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Filtering of Interval Type-2 Fuzzy Systems With
Intermittent Measurements

Hongyi Li Chengwei Wu Ligang Wu Hak-Keung Lam and Yabin Gao

Abstract—In this paper, the problem of fuzzy filter design
is investigated for a class of nonlinear networked systems on
the basis of the interval type-2 fuzzy set theory. In the design
process, two vital factors, intermittent data packet dropouts and
quantization, are taken into consideration. The parameter uncer-
tainties are handled effectively by the interval type-2 membership
functions determined by lower and upper membership functions
and relative weighting functions. A novel fuzzy filter is designed
to guarantee the error system to be asymptotically stable with
H∞ performance. Moreover, the filter does not need to share the
same membership functions and number of fuzzy rules as those
of the plant. Finally, practical examples are used to validate the
effectiveness of the proposed method.

Index Terms—Interval type-2 model; Fuzzy filter; Nonlinear
networked system; Data packet dropouts.

I. INTRODUCTION

IN modern industrial systems, the physical plants, sensors,
filters and actuators are usually located in different geo-

graphical places, which require the signal to be transmitted
from one place to another. The traditional communication via
point-to-point cables can not satisfy the requirement. Thus,
the network media is introduced into the system to connect
these components, which gives rise to the networked systems
[1], [2]. Networked systems have brought obvious advantages,
such as low cost, simple installation and maintenance, and
high reliability [3]. The authors in [4] have highlighted that
increasing attention has been received in modeling, analysis
and synthesis of networked systems. Recently, some stability
and stabilization results concerning networked systems were
reported in [5]–[11]; the filtering problem was studied in [12]–
[15].

For unavailable system states, the filter and observer play
a vital role in estimating them. The authors in [16] proposed
a filtering design method to estimate state variables. In [17]–
[20], the observer was used to handle the unmeasurable sys-
tems states with different systems requirements. However, non-
linearities often exist in the complex plants [21]–[23], which
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makes it difficult to design them in nonlinear systems. The
Takagi-Sugeno (T-S) fuzzy-model-based approach [24] can
cope with nonlinearities existing in the application systems,
which “blends” every local linear system through “IF-THEN”
rules [25]–[33]. In networked environment, considerable filter
design results with the T-S fuzzy model have been reported.
The H∞ filtering problem for a new class of discrete-time
nonlinear networked systems with mixed random delays and
packet dropouts was investigated in [34]. The authors in [25]
studied the distributed finite-horizon filtering problem for a
class of time-varying systems over lossy sensor networks. The
problem of H∞ filtering for a class of nonlinear discrete-time
systems with measurement quantization and packet dropouts
was investigated in [16]. In [35], the filter design problem
for fault detection with missing measurement was researched.
The authors in [14] proposed a novel approach for the filtering
problem of T-S fuzzy systems in a network environment. Both
the delays of the premise variables and the measurements were
considered.

However, it is worth noticing that the aforementioned results
concerning networked systems were achieved through the T-
S fuzzy model-based approach on the basis of the type-1
fuzzy set theory, which can deal with nonlinearities perfectly.
There also exist parameter uncertainties in the application
systems, which can not be handled by the type-1 fuzzy set
theory effectively. And the accuracy of system modeling will
be degraded if parameter uncertainties are not fully taken
into account. The authors in [36] proposed an interval type-2
(IT2) fuzzy model to model the physical plants with parameter
uncertainties. In view of its merits, researchers have been
inspired to investigate it and many results concerning IT2
fuzzy systems were reported in [37]–[40]. The authors in [41]
provided an IT2 T-S fuzzy model approach to model the plant
subject to parameter uncertainties and achieved the stability
condition. Additionally, it has been proved that the IT2 T-S
fuzzy model performs better than the type-1 one when the
parameter uncertainty exists in the system. In [42], [43], the
designed controller did not need to share the same premise
variables, membership functions and fuzzy rules as those of
the plant, which enhance the flexibility of controller design.
The filter design problem was studied in [44], in which the
authors obtained the desired condition to guarantee the error
system to be stochastically stable as well as the guaranteed
H∞ performance. However, the results on IT2 T-S fuzzy
model are related to traditional control systems and few ones
are concerned with nonlinear networked systems. Therefore,
it is challenging to investigate the filter design problem for
a class of nonlinear networked systems subject to parameter
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uncertainties on the basis of IT2 T-S fuzzy model.
This paper focuses on the problem of filter design for the

networked nonlinear systems with parameter uncertainties in
the framework of IT2 T-S fuzzy model. In the process of
modeling the physical plant, the logarithmic quantizer and
Bernoulli stochastic process are used to handle data quanti-
zation and intermittent data missing, respectively. The main
contributions of this paper are summarized as follows. 1). The
system considered in this paper is modeled by the IT2 T-S
fuzzy model, in which lower and upper membership functions
with weighting functions are utilized to capture the parameter
uncertainty. 2). The footprint of uncertainty (FOU) [42], [43]
is considered in order to take into account more information
of uncertainties. 3). The filter design is independent of the
premise variables, membership functions and number of fuzzy
rules of the system in order to enhance the flexibility of the
filter design, that is, the filter does not need to share the same
ones as those of the system. Furthermore, the filter to be
designed guarantees the resulting error system preserves the
stochastic stability as well as the prescribed H∞ performance.
Finally, illustrative examples are provided to illustrate the
effectiveness of the method proposed in the paper.

The remainder of the paper is organized as follows. Section
II describes the considered problem. The main results are
presented in Section III. Illustrative examples are provided to
verify the usefulness of the proposed method in Section IV.
Finally, Section V concludes the paper.

Notation: The notation utilized in this paper is quite stan-
dard. The superscript “T ” and “−1” denote matrix transpo-
sition and matrix inverse, respectively. The identity matrix
and zero matrix with compatible dimensions are represented
by I and 0, respectively. The notation P > 0 (≥ 0) sug-
gests that P is positive definite (semi-definite) with the real
symmetric structure. The notation ∥A∥ indicates the norm of
matrix A defined by ∥A∥ =

√
tr (ATA). l2[0,∞) means

the space of square-integrable vector functions over [0,∞);
Rn describes the n-dimensional Euclidean space, and ∥.∥2
shows the usual l2[0,∞) norm. In complex matrix, the symbol
(∗) is utilized to represent a symmetric term, and we utilize
diag{...} to describe the matrix with block diagonal structure.
Furthermore, E{x|y} and E{x} signify expectation of x
conditional on y and expectation of x, respectively. Prob(·) and
λmin(A) represent the occurrence probability of the event “·”
and the the minimum eigenvalue of the matrix A, respectively.
Matrices in this paper without dimensions explicitly stated, we
assume they have compatible dimensions.

II. PROBLEM FORMULATION

In this section, the discrete-time nonlinear networked system
presented in Fig. 1 is considered. As shown in Fig. 1, data
packet dropouts and quantization are taken into consideration.
In the framework of the IT2 T-S fuzzy model, a r-rule fuzzy
model is given as follows:
Plant Rule i: IF f1 (x(k)) is Mi1, and f2 (x(k)) is Mi2 and,

Fig. 1. Structure of networked systems with the quantizer

..., and fθ (x(k)) is Miθ, THEN

x (k + 1) = Aix (k) +Biw (k) ,

y (k) = Cix (k) +Diw (k) ,

z(k) = Lix(k), (1)

where Mij presents the fuzzy set, and f (x(k)) =
[f1 (x(k)) , f2 (x(k)) , ..., fθ (x(k))] stands for the premise
variable, in which θ is the number of the fuzzy sets. x (k) ∈
Rnx is the state; y (k) ∈ Rny is the measured output;
z (k) ∈ Rnz is the controlled output; w (k) ∈ Rnw is the
disturbance input which belongs to l2 [0,∞). Ai, Bi, Ci,
Di and Li are system matrices with appropriate dimensions.
i ∈ 1, 2, ..., r, the scalar r is the number of IF-THEN rules
of the system. The following interval sets present the firing
strength of the ith rule:

Wi(x(k)) = [mi(x(k)),mi(x(k))],

where

mi(x(k)) =
θ∏

p=1

uMip
(fp(x(k))) ≥ 0,

mi(x(k)) =
θ∏

p=1

uMip(fp(x(k))) ≥ 0,

uMip(fp(x(k))) ≥ uMip
(fp(x(k))) ≥ 0,

mi(x(k)) ≥ mi(x(k)) ≥ 0,

uMip
(fp(x(k))), uMip(fp(x(k))), mi(x(k)) and mi(x(k))

denote the lower membership function, upper membership
function, lower grade of membership and upper grade of
membership, respectively.

The inferred dynamics of the fuzzy system (1) is as follows:

x (k + 1) =
r∑

i=1

mi (x(k)) [Aix (k) +Biw (k)] ,

y (k) =
r∑

i=1

mi (x(k)) [Cix (k) +Diw (k)],

z (k) =
r∑

i=1

mi (x(k))Lix(k), (2)
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where

mi (x(k)) = ai(x(k))mi(x(k)) + ai(x(k))mi(x(k)),

mi (x(k)) ≥ 0,

0 ≤ ai(x(k)) ≤ 1, 0 ≤ ai(x(k)) ≤ 1,

1 =
r∑

i=1

mi (x(k)) , (3)

1 = ai(x(k)) + ai(x(k))

with ai(x(k)) and ai(x(k)) being nonlinear weighting func-
tions and mi (x(k)) regarded as the grades of membership.

In this study, the IT2 filter does not share the same mem-
bership functions and number of fuzzy rules with the system
for enhancing the flexibility of the filter design. The details of
an s-rule fuzzy filter are as follows:
Filter Rule j : IF g1 (x(k)) is Nj1, and g2 (x(k)) is Nj2 and
, ..., and gΨ̄ (x(k)) is NjΨ̄, THEN

xf (k + 1) = Afjxf (k) +Bfjyf (k),

zf (k) = Lfjxf (k) , (4)

where xf (k) ∈ Rnx , zf (k) ∈ Rnz and Afj , Bfj , Lfj are
filter matrices to be determined; s is the number of rules of the
filter. The following interval sets describe the firing strength
of the jth rule:

Ωj(x(k)) = [ωj(x(k)), ωj(x(k))],

where

ωi(x(k)) =
Ψ̄∏

q=1

uNjq
(gq(x(k))) ≥ 0,

ωi(x(k)) =
Ψ̄∏

q=1

uNjq
(gq(x(k))) ≥ 0,

uNjq (gq(x(k))) ≥ uNjq
(gq(x(k))) ≥ 0,

ωi(x(k)) ≥ ωi(x(k)) ≥ 0,

uNjq
(gp(x(k))), uNjq (gp(x(k))), ωi(x(k)) and ωi(x(k)) de-

note lower membership function, upper membership function,
lower grade of membership and upper grade of membership,
respectively.

Then, the overall discrete-time T-S fuzzy filter is as follows:

xf (k + 1) =

s∑
j=1

ωj (x(k)) [Afjxf (k) +Bfjyf (k)],

zf (k) =

s∑
j=1

ωj (x(k))Lfjxf (k) , (5)

where

ωj (x(k)) =
ω̃j (x(k))
s∑

j=1

ω̃j (x(k))
, ωj (x(k)) ≥ 0,

ω̃j (x(k)) = bj(x(k))ωj(x(k)) + bj(x(k))ωj(x(k)),

0 ≤ bj(x(k)) ≤ 1, 0 ≤ bj(x(k)) ≤ 1,
s∑

j=1

ωj (x(k)) = 1, bj(x(k)) + bj(x(k)) = 1, (6)

bi(x(k)) and bj(x(k)) are nonlinear functions and ωj (x(k)) is
regarded as the grades of membership. For brevity, mi ,
mi (x(k)) , ωj , ωj (x(k)) .

Remark 1: Compared with the existing filter design results,
the main advantages of filter (4) designed in this paper lie in
two sides. One is that the filter is designed in the framework
of the IT2 T-S fuzzy model, which can deal with uncertainties.
The other is that the membership functions and the number
of fuzzy rules are not the same as those of the system model,
which, to some degree, can reduce the implementation and
computation complexity.

Remark 2: It can be seen that the expression for ωj (x(k))
is not the same as that for mi (x(k)). In order to enhance
the flexibility of the filter design and obtain less conservative
results, this design strategy is adopted.

A. Measurement Quantization
The quantizer used in the system is as in [45] and the model

is demoted as

ȳ(k) = Ũ(y(k)) = [Ũ1(y1(k)) Ũ2(y2(k)) ... Ũny (yny (k))]
T ,

where ȳ(k) ∈ Rny is the quantized signal transmitted to the
filter via the network. The quantizer Ũ(y(k)) is the logarithmic
type, whose quantization levels for each Ũc(·) (1 ≤ c ≤ ny)
are described by

qc = {±χ
(c)
l , χ

(c)
l = κl

cχ
(c)
0 , l = 0,±1,±2, ...} ∪ {0},

0 < κc < 1, χ
(c)
0 > 0.

The quantizer maps the whole segments to the quantization
level via corresponding each of the quantization level to a
segment. Define the logarithmic quantizer Ũc(·) as

Ũc(yc(k)) =

 χ
(c)
l , 1

1+εc
χ
(c)
l < yc(k) ≤ 1

1−εc
χ
(c)
l ,

0, yc(k) = 0,

−Ũc(−yc(k)), yc(k) < 0,

with εc =
1−κc

1+κc
.

According to the sector-bound method provided in [46], the
quantization errors can be handled as

ȳ(k) = (I + ∆̄(k))y(k), (7)

where ∆̄(k) = diag{∆̄1(k), ..., ∆̄ny (k)},
∣∣∆̄c(yc(k))

∣∣ <
εc, c = 1, 2, ..., ny.

B. Communication Links
As shown in Fig. 1, the network is used to exchange

information in the system such that the intermittent data miss-
ing phenomenon arises. The quantized measurement ȳ (k) is
hardly transmitted to the filter perfectly (e.g., ȳ (k) ̸= yf (k)).
Therefore, the following model is utilized in this study in order
to describe the stochastic measurement missing.

yf (k) = e (k) ȳ (k) , (8)

in which e (k) obeys the Bernoulli process and describes the
unreliable communication link between the quantizer and the
filter. Assume e (k) as follows:

Prob {e (k) = 1} = E {e (k)} = ē,

Prob {e (k) = 0} = 1− ē.
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From (3) and (6), we know

r∑
i=1

mi =
s∑

j=1

ωj =
r∑

i=1

s∑
j=1

miωj = 1. (9)

According to (2), (5), (7) and (8), the filtering error system
is represented as

x̄ (k + 1) =
r∑

i=1

s∑
j=1

miωj [Ãij x̄ (k) + B̃ijw (k)],

z̄ (k) =
r∑

i=1

s∑
j=1

miωjL̄ij x̄ (k) , (10)

where

Ãij = A1ij + ẽ(k)A2ij , B̃ij = B1ij + ẽ(k)B2ij ,

A1ij =

[
Ai 0

ēBfj(I + ∆̄(k))Ci Afj

]
,

A2ij =

[
0 0

Bfj(I + ∆̄(k))Ci 0

]
,

B1ij =

[
Bi

ēBfj(I + ∆̄(k))Di

]
,

B2ij =

[
0

Bfj(I + ∆̄(k))Di

]
,

L̄ij = [ Li −Lfj ], x̄ (k) =

[
x(k)
xf (k)

]
,

z̄ (k) = z(k)− zf (k), ẽ(k) = e(k)− ē.

It is obvious that

E {ẽ(k)} = 0, E {ẽ(k)ẽ(k)} = ē (1− ē) .

To analyze the system (10), we refer to the work in [42].
The state space of interest H is divided into q connected sub-
state spaces Hz(z = 1, 2, ..., q) with H = ∪q

z=1Hz . Then we
divide the FOU into ς + 1 sub-FOUs. For l = 1, 2, ..., ς + 1.
Expressions of lower and upper membership functions in the
lth sub-FOU are rewritten as follows:

hijl(x(k)) =

q∑
z=1

2∑
i1=1

2∑
i2=1

...

2∑
inx=1

nx∏
τ=1

υτiτzl(xτ (k))ϑ, (11)

hijl(x(k)) =

q∑
z=1

2∑
i1=1

2∑
i2=1

...
2∑

inx=1

nx∏
τ=1

υτiτzl(xτ (k))ϑ, (12)

0 ≤ hijl(x(k)) ≤ hijl(x(k)) ≤ 1,

ϑ ≤ ϑ,

where ϑ and ϑ are constant scalars to be determined
and represent ϑiji1i2...inxzl

and ϑiji1i2...inxzl
respectively;

0 ≤ υτiszl(xτ (k)) ≤ 1 with the property υτ1zl(xτ (k)) +
υτ2zl(xτ (k)) = 1 for τ, s = 1, 2, ..., nx; l = 1, 2, ..., ς +
1; iτ = 1, 2; x(k) ∈ Hz; and υτiszl(xτ (k)) = 0 if otherwise.

Thus,
q∑

z=1

2∑
i1=1

2∑
i2=1

...
2∑

inx=1

nx∏
τ=1

υτiτzl(xτ (k)) = 1 for all l,

which is used to analyze the system stability. For brevity,
hijl , hijl(x(k)) and hijl , hijl(x(k)).

Then, system (10) can be rewritten as follows:

x̄ (k + 1) =
r∑

i=1

s∑
j=1

hij (x(k)) [Ãij x̄ (k) + B̃ijw (k)],

z̄ (k) =

r∑
i=1

s∑
j=1

hij (x(k)) L̄ij x̄ (k) , (13)

where

hij (x(k)) = miωj =

ς+1∑
l=1

ρijl(x(k))
[
ζ
ijl
(x(k))hijl

+ζijl(x(k))hijl

]
,

1 =

r∑
i=1

s∑
j=1

hij (x(k)) ,

0 ≤ ζ
ijl
(x(k)) ≤ ζijl(x(k)) ≤ 1,

ρijl(x(k)) =

{
1, hijl (x(k)) ∈ the sub-FOU l,
0, else,

where ζ
ijl
(x(k)) and ζijl(x(k)) are two functions and unnec-

essary to be known. ζ
ijl
(x(k))+ ζijl(x(k)) = 1 for i, j and

l. The following definition is used to obtain the main result in
this paper. For brevity, hij , hij (x(k)) , ζijl , ζ

ijl
(x(k)),

ζijl , ζijl(x(k)) and ρijl , ρijl(x(k)).
Definition 1: [35] The filtering error system in (13) is

stochastically stable in the mean square when w (k) ≡ 0 for
any initial condition x̄(0) if there is a finite W > 0 such that

E

{ ∞∑
k=0

|x̄(k)|2 |x̄(0)

}
< x̄(0)TWx̄(0).

The purpose of the paper is to design a filter on the basis of
IT2 framework such that the following conditions are satisfied
simultaneously.

1) The error system in (13) is stochastically stable;
2) Under zero initial condition, with a given positive scalar

γ, the error output z̄ (k) satisfies

E


√√√√ ∞∑

k=0

|z̄ (k)|2
 ≤ γ ∥w∥2 .

Remark 3: The parameter uncertainties can lead to the
state-variable uncertainties, which results in a less accurate
model when we model the physical plants. They are fully
taken into consideration in the framework of IT2 T-S fuzzy
model, in which the membership function is an interval rather
than a specific one. The membership functions are determined
by lower and upper functions with weighting functions, which
makes the parameter uncertainties concluded in the member-
ship functions.

III. MAIN RESULTS

In this section, for given filter gain matrices Afj , Bfj ,
Lfj (j = 1, 2, ..., s), the sufficient condition is provided
which ensures error system (13) is stochastically stable with
a predefined H∞ performance.
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Theorem 1: With the FOU and state space divided into
ς + 1 sub-FOUs and q connected sub-state spaces, for the
given filter gain matrices Afj , Bfj . Lfj (j = 1, 2, ..., s) and
positive scalar γ, the system in (13) is stochastically stable
and satisfies a given H∞ performance, if there exist symmetric
matrices P > 0, Wijl > 0 (i = 1, 2, ..., r, j = 1, 2, ..., s, l =
1, 2, ..., ς + 1) and M with appropriate dimensions such that
the following inequalities hold:

r∑
i=1

s∑
j=1

Γ̌−M < 0, (14)

Q̄ijl −Wijl +M < 0, (15)

where

Γ̌ = ϑQ̄ijl − (ϑ− ϑ)Wijl + ϑM,

Q̌ijl = ĀT
ijP̄ Āij − P,

Q̄ijl =

[
Q̌ijl + L̄T

ijL̄ij ĀT
ijP̄ B̄ij

∗ −γ2I + B̄T
ijP̄ B̄ij

]
,

Āij =
[
AT

1ij fAT
2ij

]T
, f =

√
ē (1− ē),

B̄ij =
[
BT

1ij fBT
2ij

]T
, P̄ = diag{P, P}.

Proof: Consider the following Lyapunov function for
system (13):

V (k) = x̄T (k)Px̄ (k) ,

where P > 0 is the matrix to be determined. Let χT (k) =[
x̄T (k) wT (k)

]
. Then, the difference is computed as:

∆V (k) = E {V (k + 1) |χ (k)} − V (k)

≤ E

χT (k)
r∑

i=1

s∑
j=1

hijz̃T
ijP z̃ijχ(k)


−x̄T (k)Px̄ (k)

= χT (k)
r∑

i=1

s∑
j=1

hijQijlχ(k), (16)

where

z̃ij =
[
Ãij B̃ij

]
,

Qijl =

[
Q̌ijl ĀT

ijP̄ B̄ij

∗ B̄T
ijP̄ B̄ij

]
.

To achieve the sufficient condition, the following slack
matrices are introduced.

r∑
i=1

s∑
j=1

ς+1∑
l=1

ρijl
[
(1− ζ̄ijl)hijl + ζ̄ijlhijl

]
− 1

M = 0, (17)

−
r∑

i=1

s∑
j=1

ς+1∑
l=1

ρijl(1− ζ̄ijl)(hijl − hijl)Wijl ≥ 0. (18)

Substituting (17)–(18) into (16), it can be found that

∆V (k) ≤ χT (k)


r∑

i=1

s∑
j=1

ς+1∑
l=1

ρijl
[
hijlQijl

−(hijl − hijl)Wijl + hijlM
]
−M

}
χ(k)

−χT (k)

r∑
i=1

s∑
j=1

ς+1∑
l=1

ρijlζ̄ijl(hijl − hijl)

×(Qijl −Wijl +M)χ(k). (19)

When w(k) = 0, it can be seen from (14) and (15) that Ξ < 0,
where

Ξ =
r∑

i=1

s∑
j=1

ς+1∑
l=1

ρijl
[
hijlQ̌ijl − (hijl

−hijl)W1ijl + hijlM1

]
−M1

−
r∑

i=1

s∑
j=1

ς+1∑
l=1

ρijlζ̄ijl(hijl − hijl)

×(Q̌ijl −W1ijl +M1),

where

Wijl =

[
W1ijl W2ijl

∗ W3ijl

]
, M =

[
M1 M2

∗ M3

]
.

Then, the following inequality holds,

E
{
x̄T (k + 1)Px̄ (k + 1)

}
− x̄T (k)Px̄ (k)

≤ −λmin (−Ξ) x̄T (k) x̄ (k) .

Summing the mathematical expectation for both sides of the
inequality from k = 0, 1, ..., d with any d ≥ 1, one can obtain

E
{
x̄T (d+ 1)Px̄ (d+ 1)

}
− x̄T (0)Px̄ (0)

≤ −λmin (−Ξ)E

{
d∑

k=0

|x̄ (k)|2
}
,

which yields

E

{
d∑

k=0

|x̄ (k)|2
}

≤ (λmin (−Ξ))
−1

x̄T (0)Px̄ (0) ,

with the initial condition x̄ (0). When d = 1, 2, ...,∞, consid-
ering E

{
x̄T (∞)Px̄ (∞)

}
≥ 0, we have

E

{
d∑

k=0

|x̄ (k)|2
}

≤ x̄T (0)Wx̄ (0) ,

where W , (λmin (−Ξ))
−1

P, which means W > 0. From
Definition 1, the error system in (13) is stochastically stable.
Next, consider the H∞ performance of the error system in
(13). Under the zero initial condition, the H∞ performance
index is

J , E {V (k + 1) |χ (k)} − V (k)

+E
{
z̄T (k) z̄ (k) |χ (k)

}
− γ2wT (k)w (k) .
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Then, we obtain

J = E
{
z̄T (k) z̄ (k)

}
− γ2wT (k)w (k) + ∆V (k)

≤ χT (k)


r∑

i=1

s∑
j=1

ς+1∑
l=1

ρijl
[
hijlQ̄ijl

−(hijl − hijl)Wijl + hijlM
]
−M

}
χ(k)

−χT (k)
r∑

i=1

s∑
j=1

ς+1∑
l=1

ρijlζ̄ijl(hijl

−hijl)(Q̄ijl −Wijl +M)χ(k). (20)

Substituting (11) and (12) into (20), we have

J ≤ χT (k)

r∑
i=1

s∑
j=1

ς+1∑
l=1

ρijl

q∑
z=1

2∑
i1=1

2∑
i2=1

...

2∑
inx=1

nx∏
τ=1

υτiτzl(xτ (k))Γ̌χ(k)

−χT (k)Mχ(k)− χT (k)
r∑

i=1

s∑
j=1

ς+1∑
l=1

ρijlζ̄ijl

×
q∑

z=1

2∑
i1=1

2∑
i2=1

...
2∑

inx=1

nx∏
τ=1

υτiτzl(xτ (k))(ϑ

−ϑ)(Q̄ijl −Wijl +M)χ(k). (21)

Recalling (11) and (12) and referring to [42], at any time,
the equality

∑ς+1
l=1 ρijl = 1 is ensured by only one ρijl = 1

for each fixed i, j value. According to (14) and (15), one can
have

E
{
zT (k) z (k)

}
− γ2wT (k)w (k) + ∆V (k) ≤ 0,

which yields J ≤ 0. Then, we can obtain E {√∑∞
k=0 |z (k)|

2

}
≤ γ ∥w∥2. The proof is completed.

Remark 4: Theorem 1 provides a sufficient condition that
ensures the error system is stochastically stable and satisfies
the guaranteed H∞ performance. However, due to the exis-
tence of quantization effect ∆̄(k), it has difficulty on checking
the effectiveness of Theorem 1. Then, the quantization effect
can be eliminated. Next, we will show the new sufficient
condition.

Theorem 2: For the given filter gain matrices Afj , Bfj ,
Lfj , the quantizer Ũj(·) and positive scalar γ, the system
in (13) is stochastically stable and satisfies a given H∞
performance, if there exist a scalar ε > 0 and symmetric
matrices P > 0, W̃1ijl > 0, W̃2ijl, W̃3ijl > 0 (i =
1, 2, ..., r, j = 1, 2, ..., s, l = 1, 2, ..., ς+1) and M̃1, M̃2, M̃3

with appropriate dimensions such that the following inequali-
ties hold:  Σ̄1 Σ̄3 εΣ̄T

2

∗ −εI 0
∗ ∗ −εI

 < 0, (22)

 Σ1 Σ3 εΣT
2

∗ −εI 0
∗ ∗ −εI

 < 0, (23)

where

Σ̄1 =

[
Θ̄1 Θ̄2

∗ Θ̄3

]
, Σ̄2 =

[
0 0 0 C̄i Di

]
,

C̄i =
[
Ci 0

]
, Θ̄1 = diag{−P−1,−P−1,−I},

Σ̄3 =
[
ϖēB̃fj ϖfB̃fj 0 0 0

]T
, ϖ =

√
ϑ,

Θ̄2 =

 ϖÂij ϖB̂ij

ϖǍij ϖB̌ij

ϖL̄ij 0

 , Âij =

[
Ai 0

ēBfjCi Afj

]
,

Ǎij =

[
0 0

fBfjCi 0

]
, B̂ij =

[
Bi

ēBfjDi

]
,

B̌ij =

[
0

fBfjDi

]
, Θ̄3 =

[
Φ1ijl Φ2ijl

∗ Φ3ijl

]
,

B̃fj =
[
0 BT

fj

]
,

Φ1ijl = −ϑP − (ϑ− ϑ)W̃1ijl + (ϑ− 1

rs
)M̃1,

Φ2ijl = −(ϑ− ϑ)W̃2ijl + (ϑ− 1

rs
)M̃2,

Φ3ijl = −ϑγ2I − (ϑ− ϑ)W̃3ijl + (ϑ− 1

rs
)M̃3,

Σ1 =

[
Θ1 Θ2

∗ Θ3

]
, Σ2 = Σ̄2,

Σ3 =
[
ēB̃fj fB̃fj 0 0 0

]T
, Θ1 = Θ̄1,

Θ2 =

 Âij B̂ij

Ǎij B̌ij

L̄ij 0

 , Θ3 =

[
Ω1 Ω2

∗ Ω3

]
,

Ω1 = −P − W̃1ijl + M̃1, Ω2 = −W̃2ijl + M̃2,

Ω3 = −γ2I − W̃3ijl + M̃3.

Proof: Define

Wijl =

[
W̃1ijl W̃2ijl

∗ W̃3ijl

]
, M =

[
M̃1 M̃2

∗ M̃4

]
.

For (14) and (15), considering the method handling the
quantization error in [25] and under the effect of Schur
complement, we can obtain

Σ̄1 + ε−1Σ̄3Σ̄
T
3 + εΣ̄T

2 Σ̄2 < 0,

Σ1 + ε−1Σ3Σ
T
3 + εΣT

2 Σ2 < 0.

By using Schur complement, (22) and (23) can be obtained.
The proof is completed.

Based on Theorem 2, the existence condition of the filter
can be developed in the following theorem.

Theorem 3: Considering the fuzzy system in (13), for a
positive scalar γ and the quantizer Ũj(·), the system in (13)
is stochastically stable and satisfies a given H∞ performance,
if there exist a scalar ε > 0 and symmetric matrices P̄1 > 0,
W̄ > 0, W̄1ijl > 0, W̄2ijl, W̄3ijl, W̄4ijl > 0, W̄5ijl, W̄6ijl >
0, and matrices Āfj , B̄fj , L̄fj , M̄1, M̄2, M̄3, M̄4, M̄5, M̄6

satisfying the following conditions:[
P̂ ϖΠ̆ijl

∗ Φ̃

]
< 0, (24)[

P̂ Π̆ijl

∗ Ω̃

]
< 0, (25)
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where

Π̆ijl =


∆1ijl Āfj ∆3ijl ēB̄fj 0
∆2ijl Āfj ∆4ijl ēB̄fj 0

fB̄fjCi 0 fB̄fj fB̄fj 0
fB̄fjCi 0 fB̄fj fB̄fj 0

Li −L̄fj 0 0 0

 ,

Φ̃ =


Φ̄1ijl Φ̄2ijl Φ̄3ijl 0 εCT

i

∗ Φ̄4ijl Φ̄5ijl 0 0
∗ ∗ Φ̄6ijl 0 εDT

i

∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ −εI

 ,

P̂ = diag{Q,Q,−I}, ∆1ijl = P̄1Ai + ēB̄fjCi,

∆2ijl = W̄TAi + ēB̄fjCi, Q =

[
−P̄1 −W̄
∗ −W̄

]
,

∆3ijl = P̄1Bi + ēB̄fjDi, ∆4ijl = W̄TBi + ēB̄fjDi,

Φ̄1ijl = −ϑP̄1 − (ϑ− ϑ)W̄1ijl + (ϑ− 1

rs
)M̄1,

Φ̄2ijl = −ϑW̄ − (ϑ− ϑ)W̄2ijl + (ϑ− 1

rs
)M̄2,

Φ̄3ijl = −(ϑ− ϑ)W̄3ijl + (ϑ− 1

rs
)M̄3,

Φ̄4ijl = −ϑW̄ − (ϑ− ϑ)W̄4ijl + (ϑ− 1

rs
)M̄4,

Φ̄5ijl = −(ϑ− ϑ)W̄5ijl + (ϑ− 1

rs
)M̄5,

Φ̄6ijl = −ϑγ2I − (ϑ− ϑ)W̄6ijl + (ϑ− 1

rs
)M̄6,

Ω̃ =


Ω̄1 Ω̄2 Ω̄3 0 εCT

i

∗ Ω̄4 Ω̄5 0 0
∗ ∗ Ω̄6 0 εDT

i

∗ 0 ∗ −εI 0
∗ ∗ 0 0 −εI

 ,

Ω̄1 = −P̄1 − W̄1ijl + M̄1, Ω̄2 = −W̄ − W̄2ijl + M̄2,

Ω̄3 = −W̄3ijl + M̄3, Ω̄4 = −W̄ − W̄4ijl + M̄4,

Ω̄5 = −W̄5ijl + M̄5, Ω̄6 = −γ2I − W̄6ijl + M̄6.

Furthermore, if the aforementioned conditions hold, the
filter gain matrices in the form of (4) can be designed as
follows:[

Afj Bfj

Lfj 0

]
=

[
W̄−1 0
0 I

] [
Āfj B̄fj

L̄fj 0

]
. (26)

Proof: Firstly, to facilitate the proof, the matrix P is
partitioned as

P =

[
P1 P2

∗ P3

]
,

where P3 > 0; P2 is non-singular matrix. The matrices
Wijl, M are repartitioned as

Wijl =

 W1ijl W2ijl W3ijl

∗ W4ijl W5ijl

∗ ∗ W6ijl

 ,

M =

 M1 M2 M3

∗ M4 M5

∗ ∗ M6

 .

Additionally, some matrix variables are defined as follows

P̄1 = P1, W̄ = P2P
−T
3 PT

2 , Γ =

[
I 0
0 P2P

−1
3

]
,

W̄1ijl = W1ijl, W̄2ijl = W2ijlP
−T
3 PT

2 , W̄3ijl = W3ijl,

W̄4ijl = P2P
−1
3 W4ijlP

−T
3 PT

2 , W̄5ijl = P2P
−1
3 W5ijl,

W̄6ijl = W6ijl, M̄1 = M1, M̄2 = M2P
−T
3 PT

2 ,

M̄3 = M3, M̄4 = P2P
−1
3 M4P

−T
3 PT

2 , M̄6 = M6,

M̄5 = P2P
−1
3 M5, Āfj = P2AfjP

−T
3 PT

2 ,

B̄fj = P2Bfj , L̄fj = LfjP
−T
3 PT

2 .

Pre- and post-multiplying (24) by diag
{
Γ−1,Γ−1, I,

Γ−1, I, I, I
}

and its transposition and then performing con-
gruence transformation by diag

{
P−1, P−1, I, P−1, I, I, I

}
and its transposition, we can obtain the inequality (22). Thus
the inequality (24) holds. Similarly, the inequality (25) can
be obtained with the same operation. Moreover, with the
operation of the similarity transformation to (4), we can get the
desired filter matrices form in (26). The proof is completed.

Remark 5: From Theorem 3, one can see that the elements
considered in the paper (e.g., data loss, data quantization and
parameter uncertainties) affects the stability of the system.
By solving (24) and (25), the desired filter matrices can be
obtained, which guarantees the error system is stochastically
stable and preserves the H∞ performance.

The procedure to apply Theorem 3 to design the IT2 filter
is as follows:

• Step 1. Give the IT2 T-S model for the nonlinear NCSs
to be considered.

• Step 2. Obtain the IT2 fuzzy model for the system in
Step 1 on the basis of the method used in [41] and [42].

• Step 3. Design the IT2 fuzzy filter (5) for the fuzzy
system in Step 2.

• Step 4. Give the probability for data transmitted success-
fully ᾱ, β̄, the disturbance attenuation γ and the quantizer
Ũj(·).

• Step 5. Solve the solution to the LMIs (24) and (25) to
obtain the filter gains Afj , BFj and Lfj .

• Step 6. If Afj , BFj and Lfj do not exist, return to Step
4 with different γ and Ũj(·).

Without considering the data quantization, the following
corollary can be obtained, which is used to demonstrate the
superiority over the type-1 T-S fuzzy model.

Corollary 1: Considering the fuzzy system in (13) without
data quantization, the system in (13) is stochastically stable
and satisfies a given H∞ performance, if there exist symmetric
matrices P̄1 > 0, W̄ > 0, W̄1ijl > 0, W̄2ijl, W̄3ijl, W̄4ijl > 0,
W̄5ijl, W̄6ijl > 0, and matrices Āfj , B̄fj , L̄fj , M̄1, M̄2, M̄3,
M̄4, M̄5, M̄6 satisfying the following conditions:[

P̂ ϖΠ̆1ijl

∗ Φ̃1

]
< 0,[

P̂ Π̆1ijl

∗ Ω̃1

]
< 0,
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where

Π̆1ijl =


∆1ijl Āfj ∆3ijl

∆2ijl Āfj ∆4ijl

fB̄fjCi 0 fB̄fj

fB̄fjCi 0 fB̄fj

Li −L̄fj 0

 ,

Φ̃1 =

 Φ̄1ijl Φ̄2ijl Φ̄3ijl

∗ Φ̄4ijl Φ̄5ijl

∗ ∗ Φ̄6ijl

 , Ω̃1 =

 Ω̄1 Ω̄2 Ω̄3

∗ Ω̄4 Ω̄5

∗ ∗ Ω̄6

 ,

and other matrices are defined the same as in Theorem 3. The
desired filter gains are as (26).

Proof: Since the proof is similar to above Theorems, it
is omitted here.

IV. SIMULATION RESULTS

In this section, a practical example is provided to demon-
strate the usefulness of the filtering design method proposed
in this paper.

Example 1: In the practical example, the tunnel diode cir-
cuit [35] shown in Fig. 2 is used to illustrate the effectiveness
of the method, whose dynamic equation is

iD(t) = 0.002vD(t) + ∂v3D(t),

where ∂ is an uncertain parameter and ∂ ∈ [0.01, 0.03] .

Fig. 2. Tunnel diode circuit

Let x1(t) = vC(t) and x2(t) = iL(t) be the state variables.
Define f̄ = 0.002 + ∂v2D(t). The circuit is governed by the
following expressions:

Cx1(t) = −f̄x1(t) + x2(t),

Lx2(t) = −x1(t)−Rx2(t) + w(t),

in which C = 20 mF, L = 1000 mH and R = 10 Ω.
Assuming x1(t) ∈ [x1min , x1max ] = [−3, 3] and referring

to the modeling process in [41], the IT2 T-S fuzzy model is
as

x (k + 1) =

2∑
i=1

mi (x(k)) [Aix (t) +Biw (t)],

where

A1 =

[ −f̄min

C 50
−1 −10

]
, B1 =

[
0
1

]
, f̄min = 0.02,

A2 =

[ −f̄max

C 50
−1 −10

]
, B2 =

[
0
1

]
, f̄max = 0.2720,

TABLE I
LOWER AND UPPER MEMBERSHIP FUNCTIONS OF THE PLANT

Lower membership functions Upper membership functions

uM11
(x1) =

f̄max−f̄
f̄max−f̄min

uM11 (x1) =
f̄max−f̄

f̄max−f̄min

with ∂ = 0.03 with ∂ = 0.01

uM12
(x1) =

f̄−f̄min
f̄max−f̄min

uM12 (x1) =
f̄−f̄min

f̄max−f̄min

with ∂ = 0.01 with ∂ = 0.03

TABLE II
LOWER AND UPPER MEMBERSHIP FUNCTIONS OF THE FILTER

Lower membership functions Upper membership functions

uN11
(x1) = 0.8× e−x2

1 uN11 (x1) = uN11
(x1)

uN12
(x1) = 1− uN11

(x1) uN12 (x1) = uN12
(x1)

and the lower and upper membership function of the system
and filter are described in Table I and Table II.

The determination of lower and upper membership functions
hijl(x1(k)) and hijl(x1(k)) is related to the state space of
interest x1(k). To this end, x1(k) ∈ [−3, 3] is divided into
100 regions, equally. Then we can determine the lower and
upper bounds of every sub-state, that is, x1kl = 3/50(k −
51), x1kl = 3/50(k − 50). To decrease the computational
complexity, we only consider one sub-FOU (i.e., l = 1). The
relative parameters concerning the lower and upper member-
ship functions hijl(x1(k)) and hijl(x1(k)) are listed below:

ϑij1k1 = mi(x1kl)ωj(x1k1), υ11k1(x1) = 1− x1 − x1kl

x1kl − x1kl

,

ϑij1k1 = mi(x1kl)ωj(x1k1), υ12k1(x1) = 1− υ11k1(x1),

ϑij2k1 = mi(x1kl)ωj(x1k1), ϑij2k1 = mi(x1kl)ωj(x1k1).

Additionally, the membership function hij is determined by
following weighting functions.

ai(x(k)) = sin2(x(k)), ai(x(k)) = 1− ai(x(k)),

bi(x(k)) = cos2(2x(k)), bi(x(k)) = 1− bi(x(k)).

Under sampling period T = 0.5 s, matrices are as follows:

A1 =

[
−0.0199 0.4586
−0.0092 −0.1107

]
, B1 =

[
0.9990
0.0112

]
,

A2 =

[
−0.0024 −0.0055
0.0001 −0.0028

]
, B2 =

[
0.2699
0.0733

]
,

C1 =
[
0.3565 0.4256

]
, D1 = 0.6998,

L1 =
[
0.0007 −0.0035

]
,

C2 =
[
1.2016 1.4498

]
, D2 = −0.1935,

L2 =
[
0.0041 0.1262

]
.

Let γ = 0.65, ē = 0.8 and the disturbance be

w(k) =

 −0.2, 80 < k < 120,
0.2, 140 < k < 200,
0, else.

Considering the quantization level κj = 0.9 and the initial
value χ0 = 0.0001, Fig. 3 plots the stochastic data missing
with the probability ē = 0.8 in the error system. Fig. 4
describes the effect of the quantizer. By computing the LMIs
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Fig. 3. Data loss with ē = 0.8
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Fig. 4. The effect of quantization

(24) and (25), the desired filter gains are as

Af1 =

[
−0.0315 0.2788
0.0003 −0.0292

]
, Bf1 =

[
−0.0844
0.0010

]
,

Lf1 =
[
−0.0013 −0.0011

]
,

Af2 =

[
−0.0312 0.2763
−0.0003 −0.0233

]
, Bf2 =

[
−0.0043
0.0001

]
,

Lf2 =
[
−0.0113 −0.0223

]
,

and ε = 0.0188.
Fig. 5 and Fig. 6 present the estimation signal and the

estimation error, respectively, which also demonstrates the
filter design approach in this paper is effective.
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Fig. 5. Estimation signal

Example 2: In this example, the advantages and effective-
ness of IT2 T-S fuzzy model are demonstrated. In [35], the
tunnel diode circuit model with a fixed value of ∂ (i.e.,

0 50 100 150 200 250 300 350 400
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

Time(k)

E
st
im

a
ti
o
n
E
rr
o
r

Fig. 6. Estimation error

∂ = 0.01) was used to illustrate the effectiveness of the method
proposed in their work. However, when ∂ is changeable rather
than fixed, the type-1 T-S fuzzy model in [35] does not work.
In what follows, the same model as in Example 1, but with
different system matrices is applied to Corollary 1. Under
sampling period T = 0.1 s, we get

A1 =

[
0.8144 2.8909
−0.0578 0.2420

]
, B1 =

[
0.1763
0.0582

]
,

A2 =

[
0.1871 1.4194
−0.0284 0.2893

]
, B2 =

[
0.1147
0.0596

]
,

C1 =
[
0.6248 0.9358

]
, D1 = −1.8275,

L1 =
[
0.0042 0.0369

]
,

C2 =
[
0.8256 −2.5096

]
, D2 = −2.8767,

L2 =
[
−0.1079 0.0328

]
.

For demonstration, the number of sub-state is defined as 30.

0 50 100 150 200 250 300
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time(k)

d
is
tu
rb
a
n
ce

o
f
th
e
sy
st
em

 

 
Estimation Error of type-1 filter

Estimation Error of IT-2 filter

Fig. 7. Comparison of estimation error

Other parameters used to determine the membership functions
are the same as those of Example 1. The H∞ performance
index and external disturbance input are defined as those in
[35]. Then, Fig. 7 shows the estimation error of IT2 and type-1
T-S fuzzy filter, which demonstrates that the IT2 fuzzy model
has less error. Additionally, the minimum γ = 0.0096 is less
than that in [35], which illustrates the merits of IT2 T-S filter.

V. CONCLUSIONS

This paper has presented the results on filter design and
H∞ performance for nonlinear networked systems with the
measurement missing and the data quantization. By using the
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IT2 T-S fuzzy model, the parameter uncertainties have been
handled effectively. The filter design conditions have been
derived, which can solve the filter gains and guarantee the error
system to be asymptotically stable. Finally, some examples are
used to validate effectiveness of the method proposed in this
paper.
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