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Abstract

High-density genetic marker data, especially sequence data, imply an immense multiple testing burden. This can be

ameliorated by filtering genetic variants, exploiting or accounting for correlations between variants, jointly testing

variants, and by incorporating informative priors. Priors can be based on biological knowledge or predicted variant

function, or even be used to integrate gene expression or other omics data. Based on Genetic Analysis Workshop

(GAW) 19 data, this article discusses diversity and usefulness of functional variant scores provided, for example, by

PolyPhen2, SIFT, or RegulomeDB annotations. Incorporating functional scores into variant filters or weights and

adjusting the significance level for correlations between variants yielded significant associations with blood pressure

traits in a large family study of Mexican Americans (GAW19 data set). Marker rs218966 in gene PHF14 and rs9836027

in MAP4 significantly associated with hypertension; additionally, rare variants in SNUPN significantly associated with

systolic blood pressure. Variant weights strongly influenced the power of kernel methods and burden tests. Apart

from variant weights in test statistics, prior weights may also be used when combining test statistics or to informatively

weight p values while controlling false discovery rate (FDR). Indeed, power improved when gene expression data for

FDR-controlled informative weighting of association test p values of genes was used. Finally, approaches exploiting

variant correlations included identity-by-descent mapping and the optimal strategy for joint testing rare and common

variants, which was observed to depend on linkage disequilibrium structure.

Background

With the availability of very dense genetic marker data

sets, such as sequence data, even large association stud-

ies can become underpowered. This raises the need to

filter, or prioritize, or jointly test genetic variants.

Filters or priors on genes may be derived from methy-

lation or expression data if available in the same individ-

uals. Alternatively, one may use external information.

Recently, multiple annotation tools have become available

using several databases and algorithms that predict

functional effects of genetic variants. Commonly used are,

for example, ANNOVAR (Annotate Variation) [1], Var-

iantTools [2], PolyPhen [3], SIFT (Sorting Intolerant From

Tolerant) [4], ENCODE (Encyclopedia of DNA Elements)

[5], RegulomeDB [6], CADD (Combined Annotation-

Dependent Depletion) [7], or Gerp++ [8]. Tools like

ANNOVAR additionally provide variant annotation to

genes and to regions such as conserved regions among

species, predicted transcription factor binding sites, and

segmental duplication regions. Many of the above-listed

tools also provide information on regulatory elements

that control gene activity. This article demonstrates

that functional scores can contribute to the success of

association studies. Simultaneously, functional scores may

differ substantially between databases and prediction tools

as they can be based on different functional aspects.
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Additionally, variant annotations to chromosomal positions

continue to be updated with the National Center for Bio-

technology Information (NCBI) [9] human genome build

as standard. Furthermore, variants can be annotated to

genes based on different sources, such as ENSEMBL [10],

Vega [11], GENCODE [12], and many more. Researchers

also use a variety of definitions of flanking regions. Finally,

genes may be grouped by function or biological pathway,

again with substantial variability between data bases such as

KEGG [13], Biocarta [14], or Pathway Interaction Database

[15]. This article discusses approaches that filtered or prior-

itized genetic variants, regions, or genes. Pathway-based

approaches, although also incorporating filters or priors,

are discussed separately by Kent [16].

Many researchers filter genetic variants. The simplest

forms of filters are minor allele frequency (MAF), candidate

genes or variants, or considering the exome. Filters and

statistical models are chosen to increase the power under a

hypothetical disease model. The advent of sequencing

renewed interest in disease mechanisms less frequent but

more penetrant than common single nucleotide polymor-

phisms (SNPs) of genome-wide association studies

(GWAS). This led, for example, to screening for recessive

variants by examining runs of homozygosity [17, 18]. When

multiple rare causal variants cluster within a gene, identity-

by-descent (IBD) mapping may be more powerful than

single-locus association testing [19]. IBD mapping can be

used in 2-step approaches. For example, Balliu et al [20]

identified regions where hypertension cases shared more

segments of IBD than controls in one part of the sample.

They modeled aggregate effects of each of these regions on

blood pressure (BP) in the sample remainder. Aggregation

tests are used especially for testing rare single-nucleotide

variants (SNVs). Aggregation tests are burden tests,

variance-component tests, or a combination of both, such

as SKAT-O (optimal unified sequence kernel association

test) (see, eg, Lee et al [21] for a review). Kernel-based

approaches (see Schaid [22] for a review) such as the

sequence kernel association test (SKAT) [23] are variance-

component tests. Examples of genetic burden tests are T5,

combined multivariate collapsing (CMC) [24], or C-α [25];

see also Santorico et al [26]. Aggregation tests can prioritize

SNVs by weighting minor allele dosages in the test statistic.

Typical weights account for MAF, but may also incorporate

putative functional relevance of SNVs [27, 28]. Moreover,

weights may be used to combine aggregation test statistics

[21, 29, 30], and one may weight p values while controlling

the false discovery rate (FDR) [31, 32]. For example, GWAS

p values may be weighted based on functional annotations.

For aggregation tests on genes, p value weights can be uti-

lized to integrate gene expression or other omics data [33].

This article summarizes contributions of the Genetic

Analysis Workshop (GAW) 19 group on filtering vari-

ants and placing informative priors (Tables 1 and 2).

These investigations found that improving SNV grouping

or selection can noticeably increase power. Moreover, in-

cluding functional scores or gene expression data as filters

or weights on variants, genes, or when combining test

statistics assisted in detecting associations. Some con-

tributions also exploited SNV correlations to increase

power or improved the multiple-testing adjusted sig-

nificance threshold by accounting for SNV correlations.

Materials

Analyzed data were provided by GAW 19 and included

a family sample (n = 959) with extended pedigrees of

Mexican Americans from the San Antonio Family Heart

Study (SAFHS) and the San Antonio Family Diabetes/

Gallbladder Study (SAFDS/ SAFGS) [34]. The family

sample also contained 103 unrelated sequenced subjects;

259 subjects had gene expression data. This study was

designed to identify low-frequency or rare variants influ-

encing susceptibility to type 2 diabetes (T2D) as part of

the T2D Genetic Exploration by Next-generation sequen-

cing in Ethnic Samples (T2D-GENES) Consortium. Pheno-

types included real and simulated longitudinal systolic (SBP)

and diastolic blood pressure (DBP) and hypertension (HT)

status. Available were sequence for 464 pedigree members

and GWAS SNPs for all 959 subjects. Additionally, all sub-

jects were imputed to sequence based on original genotypes

and familial relationships [34]. Approaches described herein

mostly analyzed imputed dosages to avoid missing geno-

types and to maximize sample size. Zhang et al [28] ana-

lyzed the GAW19 sample of 1943 independent Hispanic

subjects with whole exome sequence. This sample had been

ascertained by T2D status. However, GAW19 provided real

and simulated cross-sectional BP traits instead [35], using

the same trait-simulation model as for the family study.

All approaches described herein are nonlongitudinal

analyses of BP traits (SBP, DBP, or HT) in relation to minor

allele dosages of sequence SNVs or genome-wide SNPs.

Methods

Statistical methods employed by this group (see Table 1)

to incorporate filters or informative priors are mostly

based on regression models [27, 30, 33, 36, 37]; one is

also based on counting methods [28]. Analyses of family

data adjusted for familial dependence based on the kin-

ship matrix. They included the familial covariance in a

linear mixed model [27, 30, 36] or transformed the trait

to a conditionally independent surrogate variable [33].

Analyses of independent subjects accounted for popula-

tion structure (cryptic relatedness and admixture) [37]

by using the programs Eigensoft [38] and Admixture [39].

Annotating genetic variants for location and function

A variety of freely available genetic databases and highly

developed software tools support annotation of location
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and biological function of SNVs. In our group, SNV loca-

tions were obtained by ANNOVAR [28, 36] or determined

based on reference data, for example, from the Genome

Reference Consortium [40] or the International Haplotype

Map (HapMap) Consortium [41] [30, 37]. Reference data

were also used to determine linkage disequilibrium (LD)

blocks [30] with Haploview [42].

Kim and Wei [27] and Almeida et al [36] used functional

annotations from ENCODE, PolyPhen or PolyPhen2, and

SIFT, while Liu et al [37] used CADD. In contrast, Zhang

et al [28] annotated putative protein binding sites based on

2 different algorithms using random forest classifiers [43].

Filtering genetic variants

Not all areas of the genome were studied. Some

researchers filtered the data prior to analyses. Zhang

et al [28] investigated exome sequence and Almeida et al

[36] molecularly functional nonsynonymous SNVs pre-

dicted by PolyPhen and SIFT. Liu et al [37] examined

IBD sharing regions on chromosome 3. Malzahn et al

[30] considered gene-containing LD blocks for selected

candidate genes. Ho et al [33] analyzed rare SNV burden

in genes containing less than 50 and more than 1 rare

SNV (MAF <0.01).

Accounting for correlations between genetic variants

An important difference between methods is that variant

correlations can either be a nuisance or may be used to in-

crease power. For example, IBD mapping exploits variant

correlations. IBD mapping can be more powerful than

single-locus association testing when multiple causal rare

variants cluster within a gene [19]. Therefore, Liu et al

[37] tested the relationship between IBD sharing status

and trait differences and sums for pairs of individuals.

Moreover, the power of kernel methods such as SKAT

may be increased through the exploitation of variant cor-

relations [44]. This ability can be utilized fully by analyzing

LD blocks [30]. On the other hand, single-locus methods

need to account for variant correlations to appropriately

correct the significance level for multiple testing. Hence,

Almeida et al [36] determined the effective number of

independent tests by extreme value theory based on

replicates of a simulated unassociated trait.

Correcting the significance level for the number of

independent tests

The significance level used with multiple testing is al-

ways an issue as too conservative a correction will cause

false negatives and not correcting enough will cause false

positives.

Table 1 Statistical tests and analyzed data

Marker data Data set Statistical tests Covariates Trait(s)

Almeida et al [36]

Sequence Family study Single-variant regression in
SOLAR

Smoking, BP medication, PC1-3,
sex, age, age2, sex*age, sex*age2

Real SBP and DBP at first time
point, own simulated trait for H0

Liu et al [37]

Chr3: GWASmp
and sequence

Unrelated individuals
(from family study)

Regress pairwise DBP residual
difference and sum on IBD
sharing status; sequence data
analyses by SKAT-O

Sex, age, smoking, PC 1-3 Real DBP at first time point

Kim and Wei [27]

Sequence Family study Informative SNV weights in
burden test T5 and SKAT;
with R: seqMeta

Age, sex, smoking, BP
medication

Real SBP at earliest available
measurement

Zhang et al [28]

Exome
sequence

Unrelated individuals
(large Hispanic sample)

LRT, C-α, CMC on informatively
weighted SNV burden

None Simulated HT status; real SBP, DBP
with cutoffs for case-control status

Malzahn et al [30]

Sequence and
GWASmp

Family study SKAT with R (coxme, kinship2,
QuadCompForm); strategies
for joint testing of rare and
common SNVs

Sex, age, sex*age; subjects not
on BP medication

Real and simulated SBP at first
time point

Ho et al [33]

Sequence and
GWASmp

Family study, including
gene expression data

Seq-aSum-VS burden test;
regression on gene expression
data; gene set enrichment
analysis

PC1-3 Average real SBP and DBP

BP blood pressure, Chr Chromosome, CMC Combined multivariate collapsing, DBP diastolic blood pressure, GWASmp genome-wide association study marker panel,

HT hypertension, IBD identity-by-descent, LRT likelihood ratio test, PC principal component, SBP systolic blood pressure, SKAT sequence kernel association test, SNV

single nucleotide variant, Seq-aSum-VS sequential sum
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Almeida et al [36] adjusted the significance level for

single locus analyses by estimating the number of inde-

pendent tests [45]. A total of 1000 replicates of a quanti-

tative phenotype with no genetic effects were simulated

and tested on whole genome sequence data, using linear

mixed models in SOLAR (Sequential Oligogenic Linkage

Analysis Routines) [46]. The smallest p value per simula-

tion run was extracted. The density of these 1000 extremely

small p values was fitted to a theoretical beta distribution

beta(1,ne) where ne is the effective number of independent

tests [47]; yielding the adjusted significance level a� ¼ 0:05
ne

.

This procedure was applied to both whole genome se-

quence and functional nonsynonymous SNVs.

Identity-by-descent mapping

IBD mapping aims to detect loci sharing ancestral segments

in unrelated individuals. In particular, unrelated subject-

pairs with smaller trait differences are expected to share

significantly more rare causative variants than pairs with

larger trait differences. Liu et al [37] estimated IBD sharing

segments with BEAGLE [48]. The squared trait difference

(D) and squared trait sum (S) for trait DBP between pairs

of unrelated subjects was regressed on IBD sharing status.

This yielded parameter estimates for slopes ðβ̂ S; β̂DÞ and

variances (σS
2, σD

2 ), which were combined into an overall slope

estimate β̂ ¼
σ2D

σ2
S
þσ2

D

� �
β̂ s þ

σ2
S

σ2
S
þσ2

D

� �
β̂D. Linkage was tested

with test statistic t ¼ β̂

SE β̂ð Þ
under the null hypothesis of an

overall slope of zero [37]. The significance threshold for non-

independent pairs was estimated by permutation procedure.

Priors on genes and variants

Genetic priors can be incorporated by variant weights in

aggregation tests such as burden tests or SKAT [21].

Burden tests collapse minor allele dosages xik of a set of

i = 1,…,m variants into a burden score sk = ∑i = 1
m ωixik per

individual k using a priori specified variant weights ωi.

One tests trait association with genetic burden sk. Al-

though burden tests are powerful when causal SNVs

have the same effect direction, SKAT is more powerful

when effect directions differ or if many noncausal SNVs

are included in testing [21, 49]. SKAT is based on an

underlying Bayesian model that estimates a random ef-

fect per SNV [50]. Specified is a kernel matrix of genetic

Table 2 Filters, priors, and findings

Filter Prior Conclusions Annotation

Almeida et al [36]

Functional annotation, LD-corrected
effective number of tests

None LD-correction in WGS reduces
multiple-testing burden by 85 %,
significant associations: PFH14
with SBP, MAP4 with DBP

Location: ANNOVAR; functional
annotation: PolyPhen, SIFT

Liu et al [37]

IBD sharing None No significances, ZPLD1 had
strongest evidence

IBD mapping: BEAGLE; functional
annotation: CADD

Kim and Wei [27]

Sliding window on MAF ≤5 % SNVs SNV-weights: based on MAF
or regulatory importance

Significant association: SNUPN Functional annotation: ENCODE,
RegulomeDB, PolyPhen2

Zhang et al [28]

Genes, exome-sequence SNV-weights: up-weight protein
binding sites, apply direction
weights

Top-ranked genes differ between
weighted burden tests LRT, C-α,
CMC; but good overlap with
literature

ANNOVAR, variant tools; random
forest classifiers assign SNVs to
protein binding sites; DSSP, PSAIA,
DOMINO

Malzahn et al [30]

Gene covering LD-blocks SNV-weights: using MAF SKAT: power depends on SNV
weights, exploiting LD is very
beneficial, optimal strategy for
joint testing rare and common
SNVs depends on LD structure

Haploview with HapMap data for
LD-calculation

Overall weight: on rare SNV
variance component in SKAT

Ho et al [33]

Rare SNVs in genes with >1 and <50
rare SNVs (MAF < 0.01)

p value weights: improve gene
ranking

Power of burden tests improved
by incorporating phenotype
associated gene expression into
p value weights

Genes: hg19; GO biological process
categories

CADD combined annotation dependent depletion, DBP diastolic blood pressure, DOMINO database of domain–peptide interactions, DSSP define secondary structure of proteins,

ENCODE encyclopedia of DNA elements, GO gene ontology, IBD identity-by-descent, LD linkage disequilibrium, MAFminor allele frequency, PSAIA protein structure and interaction

analyzer, SBP systolic blood pressure, SIFT sorting intolerant from tolerant, SKAT sequence kernel association test, SNV single nucleotide variant,WGS whole genome sequence
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between-subject similarity and this kernel constitutes a

prior on genetic model space [51]. SNV weights are incor-

porated in the kernel (see, eg, Malzahn et al [30]).

Typically, rarer SNVs get assigned more weight to coun-

terbalance their reduced power compared to more frequent

SNVs. Used are, for example, weights ωj ¼
1

MAFj 1−MAFjð Þ

[52], inverse MAF weights ωj ¼
1

MAFi
, or beta-weights such

as ωj = b(MAFi) [23], where b is the probability density

function of a beta(1, 25) random variable. Malzahn et al

[30] compared the power of SKAT when using different

SNV weights and different kernel functions that either

allow or do not allow for SNV interactions in the genetic

model. Alternatively, SNV weights may be based on regula-

tory importance [27] or protein binding effects [28].

Incorporating functional information into variant weights

Kim and Wei [27] categorized SNVs according to Regulo-

meDB and PolyPhen2 functional relevance scores. SNV

weights were defined based on f(s) = S2 where s equaled

the reverse order of categories, namely s = 6, 5, 4, 3, 2, 1

for category 1 (“most likely affecting binding and expres-

sion”) to category 6 (“not functionally relevant”). Kim and

Wei [27] tested rare SNVs jointly, in sets defined by slid-

ing windows of 4 kb size, for association with SBP. They

compared the power of SNV weighting schemes in SKAT

(ωj ¼
ffiffiffiffiffiffiffiffiffiffi
f sj
� �q

versus ωj = b(MAFj)), and burden test T5

(ωj = f(sj) versus ωj ¼
1

MAFj 1−MAFjð Þ
). SKAT and T5 provide

analytical asymptotically exact p values with good small

sample size behavior.

Zhang et al [28] used a likelihood ratio test (LRT) [53]

to test if the proportion of subjects with an informatively

weighted minor allele burden exceeding a given thresh-

old differed between HT cases and controls. P values

were obtained by permutation procedure. SNV weights

ωi accounted for putative effect direction and distin-

guished between functional SNVs in binding-sites (|ωi|

= 10), not in binding-sites (|ωi| = 5), and nonfunctional

SNVs (|ωi| = 1). The informatively weighted LRT was

compared with C-α and CMC burden tests.

Optimal joint testing of rare and common variants

When not filtering for rare or common SNVs, optimal

joint testing of both becomes an issue. Suppose, one com-

puted 2 SKAT statistics, Qrare and Qcommon, separately on

rare SNVs and common SNVs, in the same region of

interest, for the same trait, based on the same genetic null

model. As SKAT is a variance-component test, combining

Qrare and Qcommon [29]

Qws ¼ 1−λð Þ⋅Qrare þ λ⋅Qcommon ð1Þ

weights the rare SNV variance-component by overall a

priori weight (1-λ) relative to the common SNV variance-

component (see Ionita-Laza et al [29] and Malzahn et al

[30] for choices of λ). The weighted sum test (1) is another

way of structuring a prior in SKAT. Note that Qrare and

Qcommon may use different kernel functions or different

SNV weights. Malzahn et al [30] compared this form of

joint testing of rare and common SNVs with the default

choice of entering all SNVs with appropriate weights into

a single kernel. Exact p values for SKAT and weighted sum

test (1) were obtained by Davies method [54]. Another

investigated alternative was Fisher pooling of the corre-

lated p values resulting from the separate rare SNV and

common SNV SKAT statistics. Fisher pooling accounted

for correlations by Satterthwaite approximation and

Brown’s method ([55]; see also [29, 30]).

Note that analogously to equation (1), SKAT-O combines

SKAT and burden tests with statistic Q = (1 − ρ)QSKAT +

ρQburden where 0 ≤ ρ ≤ 1 [56].

Informed p value weighting for genes

Ho et al [33] obtained gene-wise p values, pg , for associ-

ation of average BP T with rare SNV burden sg in genes

g that had more than 1 and less than 50 rare SNVs

(MAF <0.01)

Tebs;g⋅sg ð2Þ

Restricting the number of rare SNVs avoids collapsing

too many null variants. Ho et al [33] used the sequential

sum test [57], which data-adaptively assigned SNV weights

ωi = 0, 1, − 1. Earlier, Genovese et al [31] and Roeder and

Wasserman [32] had proven that informative weighting of

p values
pg
νg

with weights vg > 0; �vg ¼ 1 maintains proper

FDR control; where
pg
νg
≤αFDR means significance. Ho et al

[33] determined such weights vg as follows. They tested if

rare minor allele burden s�
g
(with SNV weights ωi = 1, for

simplicity) also associated with gene expression Eg

EgjT e bE;g⋅s
�
g
þ c⋅T ð3Þ

and further if gene expression Eg associated with trait

value T

T js�
g e bT ;g⋅Eg þ d⋅s�

g
ð4Þ

Association tests (2) to (4) were made conditionally

independent by adjusting test (3) for trait value T and

test (4) for rare minor allele burden s�
g

(Fig. 1). P

value weights νg ¼ ν�
g
�v�
g

were derived as ν�
g
¼ max

^bE;g

SE ^bE;gð Þ

� �2

�
^bT ;g

SE ^bT ;gð Þ

� �2
 !

where the maximum was

over all gene expression measurements and �v�
g

was

the average of all ν�
g
.
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Results and discussion

The results for this GAW19 working group varied widely

as a result of the different objectives of each contributor.

Table 2 provides a brief summary of specific results.

Under H0, extreme p values follow a beta distribution

[47]. Almeida et al [36] reported that the beta distribu-

tion provided an excellent fit to determine the effective

number of independent tests ne for n single-locus tests.

For whole genome sequence, ne
n
¼ 15%; that is, account-

ing for LD reduced the multiple-testing burden by 85 %.

However, significant associations could only be found

when LD-correcting the significance level after a priori

reducing sequence data based on functional annotations.

Then 2 SNPs were detected: rs218966 in gene PHF14 as-

sociated with SBP and rs9836027 in MAP4 associated

with DBP.

Liu et al [37] scanned chromosome 3 (GWAS data)

for IBD sharing segments that associated with DBP. No

genome-wide significance was found. However, several

risk variants were detected in the region of gene ZPLD1

by using CADD functional scores and sequence for the

most promising region at 3q12.3.

In the GAW19 trait simulation model, SNV effect

sizes were based on PolyPhen2 functional prediction

scores (Fig. 2) [35]. In Figs. 2 and 3, displayed SNV ef-

fects, PolyPhen2 scores, and the assignment to positions

and genes (NCBI build37, human genome build 19)

came from the simulation answers. To illustrate differ-

ences between functional annotations, SIFT scores (and

rs-numbers) were added by annotating sequence (variant

call format [vcf] files) with ANNOVAR and merging vcf

files and simulation answers by chromosome and position.

RegulomeDB scores were merged by dbsnp138 rs-identifier.

Furthermore, functional scores were transformed to have

the same directionality (Fig. 3). Different functional annota-

tions focus on different information about SNVs and only

annotate selected SNVs. PolyPhen2 and SIFT both annotate

nonsynonymous coding SNVs by a metric score that can be

categorized to distinguish benign mutations from damaging

ones affecting protein function. Nevertheless, PolyPhen2

and SIFT scores differ to a substantial extent in value and

category (Fig. 3a). RegulomeDB annotates regulatory SNVs

by an ordinal score ranging from the highest evidence

(eQTL, expression quantitative trait locus) to the low-

est. Figure 3c illustrates that some SNVs were rated to

affect gene expression and transcription factor binding

(RegulomeDB scores 1 to 5) but not the protein func-

tion (scored “benign” by PolyPhen2). For simulated BP,

SIFT and RegulomeDB annotations yield mismatched

filters or priors whenever they deviate from the Poly-

Phen2 score used to simulate SNV effects. For example,

SIFT annotated some SNVs with large effects in gene

TNN as benign mutations (Fig. 3b) and only few SNVs

in associated genes were rated to be of regulatory im-

portance (Fig. 3d). Nevertheless, for real SBP, several

multiple-testing adjusted significant windows (2 with

SKAT, 4 with burden test T5) were only found when in-

cluding RegulomeDB scores as variant weights for rare

SNV analysis [27]. One of these regions contained

SNUPN [27] which is a novel finding not previously re-

ported to associate with BP. T5 and SKAT maintained the

nominal significance level on simulated unassociated trait

Q1 also when incorporating RegulomeDB scores into vari-

ant weights [27]. Kim and Wei [27] and Zhang et al [28]

Fig. 1 Informed p value weighting for genes based on conditionally

independent associations between rare variant burden, gene expression,

and trait. The p value weight vg was defined as the product of the

association strengths of rare SNV burden with gene expression and

gene expression with trait value

Fig. 2 SNV effect sizes on GAW19 simulated DBP increase with

increasing PolyPhen2 scores. Depicted are 6 genes with a range of

SNV effect sizes that could be simultaneously displayed. Symbols

depict SNVs in the same gene: LEPR (▲), TNN (♣), HIF3A (●), MAP4(♥),

MUC13(✷), CGN(■)
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both recommended using relatively big differences in SNV

weights distinguishing functional from nonfunctional

SNVs. Zhang et al [28] observed that different burden

tests with functionally informative SNV weights yielded

different top ranked genes. Although no gene was signifi-

cant, many of them had been reported in the BP literature

before. For SKAT, Malzahn et al [30] found that variant

weights, but not kernel choice, had a strong influence on

power, for rare as well as common SNVs. Kernel methods

may gain power by exploiting SNV correlations. This can

be utilized fully by analyzing LD blocks [30]. LD structure

also influenced which strategy yielded the best joint test of

rare and common SNVs with SKAT [30].

When using gene expression data to informatively

weight gene-wise p values for association of rare SNV

burden with BP [33], 153 genes (out of 6118) reached

nominal significance (weighted p ≤0.05). P value

weights were determined such that evidence for pheno-

type associated gene expression lowered burden test

p values. As no gene reached multiple-testing adjusted

significance, Ho et al [33] used gene set enrichment

analysis as aggregation test to relate the 153 top genes

to biological pathways.

Conclusions

All analyses presented herein used a cross-sectional de-

sign by analyzing trait data of the first examination, the

first available examination, or longitudinally averaged

traits. This mainly contributed to differences in sample

Fig. 3 Comparison between the PolyPhen2, SIFT, and RegulomeDB functional prediction scores. Left column: Correlation of PolyPhen2 functional

prediction scores with (a) SIFT or (c) RegulomeDB scores. Functional scores were transformed to have the same directionality. Nonsynonymous

coding SNVs that alter the protein function should receive a PolyPhen2 score of 1 and a SIFT score of 0. Scores are metric and can be categorized as

displayed. RegulomeDB annotates regulatory SNVs by an ordinal score ranging from the highest evidence (eQTL, expression quantitative trait locus) to

the lowest. Right column: Filters or priors based on (b) SIFT or (d) RegulomeDB functional scores are partially mismatched on GAW19 simulated DBP.

Symbols depict SNVs in the same gene: LEPR (▲), TNN (♣), HIF3A (●), MAP4(♥), MUC13(✷), CGN(■)
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size and trait variability. Furthermore, analyzing trait

values at different time points may affect the marginal

effect of genes that interact with age.

Including biological knowledge increased the power of

association studies performed in our GAW group; espe-

cially filtering variants based on putative functional rele-

vance. Prior weights can be included at different stages

of the testing procedure. They can be incorporated into

the test statistic of SKAT or burden tests, used when

combining test statistics, or applied to association test p

values. Selecting variant-sets also should take genetic struc-

tures into consideration, such as LD or IBD sharing. More-

over, the effective number of independent tests can be

determined relatively easily by extreme value theory. This

enables appropriate adjustment of the significance level for

multiple testing to avoid an overly conservative approach.

Ideally, variant grouping and selection, inclusion of bio-

logical information, and significance level adjustment can

be applied simultaneously. Strategies like these are useful

in increasing power in analyses of highly dense genetic data

sets.

Filtering variants clearly boosted power in the discussed

studies. However, filtering might also lose information.

Functional scores such as PolyPhen2, SIFT, CADD, or

RegulomeDB differ as they focus on different information

about SNVs. Moreover, appropriateness of functional

scores for a considered trait is a priori unknown. Hence,

one is well advised to use and combine multiple functional

annotations into a single filter or prior. This is feasible

as functional annotations yield strong filters that greatly

reduce the SNV space.
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