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Filtering of Dispersed Wavetrains*
M. Cara

(Received 1973 January 17)t

Summary

The filtering problem with dispersed signals is examined and an equation
relating the duration of the filtered signal to the bandwidth of the filter
and the dispersiveness of the dispersing system is established. This
equation is applied in two domains: one, the optimization of the multiple
filter technique, a method used for a time—frequency analysis of a signal;
and two, the choice of parameters in a ¢ time variable filter’, a technique
used to isolate from a signal a wavetrain related to a dispersion curve. We
give an application of this  time variable filter’ technique to isolate the
fundamental mode of Rayleigh waves from a record of an earthquake
650 km deep.

1. Filtering of a dispersed signal
(a) Dispersion curve analysis

A dispersed wavetrain g(¢) may be written as a sum of sinusoidal waves that
propagate in one dimension with a speed related to their frequency. We suppose
phase is zero when x = 0, so

glt) = f G(w) cos (K(w) x—wt)dw

where @ is an angular frequency, K a wavenumber and x the epicentral distance.
g(r) may also be written as the real part of a complex function f(¢)

f@) = f F(w) exp [i(K (0) x—wt)] do )

where F(w) =0 for w <0 and F(w)= G(w) for w = 0. The imaginary part of
f(t) gives a wavetrain that differs in phase by #/2. We can develop K () x in Taylor
series about w, to analyse the form of the dispersion curve:

8

K@)x= 3 ao—o) @

where
— _i (n)
ay =~ [KO@)L,y:

* 1L.P.G. Contribution No. 51.
1 Received in original form 1972 August 18.
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66 M. Cara

The parameter a, depends only on the phase velocity c(wg) = wo/K(w,) for the
angular frequency w,

ao = g x[c(wo). 3

For an arbitrary angular frequency , the phase K{w) x—wt is stationary if the time
t is equal to

dK
1) = —d—wi (@).

Thus when 7 > 1 the parameters a, are related to the derivatives of #(w) with respect
to w at wy:

1 [d"“l t(w)]wo. @

a, = — —
" nl do" !

For the first three orders we can also write:

a; = xfu
e3[4,
on 342,

where u is the group velocity. A third-order development is sufficient to express many
dispersion curves in seismology, however we continue here our study with the general
development.

(b) Width of a filtered dispersed signal

Let us examine the effect of filtering near an angular frequency w,. Our filter is
a gaussian exp [—a(w —w,)*] with a half width on the 1/e level Aw = a3, Passing
through the filter, the signal f (¢) becomes:

40

FMOES f F(w) exp [—a(w—w,)?] exp [i(K(w) x - wt)] do. o)

Our purpose is to find a relation between the width of the function f,,,(#) and . We
define this width A, by the square root of the second moment of the function with
respect to its centre #,:

+w to
A= [ 1a0F ¢t / [ 1arar, ©

We suppose the amplitude of the Fourier transform of the dispersed signal remains
constant over the filter bandwidth and exp (—aw,?) is small enough to neglect the
contribution of the branch ]—oo, 0] to the integral (5). So, it can be written:

+ o0

fa(f) = F(wg) f exp [—a(w—w,)?] exp [i(K (w) x— wt)]do. )
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Filtering of dispersed wavetrains 67
We put
A(w) = F(wo) exp [—a(w—wy)*]

and
9@ = 3 a,@-ap.

Applying Fourier transform to equation (7) we obtain:
+o
. 1 . .
A(w) exp [ig(w)] =~ on f Jao(®) exp (iwt) dt.

Let us differentiate each member of this equation with respect to w:

dA d T,
[%_ +iAd —J%] exp [id(w)] =~ on _f itf 5, (1) exp (iwt) dt.

We suppose this differentiation introduces no problem when ¢ becomes infinite.
Applying inverse Fourier transform we obtain:

+
dA d
itf o (£) = f [—%— +id —J%] exp [i(¢p(w)—wt)] do

-~

and then

+oo

i(E=10) foro (£) = f [—Zg— +iA (—Z% - to>] exp [i(¢(w)— wi)] dw.

Applying Parseval’s relation, we obtain a good approximation for A,%:

+ o +
2 2
wix [ (LAY e (42 i) ] o / [

If we put z = w—w, we have:

d
A = exp (—oz®) F(w,); d—aA; = —2uz exp (—az?) F(w,)

3 . d¢ = - n—1
(@) = T a5t = 3 naz
As a; = t,, it follows that

d 2
49 —to= 3 na,z""%,
n=2

dw
And we obtain for the quantity

_(GAN 2 (4o L)
2o (S4Y" (22 )

© 2
Z = F*(w,) [40:2 22+ ( Zz na,,z""l) ] exp (—20z2).
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68 M. Cara

By changing the order of the terms in the sum we obtain:

Z = F*(wy) exp (—2az?) [4(0:2 +a)z%+ n:ii“s " Y pga, aq] .

so that
Z = F?*(wy) exp (—20z%) 3 b,z",
n=2
where
b, = 4(0*+a,?)
b,= Y pga,a, for n>2 ®
g+z=2+2

a, being defined in relations (3) and (4). Thus we obtain:
+ o
AP = i b,1,/I, with I,= f exp (—202) 2" dz.
For odd n, I, = 0 and using the properties of the gamma function
T'(w) = f exp (—=x) x* " tdx
0
(Reif 1965) we have:

AZ = 3 byy(e) 7 TR +HITA) ©)

where the b,, are defined in relations (8). In the following sections we apply this
result to the analysis of two dispersion curves.

(c) Monotonous dispersion case
If a, = O when s > 3, the phase term becomes:
b(©) = Kx—ot = ay+a,(0—wo) +a(0—wy)* —wt. (10)

To obtain a shorter expression for ¢,(w) we choose c(wy) = u(w,) (equality of the
group and phase velocity). By relation (3) and (4), this choice yields w,a; = a,.
Since a, and a, does not appear in the evaluation of A,, this choice is not a restrictive
one for our study.

¢:(0) = ay(@—wo)* +w(to—1).
With such a dispersion relation we can study the filtered signal evaluating exactly

the integral (7) (Inston, Marshall & Blamey 1971). From relations (8) and (9), the
width of the filtered signal is given by:

A? = a+ay’?f. 11

From a physical point of view it is easy to understand this dependence of A2
with respect to «. For a narrow filter, the phase term ¢,(w) preseats slow variations
on the range of definition of the filter and we can take f.% (¢) as the impulse response
of the filter. The width A, of this impulse response is inversely proportional to the
filter bandwidth and so A,* is proportional to . It is the first term of relation (11).
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1o
2 25 3 35 10°
Time (s)

Fic. 1. Modulus of dispersed signal related to relation (14) (a3 = —5-21 X 10% s°)

and filtered near the angular frequency wo(27 /we = 200 s) with different band-

widths. 30db bandwidth: 1,9-6 x 10~ Hz; 2,80 x 10-3Hz; 3, 6:0 x 103 Hz;
4,50 x 1073 Hz; 5,33 x 1073 Hz; 6,2.0 x 10-3% Hz.

When we pass the signal through a wide filter, we can assume f,} () is the sum of wave
groups of dominant angular frequency o and arrival time #(w), arranged side by side.
The relation between #(w) and  is given by the dispersion relation:

tH(w) = 15+ 2a,(0— ).

So the filtered signal width A, becomes proportional to the product of the filter band-
width A, and a,. Since A, = «~* we have the second term of relation (11), with the
exception of the proportionality factor.

The filtered signal width A, presents a minimum when « = a,. If we call 2A,, the
angular frequency interval between points where the amplitude is 1/e of the peak
amplitude the smallest value of A, occurs when

A, =a," % (12)

This is the relation given by Inston, Marshall & Blamey (1971). The minimum value
of A, is

Armin = \,/—2-‘12%- (13)
(d) Extremum group velocity case

For an extremum of group velocity we take a, = 0 (first derivative of the group
velocity is zero for the central angular frequency) and @, = 0 if n > 4.
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FiG. 2. Root mean square duration from relation (15) and width numerically com-
puted on the 1 per cent level of the modulus of a dispersed signal related to the
dispersion relation (14), versus the 30 db bandwidth of the filter.

If we make the same unrestrictive choice as in the A, study discussed before
(c(@o) = u(wy)), we obtain a shorter expression for ¢,(w):

$i(@) = az(w— o)+ a(to—1). (149

In the case of a white spectrum this dispersion equation gives us an Airy integral.
Filtering a dispersed signal f (¢) related to the dispersion relation (14) we obtain
a function f.% (). By relations (8) and (9) the width of f¥ () may be written:

A? =oa+3fa®a? (15)

The same physical point of view as before shows that the first term is the impulse
response of the filter and the second term depends on the dispersion of the signal.
When

a=3at (16)
the width A, presents a minimum:
A min = 7 a3*. 17
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Filtering of dispersed wavetrains 71

In order to know better the function ff (¢), dispersed according to equation (14),
it has been numerically computed. The modulus of the function f.% (¢) is plotted in
Fig. 1 for some bandwidths of the gaussian filter. When the bandwidth increases,
Sk (f) progressively passes from a gaussian to a function with secondary lobes, the
main lobe becomes thinner as secondary lobes grow, and for a very wide bandwidth
S (¢) tends to the Airy function.

In Fig. 2 we have taken the width of the functions | f¥ (¢)|? at the 1 per cent level
for some values of a; versus the filter bandwidth. The family of curves is smoothed
outside the vicinity of the minimum. Discontinuities of the curve occurred when a
secondary lobe reaches the 1 per cent level.

2. Multiple filter technique
(a) General considerations

Every analysis of a seismic signal in terms of normal modes implies the study of
dispersion curves of the recorded wavetrain. Group velocity curves may be drawn
on a time—frequency diagram on which the density of energy in the recording signal
is plotted. Two methods, the moving window analysis and the multiple filter technique,
allow to set up such diagrams. For a complete description of these methods see
Dziewonski, Bloch & Landisman (1969), see also Landisman, Dziewonski & Sato
(1969). We re-examine the multiple filter technique in which the work is done in the
frequency domain.

The recorded seismic signal at a station is a time function f (f). We call F(w) its
Fourier transform. When searching for the density in the signal versus time for an
angular frequency w,, the function f (¢) is filtered in the vicinity of this angular fre-
quency. A gaussian is chosen for the filter function in the way of concentrating the
energy (Papoulis 1962). The filtered spectrum is:

F () = F(w) exp [—a(w— )] Wn(w—wo)/f exp [~ a(w—wo)*}dw.  (18)

The filter bandwidth «~* depends on the angular frequency w, and W, (0—,) is a
boxcar with unit amplitude and limits w,— D, @+ D. The application of this function
becomes necessary in numerical computations. The width 2D of this function is
chosen in such a manner that the gaussian is truncated at a 30 db level. Keeping
only positive angular frequencies near w, we construct a complex filtered signal
Sae(t) with a real and imaginary part differing in phase by n/2.

o

fE@) =2 [ FX () exp (—iot) do. (19)

0

These operations are made for many angular frequencies w,, and so | fX (£)]? is the
energy density in the signal versus time ¢ and angular frequency w,. Note that if the
time variation of | f, ()|* well represents a variation of energy density in the signal
for an angular frequency w,, it is not true for an angular frequency variation of
| fuo(D]? at a given time ¢ because the filter bandwidth used depends on w,.

There is a theoretical limit of the resolution power of such a method, and further,
time and frequency resolutions are not independent. If the signal is not dispersed,
time resolution continuously increases with filter bandwidth: the impulse response of a
gaussian filter with half width at the 1/e level equal to Aw is a gaussian with a root
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72 M. Cara

mean square duration 1/Aw. It is the classical result of the uncertainty principle
relating time and frequency resolution. A choice of a temporal resolution propor-
tional to the period implies filter bandwidths proportional to the frequency. This is
the choice made by Dziewonski et al. (1968).

(b) Multiple filtering of dispersed signals

Our purpose now is to study the choice of filter bandwidth to maximize time
resolution in dispersed signal analysis. The preceding developments show that an
optimum time resolution is obtained for filters according to the dispersion curve of
the signal. So it is necessary first to make a classical analysis of the wavetrain to
obtain an idea of the dispersion curve, unless theoretical considerations lead to an
approximate dispersion curve. If the dispersion curve is described by a polynomial
of order (n—1), the root mean square duration of the signal after passing through a
gaussian filter exp [—o(w—wg)?] is from relation (9):

A? = ata? a4 z b3,(22)"? T(p+3)/T®).

When A, is at its minimum, « is a solution of the following equation:

1— % A,0"@*D =0 with A, =a,> and A,=p27?b, T(p+3)/TA). (20)

p=1

The root of interest may be found by numerical methods.

We can hope for improvements in the time-frequency diagram if the value of «
found by resolving the equation (20) greatly differs from the value oy = Kw ™2 used
in classical multiple filtering. Even with the best parameter K, a good resolution is
not possible if the slope and curvature of the group velocity curve presents strong
variations in the spectral range over which analysis is undertaken. In Fig. 3 and
Fig. 4 the results of classical and optimum multiple filtering applied to synthetic
signals are presented. These wavetrains are dispersed according to the dispersion
relation (14). The value of K has been chosen to have the best mean resolution. For
this filtering we have used the fast Fourier transform algorithm (Cooley & Tukey
1965). Computing time is reduced by limiting the number of points in the integral
(19) to the power of two immediately greater than the number of points that are
inside the range of definition of F, (w), an interpolation of the filtered functions
f& (f) is then necessary. Optimum filters have been computed by resolving equation
(20) in which we have put n = 3. On both figures we can see the K constant method
cannot give a good resolution on the whole range of periods.

3. Time variable filtering
(a) General considerations

A variable filtering permits us to extract from a complex signal a wavetrain
according to a given dispersion curve. Such filtering is necessary when the phase of
the extracted wavetrain has to be analysed and seems to be an interesting means for
the study of the higher modes free oscillation of the Earth.
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FiG. 5. Illustration of integral (22).

Our purpose is to extract a wavetrain related to a given group velocity curve
u(w) from a signal f(z). This dispersion data may be written as the arrival times of
groups of angular frequency w
_x_
u(w)
where x is the epicentral distance and u(w) the group velocity. Again we call F(w)
the Fourier transform of f(¢). Since f(¢) is real we can write:

1) = 1

£(5) =2 f |F(w)] cos [t +d(w)] do. 22)
0

For discrete values of the angular frequency, this Fourier integral may be illustrated
by a scheme in which some ¢ Fourier components’ | F(w)| cos [w?+ ¢ (w)] are drawn;
the sum of these Fourier components giving f(¢); this has been shown in Fig. 5.
Arrival times of groups of angular frequency w, #(w), are plotted on the diagram.
In the vicinity of this curve #(w), there is a domain D, in which Fourier components
constructively interfere. Outside of the domain Dy, we can neglect the contribution of
Fourier components to the wavetrain we want to isolate. So we can make a re-
synthesis of the wavetrain relating to the dispersion curve u(w) by summing the
Fourier components truncated at the upper and lower limits of the domain D,. The
wavetrain extracted is:

f*@ = f A(w, t)| F(w)] cos [wt+ ¢ (w)]dw 23)
0
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76 M. Cara

where A(w, 1) is a “filter’ in two dimensions that is zero outside of the domain D,.
A time performing algorithm consists of summing numerically the Fourier com-
ponents of the signal windowed by the operator

B(t) =0 for ¢< t{w)~L{w); t > t{w)+L(w)

B(t)= 1~ [%g)i)]‘t for tH{w)—L{w) <t < t{w)+L(w)

where #{w) is the arrival time of the group of angular frequency and L(w) is the
height of the domain D, for the angular frequency «. Note that pulsation width
2A,, of the domain D, for an instant ¢ gives the precision with which the extracted
wavetrain is reconstructed. In the algorithm presented, A, depends on L(w) by the
relation giving #{(w).

(b) Choice of the optimum wavelet length

Our problem is to choose the length L that permits to isolate as well as possible
the wavetrain related to a dispersion curve u{w) without introducing too large per-
turbations: short-length wavelets improve the resolution power and long-length
wavelets improve the precision with which the wavetrain is reconstructed. Landisman
et al. (1969) take for L:

L= T(a+ﬁ—%‘,—) 24)

where T is a period, u a group velocity and o, § empirical parameters.

We have re-examined this question for a dispersed signal related to equation (10)
in the case of a white spectrum. In our time variable filtering, filters are not gaussian,
however a numerical computation on synthetic signals will show that the theoretical
result obtained with gaussian filter in Section 1(b) may be applied. Evaluating the
integral (7) it can be shown that differences between the analysed wavetrain and the
reconstructed one depend only on the product L xa,”* where a, is defined by
equation (4). So for small differences we have to choose

L dam [

L=E
dow

where E is a proportionality factor that depends on the precision wanted. Note that
this temporal length is the optimum length on which the energy of the signal can be
focused after filtering (see relation (13)).

In the case of an extremum of the group velocity, this equation cannot be applied.
From equation (17), Fourier components of the signal constructively interfere on a
length that becomes proportional to a;*. If the group velocity curve presents a
plateau or an inflexion point, we have to use a fourth-order development at least.
So in the general casc we have to choose wavelet lengths proportional to the minimum
values of expression (9)

L= EAt min (25)

where the dimensionless proportionality factor E depends on the precision with
which the wavetrain is reconstructed. This parameter is chosen by a numerical
study on synthetic wavetrains. We have plotted in Fig. 6 the residual energy
f=1f(@~f*@®}*dr in per cent of the analysed signal versus the error parameter E.
The wavetrains analysed are related to monotonous dispersion curves (phase term
given by equation (10)) and to an  Airy phase’ (phase term given by (14)).
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FiG. 6. Residual energy j: | F*(1)—f(@)|? dt in per cents of the energy of the signal
j:’ | £(£)]2 dr with regard to the error parameter E.

(c) Variable filter technique applied to a Colombia Earthquake.

We have applied this technique in the way of extracting the fundamental
mode of spheroidal vibration from a record of 16h 39m 10s duration of a
deep focus earthquake of magnitude 7-1 that occurred in Colombia on 1970 July 31
at 1-5°S and 72-6°E at 650km depth. The seismogram has been recorded in St
Marie at 48-20° N and 7-15°' W with a modified North American gravimeter. Depth
and magnitude of this earthquake are favourable to the excitation of many higher
modes. In extracting the fundamental Rayleigh wave we have used a routine of which
the principle is discussed in Sections 2(a) and 2(b).

The temporal length L(w) has been computed by introducing the root o of the
equation (20) in the expression (9) of A,. The group velocity curves used present
neither inflexion point nor plateay, so they have been analysed only to third order
(terms of greater order than @5 have not been computed). To extract the 11 wave-
trains that are present on the record, we have used three experimental dispersion
curves (Direct path R,, inverse path R, and great circle by means of the auto-
correlation of the record). The group velocity curves have been studied by means of
multiple filters in the range of periods 100-300s, and the curves have been completed
to 1000 s with mean free vibrations data (Gaulon 1971). Sets are multiplied by the
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80 M. Cara

function 1—[2(z—t,)/(t,—t,)]* where ¢, and z, are the times of the beginning and the
end of the record and ¢, = (¢, +¢,)/2. In Fig. 7 we have plotted the extracted funda-
mental Rayleigh wave and the difference between windowed sets and the fundamental.
Spectrums of these three signals are shown in Fig. 8. Amplitude variations of the
spectrum of the extracted Rayleigh wave are more regular. On the spectrum of the
residual signal the level of the fundamental peak is very low and more higher modes
of spheroidal oscillations may be observed than in the spectrum of the recorded
signal.

Conclusion

Searching for optimum filters for dispersed wavetrain analysis permits us to
improve our knowledge of multiple filter technique and clearly shows the importance
of epicentral distance in the choice of filters. However we do not expect great improve-
ments in time—frequency resolution for the analysis of dispersed surface waves,
because experimental dispersion curves used in seismology are smoother than those
used for our examples on synthetics wavetrains.

On the other hand, we hope for great improvements in variable filtering techniques.
We can extract with a given precision the wavetrain related to any dispersion curve
from the recorded signal when this wavetrain is far enough from others in the time—
frequency domain.
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