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Abstract

This paper shows how existing band-pass filtering techniques and their extension can be a

to the common current-analysis problem of estimating current trends or cycles. These tech

give estimates that are “optimal” given the available data, so their standard errors represen

lower bound on what can be achieved with other univariate techniques. Applications to the

problems of estimating current trend productivity growth, core inflation, and output gaps are

considered.

JEL classification: C1
Bank classification: Econometric and statistical methods; Potential output

Résumé

L’auteur montre comment les techniques actuelles de filtrage passe-bande et leurs prolonge

peuvent servir à estimer des tendances et des cycles courants. Ces techniques donnent d

estimations jugées « optimales » compte tenu des données disponibles, de sorte que les é

types s’y rattachant représentent la borne inférieure de la marge d’erreur qui serait associé

résultats produits par d’autres techniques univariées. Dans cette étude, l’auteur examine le

applications de ce filtre aux problèmes que posent l’estimation de la croissance de la produc

de l’inflation fondamentale et de l’écart de production observés.

Classification JEL : C1
Classification de la Banque : Méthodes économétriques et statistiques; Production potentie
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1. Introduction

A common problem in macroeconomics is that of measuring the business cycle, or more gen

of separating long-run trends from short-term movements. A technique that does so can be

thought of as afilter, one that is applied to raw economic data prior to analysis. The best know

the Hodrick-Prescott (H-P) filter, which has become the benchmark against which all other fi

in macroeconomics are compared.1

The H-P filter is unabashedly arbitrary; it was proposed and adopted largely on the basis th

gave results that “looked reasonable.” Its use has since been rationalized as an approxima

pass filter. A band-pass filter isolates movements in a series between a specified upper an

frequency or duration; movements outside the desired frequency band are eliminated. As

commonly used with quarterly economic data, the H-P filter eliminates or greatly reduces m

long-run movements in the series while preserving those at roughly business cycle frequen2

The result is a detrended series that looks like a business cycle and has served as an agnos

for much economic analysis.3

Given its pre-eminent role and its arbitrary nature, the H-P filter has been the focus of muc

emulation and innovation in recent years. Baxter and King (1999) propose replacement of th

filter with a more exact band-pass filter, arguing that better results come from using a bette

approximation. Gomez (2001) and Pollock (2000) propose the use of other ad hoc filters th

commonly used in engineering and that also approximate band-pass filters.4 Pedersen (1998) and

Kaiser and Maravall (2001) propose extensions or modifications to the H-P filter to improve

performance. Most of this literature, however, has ignored the application to current analys

The distinguishing feature of current analysis is that it interprets the most recently available

information; the cycle (or trend) of interest is that at the end of the data sample. The domin

1. Its current popularity stems from its use in the seminal working paper by Hodrick and Prescott (1
finally published as Hodrick and Prescott (1997), although the technique dates from the 1920s.

2. In practice, business cycles are defined as having durations of between 6 and 32 quarters. This
definition gained popularity after Baxter and King (1999) stated that Burns and Mitchell (1947)
characterized business cycles in that way. The numbers are not written in stone; Stock and Wats
(1998) quote Burns and Mitchell (1947, 3) as stating that business cycles vary in duration “from
than one year to ten or twelve years.”

3. The claim that H-P-filtered output “looks like” a business cycle is a popular misstatement. Busin
cycle measurement and analysis, since its infancy, has used the H-P filter (or even simpler movi
average filters, which produce similar results). It is therefore probably more accurate to say that
output of these filters hasdefinedwhat we think of as business cycles. See Morley, Nelson, and Ziv
(1999).

4. Both examine Butterworth filters, of which they note that the H-P filter is simply a special case.
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focus of the aforementioned literature is historical analysis, in which we care mostly about 

cycle (or trend) somewhere in the middle of the sample. This distinction is sometimes critic

Most of the analysis in the existing literature is restricted to symmetric filters; to isolate the 

or trend at timet, such filters use an equal number of observations from before and aftert.5 This

precludes their use at the end of the sample. Other filters are justified on the basis of their 

sample properties, but can behave quite differently at the end of the sample.6

This paper considers the filtering problem from the perspective of current analysis. Rather 

consider ad hoc approximations to band-pass filters, it shows how to construct one-sided b

pass filters that are optimal in a minimum mean-squared-error (MSE) sense. Unlike the filte

mentioned in the above-noted literature, the optimal filter will vary with the properties of the d

series to be filtered. While such filters are little-known in macroeconomics, they are not new

Appendices A and B, respectively, review the contributions of Christiano and Fitzgerald (19

and Koopmans (1974) and provide a modest extension of their results. The body of this pa

gives an overview of optimal filters and applies them to three problems of widespread inter

estimating the current output gap, the current trend growth rate of productivity, and the curr

trend rate of inflation.

Literature related to that noted above examines the reliability of filtered estimates of trends

cycles.7 Since the current analysis filter discussed in this paper minimizes an MSE criterion

can relate its reliability to those of other filters examined in this literature. It also establishes

upper bound on the accuracy that any such filters can hope to achieve. Because this boun

depends in a complicated way on the properties of the data analyzed, we investigate the pro

of the optimal filter for the three common problems in current analysis.

Section 2 provides a non-technical overview of band-pass filtering and the optimal one-side

band-pass filter. Appendix B gives the derivation and a more detailed discussion of this filte

Section 3 applies the filter to three common macroeconomic problems of measuring trends

cycles and discusses the results. Section 4 summarizes the conclusions and suggests ave

further research.

5. Baxter and King (1999), for example, suggest reserving about five years of data from each end
sample to provide the necessary leads and lags.

6. The H-P filter is a case in point. Comparisons with band-pass filters are based on its symmetric
representation, which is a limit the filter approaches in the middle of a large sample. Its represen
at the end of the sample is quite different; see St-Amant and van Norden (1997).

7. Examples of this include Setterfield, Gordon, and Osberg (1992), Staiger, Stock, and Watson (1
Orphanides and van Norden (1999, 2002), and Cayen (2001).
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2. An Optimal Band-Pass Filter for Current Analysis

2.1 Filters: a primer8

A filter can be thought of as an algorithm for processing a time series to get a more meanin

statistic; e.g., the process of averaging measured rainfall at a given location to get “average

rainfall. We can describe this mathematically as

, (1)

where is our statistic, is our time series, and is our filter. While such processing coul

complex, attention often focuses on a particularly simple and tractable case: thelinear, time-

invariant filter. The distinguishing features of such filters are that the weight, , we put on a

particular observation does not depend on , and that the operation is linear in .9 Such filters can

therefore be described as

. (2)

If we think of  as a random error term, the Wold decomposition theorem tells us that this 

of filter is related to the class of autoregressive moving average (ARMA) process. In this situa

since the properties of  are held fixed, the properties ofS are determined by  (or vice versa).

We are often particularly interested in the dynamics ofS,which may be uniquely characterized

via frequency or spectral analysis. The idea is to decompose all the movements inS into cycles of

varying frequency and amplitude. Such a unique decomposition exists ifS is stationary (and if

not, we can difference it until it is.) Furthermore, since cycles of different frequencies are

uncorrelated in the long run, the variance ofS will simply be the sum of its variances over all

frequencies. The relative importance of these different frequencies in the overall variance t

something about the dynamic behaviour of the series. For example, an identically, indepen

distributed (i.i.d.) error will display a constant variance at all frequencies, while a random w

will have much more variance at low frequencies (long cycles) than at high (short cycles). T

8. This section provides an intuitive introduction to the filtering terms used in the rest of this paper. I
be skipped without loss of continuity by those familiar with spectral analysis.

9. Several well-known filters do not belong in this class. Examples include the H-P filter (where the
weights vary witht) and the Hamilton filter for the probability of being in a particular regime (which
a non-linear function of ).

S f y( )=

S y f .( )

βi

t y

y

St β y⋅ βi yt i–⋅
i ∞–=

∞

∑= =

yt

y β
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function decomposing the total variance by frequency is commonly called thespectrum or

spectral densityand is typically shown graphed from 0 (lowest frequencies, infinitely long cycl

to  (highest observable frequencies, cycles of 2 periods).

The spectrum ofSdepends on the properties of both and . To understand the effects of

can divide the spectrum ofS by that of  to define thesquared gain or transfer function of .

Frequencies at which the squared gain is greater than 1 are accentuated inS, while those at which

the squared gain is (close to) zero are (nearly) removed fromS. The aim ofband-pass filtering is

to choose  to match a particular kind of squared gain function, one that has a gain of 1 ov

particular frequency range (l, u) |  and zero elsewhere. The case where  is

called a low-pass filter, while  is called a high-pass filter.

If a filter has the property , it is called asymmetricfilter, whereas if

the filter is said to beone-sided.10 Symmetric filters have the property thatS will tend neither to

lead nor to lag movements in the corresponding components ofy; the same is not generally true

for non-symmetric filters.11 This effect of non-symmetric filters is calledphase shift and in

general will vary from one frequency to another.

2.2 Business cycle filters

Band-pass filtering is an approach to the measurement of trends or cycles in macroeconom

whose appeal rests on two key assumptions:

(i) We can agree on some threshold duration such that we wish to interpret movements of l
duration as trends and those of shorter duration as cycles.

(ii) Aside from this, we wish to remain fairly agnostic about the economic or stochastic proce
generating the data.

We can detrend the data using a low-pass filter (one that passes all frequenciesbelow the

threshold; i.e., all durationsabove the threshold) to isolate the trend, or, equivalently, use a hig

pass filter to isolate the cycle. Two of the three applications we study below use low-pass filte

isolate trends. The case of business cycles is more complex, since we wish to exclude both

trend component and a seasonal/short-lived component. We therefore need a band-pass fi

block the movements both of very long and very short duration.

10. The only one-sided symmetric filter is the trivial filter, which just multiplies by a constant; we w
ignore that special case and proceed as if these two classes are mutually exclusive.

11. For example, consider the difference between a centre-weighted and a one-sided moving avera

π

β y β
y β

β
0 l u π≤<≤ l 0=

u π=

β j β j–= j∀ β j 0= j 0>∀

yt
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The ideal band-pass filter would have a gain of zero outside the (l, u) interval and a gain of one

inside. Deviations from the former condition would allow leakage from undesired frequencie

while deviations from the latter would distort the “true” cycle present in the data. This uniqu

filter exists and is given by the formula

(3)

One problem with this ideal filter is that we require the sum in equation (2) to go from  to

Truncating this sum at some finite values, say-N andN, results in an approximate filter in which

the desired rectangular shape of its squared gain is contaminated by sinusoidal imperfection

Figure 1). Baxter and King (1999) suggest that using values ofN as small as 20 gives reasonabl

results for U.S. business cycles if we adopt the Burns and Mitchell cut-offs of 6 and 32 qua

The problem with this approach is that it cannot be used for current analysis. Using the Baxte

King approximation with N = 20 onquarterly data would imply that our most recent estimates

the business cycle would be 20 quarters prior to the last quarter for which we had data. On

around this would be to use the Baxter-King formula at the end of the sample, simply omitt

(i.e., replacing by zero) the missing observations, which are not yet known. As Figure 1 sho

this gives poor results, even for large values of N; the resulting filters have a gain that is far

1, vary considerably over the frequency band of interest, and leak much more of the freque

outside the desired band. Stock and Watson (1998) use a different ad hoc solution. They fi

available time series to a simple autoregression model, then use forecasts from the fitted mo

place of the required future observations. Unfortunately, they do not provide a justification for

procedure, nor do they examine how closely it approximates the ideal filter.

Another criticism of this approach is that even if the filter used has a gain function close to th

the ideal filter, this need not imply that the series it produces will be a good approximation 

ideally filtered series.12 The problem is that many economic series display a “typical Granger

spectral shape”: the density in their spectrum is highly concentrated at the lowest frequenc

This in turn means that for band-pass or high-pass filtering (e.g., for measuring business c

we care much more about how well we approximate the ideal filter at low frequencies than at

frequencies.13

12. For example, see Guay and St-Amant (1997).
13. Pedersen (1998) re-examines H-P filters from this perspective and suggests alternatives to the

traditional value of 1600 for its smoothing parameter.

Bj
jusin jlsin–

πj
--------------------------------= for j 1≥

u l–
π

---------- for j 0.= =

∞– ∞
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2.3 Optimal current-analysis filters

To adapt the band-pass filtering approach to a current analysis context, we would like to ha

some optimal filter, , which minimizes

(4)

In other words, givenT observations on the series we wish to filter, , the optimal filter wil

give us the minimum MSE estimate of what the ideal filter would give us with data from  t

. As Appendix A shows, this problem has a unique solution under fairly standard condition14

In the case where  is stationary, we find that

, (5)

where

, a lengthT column vector,

, aT x T matrix,

,

a lengthT column vector,

, a2q+1

column vector,

,

, aT x 2q+1 matrix,

, a2q+1 column vector, and

 is the weight of the ideal filter, given by equation (3).

In general, these optimal weights depend on (i) the number of observations,T, we have, (ii) the

dynamics of our series, , as measured by its autocovariances, and (iii) the ideal weights,

14. Appendix A gives solutions for the case of integrated autoregressive moving average (ARIMA)(p
processes ( ) and surveys related contributions in the literature.

B̂j{ }

E Bj
ˆ yT j–⋅

j 0=

T 1–

∑ Bj yT j–⋅
j ∞–=

∞

∑–
2

.

yt{ }
∞

∞–

1– d 3< <

yt{ }

β Σy
1–

B σy⋅ ⋅=

β B̂0 … B̂T 1–, ,[ ]′=

Σy σy 0, σy 1, σy 2, … σy T 1–,, , , ,[ ]′=

σy j, σy j–( ) σy j– 1+( ) σy j– 2+( ) … σy T 1– j–( ), , , ,[ ]′=

σy σy q–( ) σy q– 1+( ) σy q– 2+( ) … σy q( ), , , ,[ ]′=

σy q( ) cov yt yt q+,( )=

B B
0

B
1

B
2

… B
T 1–

, , , ,[ ]′=

B
j

Bj q– Bj q 1+– Bj q 2+– … Bj q+, , , ,[ ]′=

Bj

yt Bj
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from equation (3). Furthermore, they have an intuitive interpretation as the solution to a regre

problem—one where we regress the doubly infinite set on ourT observations, . The

resulting coefficients are our optimal weights, and therefore our minimization problem, equ

(4), simply seeks to minimize the variance of the regression residuals.15

We can better understand this formula and the above intuition if we consider two special ca

First, suppose that  is i.i.d. This means that  for all , so we may setq = 0. This

makes  a scalar, equal to the variance ofy, and  is simply the identity matrix times this

variance. This means that equation (5) further simplifies to . Put anothe

way, in this case the optimal solution is simply a truncated version of ideal weights, precise

same solution that was seen to give very poor results in Figure 1.

Now suppose thaty follows a stationary MA(Q) process. Since its autocovariances will be zero

for leads and lags greater thanQ, this again effectively determinesq in equation (5). Suppose,

however, that instead of using the optimal weights, we use the Stock and Watson approach

padding ourT observations withQ forecasts/backcasts from the MA model at each end of the

sample, and then use the Baxter-King approximate filter withN = Q. The estimate from this two-

step ad hoc procedure will be identical to the estimate from our optimal filter, because the op

weights given in equation (5) reflect both the weights used to form forecasts/backcasts at the

of the available sample and the weights that the Baxter-King filter would place on them. Pu

another way, equation (5) implies that the Stock-Watson two-step procedure will give optim

estimates at the end of the sample provided that (i) we use the “right” forecasting model to

our data, and (ii) we pad our sample until our forecasts have converged to zero.

Another feature of equation (5) is that it lets us solve for the minimum value of equation (4).

is useful, since it tells us how well our best end-of-sample estimates can approximate the i

estimates. The general solution is given by

(6)

In the above case, wherey is i.i.d., this reduces to

15. This interpretation is developed further in Appendix A, particularly in section A.1.

Bj yT j–⋅{ } y

yt σy l( ) 0= l 0≠
σy Σy

β B0 … BT 1–, ,[ ]=

E Bj yT j–⋅
j ∞–=

∞

∑
2

E Bj
ˆ yT j–⋅

j 0=

T 1–

∑
2

.–
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3. Applications

We now examine the performance of the optimal filter by applying it to three problems of

common interest: estimating the current output gap, the current trend growth rate of produc

and the current trend rate of inflation. The first of these differs from the other two in that we

analyze the raw data in levels, not growth rates, and in that we seek to isolate the intermed

frequencies rather than the low frequencies. Because the optimal filter is a function of the

dynamic properties of the series analyzed, our results can be expected to differ across

applications.

3.1 Data

The output series ( ) is the natural logarithm of Canadian real GDP (1997 dollars) for the pe

1961Q1 to 2001Q1. The inflation series is the monthly difference of the natural logarithm

the Canadian all-items CPI (seasonally adjusted) covering the period January 1948 to Aug

2001. The productivity series  is the natural logarithm of quarterly data on Canadian re

GDP per hours of employment from 1966Q1 to 2001Q2; hours worked are average weekly

times the number of people employed, both of which are from Statistics Canada's labour fo

survey. Note that deterministic components were removed from all three series prior to ana

In the case of  and , the series were demeaned; for  a deterministic linear trend was

removed.

For each series, two different estimates of the autocovariance function, , were then

constructed. The first fit a low-order ARMA model to the data (Table 1), and then used the

estimated parameters of the ARMA model to calculate the implied covariances.16 The second

used a nonparametric kernel estimate.17 In both cases, each data sample ofN observations was

used to calculateN-1autocovariances. The two approaches gave sometimes similar estimate

shown in the top-left panel of Figures 2 through 4, with the nonparametric kernel tending to

16. TheARMABIC3()procedure from the Coint module for GAUSS, by Ouliaris and Phillips (1995), w
used for estimation and model selection. This uses the BIC criterion for model selection and a 2
stage Hannan-Rissanen iterative estimation procedure.

17. The results presented here use the quadratic-spectral kernel (without the data-dependent band
selection.) Limited experimentation suggested that the results were not sensitive to this choice.

Bj
2

j ∞–=

∞

∑ Bj
2

j 0=

T 1–

∑–
 
 
 

σy
2⋅ Bj

2

j ∞–=

1–

∑ Bj
2

j T=

∞

∑+
 
 
 

σy
2⋅=

Yt

πt( )

Qt( )

Qt πt Yt

σy q( )
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capture somewhat more complex and persistent dynamics. The second panel (top right) of Fig

through 4 shows the corresponding spectrum for each series.

The dynamics of the three series look quite different. Quarterly productivity growth shows v

little persistence and is well-approximated as white noise; its spectrum is therefore relatively

Output shows slowly decaying autocovariances, consistent with estimated autoregressive ro

nearly 0.95. Its spectrum displays the typical Granger shape, with density powerfully

concentrated in the low frequencies. Monthly inflation falls between these two extremes, wit

dynamics of its ARMA approximation showing less persistence than those of the nonparam

kernel estimate.18 The result is two very different-looking spectra, with the ARMA-based

estimate looking quite flat, but the kernel-based estimate showing even more concentration

low frequencies than the spectrum for output growth.

3.2 Filtering productivity growth

Trends in productivity growth are the subject of considerable analysis, with interest in curre

trends having intensified in recent years. While it is widely acknowledged that labour product

is procyclical, most analysis of productivity growth does little to explicitly separate its trend 

cyclical components beyond examining averages of growth rates over several years. It wou

therefore be useful to construct optimal estimates of current trend productivity, as well as to k

how reliable such estimates may be. This is precisely what the results from section 2 now e

us to do.

Since we are trying to remove business cycle influences from productivity growth, we adop

Burns-Mitchell-Baxter-King characterization of these cycles as having durations of up to eig

years in length. Our ideal filter for quarterly data is therefore a symmetric low-pass filter tha

blocks all frequencies above . This, together with the results presented in section 3.1

we need to construct the optimal filter. Its properties are described in Figure 2 and Table 2.

The third panel in Figure 2 (middle row, left column) compares the weights of the optimal a

ideal filters. In the case of the ARMA model, the two are identical, because the model

approximates quarterly productivity growth as uncorrelated; this is precisely the simple cas

discussed in section 2.3. The weights for the kernel model are similar, but die away more s

and are somewhat more volatile, reflecting the greater persistence in the series that the ke

detects.

18. ARMA model selection for the CPI data was problematic. It is doubtful that the MA(12) adequate
captures the persistence of inflation, since this would imply that inflation shocks completely die o
12 months.

π 16⁄
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Panels 4 and 6 in Figure 2 (right column, middle and bottom rows) compare the spectral

properties of the three filters and the two optimally filtered series. The gain of the optimal AR

filter shows the same pattern we saw previously in Figure 1 for other truncated ideal filters;

only difference is the number of observations in the approximation.19The optimal kernel filter has

a more complicated gain function, tending to fluctuate around the gain of the optimal ARMA

filter. Note that the kernel filter has a particularly high gain for some of the frequencies betwe

and 0.1, and a particularly low gain for some of the frequencies between 0.1 and 0.2. This re

emphasis is to be expected, given the peaks and valleys of the kernel-estimated spectrum i

ranges, and therefore their relative importance in the overall performance of the filter.

Multiplying the spectral density at a given frequency from panel 2 by the squared gain at th

frequency from panel 4 gives us the spectrum of the filtered series shown in panel 6. In contr

the relatively flat spectra shown in panel 2, our low-pass filters have succeeded in powerfu

concentrating the spectrum of the filtered series over the desired frequencies. At the same

however, the imperfections of the optimal filters are clearly visible; the spectral density at the

frequencies is only about half that in the raw data, and the ARMA-filtered spectrum has an

artificial peak at the cut-off frequency, which implies a spurious cycle in the filtered series.20

The overall performance of the filter across all frequencies is summarized by the statistics

presented in Table 2. The variance of the raw series (line 1) is simply the area under the sp

shown in panel 2 of Figure 2.21 Similarly, the variance of the ideally filtered series (line 2) is th

area under those spectra lying between frequencies 0 and . In this case, the ideally fi

trend accounts for roughly 1/20th of the total variance of the observed series. The optimally

filtered estimate of that trend captures little more than half of the variance of the ideal trend

another way, the MSE of the optimally filtered estimate will be almost as variable as the esti

itself; the noise-signal ratios are slightly over 0.9 and the correlation between the optimal an

ideal estimates will be only about 0.72. Not surprisingly, given the similarities of the ARMA 

kernel estimates of the autocovariance functions, the two optimal filters perform similarly as

19. To understand why a filter with a gain everywhere less than 1 may still be optimal, consider the e
of scaling all the filter weights by some constantk>1. This has the effect of scaling the squared gain
everywhere by . In the case of the ARMA filter, this will reduce the difference between its gain
that of the ideal filter at frequencies below the cut-off frequency (i.e., reducing compression), the
improving the estimate. This benefit is counterbalanced, however, by the effect of increasing the
difference between the two filters at frequencies above the cut-off (i.e., increasing leakage). The
optimal scale is the one at which the marginal benefits at some frequencies of a change in scale
exactly equal to the marginal costs at all other frequencies.

20. Of course, the current application is designed to produce a single point estimate, rather than a se
this point may be moot.

21. Strictly speaking, it is twice that area, since the full spectrum is symmetric about 0; the figure sh
only half that range. This applies to the analysis of subsequent rows in this table, as well.

k
2

π 16⁄
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3.3 Filtering inflation

As the objective of price stability has moved to the forefront of monetary policy formulation

throughout much of the world over the past decade and a half, more attention has focused o

to measure and monitor progress towards this goal. Most monetary authorities propose a mo

(or “core”) measure of inflation that aims to capture persistent trends in inflation or inflation

pressures.22 It would therefore be of interest to use band-pass filters to construct optimal meas

of current trends in inflation, where these trends are again defined using a low-pass filter. T

appropriate cut-off frequency to use for such a filter is debatable; for the example we study in

section, a frequency of (corresponding to cycles lasting 48 months) is used to give sea

influences and short-run nominal shocks ample time to dissipate. Results are presented in T

and Figure 3.

Panel 3 (left column, middle row) in Figure 3 shows us that the optimal weights are now mo

different from the ideal weights. While the ideal weights are quite small and vary gradually 

time, both sets of optimal weights put much higher weights on the most recent observation

Again, the ARMA model gives weights that converge more quickly to the ideal weights than

kernel model, presumably reflecting the greater persistence in the kernel-estimated dynam

Panel 4 (right column, middle row) shows that the gain functions of the optimal filters are a

different from that of the ideal filter in several respects. The gain function for the ARMA filte

resembles the shape shown in Figure 1, with a gain of less than 0.5 for most of the pass ban

a gain near 1 for only a narrow band near the cut-off frequency. Although the gain drops sh

beyond that point, it stays significantly above zero for the remainder of the graphed frequen

range. The gain of the kernel filter bears only a rough resemblance to that of the ARMA filter

most striking difference being the presence of multiple narrow spikes in the gain function

throughout the pass band and stop band. The gain within the pass band varies by a factor 

roughly 10-to-1, and there are multiple peaks well outside the pass band with gains close t

exceeding 1.

Panel 6 (right column, bottom row) shows that, despite the apparently irregular gain functio

both of the resulting filtered series capture most of the density of the raw series at the low

frequencies and have a very sharp drop in density at the cut-off frequency, with very little de

at the higher frequencies. This reflects the fact that both filters have sharp drops in gain at th

off frequency, and that the potentially large leakage they allow from much higher frequencie

22. Unlike the techniques examined in this paper, many approaches to measuring core inflation rely
analysis of disaggregated price movements.

π 24⁄
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relatively unimportant, owing to their lack of importance in the original spectrum. Similarly, 

variable gain of the kernel filter within the pass band does not appear to greatly distort the

spectrum of inflation within this band. This is because peaks in the raw spectrum correspon

frequencies around which the gain is not far from 1, while areas of particularly low gain in t

pass band correspond to troughs in the raw spectrum.

Table 3 confirms the relatively good performance of the optimal filter, particularly for the ke

model. The optimal ARMA filter performs somewhat better than its counterpart in the case 

productivity growth, giving correlations with the ideal filter of almost 80 per cent and a noise-sig

ratio of 58 per cent. The optimal kernel filter, however, performs much better, giving a 95 per

correlation with the ideal filter and a noise-signal ratio of only 11 per cent.

This improved performance is consistent with the basic intuition observed in section 2.3, th

persistence tends to improve the quality of current estimates of the trend. We can understa

in terms of the Stock-Watson two-step procedure: the more persistent a series is, the bette

we are to forecast it and therefore the better we approximate the ideal filter. Since kernel esti

of the autocovariance function imply much longer dependence than the MA(12) model chos

the ARMA model-specification procedure, they imply that we should be able to forecast infla

much further into the future and therefore to reduce the difference between mid-sample an

of-sample filter estimates.

Another way to understand these results is to recall that as persistence increases, the spec

our data series becomes increasingly concentrated in the lowest frequencies. Since our go

design a low-pass filter, this in turn reduces the importance of leaking higher frequencies,

allowing an increase in the average gain of the optimal filter and thereby a better approximat

the ideal filter.

3.4 Filtering GDP

Optimal filters for business cycles and their properties are described in Figure 4 and Table 

Unlike the two previous filters considered, this is a band-pass rather than a low-pass filter, 

uses the values suggested by Baxter and King  to define the frequencies of int

Panel 3 (left column, middle row) of Figure 4 shows that, aside from the first few observatio

the optimal ARMA weights are indistinguishable from the ideal weights. The kernel weights

however, again display much more variation and die away more slowly. Panel 4 (right colum

middle row) shows that the squared gain of the optimal ARMA filter resembles the patterns

shown in Figure 1. The gain function for the kernel filter roughly follows that of the ARMA filte

π 16⁄ π 3⁄,( )
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but with greater volatility, reflected in large, narrow peaks and troughs relative to the ARMA fi

The peak gain is at the high end of the pass band, with a peak just under 2.0, while several

in the pass band have gains near zero.

Panel 6 (right column, bottom row) shows that both filtered series have effectively blocked 

high-frequency part of the original spectrum, but that both seem to pass significant amounts

lowest frequencies. The results shown in Table 4, similar for both models, apparently reflec

low-frequency leakage. The correlation of optimal and ideal filter estimates is only about 75

cent, and the noise-signal ratio ranges from 72 per cent for the kernel model to 87 per cent f

ARMA model.

3.4.1 The reliability of current estimates of the output gap

Estimates of the reliability of output gaps are of particular interest for the design of optimal

monetary policies. It is therefore of interest to compare the above results with other recent

estimates in the literature.

Christiano and Fitzgerald (1999) solve roughly the same optimal filter problem solved in thi

paper.23 However, on the basis of experiments with models in the IMA(1,q) class, they conc

that most economic time series can be nearly optimally filtered if we assume that they are ra

walks and solve for the corresponding approximately optimal filter.24 In that case, the filter

weights become functions of only the cut-off frequencies and the sample size. They calculat

the correlation between their nearly optimal filter and the ideally filtered measure of the bus

cycle is roughly 0.65 and that the noise-signal ratio is 0.77.25 This is a lower correlation than we

find for either model, while their noise-signal ratio is too optimistic relative to ARMA results b

slightly pessimistic relative to those of the kernel model.

Orphanides and van Norden (1999, 2002) and Cayen (2001) study other filters that do not 

optimal band-pass properties but are nonetheless used to measure business cycles. They 

the rolling estimates produced when such filters are applied at the end-of-sample with histo

estimates produced after many subsequent years of data are available.26 The size of this revision

23. See Appendix A for a discussion.
24. The fact that they use low-order IMA models presumably guarantees that the optimal weights an

approximate weights will differ only for the last few observations, and even then not by very muc
would be interesting to see whether the usefulness of the random walk approximation would be
sustained if kernel or ARIMA models were used instead to derive optimal filters.

25. The correlation is taken from the end-point of the graph in the left column, middle row of their Fig
6, while the signal-noise ratio is given on p. 21 in their paper. Note that their band-pass filter is se
pass all cycles with durations from 2 to 8 years, versus the 6 to 32 quarters used here.

26. In the terminology of these papers, these are the Final and the QuasiFinal estimates. The Final–
QuasiFinal revision is a better analogue to the estimation error considered in this paper, since b
estimates ignore the role of uncertainty in the underlying data-generating process.
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in estimated business cycles corresponds to the difference between our ideal and optimal fi

estimates. Using U.S. data, Orphanides and van Norden (1999) find correlation coefficients

ranging from 0.63 to 0.96, depending on the model used.27 Cayen (2001) uses Canadian data an

finds correlation coefficients for the same models ranging from 0.70 to 0.84.28

We can also reconstruct noise-signal ratios for Orphanides and van Norden (1999) based o

ratio of the reported standard deviation of the revisions to the standard deviation of the final me

of the output gap. These figures are reported in Table 5; the values range from 0.34 to 0.79

While it may appear to be counterintuitive that non-optimal models appear sometimes to gi

better correlations or noise-signal ratios than the optimal measures developed in this pape

should be remembered that the two are not strictly comparable, since their definitions of tren

cycle differ. These results, however, suggest that the optimal frequency-based techniques s

not be expected to give markedly more accurate estimates than other sophisticated time-se

methods.

4. Conclusions

The derivations in Appendix A show how to construct optimal band-pass filters for the ARIM

models commonly used with macroeconomic time series. Together with the above-noted

applications of such filters, this produces several interesting results.

First, it illustrates that the accuracy of such filters can vary considerably. When a series has

or no predictability, as is the case for productivity growth, this limits our ability to measure t

current long-term trend. We found therefore that current estimates of trend productivity gro

have correlations barely above 70 per cent with comparable estimates constructed with the b

of hindsight; put another way, the filters’ noise-signal ratio approaches 1. This implies that 

measurement of productivity trends is the most difficult of the three problems considered in

paper.

While the results for inflation were somewhat sensitive to the representation chosen, they

illustrate how increased predictability improves our measurement of current trends. If we ac

that the kernel model is the more plausible representation of inflation dynamics, it implies t

current inflation trends can be measured with considerable accuracy, giving 95 per cent

correlations with the best ex-post measures and noise-signal ratios barely above 10 per ce

27. Orphanides and van Norden (1999, Table 1, 32). Results are correlations between QuasiFinal a
Final estimates for the Watson, Clark, and Harvey-Jaeger models.

28. Cayen (2001, Table 1, 41).
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Persistence acts as a double-edged sword, however, when we seek to measure current cy

shown by the results for business cycle measurement. On the one hand, it improves the amo

information available about the future of the series, thereby reducing the difference betwee

current and future estimates of trend. On the other hand, by increasing the relative amount

noise to be filtered out, it increases the potential effects of leakage and therefore of measu

error. In the case of business cycle measurement, we see that optimal filters do not perform

especially well; their correlations and noise-signal ratios are not much better than those for

productivity growth.

The results for business cycle measurement are somewhat surprising in light of previous wor

examined the performance of non-frequency-based models of trends and cycles. Comparis

these results seems to show that the latter will in some cases perform as well as or better t

optimal methods analyzed here. The comparisons are potentially misleading, however, sinc

definitions of trends and cycles are not comparable across models. The previous work also

focused on models in which output was assumed to follow a stochastic trend, rather than th

deterministic trend assumed here. A reconciliation of these results should examine the exte

which the results for frequency-based filters are sensitive to the assumption of trend-station

More generally, the sensitivity of optimal filters to the assumed dynamics of the data series

requires further evaluation. This would allow closer scrutiny of Christiano and Fitzgerald’s (19

claim that the assumption of random walk dynamics is adequate for most macroeconomic 

series, which is a potentially important simplification for applied work. It would also have

implications for the accuracy with which business cycles may realistically be measured. The

source of error considered in this paper’s analysis is the extent to which estimated cycles w

revised as new observations become available. As noted in Orphanides and van Norden (1

2002), other sources include estimation error in the autocovariance function, data revision,

model misspecification. The results presented herein should therefore be viewed as lower b

on the total measurement error in frequency-based estimations of current trends and cycle
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Table 1: Estimated ARMA Models

Series

# AR parameters 0 0 1

0.968

# MA parameters 0 12 1

1.46 0.312

65.28 6.619 74.36

# observations 141 631 162

Frequency Quarterly Monthly Quarterly

Table 2: Optimal Filter for Productivity Growth Trends

Statistica

a. All integrals were numerically approximated as Reimann sum over 10,000
equally spaced frequencies on the interval .

ARMA model Kernel model

1) Variance of raw series (x )b

b. Differences between the ARMA and kernel estimates of the variance result from
approximations in the construction of the theoretical autocorrelations of the
ARMA model; the kernel estimates precisely match the sample variance of the
series.

65.28 67.15

2) Variance of ideally filtered series (x )c

c. Calculated as the integral of the spectral density over the interval (-u,u).

4.08 3.32

3) Variance of optimally filtered series (x )d

d. Calculated as the integral of the spectral density over the interval .

2.14 1.70

4) MSE of filtered estimate (x )e

e. Calculated as (2) - (3).

1.94 1.62

5) Correlation with ideal estimatef

f. Calculated as .

0.725 0.715

6) N/S ratiog

g. Calculated as (4) / (3).

0.903 0.954

Qt πt Yt

ρ

θi∑
σ2

10
6×

π– π ),(

106

106

106

π– π ),(

106

3( ) 2( )⁄
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Table 3: Optimal Filter for Inflation Trends a

a. See footnotes for Table 2.

Statistic ARMA model Kernel model

1) Variance of raw series (x ) 11.90 15.34

2) Variance of ideally filtered series (x ) 1.63 6.60

3) Variance of optimally filtered series (x ) 1.04 5.94

4) MSE of filtered estimate (x ) 0.60 0.66

5) Correlation with ideal estimate 0.796 0.949

6) N/S ratio 0.577 0.111

Table 4: Optimal Filter for Business Cyclesa

a. See footnotes for Table 2.

Statistic ARMA model Kernel model

1) Variance of raw series (x ) 2006 4524

2) Variance of ideally filtered series (x ) 168.9 442.0

3) Variance of optimally filtered series (x ) 90.5 257.2

4) MSE of filtered estimate (x ) 78.4 184.8

5) Correlation with ideal estimate 0.732 0.763

6) N/S ratio 0.866 0.719

Table 5: Reconstructed Noise-Signal Ratios from Orphanides and van Norden (1999)

Model
Errors a

(1)

a. Figures are the reported standard deviations for Final - Quasi-
Final revisions, taken from Orphanides and van Norden
(1999, Table 4, 36).

Finalb

(2)

b. Figures are the reported standard deviations for Final output
gaps, taken from Orphanides and van Norden (1999, Table 1,
32).

Noise/Signal = (1)/(2)

Clark 1.11 2.11 0.53

Harvey-Jaeger 1.22 1.55 0.79

Watson 1.16 3.44 0.34

106

106

106

106

106

106

106

106
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Figure 2: Filtering Quarterly Productivity Growth for its Current Trend
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Figure 3: Filtering Monthly Data on Quarterly Inflation for its Current Trend
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Figure 4: Filtering Quarterly Output for the Current Business Cycle
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Appendix A: Derivation of the Optimal Filter

This appendix presents a derivation of the optimal one-sided band-pass filter. It draws on

Christiano and Fitzgerald (1999), who derive the optimal filter estimated at each point in th

sample for an IMA(1,q) process.The proof is given in two stages. In section A.2 we derive t

solution under the assumption that our process is a stationary MA(q) process with finite variance.

Sections A.3 and A.4 discuss extensions to the ARMA and ARIMA cases. Appendix B then

compares the contribution of Christiano and Fitzgerald (1999) with that of Koopmans (1974)

provides additional intuition about the nature of the solution.

After this appendix was prepared, Schleicher (2001) provided a more compact derivation o

optimal filter for the ARIMA case, which extends the results below to any arbitrary point in t

sample, instead of just the endpoint.

A.1  Notation and Basic Assumptions

We have a sample ofT discrete observations on some stochastic series . We assume th

 contains no deterministic components (constants or non-stochastic trends).1 For the

remainder of this section, we also assume that is covariance stationary with a known Mq)

representation for finiteq. We also require that the covariance matrix of

 exists and has a unique inverse. Finally, we will assume that the

power spectrum of y also exists and is given by2

, (A.1)

where  is the covariance between  and .

Ideally, we would want to choose  to partition the spectrum of , so that  contains

the fluctuations in  with frequencies between some lower limit,l, and some upper limit,u,

, and contains those fluctuations with frequencies belowl or aboveu.3 We can do

so with an infinite-order time-invariant linear filter,

1. Typically, one would regress the raw data series on a polynomial time trend and use the residual
which may be stationary or stochastically integrated. As in all spectral analysis, we ignore the
potentially important effects of any imperfections in this detrending.

2. Covariance stationarity plus finite variance is sufficient to guarantee the properties on the covar
matrix. The power spectrum conditions will be satisfied if the coefficients on the MA representat
are absolutely summable; covariance stationarity guarantees that they are square summable.

3. For example, isolating the fluctuations between 6 and 32 quarters in length with quarterly data w
correspond to and .

yt{ }
yt{ }

yt

yt{ }
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le
, (A.2)

such that  and , where  is the lag operator. The

coefficients of this ideal filter are given by4

(A.3)

Our problem is to choose a set of filter weights, , to solve

(A.4)

where

, (A.5)

for complexz on the unit circle.

A.2  Solution for the MA(q) Case

A.2.1  First-order conditions

Rewrite equation (A.4) as

(A.6)

Differentiating (A.4) with respect to each element of , we obtainT first-order conditions

4. Christiano and Fitzgerald (1999) further impose the restriction that , which is reasonab
except in the special case of low-pass filters.
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. (A.7)

In fact,

 and , (A.8)

so (A.7) becomes

(A.9)

Noting that  is symmetric about 0, we obtain

(A.10)

and

(A.11)

Equation (A.9) implies that

,

. (A.12)
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Using the fact that when and when , we

can see that (A.12) simply picks out one term at a time from the convolutions of the filter

coefficients and the spectrum of .

Because  has the properties  and , we can write

, (A.13)

where

, a2q+1 column vector, and

, a2q+1

column vector.

We can similarly transform the right-hand side of (A.12), taking care to account for the trunca

of , and obtain

(A.14)

where

, a lengthT column vector, and

, a lengthT

column vector.

This allows us to rewrite (A.12) compactly as

. (A.15)

A.2.2  Solving the system of first-order conditions

In (A.15), and are known and determined by the data, while is given by (3) in the m

text. This leaves us withT linear equations to solve for theT elements of . Stacking theseT

equations gives us
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, (A.16)

where

, aT x 2q+1 matrix, and

, aT x T matrix.

The solution is

, (A.17)

provided that  exists and is unique. We know that

(A.18)

which is therefore just the covariance matrix of the vector . Our

solution is therefore applicable whenever this covariance matrix exists and is of full rank.

A.3  The Stationary ARMA(p,q) Case

If we wish to extend our analysis from the MA(q) to the ARMA(p,q) case, we can use the Wold

Representation Theorem to recast the ARMA model as an infinite-order MA. Assuming tha

other conditions mentioned before (A.1) are respected, we can continue to write our optimiz

problem as before and derive the same first-order conditions. The analysis then proceeds 

(A.13), which becomes
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where  and  are now doubly infinite-dimensional vectors. We require only that their do

product is well defined and finite. Stacking ourT equations in (A.16) proceeds as before, the on

change being the dimensions of and but not their product. The final solution in equatio

in the main text is therefore unchanged.

Applying the filter to ARMA processes will in practice require that we truncate the infinite sum

some point, hoping that the omitted covariance terms are sufficiently close to zero. Of cours

given parameters for the ARMA process, theoretical autocovariances may easily be calculat

that the only limitations to the precision of our calculations are computing power and storag

capacity. It would be unrealistic, however, to believe that we can infer much about

autocovariances beyond theN-1th lag from a sample of onlyN observations.

A.4  The ARIMA(p,d,q) Case

We can try to analyze non-stationary ARIMA(p,d,q) processes by first noting that, after

differencingd times, we have ARMA(p,q) processes. It would therefore be tempting to simp

assume a sample of sizeT+d, difference itd times, and then apply the analysis as for stationar

ARMA models to the differenced data. There are two faults with this approach, both of which

be seen in our objective function (A.4). First, instead of attempting to match the ideal band

filter, , on the non-stationary data, we are trying to match it on the differenced data, whi

equivalent to setting  as our target filter. Second, the power spectrum used to

weight the deviations from the ideal filter would now be  instead of ; it is not cle

how to motivate such a choice in practice.

Instead, note that equation (3) in the main text implies that we can factor

, (A.20)

 and . (A.21)

This implies that the ideal band-pass filter will render stationary any series integrated of ord

more than 2.5 From our objective function in (A.4), we can see that its value will be less than

5. See Den Haan and Sumner (2001) for a related discussion.
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infinity if and only if our one-sided filter, , also renders  stationary. We can therefore

presume that the optimal one-sided filter may similarly be factored as

, (A.22)

 and . (A.23)

This common factoring of the ideal and one-sided filters allows us to find solutions in the cas

I(1) and I(2) processes. In section A.4.1, we detail the proof for the case of IMA(1,q) proces

We then briefly discuss the IMA(2,q) case. Extensions to the ARIMA case should be clear 

the above discussion of the ARMA case.

A.4.1  The IMA(1,q) case

Suppose that we haveT+1 observations on a process . Our minimization proble

in (A.6) can then be rewritten as

(A.24)

where now . We can also now factor

, (A.25)

where  is the power spectrum for the first-difference of . This means that (A.24)

simplifies to

(A.26)

We now have an optimization problem that is analogous to our original problem in (A.4). Th

only differences are three substitutions:

(i) we use the power spectrum of  rather than of ,

(ii) the function we seek to match is now  rather than , and
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(iii) the optimization is over theT coefficients of the differenced filter, , rather than theT+1

coefficients, .

As in the original proof, we work with the spectrum of a stationary series (now ) on which

haveT observations. We therefore arrive at an analogous first-order condition, replacing (A.

with

, (A.27)

where

, a2q+1 column vector,

, a2q+1 column

vector,

 is the autocovariance function for ,

,

a lengthT column vector, and

, a lengthT column vector.

These may be stacked and solved for the optimal , given by

, (A.28)

where

, aT x 2q+1 matrix,

, aT x T matrix.

While (A.28) determines , this gives us onlyT conditions with which to identify theT+1

coefficients, . The remaining condition is (A.22), which implies that the sum overj of must

equal zero.

A.4.2  The IMA(2,q) case

The proof for the IMA(2,q) case withT+2 observations proceeds analogously to the IMA(1,q)

case; we again transform the original minimization problem into one involving the power
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spectrum of a stationary series. This means working throughout the proof withT observations on

, its power spectrum, , and autocovariance function, , the second differenc

the ideal band-pass filter, , and recovering the optimal one-sided filter for second-

differenced data, .

The basic intuition should by now be clear. Because we know that the ideal two-sided filter

give us a stationary series, we can transform the optimization problem into an equivalent pro

using suitably differenced data and a suitably differenced ideal filter. This approach may br

down if we try to go beyond the I(2) case, since the ideal filter is no longer sure to give a

stationary filtered series. Fortunately, the vast majority of economic time series do not requ

models with orders of integration larger than 2.6

6. An alternative approach would be to change the definition of the ideal filter to ensure stationarity

∆2
y f

∆2y
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33

r over

ious

ess.

 to

pad”

ut we

call

to

ded

st and

g the

 the

ta being

aan and
y and

t than

is

5, 147–
red to
Appendix B: Historical Antecedents

The tools of frequency-domain analysis and signal processing theory have been available fo

a quarter-century. The idea of deriving an optimal filter defined as in equation (A.4) is an obv

one, and the derivation of its closed-form solution is not difficult. Despite this, it is barely

mentioned or discussed in modern econometrics or macroeconomics.7 Christiano and Fitzgerald

(1999) derive the optimal filtered estimated at each point in the sample for an IMA(1,q) proc8

They make no specific references to previous derivations of this type. They refer, however,

Stock and Watson’s (1998) time-domain procedure of forecasting future values of output to “

the sample and applying the Baxter-King filter, but they do not clearly state its relationship.9

Koopmans (1974), however, gives the closed-form solution for a closely related problem.10 He

considers the case of two weakly stationary processes , where we observe only b

know their cross-spectral density, , as well as their spectral densities, . (Re

that knowing is equivalent to knowing their cross-covariance function .) We wish

construct the linear filter, , which minimizes

, (B.1)

subject to the restriction that  is a polynomial in only non-negative powers ofL.

Koopmans’ proof relies on an underlying intuition based on projections. The optimal one-si

filter is simply the projection from the space spanned by into the space spanned by pa

present values of , . This can be broken down into two projection steps, the first bein

projection of  onto the space spanned by past, present, and future values of , and

second being the projection of that result onto .11

7. One reason may be that most introductory treatments of such techniques assume (i) that the da
analyzed are stationary, and (ii) that our data series are very long. Another reason may be that
economists are confused about how to apply such techniques to non-stationary data; see Den H
Sumner’s (2001, section 3.2, especially 11–12) critique of Harvey and Jaeger (1993) and Cogle
Nason (1995).

8. They assert that the proof could be extended to ARIMA (p,1,q), but that this would be “tedious.”
Schleicher (2001) provides just such an extension, with a proof that is considerably more elegan
the original proof in Christiano and Fitzgerald (1999).

9. This is the method used in the BPFILTER.SRC routine provided by Estima for RATS; the routine
Taylor’s translation of Watson’s code for Stock and Watson (1998).

10. See Koopmans (1974), particularly section 7.6, 249–52, and section 5.5, especially example 5.
48. Again, there is no mention of the origin of the derivation, presumably because it was conside
be too well-known or trivial a result.

11. The projection may be broken into two steps because is a subspace of .
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Koopmans begins by noting that the optimaltwo-sided filter has a transfer function given by

. (B.2)

Applying the optimal one-sided filter, , to our available series, , will give th

same result as applying the doubly infinite optimal two-sided filter, , to a doubly infinite

“padded” series, , where  for ,  otherwise.  is simply the

optimal forecast/backcast value of given the available sample from 1 to T. Stock and Wat

(1998) approach is therefore an approximation of this, which truncates the forecast/backca

some finite values.

The relationship to the problem at hand can be understood by considering the latent variab

Ideally, we would like to estimate (unobserved) output gap. This is possible if we kn

, its autocovariance function with observed output. This will be the case if we postula

structural model, as in the structural unobserved components used by Harvey (1985), Kuttn

(1994), Gerlach and Smets (1997), and Kaiser and Maravall (2001). The optimal estimates

obtain from the above correspond with the solutions these authors obtain by using the stan

recursive Wiener-Kolmogorov filtering and smoothing equations. Of course, results may be

highly sensitive to the specification of the structural model, as noted by Morley, Nelson, and Z

(1999).

The band-filtering approach remains agnostic about the structural model by choosing to b

optimally band-filtered component of observed output. Since the form of the optimal filter,

is known,  and . We can therefore construct the optimal

finite-sample approximation of as a function of only the dynamic properties of output. In do

so, however, we ignore the fact that this definition of  is only an approximation of the outp

gap that we ultimately care about. To see this, note that as our sample becomes large, our

estimation error for  in the middle of our sample tends asymptotically towards zero in this

approach, whereas in the unobserved approach we have asymptotic standard errors assoc

with our smoothed estimates.

B.1  Koopmans’ proof

Since  is weakly stationary, it has a Wold representation

, (B.3)
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where  is white noise and we define  to the transfer function associated with the abo

filter. The spectrum of  is therefore . If  is (as above) the transf

function of the optimal symmetric band-pass filter, then since we seek to estimate , we

to replace it with  to account for the offset ofv periods. It therefore follows that the

optimal two-sided estimates of  are given by

, (B.4)

where

.

The one-sided problem simply replaces future values of  with their expectation, which is 

This means that the optimal one-sided estimate is given by

, (B.5)

where . (B.6)

This derivation has its counterpart in the derivation for the MA(q) presented in Appendix A,

section A.2. Equation (5) in the main text shows us that we are projecting the optimal filter

the space spanned by ourT observations on  via the  and  terms. Note that there are

effectively two distinct truncations occurring: one owing to the limited persistence of the

underlying MA process and the other owing to the finite sample size.12

12. The former is easy to overlook in Koopmans’ treatment, as he assumes a possibly infinite MA
representation.
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