in-

cumbent (e.g., the maximum value observed so far y+ = max8yi2Dt
yi). First, we define the

improvement function, denoted by IEI(x) = max{0, f (x)� y+}. Then, we take the expec-

tation over the improvement function E
⇥
IEI (x,θ)

⇤
which can be computed analytically. In

particular, given z = µ(x)�y+

σ(x) , the EI is computed as

αEI (x) =
⇥
µ (x)� y+

⇤
Φ (z)+σ (x)φ (z)

where Φ and φ are the normal c.d.f. and p.d.f. Recently the convergence rates have been

proven for EI [6,44,30].

3 Impact of the Search Space to Bayesian Optimization

It is intuitive that performing optimization on a large space is more difficult and requires

more effort than a small space given the same evaluation budget. To highlight this effect,

we derive that a small space will have better (smaller) regret proportionally to its volume

compared to a large space.
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(a) T = 5d

(b) T = 10d

(c) T = 20d

Fig. 2: The regret bound is proportional to the space V (X)= hd (where h is a radius and d is a

dimension) and the evaluation budget T . Let us consider a dimension d = 10 and radius ratio

be hBig

hSmall = 12. The regret bound of RSmall
T is better than R

Big
T with a factor of 23.6,15.5 and

11.2 as we increase the number of iterations T = 5d,10d and 20d, respectively. Thus, given

a small evaluation budget in BO, it is not efficient for optimization to define an arbitrarily

large search space.
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3.1 A search space influences the regret

Srinivas et al [41] has provided the sublinear regret bound for BO. However, the previous

study has not highlighted the role of a search space. Therefore, in the following, we analyze

the impact of search spaces (large vs small) toward the cumulative regret bound. We first

follow [41] to define the maximum information gain γT . We then use Theorem 8 in [41] to

derive a bound on γT , given a radius h s.t. the volume of the space V (X )≈ hd (d being the

dimension of the space)

γT  max
r=1,....,T

T⇤ log
�
r⇥nT/σ2

�
+C(r,T,T⇤)

where T is the number of iteration, T⇤ ∝ [log(T ⇥nT )]
d
, nT ∝ 2V (X )T d (logT ) and C(r,T,T⇤)

is a function which will be zero by setting r = T . Then, we express the above equation by

plugging T⇤, nT and set r = T (as in [41]) to have

γT 
h

log
⇣

2V (X )T d+1 (logT )
⌘id+1

.

We consider two settings using a big and a small space defined by the volume with the radius

h, s.t. hSmall = hBig

α where α � 1. We obtain the relation between the maximum information

gain

γ
Big
T

γSmall
T

∝

"

log
�
T d+1(αhSmall)d logT

�

log(T d+1(hSmall)d logT )

#d+1

� 1. (4)

Finally, we achieve the relation in the regret bound of the small vs the big space by utilizing

the form of RT
∆
=
p

T βT γT [41]

R
Big
T

RSmall
T

=

s

γ
Big
T

γSmall
T

. (5)

In Eq. (5), we can interpret the regret bound relation that is proportional to the space (by the

radius h and the dimension d). First, a larger space will have larger (worse) regret bound.

For example, if hBig

hSmall increases, the fraction
R

Big
T

RSmall
T

also increases accordingly - given that

the other terms are fixed. Second, a smaller number of evaluation budget T will make the

difference in the regrets more significant, i.e.
R

Big
T

RSmall
T

is larger. Third, a higher dimension d

makes the difference in the regrets larger almost exponentially in Eq. (4).

We plot this regret bound relations in Fig. 2 by varying the numbers of evaluations as

T = 5d,10d and 20d, respectively. Recall that the smaller is better for the regret, we show

that the cumulative regret is reduced, i.e. R
Big
T � RSmall

T , when we let the space be smaller

hBig � hSmall. Given the fixed space and dimension, the regret is even worse if we have a

smaller budget of evaluations T - the case in Bayesian optimization.
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3.2 The problems of unknown search space

Since a search space is unknown and previous approaches do not have any provision to spec-

ify it properly. Instead, previous works specify them quite arbitrarily. Arbitrary setting these

regions can lead to critical issues of either over-specifying or under-specifying. If we over-

specify a search space by setting it too big (to make sure it contains the global optimum),

the optimization is not efficient and can be intractable in high dimension: given the limited

number of evaluations, as discussed in Sec. 3.1. On the other hand, if we under-specify a

search space by setting it small, then the global optimum may lie outside the box and we

again miss the optimum. Therefore, there is a trade-off between over- and under-specifying

a search space in Bayesian optimization. To prevent these issues in BO, we narrow down

the problem and consider incorporating the search space information where the pre-defined

region is vaguely experienced by a domain expert and need not contain the global optimum.

3.3 Unbounded Bayesian optimization

Although determining the space for BO is a critical issue in practice, there is little research

on this track due to the difficulty [35]. To the best of our knowledge, [36] is the first work

to tackle the unbounded BO where a search space is unknown. The algorithm starts from an

initial box and growing.

In particular, Shahriari et al [36] propose two strategies including volume doubling and

regularization. The first approach of volume doubling is a heuristic method to expand a

search space frequently as the optimization progresses. This approach requires a parameter

specifying how often the expansion is occurred. The second approach is using regulariza-

tion of a search space from a center. Basically, it is motivated by a regularized version for

improvement policies, e.g., EI [25]. The authors [36] propose two choices of regularizing as

quadratic (Q) and isotropic hinge-quadratic (H),

ξQ (x) = (x� x̄)T
diag

�
w2
��1

(x� x̄)

ξH (x) = I [||x� x̄||2 > R]

✓
||x� x̄||2 �R

βR

◆2

.

However, these regularizing approaches still suffer from three limitations. First, it requires

additional parameters (R,β and w) which are sensitive and difficult to specify in practice.

Second, they expand the search space equally to all directions from the mean location (x̄).

This equal expansion makes a search space larger than required. Thus, it is slow to move

toward the optimal region which can be far from the mean location. Finally, there is no

theoretical guarantee on the efficiency of these optimization approaches [36].

4 Filtering Expansion Strategy for Bayesian Optimization in Weakly Specified Space

We consider the Bayesian optimization setting that a search space for optimization is hard to

specify and only weakly specified due to practical situations, e.g. lacking expert knowledge

or new domain application. By weakly specified space, we mean that this region is placed

at a sufficiently good region so that the optimization can expand and reach to the optimum

location under limited evaluation budget, but this initial region need not contain the global

optimum. We describe most of the notations in Fig. 3 and Table 1 for clarity and ease of

understanding.
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Notation Type Meaning

σ2
l constant length-scale for a kernel, e.g. squared exponential kernel

σ2 constant noise output variance (or measurement noise)

σ2(x),σ(x) function GP predictive variance function

µ(x) function GP predictive mean function

d constant dimension of input feature x

X 2 Rd domain a whole search space (unknown) 8x 2 X

X0 2 Rd domain an initial search space (weakly specified)

Xt 2 Rd domain a search space at iteration t

y = f (x) scalar black-box function evaluation at x

f ⇤ scalar global optimum, f ⇤ = max8x2X f (x)
f ⇤t scalar intermediate optimum within Xt , f ⇤t = max8x2Xt

f (x)
rt scalar regret at iteration t, rt = f ⇤� f (xt)
RT scalar cumulative regret, ∑rt

Xt matrix collection of input Xt = [x1, ...xt ]
Yt vector collection of outcome Yt = [y1....yt ]
T scalar number of iteration (evaluation budget)

Dt set observation set upto iteration t,Dt = {Xt ,Yt}

||x� x0||2 function ∑
d
i=1 (xi � x0i)

2

Table 1: Notation list.

4.1 Filtering strategy for expanding the search space

We discuss in Sec. 3.1 that a small space is more efficient compared to a large space for

optimization given the same evaluation budget. We also discuss the problems of over- and

under-specifying a search space in Sec. 3.2. Motivated by this property, we propose to start

the search and expand from a given (weakly specified) space X0. Then, we either gradually

expand the search region or exploit within the specified region.

Let us consider the maximization problem with the global maximum f ⇤ =maxx2X f (x).
In our setting, however, the desired domain X containing the global maximum is not

known in advance. Thus, during the optimization process, f ⇤ may not be accessible. In-

stead, given the current space at an iteration t we only have the intermediate maximum

f ⇤t = maxx2Xt
f (x).

Since our search space over optimization iterations can only grow or stay the same, the

space is non-decreasing X0 ✓ ...Xt ✓ XT and by definition f ⇤t = maxx2Xt
f (x), we have

the following lemma for the maximization problem.

Lemma 1 The intermediate maximum is non-decreasing f ⇤0  ...  f ⇤t  f ⇤T  f ⇤ and the

intermediate gap is non-increasing f ⇤� f ⇤0 � f ⇤� f ⇤t � f ⇤� f ⇤T .

Let xt be our choice at an iteration t, the instantaneous regret, used in standard Bayesian

optimization setting, is transformed to the case of expandable spaces as follows

rt = f ⇤� f (xt) = f ⇤� f ⇤t
| {z }

At

+ f ⇤t � f (xt)
| {z }

Bt

. (6)

As a BO model, we aim to minimize the cumulative regret RT = ∑rt by minimizing At and

then Bt .
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space at 

iteration t

weakly specified space

global optimum
global space
(unknown)

initial optimum

Fig. 3: Illustration of our proposed FBO. In the problem considered, the search space is

unknown meaning we can not use the vanilla BO. Instead, we have the weakly specified

space which brings the starting points closer to the global optimum than other arbitrary

settings of the initial region.

4.1.1 Building the invasion set

We expand a space Xt to maximize f ⇤t and thus minimize At . However, we also want to keep

this space small (for the next step of minimizing Bt ). Therefore, it is intuitive to gradually

expand the search space by only selecting the promising candidates in the neighborhood,

which are likely to contain better values than the current region. It is counter-intuitive to

naively expand equally to all directions resulting in redundantly large search space.

Let X 0
t�1 2 Rd be a window extending the considered space X t�1 s.t. X 0

t�1 � Xt�1.

There can be different solutions in defining this neighboring window. However, any choice

needs to balance the trade-off between finding better regions versus making a search space

large. Specifically, we propose X 0
t�1 s.t.

V(X 0
t�1)

V (X t�1)
∝

⇣
h0t�1

ht�1

⌘d ∆
= T

t�1
and thus a new radius

is computed as h0t�1 = d

q
T

t�1
ht�1. This setting is reasonable to allow a greater level of

exploration in the early iterations and will focus on exploitation in late iterations. If we have

a big budget T , the window X 0
t�1 may cover the whole domain X . In contrast, if we have

a small budget, X 0
t�1 will slowly grow.

We select to expand a search space by discarding poor value regions. Using the GP

posterior, we define the upper confidence bound (UCB) u(x) = µ(x)+
p

βσ(x) and lower

confidence bound (LCB) l (x)= µ(x)�
p

βσ(x) where µ(x) and σ(x) are the GP predictive

mean and variance, respectively, in Eq. (2) and Eq. (3). From the property of GP, we have

w.h.p. l(x) f (x) u(x),8x 2 Xt�1,X
0

t�1. The key observation is that we do not need to

explore the regions (in the neighbor) that the UCB u(x0), where 8x0 2 X 0
t , is lower than the

maximum value of the LCB max8x2Xt
l(x) in the existing region. We acknowledge that the

similar intuition has also been used in [10,7,3,28] for different purposes. Then, we define
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the invasion set as the following It =
�

x0 2 X 0
t�1 | x0 /2 Xt�1,u(x

0)� maxx2X t�1
l (x)

 

that will be used in the next step.

4.1.2 Maximizing the acquisition function

We minimize Bt in Eq. (6) by maximizing the acquisition function to select xt . This step

is similar to the standard BO. The optimization is performed on the space of Xt�1 [It

obtained by the above step. We find the point xt = argmax
x2Xt�1[It

αt (x) maximizing the acquisition

function, such as EI [25], GP-UCB [41], ES [13], PES [14], EST [43] and PVRS [29]. Note

that we do not add the entire It into the new space. Instead, after obtaining xt , we update

the new space Xt (as well as ht ) such that it is the smallest space containing both the old

space Xt�1 and the newly selected point xt . In other words, if xt is selected in the old space

Xt�1, the new space will not be expanded, i.e. Xt = Xt�1 and ht = ht�1. This behavior

ensures that the optimization space is not always growing for optimization efficiency with

limited evaluation budget.

We summarize the proposed filtering expansion strategy for Bayesian optimization (FBO)

under weakly specified space in Algorithm .2.

4.2 Theoretical analysis for Filtering Bayesian Optimization

The convergence rate of Bayesian optimization methods can be derived using the cumulative

regret [41], the loss in reward due to not knowing f ’s maximum beforehand. We study the

regret bound of Bayesian optimization algorithms under a weakly specified space. First, we

follow [41] to provide a bound on the gap of the true function f (x) and the GP predictive

mean µ(x).

Lemma 2 (Theorem 6 of [41]) Let δ 2 (0,1) and define βt = 2log
�
|X |t2π2/6δ

�
, then

P
⇣

8t,8x 2 X , |µt (x)� f (x)|
p

βtσt (x)
⌘

� 1�δ

Lemma 3 (Lemma 1 of [30]) The acquisition function of EI can be expressed as αEI
t (x) =

σt�1 (x)τ (zt�1 (x)) and αEI
t (x) τ (zt�1 (x)) where τ (z) = zΦ (z)+φ (z) with Φ and φ are

the c.d.f. and the p.d.f. of the standard normal distribution.

Lemma 4 (Lemma 6 of [30]) The improvement function It (x) = max
�

0, f (x)� ymax
t�1

 
and

the acquisition function αEI
t (x)=E [It (x)] satisfy the inequality such that It (x)�

p

βtσt�1 (x)
αEI

t (x) .

Lemma 5 (Lemma 5.4 of [41]) Sum of the predictive variance at the selected points are

bounded by the maximum information gain γT as ∑
T
t=1 σ2

t�1 (xt) 2

log(1+σ�2)
γT .

Lemma 6 (Lemma 7 of [30]) The sum of the predictive variances is bounded by the maxi-

mum information gain γT . That is 8x 2 X ,∑T
t=1 σ2

t�1 (x) 2

log(1+σ�2)
γT .

Lemma 7 (Lemma 8 of [30]) Let κ > 0 be a pre-defined stopping criteria, zt�1 (x) =
µt�1(x)�ymax

t�1

σt�1(x)
and τ (z)= zΦ (z)+φ (z), we have τ (�zt�1(xt)) 1+

p
C2 where C2 , log

h
1

2πκ2

i

.
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Algorithm .2 Filtering expansion strategy for Bayesian optimization (FBO) under weakly

specified space setting.

Input: #iter T , initial region X0 defined by a radius h0

1: Randomly initialize D0 from X0.

2: for t = 1 to T do

3: Fit a GP φt from the data Dt�1.

4: Build an extended window X 0
t�1 defined by a radius h0t�1 =

d

q
T

t�1
⇥ht�1 .

5: Build an invasion set It on X 0
t�1 given Xt�1.

6: Obtain xt = argmax
x2Xt�1[It

αt (x,φt).

7: Update the bound Xt and the radius ht based on Xt�1 and xt .

8: Evaluate the function yt = f (xt).
9: Augment the data Dt = Dt�1 [ (xt ,yt).

10: end for

Output: xmax,ymax

Let us denote the global optimum f ⇤ = maxx2X f (x) where X is assumed to be un-

known or hard to specify and the initial optimum is f ⇤0 = maxx2X0
f (x). The weakly known

space condition enables that the optimum location is reachable given a limited budget. This

assumption is essential to have a rigorous bound on the cumulative regret. If the initial re-

gion is poorly placed, it may get stuck at low-value regions and thus the regret bound may

not be bounded properly.

We use ωt to denote the gap between the global optimal and the optimal in the intermedi-

ate region as f ⇤� f ⇤t = ωt . We below derive the regret bound for the Bayesian optimization

algorithms (including vanilla BO and our FBO) under the weakly specified space.

Theorem 1 Let βT = 2|| f ||2k +300γt ln3
�

T
δ

�
, δ 2 (0,1), C1 =

2βT

log(1+σ�2)
, C2 , log

h
1

2πκ2

i

,

κ be the stopping threshold used in EI (to make the convergence proof feasible) and the max-

imum information gain γT . Then with probability at least 1�δ , the cumulative regret of the

Bayesian optimization algorithms under the weakly specified setting are bounded for GP-

UCB as RUCB
T 

p
C1T γT +∑

T
t=1 ωt and for EI as REI

T 
r

2T γT

log(1+σ�2)

hp

3(βT +1+C2)+
p

βT

i

+

GT .

Proof Since the derivation for two acquisition functions GP-UCB and EI are different, we

first present the proof for GP-UCB, then we derive for EI.

i) For the first case of GP-UCB, we start with the instantaneous regret using GP-UCB

as the acquisition function

rt = f ⇤� f (xt) = f ⇤t � f (xt)+ωt

= f ⇤t �µt�1 (x
⇤)+µt�1 (x

⇤)� f (xt)+ωt


p

βtσt�1 (x
⇤)+µt�1 (x

⇤)� f (xt)+ωt by Lem 2

 2
p

βtσt�1 (xt)+ωt

where the last term is obtained by using that
p

βtσt�1 (x
⇤)+ µt�1 (x

⇤) 
p

βtσt�1 (xt)+
µt�1 (xt) since xt = argmax

x2X

αUCB(x) and then utilize Lem. 2 again. By using Lem. 5, we
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bound the sum of variances using the maximum information gain and show that

T

∑
t=1

4βtσ
2
t�1 (xt)

2⇥βT γT

log(1+σ�2)
.

Next, we utilize the Cauchy-Schwartz to have

T

∑
t=1

2
p

βtσt�1 (xt)

s

2⇥T ⇥βT ⇥ γT

log(1+σ�2)
. (7)

We have the cumulative regret bound RT = ∑
T
t rt under the weakly specified space setting

as

RT 
T

∑
t=1

2
p

βtσt�1 (xt)+
T

∑
t=1

ωt


p

C1T γT +GT by Eq. (7) (8)

where C1 =
2βT

log(1+σ�2)
and GT = ∑

T
t=1 ωt .

ii) For the second case of EI, we begin with the instantaneous regret as

rt = f (x⇤)� f (xt) = f ⇤t � f (xt)+ωt (9)

= f ⇤t � ymax
t�1

| {z }

At

+ymax
t�1 � f (xt)
| {z }

Bt

+ωt .

We bound rt with the GP posterior variance so that we later connect it to the maximum

information gain γT . From the definition of xt and Lem. 3, we have αEI
t (x⇤)  αEI

t (xt) =
σt�1 (xt)τ (zt�1(xt)). Then, by using Lem. 4 we write

At  αEI (x⇤)+
p

βtσt�1 (x
⇤) αEI (xt)+

p

βtσt�1 (x
⇤)

= σt�1 (xt)τ (zt�1(xt))+
p

βtσt�1 (x
⇤) by Lem.2

Next, we express the second term in Eq. (9) as follows

Bt =ymax
t�1 �µt�1(xt)+µt�1(xt)� f (xt)

σt�1 (xt)(�zt�1(xt))+σt�1 (xt)
p

βt by Lem.2

=σt�1 (xt)
h

τ (�zt�1(xt))+
p

βt � τ (zt�1(xt))
i

byz = τ (z)� τ (�z)

Continuing from Eq. (9), we have rt = At +Bt that is

rt  σt�1 (xt)
hp

βt + τ (�zt�1 (xt))
i

+
p

βtσt�1 (x
⇤) (10)

Using the bound of τ (�zt�1 (xt)) in Lem. 7, we obtain

rt σt�1 (xt)
hp

βt +1+
p

C
i

| {z }

Lt

+
p

βtσt�1 (x
⇤)

| {z }

Ut
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where C2 , log
h

1
2πκ2

i

. We then simplify Lt and Ut , respectively. Taking the sum of squared

regret and utilizing the Cauchy-Schwartz inequality that (a+b+ c)2  3
�
a2 +b2 + c2

�
, we

have

T

∑
t=1

L2
t 

T

∑
t

σ2
t�1 (xt)3(βt +1+C2)

 3(βT +1+C2)
T

∑
t

σ2
t�1 (xt) byβT � βt ,8t  T

 6(βT +1+C2)γT

log(1+σ�2)
by Lem.6

Again, using the Cauchy-Schwartz inequality, we obtain

T

∑
t=1

Lt 
p

T

s
T

∑
t=1

L2
t 

s

6T (βT +1+C2)γT

log(1+σ�2)
.

We further utilize Lem. 6 and the Cauchy-Schwartz again to simplify Ut that

T

∑
t=1

Ut  βT

T

∑
t=1

σt�1 (x
⇤)

s

2T βT γT

log(1+σ�2)
.

Finally, we get the cumulative regret RT  ∑
T
t=1 (Lt +Ut)+∑

T
t=1 ωt ,

RT 
s

2T γT

log(1+σ�2)

hp

3(βT +1+C2)+
p

βT

i

+
T

∑
t=1

ωt


s

2T γT

log(1+σ�2)

hp

3(βT +1+C2)+
p

βT

i

+GT (11)

where GT = ∑
T
t=1 ωt .

The derived regret bound in Theorem 1 is general for multiple BO algorithms considering

the situation that the global optimum may not include in the predefined space. The regrets

in Eq. (8) and Eq. (11) are bounded by a sublinear term and a sum of constants ωt which

depends on how good the initial region is located and the expanding behavior. Ideally if the

initial space contains the global optimum (or ω0 = 0), we will achieve the sublinear rate

RT 
p

CT γT as in the previous work [41]. However, we note that Theorem 1 on its own

does not guarantee the sublinear rate of the algorithm under this weakly specified space, i.e.

limT!∞
RT
T

6= 0.

We now discuss the implication of the regret bound for vanilla BO and our FBO from

Eq. (8) and Eq. (11). The regret bounds of BO and FBO are different from two factors: GT

and γT .

In terms of GT , we have GBO
T = ω0T for vanilla BO because of the fixed space X0. In

contrast, since our approach can expand the space, we have ω0 � ωt � ωT (using Lem. 1)

and thus ∑
T
t=1 ωt  ω0T . As a result, GFBO

T  GBO
T . This is an advantage of FBO against the

vanilla BO.

In terms of γT , we have in Eq. (4) that γT 
h

log(T h)d
T
id+1

where h is a radius of the

space. Our approach allows the search space to grow while the vanilla BO does not. Thus,

we have hFBO � hBO and γFBO
T � γBO

T .



16 Vu Nguyen et al.

We note that other expanding schemes in Bayesian optimization, including Volume dou-

bling, also share a similar form of regret bounds in Eq. (8) and Eq. (11). However, the search

space in Volume doubling is often larger than required. This becomes inefficient for opti-

mization, especially when the evaluation budget is always limited.

4.3 Optimizing Gaussian process hyper-parameter

For robustness, we estimate the GP hyper-parameters by maximizing their posterior prob-

ability (MAP) as the marginal likelihood, p(θ | X,y) ∝ p(θ ,X,y), which, thanks to the

Gaussian likelihood, is available in closed form as [34]

ln p(y,X ,θ) =�1

2
ln
�
�K +σ2In

�
�� 1

2
yT
�
K +σ2In

��1
y+ ln p0 (θ)+ const

where In is the identity matrix in dimension n (the number of points in the training set) and

p0 (θ) is the prior over hyper-parameters.

5 Experiments

We first illustrate the expansion and optimization behavior of the proposed FBO on 2D func-

tion to gain insight understanding. Next, we evaluate our method on 8 benchmark functions

and two real-world applications: machine learning hyper-parameter tuning and experimen-

tal alloy design. To gain further insight, we discuss the cumulative regret and computational

complexity of different approaches. All the source codes are available for reproducibility at

the link https://github.com/ntienvu/ICDM2017_FBO.

5.1 Experimental setting

Given dimension d, the optimization is run with an evaluation budget of T = 10d excluding

an initial 3d points (as used in [31]). We repeat the experiments 20 times and report the

mean and standard error. We use the squared exponential kernel k (x,x0) = exp

✓

� ||x�x0||2

σ2
l

◆

where σ2
l is optimized using maximizing the marginal likelihood (see Sec. 4.3), the input x

is normalized as [0,1] and the output is standardized y ⇠N (0,1) for robustness. We always

maximize the objective function, maximizing � f for cases in which the goal is to find the

minimum. For methods using the UCB, we set
p

β = 2 (as also used in GPyOpt [11] and

[31]), which allows us to compare the different batch methods using the same acquisition

function. All implementations are in Python. All simulations are done on Windows machine

Core i7 Ram 24GB.

5.2 Visualization of filtering strategy for BO

Before presenting the numerical results, we visualize the expansion behavior of FBO in Fig.

5 using a Branin function as the objective function. These illustrations are particularly steps

4-7 of Algorithm .2. In Fig. 5 (top), we plot the 3D view with the initial region X0. Then,

we visualize the old space Xt�1 and the invasion set It consisting of the promising points

https://github.com/ntienvu/ICDM2017_FBO
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Initial Region

Peak

Initial Region

Peak

Fig. 4: Two examples of Branin function and Ackley function. The red stars are the peak

locations. The initial regions do not contain the peak.

(in magenta) (left) at different iterations. We illustrate the new space Xt which expands the

previous one (right). As illustrated, instead of expanding naively in all directions, the space

is selected to extend toward high-value regions the bottom right for t = 12 and toward the

top for t = 16.
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Fig. 5: FBO visualization using Branin 2D function. Left: the original function f (x) overlaid

with the space Xt�1 and an invasion set It . Each magenta dot is a point in It . Right:

Acquisition function α (x) with a new point added within the expanded space Xt and the

observations Dt . (best viewed in color).
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Table 2: FBO achieves the best performances in 6 out of 8 cases. The initial space X0 is

created by taking [10%,30%] of the original spaces - available for each function. We denote

the minimum (for minimization problem) in the initial region as f ⇤0 = min8x2X0⇢X f (x).
Vanilla BO performs optimization restrictively on X0 while the others will start from X0

and expand the space. M indicares million unit for gSobol function.

Function

Func Beale Six-humpcamel Rosenbrock Branin

Dim 2 2 2 2

f ⇤0 24.63 1.33 21.23 21

Vanilla UCB 26.8±0 1.331±0.0 21.2±0 72.1±0

BO EI 25.5±200 1.331±0.0 21.2±.1 72.1±0

Volume UCB 20.4±32 0.42±0.8 5.62±7 7.16±5

Doubling EI 48±91 11.25±2.4 20±42 5.43±5

Regularize EI-H 85±190 0.101±.86 94±115 8.97±8

BO EI-Q 264±1k 1.25±2.6 93±84 10.1±7

FBO
UCB 40±59 -0.296±.21 5.48±5 2.57±2

EI 36.4±56 -0.109±.37 3.09±3 2.88±3

Function

Func Hartmann Ackley Hartmann gSobol

Dim 3 5 6 10

f ⇤0 -0.986 19.08 1.89 0

Vanilla UCB -.96±.1 19.6±.3 -1.88±0 .6M±.1M

BO EI -.97±.01 19.4±.3 -1.88±.1 .6M±.1M

Volume UCB -2.69±.7 20.1±.6 -2.67±.1 .6M±.2M

Doubling EI -2.54±.8 19.8±1 -2.75±.1 .7M±.1M

Regularize EI-H -1.95±.9 19.6±1 -2.53±.1 3.8M±1M

BO EI-Q -2.13±.8 20.0±.2 -2.54±.1 3.5M±3M

FBO
UCB -2.91±.6 17.1±2 -2.79±.1 .5M±.2M

EI -3.24±.4 17.2±3 -2.88±.1 .5M±.2M

5.3 Baselines

We create the initial region X0 as follows. Let X be the pre-defined search space for each

function (e.g., [0,1]6 for Hartmann function). We define the initial region X0 as [10%�30%]
of the pre-defined space (e.g., [0.1,0.3]6 for Hartmann function). We utilize the following

baselines for comparison.

– Vanilla BO: Bayesian optimization is restricted on the initial space X0.

– Volume doubling: We naively double the volume after 2d evaluations starting from the

initial region X0. This approach is also used in [36] as a baseline for comparison.

– Regularizing approaches [36]: EI-H: Regularized EI with a hinge-quadratic prior, we

set β = 1 and R fixed by the circumradius of the initial box, as used in [36]. EI-Q:

Regularized EI with a quadratic prior mean where the widths w are fixed to those of the

initial bounding box as in [36]. The optimization starts from the initial region X0.

5.4 Evaluation on benchmark functions

Our first set of experiments is validating FBO on benchmark objective functions. Given the

weakly specified space settings, we demonstrate that FBO outperforms all of the baselines.
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We select 8 popular benchmark functions. Details of these functions are available at the

link2.

We present the numerical results in Table 2 across dimensions (2 to 10). Vanilla BO

settings using UCB and EI perform poorly in this setting. The reason is that vanilla BO only

performs optimization on the fixed region X0 which may not contain the optimum. We note

that if the optimum is ideally located in the initial box, the vanilla BO using a small space

will achieve the best performance.

Naive volume doubling is simple to implement. However, volume doubling is inefficient

for Bayesian optimization as it does not take into account the knowledge of the optimiza-

tion process to select promising directions to expand. Instead, it expands equally in all di-

rections, thus making a search space larger than required. Moreover, setting the parameter

corresponding to the number of iterations to expand volume is critical and hard to specify.

Although regularizing algorithms [36] can select points outside the initial region, it is

sensitive to a box center, x̄. Thus, they are less prone to expand toward high-value regions.

In addition, EI-H and EI-Q require additional parameters (R,β and w) that are sensitive

and difficult to specify in practice. Moreover, there is no theoretical guarantee for these

regularizing approaches.

The results confirm our hypothesis that the proposed strategy is capable of useful ex-

ploration outside the initial region. Our FBO utilizes the property of GP to expand towards

higher value regions. This strategy flexibly allows our algorithm to stop expanding and focus

exploiting when there is no promising region available. In contrast, the volume doubling ap-

proach will keep expanding continuously although the evaluation budget is always limited.

Thus, FBO is more efficient for optimization, utilizing the pre-defined space and expanding

this space towards the promising regions. We also present the performance w.r.t. iterations

for the Sixhump camel 2D, Ackley 5D and Hartmann 6D in Fig. 6.

5.5 Average regret analysis

To gain insight, we further study the average regret of our model and the considered base-

lines in Fig. 7 using Sixhump camel 2D, Ackley 5D and Hartmann 6D. In particular, we

learn that the regularized approaches (EI-Q, EI-H) and volume doubling fluctuate and tend

to increase the cumulative regret due to the exploration effect in their expansion. The vanilla

BO performs optimization only on the initial space, which may contain relatively good val-

ues. Thus, the average regret of the vanilla BO is more stable and better than the regularized

and volume doubling. Our proposed filtering approach selects to expand toward high-value

regions and may stop the expansion if there is no promising region available. Thus, FBO

achieves better average regret than the other methods (cf. Fig. 7).

5.6 Computational time comparison

We study the computational time spent per iteration w.r.t. increasing dimensions from 5 to

10. Comparing to the vanilla BO, FBO takes an extra step for building the invasion set (step

4 in Algorithm .2) to expand the space. This step makes FBO slower than the vanilla BO.

However, it should be noted in the context of Bayesian optimization that the time for eval-

uating the black-box function (e.g., evaluating a real alloy testing) is much more expensive

2 https://www.sfu.ca/~ssurjano

https://www.sfu.ca/~ssurjano
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Fig. 6: Performance comparison w.r.t. iterations using best found value mini=1...t�1 f (xi).
Our approach outperforms the baselines in finding the optimum for Six-hump camel 2D,

Ackley 5D and Hartmann 6D functions. The superior performance of FBO is the results of

expanding the search space toward the promising location.
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Fig. 7: The average regret is defined as RT
T

where RT = ∑
T
t=1 rt . The regularized approaches

and volume doubling fluctuate and tend to increase the average regret due to their exploration

effects in their expansion. The vanilla BO performs optimization only on the initial space,

thus BO’s performance is restricted. Our FBO selects to expand toward high-value regions

and may stop expanding if there is no promising region available. Therefore, FBO obtains

better average regret than the others.
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Fig. 8: Computational time per iteration. The circle indicates the magnitude. The exact times

are annotated for dimensions 5 and 10. Although FBO is taking more computational time,

it gains efficiency in finding the optimum for unknown space setting. In the context of opti-

mizing the expensive black-box functions, the CPU time of FBO is negligible.

than the time for optimizing BO. Thus, our approach is still efficient for BO, especially for

optimizing the expensive and time consuming real-world experiments, although there is an

extra CPU cost. We plot the wall-clock time per iteration (in seconds) in Fig. 8 - the CPU

time for FBO is generally 3-4 times higher than the baselines.

5.7 Machine learning hyper-parameter tuning

We tune the hyper-parameters for multi-label classification machine learning algorithm of

Bayesian nonparametric multi-label classification (BNMC) [26] on the Scene dataset using

the released source code, constructed as a black-box function3. BNMC uses stochastic vari-

ational inference (SVI) and stochastic gradient descent (SGD) for learning. In particular, we

optimize 6 hyper-parameters for BNMC: Dirichlet symmetric for features and labels, learn-

ing rate for SVI and SGD, truncation threshold and stick-breaking parameters. We aim to

maximize the F1-score.

The spaces which contain the optimal value for BNMC are unknown, instead we have

the default setting [26] that returns the F1-score of 0.705. Although this value is not yet

optimal, it is relatively accurate (w.r.t. other baselines in multi-label classification literature).

Thus, it makes sense to define an initial region X0 from this default setting and consider it

as a weakly specified space. Then, we let FBO expand the search and perform optimization

to obtain the best F1-score of 0.72. We present the performance w.r.t iterations in Fig. 9a.

3 https://github.com/ntienvu/ACML2016_BNMC

https://github.com/ntienvu/ACML2016_BNMC
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(a) Machine learning hyper-parameter tuning.

(b) Designing alloy 2050 for aeronautical industry.

Fig. 9: Performance comparison on real-world applications w.r.t. iterations. The higher F1

score and utility score indicate the better algorithm. The initial region of BNMC is defined

using the default parameters used in [26]. The initial region of alloy 2050 is weakly defined

by the metallurgist collaborators. These results are using EI as the acquisition function while

the UCB results are omitted to avoid the clutter in the graph.

5.8 Experimental design

We consider the low density alloy AA-2050 [22,1] used in the aeronautical industry. This

alloy offers a low density high corrosion resistant alternative to incumbent medium to thick

plate alloys and to thin plate alloys. The considered alloy consists of 8 elements (Al, Cu, Li,
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Fig. 10: The space expansion behavior in alloy design. We record the search space Xt at iter-

ations {0,10,25,40} for four elements {Cu,Li,Mg,Zr} that the initial region X0 is provided

by our metallurgist collaborators. The y-axis indicates the upper and lower ranges of the

space (in percent) for each element in the AA-2050 composition w.r.t. considered iterations.

(best view in color).

Mg, Zr, Sc, Si and Fe) while the Sc, Si and Fe are fixed values in our problem that we do

not need to optimize. We have the constraint that the sum of all elements is 100%. Thus, we

select to optimize four elements (Cu,Li,Mg,Zr) and treat the remaining element of Al as the

dependent variable for simplicity.

We aim to find the AA-2050 composition to achieve the desired properties, such as

low-density high corrosion resistant. The desired property for the alloy is defined using the

utility score which includes maximizing good phases while minimizing the bad phases at

equilibrium of a heat treatment process [20]. The good and bad phases are designed by our

metallurgist collaborators. We measure these phases using the software of Thermocalc4 at

different temperatures (160, 300, 420 and 500 degrees Celsius). We then summarize these

outputs and compute the utility score y.

We aim to optimize the utility score by finding the best alloy composition. However, the

search space containing the optimal value for the chosen elements is unknown and hard to

specify due to limited knowledge. Our metallurgist collaborators can only suggest a vague

space as the initial bounds for the optimization.

We present the quantitative comparison in Fig. 9b. Vanilla BO obtains the smallest vari-

ance due to performing optimization within a small space. Our approach outperforms the

4 http://www.thermocalc.com

http://www.thermocalc.com
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others by a wide margin in the utility achieved after iteration 25. To gain understanding, we

plot the space expansion behavior by FBO in Fig. 10. We notice that FBO adds more Cu

into the composition (from 14% to 30%) after 25 iterations while it prevents the expansion

of Li, Mg, and Zr, ensuring small, but efficient, search space. In addition, FBO only slightly

expands Li space downwards within the first 10 iterations, then stops the expansion and

focuses on exploitation. This phenomenon is the result of our expansion strategy with the

invasion set that smaller Li is not the promising direction to explore.

6 Discussion

We consider a possible situation when our FBO can be failed due to poor initialization or the

nature of the function. This case can happen when the large valley is surrounding the current

space which can prevent the expansion of FBO if we have the limited evaluation budget T .

For addressing this issue, in a future work section, we will investigate alternative expansion

strategies so that we can get rid of this valley trap.

7 Conclusion

We have presented a new strategy for Bayesian optimization in weakly specified search

space. Our approach can be applied when the search space is not well defined. Indeed, given

an initial region that does not include the optimum, we have demonstrated that our approach

can expand its region of interest and achieve greater function values. Our method contributes

toward the current Bayesian optimization framework for many practical applications, and

can be readily used with any acquisition function which is induced by a GP.

8 Future Work

We suggest four additional interesting directions to pursue. First, we will investigate alterna-

tive expansion strategies. Second, we consider the advanced setting where the initial region

is not weakly specified, but placed arbitrarily. Third, we will devise the batch Bayesian opti-

mization using filtering strategy for the settings that parallel evaluations are possible. Fourth,

we will estimate and utilize the partial derivative information to move, expand or shrink the

search space toward the global optimum location.
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