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ABSTRACT
Motivation: Automatically generated annotation on protein
data of UniProt (Universal Protein Resource) is planned to be
publicly available on the UniProt web pages in April 2004. It is
expected that the data content of over 500 000 protein entries
in the TrEMBL section will be enhanced by the output of an
automated annotation pipeline. However, a part of the auto-
matically added data will be erroneous, as are parts of the
information coming from other sources. We present a post-
processing system called Xanthippe that is based on a simple
exclusion mechanism and a decision tree approach using the
C4.5 data-mining algorithm.
Results: It is shown that Xanthippe detects and flags a large
part of the annotation errors and considerably increases the
reliability of both automatically generated data and annotation
from other sources. As a cross-validation to Swiss-Prot shows,
errors in protein descriptions, comments and keywords are
successfully filtered out. Xanthippe is a contradictive applica-
tion that can be combined seamlessly with predictive systems.
It can be used either to improve the precision of automated
annotation at a constant level of recall or increase the recall at
a constant level of precision.
Availability: The application of the Xanthippe rules can be
browsed at http://www.ebi.uniprot.org/
Contact: apweiler@ebi.ac.uk

1 INTRODUCTION
The protein databases Swiss-Prot, TrEMBL and the PIR are
currently being unified into a single resource under the Uni-
Prot effort (Apweiler et al., 2004). With the Swiss-Prot section
of UniProt, users obtain a manually curated dataset of high
qualitative value. Annotation is produced by a literature cur-
ation process and concerns mainly protein descriptions, i.e.
names and synonyms, comments, keywords and sequence
features. Large parts of the TrEMBL section, the non-curated
remainder of UniProt, provide few, if any, of the above-
mentioned value-adding annotation items. In this age of
high-throughput sequencing, the manual curation process has
not been able to cope with the avalanche of newly avail-
able sequence data, and as a consequence the proportion of
well-annotated protein data is constantly shrinking. Since this
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situation is unsatisfactory, various applications to generate
annotation automatically have been proposed as described in
the literature (Prlic et al., 2004; Fleischmann et al., 1999 and
others), and implemented in recent years.

One major aspect of the UniProt effort is to establish an
automated annotation pipeline to provide users with predicted
annotation, especially for otherwise little- or non-annotated
database entries. The predictive annotation rule sets gener-
ated in the RuleBase (Biswas et al., 2002) and Spearmint
(Kretschmann et al., 2001) projects are executed on a regular
basis. The results of these approaches, which increase the data
content of UniProt considerably, are expected to be presen-
ted to the general public on the project’s Web pages from
April 2004. They will be shown as prescriptive annotation
on a separated layer and will suggest annotation without any
modifications of the original data itself. It will be made obvi-
ous which annotation items were generated automatically and
at which level of confidence they were produced.

However, cross-validation of predictive models against
Swiss-Prot and various surveys of the produced data have
shown that a part of automatically generated annotation is
erroneous. The fact that both predictive systems applied in
the automated annotation pipeline rely on protein families,
domains and sequence signatures is one source of these errors.
The InterPro database (Mulder et al., 2003) provides these
data by assigning a protein sequence to a particular domain
or family based on the presence of a single signature hit.
Whenever false positive hits are encountered, data mining
applications have to deal with erroneous input data. It is
a non-trivial task to render each and every annotation rule
robust against this possibility. False positives appear over a
wide range, with some hitting to related families or remotely
similar biochemical properties, and some even occurring as
entirely random events. Another source of errors lies in the
bias between training and target sets, which are the Swiss-Prot
and TrEMBL sections of UniProt, respectively. Some situ-
ations in the target set are not represented in the training set at
all and can therefore not be resolved by mining algorithms
using examples in the training set only. For instance, an
annotation rule that was exported in Spearmint added the
keyword ‘Nuclear protein’ to all entries in the TrEMBL sec-
tion of UniProt having the InterPro domain IPR001005 (‘Myb
DNA-binding domain’) and the SMART (Schultz et al., 2000)
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hit SM00717 (‘SANT SWI3, ADA2, N-CoR and TFIIIB
DNA-binding domains’). The keyword is annotated in all
the 70 non-hypothetical Swiss-Prot proteins containing the
InterPro domain and the SMART hit. In the target set however,
protein Q819P5 (‘Prespore specific transcriptional activator
rsfA’) fulfils the conditions of this annotation rule, despite
its belonging to the kingdom of bacteria. There were no bac-
terial proteins in the training set and so the algorithm was
not trained using a fully representative set of instances. Since
there is no way of knowing what proteins are going to be
present in a future TrEMBL database version, full repres-
entation of all circumstances in the training set can never be
achieved.

Yet, a close analysis of the output of the annotation rule
immediately leads to a straightforward method for filtering
out this particular erroneous annotation. Bacteria do not pos-
sess nuclear proteins because of their lack of a nucleus. In all
cases the ‘Nuclear protein’ keyword annotated on bacterial
proteins is wrong, disregarding the origins of the annota-
tion, which could be predictive systems, data imports or even
human curation. This can be expressed as a simple exclu-
sion rule, which if applied on the TrEMBL section of UniProt
not only removes 66 wrong keyword predictions produced by
automated annotation, but also spots the same error in some
imports (e.g. in the bacterial protein Q93HH7).

In this paper, we present a system designed to mine auto-
matically for exclusion rules to a far deeper level than in the
above-mentioned obvious example, and to apply these rules
to predicted, imported and literature curated annotations in
UniProt database entries. The results of the application will
be shown alongside the automated annotation part of the Uni-
Prot entry as prescriptive annotation. The project was named
‘Xanthippe’ after Socrates’ renowned shrewish wife, due to
the nature of the system to scrutinize the output of other
systems and, if required, mark it as questionable.

2 SYSTEM AND METHODS
Both contradictors and predictors on protein data from Uni-
Prot use fundamental information entities present or pre-
calculated for each protein. These are data such as the tax-
onomy of the organism, from which the protein was extracted,
or the result of InterProScan (Zdobnov and Apweiler, 2001),
which automatically classifies sequences into families and
domains and detects hits to signature databases. This kind
of information is considered to be core data and is available
for each protein in UniProt.

It turned out that the presence and absence of annotation
items is in many cases a function of the distribution of core
data in the protein entry. The cases where annotation items are
implied are mined by predictive systems, such as RuleBase
and Spearmint. It is evident that there are also cases where
annotation items are excluded by core data, but the predictors
do not use this concept.

In the introductory example, the absence of ‘Nuclear pro-
tein’ keyword annotation in bacterial proteins was discussed,
a fact that was deduced by using biological reasoning. In
the following, two methods are presented which produce
this and similar exclusion rules using a mere statistical data
mining approach. They are eventually used as a system to
avoid annotation errors in UniProt entries. Annotation items
are marked as potentially wrong whenever the core data
distribution in the entry suggests that the item should be
absent.

Simple implication mechanism
The given example exploits the fact that organisms of the
kingdom of bacteria do not possess any nuclear proteins.
This simple implication can be detected automatically by
examining the distributions of taxa (core data) and ‘Nuclear
protein’ keywords (annotation) in the Swiss-Prot section of
UniProt. Out of 138 920 entries, there are 56 967 bacterial
and 8751 nuclear proteins. Assuming a normal distribution of
these data items, an overlap would be expected, i.e. bacterial
proteins with ‘Nuclear protein’ annotation. The expected
value is 3589 instances, while the observed overlap is 0. In a
database, where these data items are statistically distributed,
this would be an extremely unlikely situation with a likelihood
of <1.4 × 10−3388. This value is so small that not only can
the assumption of a normal distribution be discarded but there
is also a good indication that the two entities are mutually
exclusive.

It is a simple task to design an algorithm that iterates through
each taxon-keyword combination not present in Swiss-Prot
and calculates a value for the probability of not observing
an overlap. A threshold can be determined empirically, above
which the combination is exported as an exclusion rule and can
be applied on data in the TrEMBL section. At a threshold value
of 1 × 10−10 around 4000 of such exclusions are generated.

Obviously, further mappings from core data can be used
to contradict annotation for the corresponding proteins. Sig-
nature hits of the protein sequence and InterPro families or
domains are particularly interesting and could be exploited
to exclude annotation items. Yet, there are drawbacks to this
approach. Proteins from a family or having a hit to a specific
signature belong to their group according to specific proper-
ties. Unlike the set of bacterial proteins that covers a wide
range of functions and hence contains a large number of dis-
tinct annotation items, the set of proteins belonging to a protein
family by comparison contains a very limited range. In every
protein family or group of proteins hitting a common sequence
signature, most annotations are absent, and only a few are
present. Literally millions of rules can be created and, in fact,
the execution of these rules is far too inefficient in terms of
application time.

Another drawback is that these exclusion rules will sup-
posedly not detect a large proportion of the actual annota-
tion errors. It is hardly likely that a high-quality prediction
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Fig. 1. Decision tree for the occurrence of ‘Mitochondrion’ keyword annotation in InterPro domain IPR009056.

mechanism or the literature curation process produces many
annotations entirely non-specific to the protein families, to
which a given target protein belongs. There is a better chance
that annotation items, which are specific to the family of a tar-
get protein are affected by prediction errors. Unfortunately,
such errors cannot be detected by using simple exclusions.
This algorithm is designed to contradict only unspecific com-
binations, i.e. those which never occur in the given protein
families. A better way of targeting them is to use a decision
tree algorithm very similar to that employed in generating the
Spearmint rule set.

Exclusion trees
While the mapping approach groups proteins globally into
those having a core property and those not having it, exclusion
trees are generated from a local and comparatively small set
of training entities. The training sets are chosen to contain
proteins that are reasonably similar to each other, for instance
all Swiss-Prot entries belonging to a given InterPro family
or domain. Because of the similarity between the proteins,
the annotation in such groups is usually limited to a fairly
small number of annotation items. Most errors will affect these
items rather than those not occurring inside this group. To find
a contradictor to prevent such errors, a decision tree for each
annotation that occurs in a given training set is produced using
the C4.5 algorithm (Quinlan, 1993). The leaves of the trees
are examined to find the negative instances, i.e. those who do
not have a particular annotation, and rules are derived, which
describe the absence of the annotation. The set of all generated
absence rules eventually serves as a contradictive system.

The following example illustrates the exclusion tree
approach. Mining for the ‘Mitochondrion’ keyword in
InterPro domain IPR009056 (‘Cytochrome c’) produces the
decision tree shown in Figure 1. The tree is entirely generated
on a statistical basis but it reflects some basic biological facts.
In any case the prediction of the keyword is excluded from
the kingdom of bacteria, who do not have mitochondria. More
interesting for an exclusion rule generator are those proteins
that neither hit to PRINTS (Attwood et al., 2003) PR00604
(‘Cytochrome c, class IA/ IB’) nor belong to InterPro fam-
ily IPR002326 (‘Cytochrome c1’). Both families are found in

mitochondria, photosynthetic bacteria and other prokaryotes.
The remainder of the InterPro domain IPR009056 (‘Cyto-
chrome c’), according to the decision tree, are not localized
in the mitochondria.

A total of 185 instances in Swiss-Prot belong to InterPro
IPR009056 and do not hit PRINTS PR00604 or InterPro
IPR002326 (node with dark grey background in Fig. 1) and
none of them has the ‘Mitochondrion’ annotation. For there
to be a ‘Mitochondrion’ keyword predicted in this group, the
protein would have to have at least one of the hits PR00604 or
IPR002326; otherwise it will be contradicted by Xanthippe.

For the Swiss-Prot protein YIPP_DROME (‘Yippee
protein’) from Drosophila melanogaster, the Spearmint
system predicts a ‘Mitochondrion’ keyword. It uses a
decision tree generated from training proteins in IPR000345
(‘Cytochrome c heme-binding site’). This protein belongs to
IPR009056 but hits neither PR00604 nor IPR002326, and
hence, the keyword ‘Mitochondrion’ is not annotated in the
original entry. Xanthippe exclusion trees detect this error
made by Spearmint and mark it as possibly erroneous.

3 RESULTS
Since two inherently different sets of exclusion rules were gen-
erated, the results are presented separately to allow a thorough
analysis of the individual systems.

Organism to keyword exclusions
This system is rather stable in its output, it being unlikely
that in the future, organisms will be found that contradict
the known fundamental properties of their taxonomical back-
grounds. Since each data mining application on reasonably
sized datasets produces false positive predictions, we chose
to present the once exported exclusion rules to a biological
expert who manually picked out those of biological value. One
artefact that could be detected in this procedure was the appar-
ent absence of ATP-binding proteins in a range of venomous
snakes. The statistical approach produced a value far below the
threshold and exported an exclusion between the taxonomy of
these snakes and the ‘ATP-binding’ keyword. In reality this
exclusion does not denote any exceptional metabolic prop-
erties of these animals, but more the high level of scientific
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Fig. 2. Number of cases found in the TrEMBL section of UniProt,
which were contradicted by Xanthippe exclusions from organism
to keyword (white). Note, that the individual numbers do not add
up, since overlaps occur. The grey part shows the error rate, i.e.
how many contradictions where found compared with the amount of
annotations provided by the individual sections.

interest in protein samples of their venom. None of these bind
ATP, while the rest of the proteome is not represented in the
Swiss-Prot section of UniProt.

In the following, the results of applying 700 curated rules are
discussed. They were applied only when there was no example
of that particular combination in Swiss-Prot. They were con-
sidered to be biological facts, so their confidence value was set
to 100%. A cross-validation to Swiss-Prot is therefore unne-
cessary and only their performance in the TrEMBL section of
UniProt and on automated annotation is given in Figure 2.

Spearmint was found to produce the largest amount of
annotation errors in total numbers, while the original annota-
tion on the entries, usually imports from EMBL (Kulikova
et al., 2004), had the highest error rate.

Exclusion trees
This method is highly sensitive to minor changes in the distri-
bution of core data in the training set, and hence exclusion
trees are exported with every release of a new version of
Swiss-Prot. In general, the new exports differ from former
results. They frequently query for related signature hits or
on different levels in the taxonomy tree, but if applied they
usually produce the same contradictions. Therefore, a cura-
tion step as in the first method is not feasible and the artefacts
produced by this method have to be accepted and investigated.

Exclusion trees were generated for three inherently differ-
ent annotation items: keywords, protein names and comments.
Keywords consist of a controlled vocabulary of approximately
850 distinct words that are highly accessible to data mining
algorithms. Protein names are less controlled and comments
can be used for entirely free text annotation. Closer exam-
ination reveals that large parts of the latter annotation items in
fact also consist of controlled vocabulary. They are kept con-
sistent in the Swiss-Prot section of UniProt, occur in multiple

Fig. 3. Performance of Xanthippe exclusion trees on keyword
predictions from RuleBase and Spearmint.

entries and can therefore be picked by algorithms working on
a statistical basis.

The results are given individually for rules from Spear-
mint and RuleBase to show that the method performs well
on predictive methods from entirely different backgrounds.
RuleBase is an expert-curated annotation system, where the
rules are created on the basis of biological reasons and only
partly on statistical considerations. Spearmint ignores the bio-
logy component of the problem field, is founded on data
mining algorithms only, and is related in its approach to the
exclusion rule generator.

The cross-validations to the Swiss-Prot section of UniProt
were sampled as follows. Whenever annotation rules from the
individual sources were applied on a Swiss-Prot protein and a
predicted annotation was not present in the entry itself, it was
considered to be erroneous. Whenever this prediction was con-
tradicted by the Xanthippe system, it was counted as detected
(true positive); if it was not contradicted, it was counted
as missed (false negative). There are cases where correct
annotation was contradicted (false positive), but the largest
part consists of correct annotations that were not contradicted
(true negative).

Figure 3 shows the cross-validation of keyword predictions
to Swiss-Prot. For Spearmint, approximately two-thirds of
annotation errors are detected for the price of ∼2% of wrongly
contradicted annotations. If this validation is true for the target
set, it suggests that if Spearmint predictions were applied to
the TrEMBL section of UniProt physically mbox rather than
by using the current prescriptive annotation system, the qual-
ity of keyword predictions could be increased from ∼98.5 to
∼99.5%. For RuleBase still ∼40% of the annotation errors
were found, improving the overall precision from 99.0 to
99.4%.

Figure 4 shows the Xanthippe performance on protein
names and comments. For Spearmint, the protein name preci-
sion of the predictions could be increased from 96.9 to nearly
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Fig. 4. Performance of Xanthippe exclusion trees on comment and protein name predictions from RuleBase and Spearmint.

99%, all other items showed a poorer performance. After all,
between 20 and 30% of the annotation errors could still be
filtered on these data, but obviously these are the best targets
for further improvements.

4 DISCUSSION
The presented system for filtering erroneous annotation from
protein entries in UniProt, particularly the automatically pro-
duced data, proved to work on a sufficient level for keyword
annotation. The filtering uses two distinct mechanisms, of
which the simple mapping approach was approved to be
taken into the automated annotation production pipeline. The
exclusion tree approach turned out to be promising, but the
performance of comment and protein name contradictions
needs further improvement.

Improvements to the exclusion tree approach
Taking sub-string/super-string situations into account is
expected to enhance the system considerably. In the InterPro
family IPR000500 (‘Connexins’) for instance, all protein
names of the Swiss-Prot members are annotated as ‘Gap
junction [extension] protein’, where the extension can be
‘alpha-1’, ‘beta-2’, etc. The RuleBase system however pre-
dicts ‘Gap junction protein’ without the extension as protein
name. Obviously, there can be no Xanthippe rule that ever
contradicts this particular annotation, because there is no
single instance in the training set where the extension is
missing. Should there be a case where RuleBase annotates
‘Gap junction protein’ incorrectly, there is nothing in the cur-
rent Xanthippe system that could prevent this from happening.
Furthermore, the statistics given in the above diagrams are
impaired by this effect. In the cross-validation, ‘Gap junc-
tion protein’ predictions on actual ‘Gap junction [extension]
protein’ annotations are still considered as false positives.
Mostly, sub-string predictions are generalizations of the actual
annotation and should be calculated as true positives. The
Xanthippe system needs to be extended to cover sub-strings

of protein names and comments, and hence these cases need
to be included in the training sets.

Predictors versus contradictors
The RuleBase system has been used since 1999 to produce
automated annotation. The performance in terms of precision
is highly appreciated and the system is supported by a team of
experts. Spearmint is intended to supplement RuleBase and
to increase its coverage without compromising its level of
precision.

As an automatic data mining system Spearmint has the
advantage of producing much more annotation than RuleBase.
The latter however is small enough to be reviewed constantly
by scientists, and hence the confidence in the data it produces
is high. The output quality of Spearmint can be adjusted by not
applying all the exported rules, but only those with high stat-
istical support. Taking RuleBase as a benchmarking system,
Spearmint is set to produce the same quality level as RuleBase.
The Spearmint application, followed by a Xanthippe post-
processor, can be adjusted to produce even more predictions
at a lower level of precision. If a large portion of the errors is
filtered out, the same overall annotation quality can be pro-
duced as in a more restrictive Spearmint export without the
Xanthippe post-processing step.

Running Spearmint at 98.5% quality reproduces 33% of
keyword annotation in Swiss-Prot (Kretschmann et al., 2001),
while a 95% quality level yields 58% recall. Provided that
Xanthippe still detects two-thirds of the errors produced by a
Spearmint exported at 95%, the actual precision is expected
to be at around the desired 98.5%. Additionally, the propor-
tion of detected erroneous annotation is expected rather to
increase for a rule set produced by a comparatively low preci-
sion system. This means that with using Xanthippe the recall
of keywords can be nearly doubled without compromising the
quality of the prediction.

Feedback loops
If RuleBase or Spearmint predicts an annotation item on a
Swiss-Prot entry, which is not contradicted by Xanthippe
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but is missing in the entry, a further investigation should
be undertaken. In some cases the item might be missing
in the entry and can be added, which would improve data
consistency in Swiss-Prot.

Since garbage in–garbage out effects are responsible for
many annotation errors, the signatures leading to the most
obvious ones will be reported to InterPro. If required, such
hits can be set to false positive status in this database.

5 CONCLUSION
This work shows that predictive models can be enhanced
by including an additional contradictive level. The approach
works sufficiently well for a mining environment on protein
data. The authors suspect that other data mining applications
could benefit from similar systems.
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