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ABSTRACT:

The extraction of points on the bare Earth from point clouds acquired by airborne laser scanning is the most time consuming and

expensive part in the production of digital elevation models with laser scanning. Current algorithms for filtering point clouds assume

the Earth’s surface to be continuous in all directions. This assumption leads to smoothed terrain representations in case of height

discontinuities as they are often found in urban environments. This paper presents a new approach to filtering point clouds in which

the point cloud is segmented into smooth segments that may still contain height discontinuities. The resulting segments are

subsequently classified bare earth or object surfaces based on the geometric relationships with the surrounding segments. The paper

demonstrates the advantages of segment-based classification with an analysis of data sets used in the ISPRS filter test.

1. INTRODUCTION

Over the past years airborne laser scanning has become the

preferred method for the acquisition of digital elevation models.

The most important step in the derivation of elevation models

from the point clouds acquired by laser scanners is the

classification of the points into those that are part of the bare

Earth surface and those that are not. Several filtering algorithms

have been developed for this purpose.

Conceptually, an airborne laser scanning point cloud can be

considered to be a representation of a piecewise continuous

surface (the bare Earth), whose continuity is broken by objects.

Essentially, all filter algorithms differ in how they measure

discontinuities between surfaces from the bare Earth and

surfaces from objects (like buildings). Some measures of

discontinuity that are used include height difference, slope, and

shortest distance to a parameterised surface.

Currently most algorithms work by searching for the lowest

points in a neighbourhood and treating these as bare Earth

(morphological filters, e.g., Kilian et. al. 1996, Vosselman

2000, Roggero 2001), by robustly fitting surfaces and searching

for points closest to the fitted surfaces and treating these as bare

Earth (e.g., Pfeifer et. al. 1998, Axelsson 2000, Elmqvist 2002),

by clustering points and treating small clusters as objects (e.g.,

Brovelli et. al. 2004).

Some major problems identified in current filters are that they

erode the bare Earth in steep sloped landscapes and at

discontinuities in the bare Earth, and that they retain low

vegetation and parts of large objects (Sithole and Vosselman

2004).

The erosion at discontinuities in the terrain and the problems

with large objects are both due to the fact that the algorithms

typically work by analysing the structure of a point cloud in a

local neighbourhood. Therefore, it can not be seen whether two

surfaces patches that show a discontinuity within a local

neighbourhood can be connected through a smooth path outside

that neighbourhood and should therefore be considered as parts

of the same surface. Due to this limited context information, the

higher surface path within the neighbourhood may be

incorrectly classified as object surface or will at least be eroded.

In this paper we present a new approach for filtering airborne

laser scanner data. A global overview is given in section 2.

Instead of classifying points in a local neighbourhood, we first

segment the point cloud into patches in which all points can be

connected through a smooth path of adjacent points (section 3).

Subsequently, these segments are classified based on their

geometric relationships with the surrounding segments (section

4). In contrast to other segment based filter approaches

(Lohmann, 2002, Voegtle and Steinle, 2003), the segmentation

is performed on the point cloud and not in a raster image. By

allowing overlapping segments, the terrain can be extracted as a

continuous surface even in the presence of vegetation. In

section 5 we demonstrate and analyse the potential of this

technique by applying it to the data set used in the ISPRS filter

test (Sithole and Vosselman, 2004) and comparing the results

against those obtained by several test participants.

2. FILTERING STRATEGY

The design of the algorithm was guided by the following

objectives:

− The algorithm should work on raw laser data, i.e.,

irregularly spaced points,

− The algorithm should apply to as many landscape types as

possible.

Before a filter algorithm can be devised, a conceptual model of

landscapes needs to be defined. Filtering can then be defined

against this model. The simple model chosen is shown in figure

1.
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The characteristics of the model are:

− The surface of each object is encompassed in one or more

continuous surface segments (O1, O2, O3 and B1),

− All points in a surface segment that can be described by

locally continuous shape functions belong to the same

surface,

− Object segments (O1, O2, and O3) are separated from the

bare Earth segment(s) (B1) by discontinuities,

− The perimeter of each object is mostly raised above its

neighbourhood.

In line with the objectives of the algorithm, the model has been

made as general as possible so that it accommodates most types

of landscape. Emphasis is placed on establishing the topological

and geometric relations between bare Earth and object surfaces.

Filtering is now defined as the identification of surface

segments whose perimeter is raised above their neighbourhood.

Meaningful surfaces can be reconstructed for large objects but

not for small objects (too few points). Therefore, in the

algorithm large and small objects are detected separately. Large

objects are treated by segmentation of the point cloud, while

small objects by smoothing of the point cloud in a later stage.

The algorithm can be described as a procedural stripping away

of objects from the bare Earth in the following sequence, large

objects, bridges, and small objects. In each step of the sequence

smaller and smaller objects are removed. The explicit detection

of bridges is necessary to ensure the reliability of the detected

bare Earth. However, bridge detection is beyond the scope of

this paper and shall not be further elaborated here. Details on

the removal of bridges can be found in (Sithole and Vosselman

2003).

3. SEGMENTATION OF POINT CLOUDS

The segmentation of a point cloud into smooth surfaces is the

first important step of the developed filter algorithm. Two

points are considered to be part of the same surface if there is a

smooth path of adjacent points between them. This definition

allows for discontinuities within a surface as long as there is a

path around a discontinuity that connects points on both sides.

According to this definition, ramps, bridges, and flyovers are

considered part of the bare Earth although they also contain

points with significant height difference to nearby bare Earth

points.

3.1 Range data segmentation algorithms

Several segmentation algorithms have been presented in the

computer vision literature. The two major classes of algorithms

are scan line segmentation and surface growing (Vosselman et

al., 2004).

Jiang and Bunke (1994) describe a scan line segmentation

algorithm for range images. In their approach the range data is

available in a raster image. The algorithm first segments the

range data for each scan line (i.e. image row) separately. The

range data is segmented such that the height of the pixels within

one segment can be described by a linear function. Once all

rows are segmented, the segments are grouped across the scan

lines based on proximity criteria.

Surface growing algorithms first select seed surfaces by testing

if the height of points within some distance of a point can be

approximated by a smooth surface. These seed surfaces are then

extended with other points adjacent to the surface that have a

short perpendicular distance to the surface. While adding points

to the surface, the surface parameters may be updated.

Figure 1 Conceptual model of landscapes

The growing of a surface continues until no further adjacent

points are found at a short perpendicular distance to the surface.

The seed surfaces are processed one after another until all

points have been assigned to a surface. Surfaces with a low

number of points are usually eliminated.

Hoover et al. (1996) describe a comparative study on the

performance of selected algorithms. In their experiments the

scan line algorithm shows the best results. A modified scan line

algorithm is also adopted for segmentation of the laser scanner

point clouds.

3.2 Scan line segmentation

Typical scan line segmentation algorithms only segment one set

of parallel scan lines. In contrast, we define and segment scan

lines with multiple orientations. For this purpose, a point cloud

(exemplified by the cube in figure 2(a)) is sliced into contiguous

profiles, where each slice yields a profile (i.e. our artificial scan

lines). This slicing is done in several directions, figure 2(b).

Once profiles have been obtained, they are segmented to get

line segments that represent continuous planar curves on

surfaces in the landscape.

(b)

(a) (c)

Figure 2 A landscape (a). Slicing of point cloud in different

directions to get profiles, and segmenting the

profiles to get line segments (b). Overlaying of

profiles to get a disconnected graph (c).

The segmentation of a profile is done as follows:

− A weighted minimum spanning tree is generated for a

profile, figure 3(a),
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− In the minimum spanning tree all edges with a weight

greater than a defined threshold are removed, figure 3(b).

The weight, w, of edges in the weighted minimum spanning tree

are computed using the proximity function below:
2 2( ) ( )j i j iw x x k z z= − + − (1.1)

Where ( , )i ix z and ( , )j jx z are the profile coordinates of the end

points i and j of an edge. The user-defined parameter

( 1)k > scales the proximity function so that points along the x-

axis are more proximal than points along the z-axis.

(a) (b)

Figure 3 Weighted minimum spanning tree of a profile (a).

Removal of edges with a large weight (b).

3.3 Segmentation by profile intersection

Segmentation of the point cloud is achieved by overlaying all

segmented profiles. Because the line segments within profiles

pass through points, the overlay yields a disconnected graph, G,

figure 2(c). A surface segment is therefore a connected

subgraph within G. The usage of the profiles in several

directions hence provides us with an elegant way to combine

the profile segmentation results to a surface segmentation. In

contrast to traditional scan line segmentation algorithms (Jiang

and Bunke, 1994), no decision parameters for segment

proximity are needed to combine the results of adjacent profiles.

Two adjacent parallel profile segments are connected only if

there exists a profile segment with another orientation that

contains points of both these parallel segments.

4. CLASSIFICATION OF SEGMENTS

In a profile, for any line segment, at least six topological

relationships (here called shapes) can be identified between it

and adjacent line segments. These are raised, lowered, terraced,

high, low and no shape, figure 4. In any landscape object

surface segments are mainly associated with raised and high

line segments. Lowered and low line segments are mainly

associated with the bare Earth surfaces. Terraced line segments

are associated with both the bare Earth and object surface

segments. Therefore, in the classification surface segments that

contain a majority of raised and high line segments are

classified as object.

Figure 4. Topological arrangements of surfaces in a profile.

4.1 Removal of non-terrain segments

The classification begins by segmenting the point cloud with a

value of k approx. equal to 4 . The generated surface segments

are classified as either object or bare Earth based on the

distribution of line shapes in them.

Next, all points classified as object are removed from the point

cloud. The point cloud is again segmented but with a larger

value of k. The surface segments generated are classified as

before. This segmentation-classification step is repeated several

times and the value of k is increased by a factor of 4 with each

repetition, (see figure 5). The user-defined threshold is also

increased by about the same factor applied to k.

The increase in the value of k serves two purposes. Firstly it

simulates a search for ever-smaller objects. Secondly, as objects

are removed from the point cloud, they leave behind holes. In

the profile segmentation a larger value of k allows these holes to

be bridged.

(a) (b)

(c) (d)

Figure 5 Classification of large objects and bridges. (a) A

sample point cloud from the city of Nijmegen. The point

spacing of the data is approximately 1m. The data was captured

using an OPTECH ALTM system, and provided by

TerraImaging. (b) Objects detected in the first classification. (c)

Objects detected after the second repetition. (d) After all large

objects have been detected, the bridge detection algorithm is

applied.
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4.2 Removal of small objects

The final product of the previous two sections is a bare Earth

point cloud free of large objects and bridges. What remains in

this point cloud are small objects like bushes, cars, park

benches, etc.,. Removing small objects is achieved by fitting

planes at every point. If a point is above the plane fitted to its

nearest neighbouring (3D) points, and if the standard deviation

of the residuals from fit is above a user-defined threshold, then

the point is deemed to belong to a small object.

This procedure is effectively a smoothing of a point cloud.

When applied to a point cloud the procedure removes the top

most vegetation points. Therefore, it has to be repeatedly

applied until the number of points removed in a repetition is

below a user-defined threshold, e.g., 10 points.

5. EXPERIMENTS

For assessing the performance of the new filtering method,

usage has been made of the reference data established in the

ISPRS filter test (Sithole and Vosselman, 2004).

5.1 ISPRS filter test

In the ISPRS filter test, fifteen samples were extracted from the

laser scanner data acquired by Blom Norkart Mapping AS

(formerly FOTONOR AS) for the OEEPE project on laser

scanning (Petzold and Axelsson 2001). The data represents

sections of Vaihingen and the city of Stuttgart. The Vaihingen

samples have a point spacing of 2-3.5 m. The Stuttgart samples

have a point spacing of 1-1.5 m. The samples contain features

that were deemed to be difficult to filter. These include steep

slopes, large buildings, low vegetation, bridges, and

discontinuities in the bare Earth.

The data has been processed by eight test participants. Their

results were compared against manually classified points

(Sithole and Vosselman 2004).

5.2 Performance analysis

The performance of the segment-based filter algorithm is

measured by comparing the classifications against the same

reference data as used in the ISPRS filter test. Furthermore, the

performance is compared with the performances of several

algorithms that were studied in that test, among them the two

algorithms with the best results.

Figure 6 presents the total errors. The total error presents the

number of misclassified points in a sample as a percentage of all

points in the sample. Overall, the new algorithm does equally

well or better than most of the algorithms tested.

Type I errors represent the number of misclassified bare Earth

points in a sample as a percentage of all bare Earth points in the

sample. The type I errors for the developed algorithm are

relatively small (except for sample 11) and do not exhibit large

variations between the sample sites. Considering that the

parameters used in all the tests were nearly the same (slightly

different parameters were used for the urban and rural samples),

this is encouraging because it indicates that the algorithm is

more robust to different landscape types, thus adding to its

reliability. The large error in sample 11 is because of the heavily

vegetated slopes and as can be seen all algorithms struggle with

this feature. A solution to this problem is still being

investigated.
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Figure 6 Comparison of the new algorithm against three

tested algorithms. Percentages of total errors (top),

Type I errors (middle) and Type II errors (bottom).
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Type II errors represent the number of misclassified object

points in a sample as a percentage of all object points in the

sample. The type II errors obtained were relatively small, except

for a few sites where the prevalence of low vegetation and large

point spacing led to higher errors. Typically, there are more

bare Earth points then there are object points hence the impact

of type II errors on the total error is small.

One of the primary objectives of the research was to develop a

filter algorithm that performs equally well in all landscapes.

Based on the good results of the application on the algorithm on

the different landscapes in the ISPRS test, the developed

algorithm is deemed to succeed. A marked improvement against

other algorithms was noticed in complex urban scenes (samples

12, 21, 22, 23, 24, 31, 41, 42).

This improvement is achieved because, (i) segmentation allows

better discrimination of large objects, (ii) the algorithm targets

specific features (e.g., large objects, bridges, etc.,) in a

landscape, (iii) it is better at preserving discontinuities in the

bare Earth, and (iv) the different approach to detecting small

and large objects allows both type I and II errors to be reduced.

The developed filter algorithm was compared against three

algorithms from the test, referred to here as 1, 2 and 3. These

algorithms represent three very different filtering concepts.

Developed Alg Alg 1

Alg 2 Alg 3

Figure 7 Discontinuity preservation in an urban landscape.

5.3 Detecting large and small objects

Part of the success of algorithms 1 and 2 is that they are

iterative. In an iterative approach, an algorithm starts by seeking

large objects and then in every repetition ever-smaller objects

are sought. In every repetition algorithms 1 and 2 use the same

approach but at a different scale. The developed algorithm is

also iterative. However, it differs from the other algorithms in

that it first distinguishes between large and small objects, based

on the premise that they are geometrically and topologically

different, and hence different approaches are required in their

detection. The large object detection and small object detection

algorithm are themselves iterative.

5.4 Discontinuities

The ability to preserve discontinuities more than any other

factor contributes to the algorithm’s ability to reduce type I

errors. This is demonstrated by the examples in figure 7 and 8.

Figure 7 (sample 22) shows an urban scene containing

gangways large buildings and discontinuities in the bare Earth.

Algorithm 3 has the greatest difficulty in preserving

discontinuities in the bare Earth. Algorithms 1 and 2 do better

and this is because they are based on finding surfaces in the

point cloud. The results of the developed algorithm are only

bettered by algorithm 1. Figure 8 (sample 53) shows a quarry.

Shaded

Correct bare Earth

Correct object

Incorrect bare Earth

Incorrect object

Developed Alg Alg 1

Alg 2 Alg 3

Figure 8 Discontinuity preservation in a quarry.

Shaded

Correct bare Earth

Correct object

Incorrect bare Earth

Incorrect object
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The developed algorithm considerably outperforms all the other

algorithms. Some points on the faces of quarry edges are

detected, as objects but the cost of this error in a DTM

generation should be negligible. The type II errors are relatively

large because of the prevalence of low vegetation.

5.5 Outliers

Laser scanner data sometimes contain isolated points that

posses large systematic error. In the developed algorithm very

small segments (typically 5 points or fewer) are classified as

object. Therefore outlying points are detected very easily

because they always yield segments with one or two points.

6. CONCLUSIONS

In this paper a new approach to filtering airborne laser scanner

data was presented. Instead of a point-wise classification based

on the distribution of the points within a local area,

classification is performed on segments of the original point

cloud. The segment-based classification allows the use of more

context information and is therefore able to preserve

discontinuities in the bare Earth surface. It also faces no

difficulties in removing very large buildings.

Compared with other algorithms the new filter shows a reliable

performance, in particular in urban areas. Ramps, fly-overs, and

bridges are initially classified as part of the bare Earth, because

they smoothly connect to this surface. Depending on the

application the user may opt to explicitly recognise these

features and remove them from the set of bare Earth points.

Currently, we only used the topological relationships between

neighbouring segments for the classification. Like shown in

(Voegtle and Steinle, 2003), this can be extended to other

attributes like roughness or colour information.

The detection of vegetation in sloped terrain still remains a

problem. Here it is difficult to find the correct trade-off between

removing low vegetation and preserving small height jumps in

the terrain. Operator knowledge on the smoothness of the

terrain is required to find the optimal parameter settings.

The new algorithm exhibits a relatively low number of type I

errors. This is considered an advantageous property, since type I

errors are difficult to detect in a manual quality control

procedure. If objects remain in the bare Earth dataset (type II

errors), this is often easily recognised during visual inspection.

Hence, minimisation of type I errors is considered more

important.
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