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Summary 
The filtering problem with dispersed signals is examined and an equation 
relating the duration of the filtered signal to the bandwidth of the filter 
and the dispersiveness of the dispersing system is established. This 
equation is applied in two domains: one, the optimization of the multiple 
filter technique, a method used for a time-frequency analysis of a signal; 
and two, the choice of parameters in a ' time variable filter ', a technique 
used to isolate from a signal a wavetrain related to a dispersion curve. We 
give an application of this ' time variable filter ' technique to isolate the 
fundamental mode of Rayleigh waves from a record of an earthquake 
650 km deep. 

1. Filtering of a dispersed signal 

(a) Dispersion curve analysis 
A dispersed wavetrain g(t) may be written as a sum of sinusoidal waves that 

propagate in one dimension with a speed related to their frequency. We suppose 
phase is zero when x = 0, so 

g(t) = f G(o) cos ( K ( o )  x-o t )do  

where o is an angular frequency, K a wavenumber and x the epicentral distance. 
g( t )  may also be written as the real part of a complex function f ( t )  

0 

+ m  

f ( t )  = f F(o) exp [ i (K(o)x-o t )]  do (1) 
-03 

where F(o) = 0 for o < 0 and F ( o )  = G(o)  for o 2 0. The imaginary part of 
f ( t )  gives a wavetrain that differs in phase by 371.2. We can develop K ( o )  x in Taylor 
series about oo to analyse the form of the dispersion curve: 

K ( o )  x = C an(w- oo)n (2) 
n = O  

where 

* I.P.G. Contribution No. 51. 

f Received in original form 1972 August 18. 
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66 M. Cara 

The parameter a, depends only on the phase velocity c(o,) = oo/K(oo)  for the 
angular frequency oo 

a, = oo x/c(o,). (3) 
For an arbitrary angular frequency o, the phase K ( o )  x- cot is stationary if the time 
t is equal to 

d K x  
d o  

t(o) = - (0). 

Thus when n 2 1 the parameters a,, are related to the derivatives of t(o) with respect 
to o at 0,: 

For the first three orders we can also write: 

a,  = x/u 

where u is the group velocity. A third-order development is sufficient to express many 
dispersion curves in seismology, however we continue here our study with the general 
development. 

(b) Width of a filtered dispersed signal 

Let us examine the effect of filtering near an angular frequency 0,. Our filter is 
a gaussian exp [ - a ( ~ - m , ) ~ ]  with a half width on the l/e level Ao = a-*. Passing 
through the filter, the signal f ( t )  becomes: 

+a, 

fwo(t) = 1 F(o) exp [ - a ( ~ - o , ) ~ ]  e x p [ i ( K ( o ) x - w t ) ] d o .  (5 )  
-m 

Our purpose is to find a relation between the width of the function f:o(t) and a. We 
define this width At by the square root of the second moment of the function with 
respect to its centre to: 

M'e suppose the amplitude of the Fourier transform of the dispersed signal remains 
constant over the filter bandwidth and exp (- aoo2) is small enough to neglect the 
contribution of the branch ] - oc), O[ to the integral (5). So, it can be written: 

+oo 

f:,(t) N ~ ( o ~ )  J exp [ - a(w - oO)'] exp [i(K(w) x - at)] d o .  (7) 
-a, 
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We put 

A(@)  = F(oo) exp [ - a(w - o ~ ) ~ ]  

and 

67 

Applying Fourier transform to equation (7) we obtain: 
+ m  

A ( o )  exp [i+(o)] N - 1 f,',(t) exp (iwt)dt.  2n 

Let us differentiate each member of this equation with respect to w: 
+a 

+iA-  exp [i4(0)] N - 1 itfw"o(t) exp ( io t )d t .  
--m 

d o  271. 

We suppose this differentiation introduces no problem when t becomes infinite. 
Applying inverse Fourier transform we obtain: 

+m 

exp [i(4(w)-wot)] d o  
-On 

and then 
+ m  

i(t-t0)f:,(t) N f [z dA + iA  (x d 4  - to)]  exp[i(4(o)-ot)]do. 

- m  

Applying Parseval's relation, we obtain a good approximation for At2 : 
+ m  + m  

A: N 1 [ ($)2 +A2 (s -to)'] dco/ f A'do. 
-a - m  

If we put z = w-coo we have: 

d A  
A = exp (-az') F(oo); ___ d o  = - 2 m  exp ( -az2)  ~(o,) 

d 4  f#(w) = 2 a n z n ; - -  = c na,z"--'. 
a 

n = O  dm n = l  

As a ,  = to, it follows that 
On d4  __ -to = C na,,z"-'. 

d o  n = 2  

And we obtain for the quantity 

d A  2 2 
Z = (x) +A2 (s - to)  : 

2 = F2(wo) [ 4a2z2+ (,I2 c nL2,zn-l ) 'I  exP (-2az2).  
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By changing the order of the terms in the sum we obtain: 

so that 

03 

2 = F2(wo) exp (-2az2) C b,z", 
n = 2  

where 
b2 = 4(a2+a22) 
bn = C pqa,a, for n > 2 

p + q = n + 2  
P . 4  3 2 

a, being defined in relations (3) and (4). Thus we obtain: 
+03 

m 

n = 2  
A: N C bnIn/Io with In = exp (-2az2)zndz. 

- W  

For odd n, I ,  = 0 and using the properties of the gamma function 
m 

(Reif 1965) we have: 

03 

At2 = c b2,(24-P r(P++)lr(+) (9) 
p = l  

where the bZp are defined in relations (8). In the following sections we apply this 
result to the analysis of two dispersion curves. 

(c) Monotonous dispersion case 

If a, = 0 when n 2 3, the phase term becomes: 

~ , ( c o )  = Kx - mt = a, +a, (w - 0,) + a2(w - coo)' - wt. (10) 
To obtain a shorter expression for (b,(o) we choose c(wo) = u(wo) (equality of the 
group and phase velocity). By relation (3) and (4), this choice yields coo al = a,. 
Since a, and a, does not appear in the evaluation of A$, this choice is not a restrictive 
one for our study. 

(fJ,(w) = az(co-WJ2 +o(t,-t). 
With such a dispersion relation we can study the filtered signal evaluating exactly 
the integral (7) (Inston, Marshall & Blamsy 1971). From relations (8) and (9), the 
width of the filtered signal is given by: 

A: = a + ~ , ~ / a .  (1 1) 
From a physical point of view it is easy to understand this dependence of A: 

with respect to a. For a narrow filter, the phase term q5,(co) presents slow variations 
on the range of definition of the filter and we can takeJ&(t) as the impulse response 
of the filter. The width At of this impulse response is inversely proportional to the 
filter bandwidth and so A; is proportional to a. It is the first term of relation (11). 
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2 2.5 3 315 103 

Time (s) 

FIG. 1. Modulus of dispersed signal related to relation (14) (a3 = -5.21 x lo5 s3) 
and filtered near the angular frequency w0(27r/w0 = 200 s) with different band- 
widths. 30db bandwidth: 1,9.6 x Hz; 

4, 5.0 x Hz; 5 , 3 . 3  x Hz; 6,2.0 x Hi. 
Hz; 2 , S . O  x low3 Hz; 3,6.0 x 

When we pass the signal through a wide filter, we can assume f & ( t )  is the sum of wave 
groups of dominant angular frequency w and arrival time t(w), arranged side by side. 
The relation between t(w) and o is given by the dispersion relation: 

t (w)  = to+2a2(o-o,). 

So the filtered signal width At becomes proportional to the product of the a t e r  band- 
width Am and a2. Since Am = .-* we have the second term of relation (1 l), with the 
exception of the proportionality factor. 

The filtered signal width At presents a minimum when .a = a2. If we call 28, the 
angular frequency interval between points where the amplitude is l/e of the peak 
amplitude the smallest value of At occurs when 

Am = a,-*. (12) 
This is the relation given by Inston, Marshall & Blamey (1971). The minimum value 
of At is 

Armin = $ ! a 2 * .  (1 3) 
(d) Extremum group velocity case 

velocity is zero for the central angular frequency) and a, = 0 if it > 4. 
For an extremum of group velocity we take a2 = 0 (first derivative of the group 
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Theoreticcl R M. S duration u3=2.7xlO 5 3  s o3=1.3x1O5s3 

9 - 3  HZ 

Width a t  I %  level 

FIG. 2. Root mean square duration from relation (15) and width numerically com- 
puted on the 1 per cent level of the modulus of a dispersed signal related to the 

dispersion relation (14), versus the 30 db bandwidth of the filter. 

If we make the same unrestrictive choice as in the A$ study discussed before 
(c(oo) = ~(co,)), we obtain a shorter expression for cPr(o): 

+ t ( ~ )  = a3(~-00)3+o( t0 - t ) .  (14) 
In the case of a white spectrum this dispersion equation gives us an Airy integral. 

a functionf&(t). By relations (8) and (9) the width off,*,(t) may be written: 
Filtering a dispersed signal f ( t )  related to the dispersion relation (14) we obtain 

(1 5 )  4 2  = a+”’ a 2 a-2 
1 6  3 

The same physical point of view as before shows that the first term is the impulse 
response of the filter and the second term depends on the dispersion of the signal. 

When 

a = +a3* (16) 
the width A, presents a minimum: 

At = $ a3*. 
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In order to know better the functionfzo(t), dispersed according to equation (14), 
it has been numerically computed. The modulus of the function fzo(t) is plotted in 
Fig. 1 for some bandwidths of the gaussian filter. When the bandwidth increases, 
fz0(t) progressively passes from a gaussian to a function with secondary lobes, the 
main lobe becomes thinner as secondary lobes grow, and for a very wide bandwidth 
fo*,(t) tends to the Airy function. 

In Fig. 2 we have taken the width of the functions If,$(t)12 at the 1 per cent level 
for some values of a3 versus the filter bandwidth. The family of curves is smoothed 
outside the vicinity of the minimum. Discontinuities of the curve occurred when a 
secondary lobe reaches the 1 per cent level. 

2. Multiple filter technique 

(a) General considerations 

Every analysis of a seismic signal in terms of normal modes implies the study of 
dispersion curves of the recorded wavetrain. Group velocity curves may be drawn 
on a time-frequency diagram on which the density of energy in the recording signal 
is plotted. Two methods, the moving window analysis and the multiple filter technique, 
allow to set up such diagrams. For a complete description of these methods see 
Dziewonski, Bloch & Landisman (1969), see also Landisman, Dziewonski & Sat0 
(1969). We re-examine the multiple filter technique in which the work is done in the 
frequency domain. 

The recorded seismic signal at a station is a time functionf(t). We call F(w) its 
Fourier transform. When searching for the density in the signal versus time for an 
angular frequency wo, the function f ( t )  is filtered in the vicinity of this angular fre- 
quency. A gaussian is chosen for the filter function in the way of concentrating the 
energy (Papoulis 1962). The filtered spectrum is: 

I +m 

I - w  

The filter bandwidth @-* depends on the angular frequency wo and WD (w-wo) is a 
boxcar with unit amplitude and limits wo - D, coo + D. The application of this function 
becomes necessary in numerical computations. The width 2 0  of this function is 
chosen in such a manner that the gaussian is truncated at a 30db level. Keeping 
only positive angular frequencies near wo we construct a complex filtered signal 
fz0(t) with a real and imaginary part differing in phase by z/2. 

W 

These operatiofis are made for many angular frequencies m0, and so If20(t)12 is the 
energy density in the signal versus time t and angular frequency coo. Note that if the 
time variation of lf,o(t)12 well represents a variation of energy density in the signal 
for an angular frequency wo, it is not true for an angular frequency variation of 
lf,,(t>l2 at a given time t because the filter bandwidth used depends on wo. 

There is a theoretical limit of the resolution power of such a method, and further, 
time and frequency resolutions are not independent. If the signal is not dispersed, 
time resolution continuously increases with filter bandwidth: the impulse response of a 
gaussian filter with half width at the I/e level equal to Aw is a gaussian with a root 
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mean square duration 1/Ao. It is the classical result of the uncertainty principle 
relating time and frequency resolution. A choice of a temporal resolution propor- 
tional to the period implies filter bandwidths proportional to the frequency. This is 
the choice made by Dziewonski et al. (1968). 

(b) Multiple$ltering of dispersed signals 

Our purpose now is to study the choice of filter bandwidth to maximize time 
resolution in dispersed signal analysis. The preceding developments show that an 
optimum time resolution is obtained for filters according to the dispersion curve of 
the signal. So it is necessary first to make a classical analysis of the wavetrain to 
obtain an idea of the dispersion curve, unless theoreticsll considerations lead to an 
approximate dispersion curve. If the dispersion curve is described by a polynomial 
of order (n- l), the root mean square duration of the signal after passing through a 
gaussian filter exp [ - a(o - w ~ ) ~ ]  is from relation (9): 

When A, is at its minimum, o! is a solution of the following equation: 

1 - 5 A p a - ( p + l )  = 0 with A ,  = az2 and A, = p2-Pbzp r(p++)/r(#. (20) 
p = l  

The root of interest may be found by numerical methods. 
We can hope for improvements in the time-frequency diagram if the value of a 

found by resolving the equation (20) greatly differs from the value a. = Kw-' used 
in classical multiple filtering. Even with the best parameter K ,  a good resolution is 
not possible if the slope and curvature of the group velocity curve presents strong 
variations in the spectral range over which analysis is undertaken. In Fig. 3 and 
Fig. 4 the results of classical and optimum multiple filtering applied to synthetic 
signals are presented. These wavetrains are dispersed according to the dispersion 
relation (14). The value of K has been chosen to have the best mean resolution. For 
this filtering we have used the fast Fourier transform algorithm (Cooley & Tukey 
1965). Computing time is reduced by limiting the number of points in the integral 
(19) to the power of two immediately greater than the number of points that are 
inside the range of definition of F,,(w), an interpolation of the filtered functions 
f&( t )  is then necessary. Optimum filters have been computed by resolving equation 
(20) in which we have put n = 3. On both figures we can see the K constant method 
cannot give a good resolution on the whole range of periods. 

3. Time variable filtering 

(a) General considerations 

A variable filtering permits us to extract from a complex signal a wavetrain 
according to a given dispersion curve. Such filtering is necessary when the phase of 
the extracted wavetrain has to be analysed and seems to be an interesting means for 
the study of the higher modes free oscillation of the Earth. 
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Time 

I :  

Angular frequency 

FIG. 5. Illustration of integral (22). 

Our purpose is to extract a wavetrain related to a given group velocity curve 
u(o)  from a signalf(t). This dispersion data may be written as the arrival times of 
groups of angular frequency o 

where x is the epicentral distance and u(o) the group velocity. Again we call F(o) 
the Fourier transform of f ( t ) .  Sincef(t) is real we can write: 

m 

f ( t )  = 2 f IF(o)l cos [ot+4(o)]dw. (22) 
0 

For discrete values of the angular frequency, this Fourier integral may be illustrated 
by a scheme in which some ' Fourier components ' IF(o)l cos [ot+4(o)] are drawn; 
the sum of these Fourier components givingf(t); this has been shown in Fig. 5. 
Arrival times of groups of angular frequency o, t(o), are plotted on the diagram. 
In the vicinity of this curve t(o), there is a domain Do in which Fourier components 
constructively interfere. Outside of the domain Do, we can neglect the contribution of 
Fourier components to the wavetrain we want to isolate. So we can make a re- 
synthesis of the wavetrain relating to the dispersion curve u(w) by summing the 
Fourier components truncated at the upper and lower limits of the domain Do. The 
wavetrain extracted is: 
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where A ( o ,  t )  is a ' filter ' in two dimensions that is zero outside of the domain Do. 
A time performing algorithm consists of summing numerically the Fourier com- 

ponents of the signal windowed by the operator 

B(t)  = 0 for t < t(w)--L(o); t > t(w)+L(o) 

B ( t ) =  1- I_ for t(o)--L(w) < t < t(w)+L(o) ~714 
where t(m) is the arrival time of the group of angular frequency and L(o)  is the 
height of the domain Do for the angular frequency a. Note that pulsation width 
28, of the domain Do for an instant t gives the precision with which the extracted 
wavetrain is reconstructed. In the algorithm presented, A, depends on L(m) by the 
relation giving t ( ~ ) .  

(b) Choice of the optimum wavelet length 

Our problem is to choose the length L that permits to isolate as well as possible 
the wavetrain related to a dispersion curve u(o) without introducing too large per- 
turbations: short-length wavelets improve the resolution power and long-length 
wavelets improve the precision with which the wavetrain is reconstructed. Landisman 
et al. (1969) take for L:  

where T is a period, u a group velocity and CY, /? empirical parameters. 
We have re-examined this question for a dispersed signal related to equation (10) 

in the case of a white spectrum. In our time variable filtering, filters are not gaussian, 
however a numerical compntation on synthetic signals will show that the theoretical 
result obtained with gaussian filter in Section l(b) may be applied. Evaluating the 
integral (7) it can be shown that differences between the analysed wavetrain and the 
reconstructed one depend only on the product L x a,-* where a2 is defined by 
equation (4). So for small differences we have to choose 

where E is a proportionality factor that depends on the precision wanted, Note that 
this temporal length is the optimum length on which the energy of the signal can be 
focused after filtering (see relation (13)). 

In the case of an extremum of the group velocity, this equation cannot be applied. 
From equation (17), Fourier components of the signal constructively interfere on a 
length that becomes proportional to a,*. If the group velocity curve presents a 
plateau or an inflexion point, we have to use a fourth-order development at least. 
So in the general case we have to choose wavelet lengths proportional to the minimum 
values of expression (9) 

L = EA, min (25) 
where the dimensionless proportionality factor E depends on the precision with 
which the wavetrain is reconstructed. This parameter is chosen by a numerical 
study on synthetic wavetrains. We have plotted in Fig. 6 the residual energy 
JE I f ( t ) - f* ( t ) l ' d t  in per cent of the analysed signal versus the error parameter E .  
The wavetrains analysed are related to monotonous dispersion curves (phase term 
given by equation (10)) and to an ' Airy phase ' (phase term given by (14)). 
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FIG. 6. Residual energy jr 1 f*( t ) - f ( t )12 dr in per cents of the energy of the signal 
jr I f ( t )12  dt with regard to the error parameter E. 

(c) VariabZeJilter technique applied to a Colombia Earthquake. 
We have applied this technique in the way of extracting the fundamental 

mode of spheroidal vibration from a record of 16h 391x1 10s duration of a 
deep focus earthquake of magnitude 7.1 that occurred in Colombia on 1970 July 31 
at 1.5"s and 72.6"E at 650km depth. The seismogram has been recorded in St 
Marie at 48.20" N and 7.15" W with a modified North American gravimeter. Depth 
and magnitude of this earthquake are favourable to the excitation of many higher 
modes. In extracting the fundamental Rayleigh wave we have used a routine of which 
the principle is discussed in Sections 2(a) and 2(b). 

The temporal length L(u) has been computed by introducing the root a of the 
equation (20) in the expression (9) of At. The group velocity curves used present 
neither inflexion point nor plateau, so they have been analysed only to third order 
(terms of greater order than a3 have not been computed). To extract the 11 wave- 
trains that are present on the record, we have used three experimental dispersion 
curves (Direct path R,, inverse path Rz and great circle by means of the auto- 
correlation of the record). The group velocity curves have been studied by means of 
multiple filters in the range of periods 100-300 s, and the curves have been completed 
to l0oOs with mean free vibrations data (Gaulon 1971). Sets are multiplied by the 
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function 1 - [2(t- to)/(t2- t1)I4 where tl and t2 are the times of the beginning and the 
end of the record and to = (tl + tJ2.  In Fig. 7 we have plotted the extracted funda- 
mental Rayleigh wave and the difference between windowed sets and the fundamental. 
Spectrums of these three signals are shown in Fig. 8. Amplitude variations of the 
spectrum of the extracted Rayleigh wave are more regular. On the spectrum of the 
residual signal the level of the fundamental peak is very low and more higher modes 
of spheroidal oscillations may be observed than in the spectrum of the recorded 
signal. 

Conclusion 
Searching for optimum filters for dispersed wavetrain analysis permits us to 

improve our knowledge of multiplt: filter technique and clearly shows the importance 
of epicentral distance in the choice of filters. However we do not expect great improve- 
ments in time-frequency resolution for the analysis of dispersed surface waves, 
because experimental dispersion curves used in seismology are smoother than those 
used for our examples on synthetics wavetrains. 

On the other hand, we hope for great improvements in variable filtering techniques. 
We can extract with a given precision the wavetrain related to any dispersion curve 
from the recorded signal when this wavetrain is far enough from others in the time- 
frequency domain. 
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