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Filtering of Stochastic Nonlinear Differential Systems via a
Carleman Approximation Approach

Alfredo Germani, Member, IEEE, Costanzo Manes, and
Pasquale Palumbo

Abstract—This paper deals with the state estimation problem for
stochastic nonlinear differential systems, driven by standard Wiener
processes, and presents a filter that is a generalization of the classical
Extended Kalman-Bucy filter (EKBF). While the EKBF is designed on
the basis of a first order approximation of the system around the current
estimate, the proposed filter exploits a Carleman-like approximation of
a chosen degree 1. The approximation procedure, applied to both
the state and the measurement equations, allows to define an approximate
representation of the system by means of a bilinear system, for which a
filtering algorithm is available from the literature. Numerical simulations
on an example show the improvement, in terms of sample error covariance,
of the filter based on the first-order, second-order and third-order system
approximations ( = 1 2 3).

Index Terms—Carleman approximation, extended Kalman-Bucy filter,
nonlinear filtering, Polynomial filtering.

I. INTRODUCTION

This note considers the filtering problem for nonlinear stochastic dif-
ferential systems described by the Itô equations

dx(t) = �(x(t); u(t))dt+ FdW
1(t); x(0) = x0

dy(t) = h(x(t); u(t))dt+GdW
2(t); y(0) = 0; a:s:; (1)

defined on a probability space (
;F ;P), where x(t) 2 IRn is the
state vector, u(t) 2 IRp is a known deterministic input, y(t) 2 IRq

is the measured output, W 1(t) 2 IRs and W 2(t) 2 IRq are in-
dependent standard Wiener processes with respect to a family of in-
creasing �-algebras fFt; t � 0g (i.e., the components of vectors
W 1(t) andW 2(t) are a set of independent standard Wiener processes).
� : IRn � IRp 7! IRn and h : IRn � IRp 7! IRq are smooth non-
linear maps. The initial state x0 is an F0-measurable random variable,
independent of both W 1 and W 2. In order to avoid singular filtering
problems, see [5], the standard assumption of nonsingular output-noise
covariance is made here, i.e., rank(GGT ) = q. However, the approach
presented in [8] could be followed when the covariance of the measure-
ment noise is singular or even zero.

It is well known that the minimum variance state estimate requires
the knowledge of the conditional probability density, whose computa-
tion, in the general case, is a difficult infinite-dimensional problem [4],
[23], [24], [32]. For this reason a great deal of work has been made
in the past to study implementable approximations of the optimal esti-
mator [11], [12], [16], [18].

Another approach to state estimation consists in considering the time
discretization of the original system and then to apply known filtering
procedures, like the Extended Kalman Filter (EKF), the most widely
used algorithm in nonlinear filtering problems (see, e.g., [13], [20]),
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particle filters [26], Gaussian sum approximations [19], the Unscented
Kalman Filter (UKF) [21]. When measurements are considered in con-
tinuous time, the Extended Kalman Bucy Filter (EKBF) (see [13]) can
be applied. More recently, a polynomial extension of the EKF (denoted
PEKF) has been proposed in [15], which is based on the application of
the optimal polynomial filter of [6], [7] to the Carleman approximation
of the nonlinear discrete-time system [22].

This paper presents a procedure for the filter design for systems of the
type (1) that generalizes the standard extended Kalman-Bucy approach,
and avoids time discretization. The main step consists in computing a
Carleman-like approximation of a chosen degree � of the original non-
linear stochastic differential system (1), in the form of a bilinear system
(linear drift and multiplicative noise) with respect to a suitably defined
extended state. In general, there may be good reasons for computing
bilinear approximations of nonlinear systems [3], and therefore bilin-
earization techniques have been used in the past in problems of systems
approximation [28], [29], [31].

Once the Carleman bilinear approximation of a system is computed,
the equations of the optimal linear filter for stochastic bilinear dif-
ferential systems presented in [9] can be applied without any further
approximation (note that the paper [9] presents the optimal polyno-
mial filter specifically worked out for bilinear systems, and therefore
the technique can not be directly applied to nonlinear systems of the
form (1)). When � = 1 the proposed filtering algorithm reduces to
the classical Extended Kalman-Bucy filter (EKBF), consisting of the
Kalman-Bucy filter equations applied to the linear approximation of
the differential system. Better performances of filters designed using
higher order system approximations are expected.

The paper is organized as follows: the next section presents the Car-
leman approximation of stochastic nonlinear differential systems of the
type (1); in Section Three the optimal linear filter for the Carleman bi-
linear approximation is derived; Section Four displays some numerical
results where the performances of the proposed algorithm are compared
with those of an EKBF.

II. CARLEMAN APPROXIMATION

In order to compute the Carleman approximation of a chosen order
� of the system (1), with � positive integer, it is necessary to assume
that the random vector x0 has finite moments up to the degree 2�

�i = IE x
[i]
0 < +1; i = 1; . . . ; 2�; (2)

where the square brackets at the exponent denote the Kronecker powers
(see [7] for a quick survey on the Kronecker product and its main prop-
erties).

Under standard analyticity hypotheses, both the state and the output
equations can be written by using the Taylor polynomial approxima-
tion around a suitably chosen state �x 2 IRn. When using the Taylor
approximation for the filter design, the state �x can be chosen as a fixed
state that defines a nominal working point of the system or, as an alter-
native, as the current state estimate (more details are given in Remark
1, at the end of Section III). According to the Kronecker formalism, the
differential system in (1) becomes

dx(t) =

1

i=0

�i(�x; u(t))(x(t)� �x)[i]dt+

s

j=1

FjdW
1
j (t)

dy(t) =

1

i=0

Hi(�x; u(t))(x(t)� �x)[i]dt+

q

j=1

GjdW
2
j (t) (3)

where Fj and Gj are the columns of F and G, respectively, and

�i(x; u) =
1

i!
r[i]

x 
 � ; Hi(x; u) =
1

i!
r[i]

x 
 h : (4)
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The differential operator r[i]
x 
 applied to a function  =  (x) :

IRn 7! IRp is defined as follows

r[0]
x 
  =  ; r[i+1]

x 
  = rx 
 r[i]
x 
  ; i � 1 (5)

with rx = [@=@x1 � � � @=@xn] and rx 
  the Jacobian of the
vector function  .

For the reader’s convenience, some useful properties of the Kro-
necker product and of the differential operator (5) are reported below.
The following property is intensively used in this paper: for any ma-
trices A;B;C;D of suitable dimensions it is

(A � B)
 (C �D) = (A
 C) � (B 
D) (6)

where A �B denotes the standard matrix product. Recall that the Kro-
necker product is not commutative. Given a pair of integers (a; b), the
symbolCa;b denotes a orthonormal commutation matrix in f0; 1ga�b�a�b

such that, given any two matrices A 2 IRr �c and B 2 IRr �c

B 
A = CT
r ;r (A
B)Cc ;c : (7)

The Kronecker power of a binomial, (a + b)[h], allows the following
expansion:

(a+ b)[h] =

h

j=0

Mh
j a[j] 
 b[h�j] ; 8a; b 2 IRn (8)

with Mh
j suitably defined matrix coefficients in IRn�n (see [7]).

Throughout the paper, the symbol In will denote the identity matrix
of order n.

Lemma 1: For any x 2 IRn the following identities hold:

rx 
 x[h] = Uh
n In 
 x[h�1] ; h � 1 (9)

r[2]
x 
 x[h] = Oh

n In 
 x[h�2] ; h > 1 (10)

where Uh
n and Oh

n, for h > 1 are recursively computed as

Uh
n = In + CT

n ;n Uh�1
n 
 In

Oh
n = Uh

nC
L
n ;n Uh�1

n CL
n ;n 
 In CT

n ;n (11)

with initial value U1
n = In (the proof is reported in the Appendix).

In the derivation of the Carleman approximation of system (1) the Itô
formula for the computation of stochastic differentials written using the
Kronecker formalism is required. Using (70), proved in the Appendix
along with Lemma 1, the differential of the Kronecker power x[k] can
be written as

d x[k](t) = rx 
 x[k] �(x(t); u(t))dt

+
1

2
r[2]

x 
 x[k] F0 dt

+ rx 
 x[k] FdW 1(t) (12)

where

F0 =

s

j=1

F
[2]
j : (13)

The use of identities (9) and (10) gives the following expression for the
differentials d(x[k](t)), for k � 2:

d x[k](t) = Uk
n In 
 x[k�1](t) �(x(t); u(t))dt

+
1

2
Ok
n In 
 x[k�2](t) F0dt

+ Uk
n In 
 x[k�1] FdW 1(t): (14)

Lemma 2: Consider system (1). For k � 2, the differential of the
k-th order Kronecker power of the state x(t) can be written as

d x[k](t) =

1

r=0

Ak
r(�x; u(t))(x(t)� �x)[r]dt

+

s

j=1

Bjkx
[k�1](t)dW1

j (t) (15)

with

Ak
r(�x; u) = Ak;a

r (�x; u) +Ak;b
r (�x) (16)

where

Ak;a
r (�x; u) =

r

i=0_(r�k+1)

Uk
n(�i(�x; u)
 In )

� In 
Mk�1
r�i In 
 �x[k�r+i�1] (17)

Ak;b
r (�x) =

1

2
Ok
n(F0 
 In )Mk�2

r �x[k�2�r] 
 In ;

r � k � 2 (18)

Ak;b
r (�x) = 0; r > k � 2 (19)

and

Bjk = Uk
n(Fj 
 In ): (20)

Proof: Consider the first term of (14) and replace �(x; u) with
the power expansion given in (3). The repeated use of (6) gives

Uk
n In 
 x[k�1] �(x; u)

=

1

i=0

Uk
n In 
 x[k�1] �i(�x; u)(x� �x)[i]

=

1

i=0

Uk
n �i(�x; u)(x� �x)[i] 
 x[k�1]

=

1

i=0

Uk
n(�i(�x; u)
 In ) (x� �x)[i] 
 x[k�1]

=

1

i=0

Uk
n(�i(�x; u)
 In )

� (x� �x)[i] 
 ((x� �x) + �x)[k�1] : (21)
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By applying (8) to the (k � 1)-th Kronecker power in (21)

U
k
n In 
 x

[k�1]
�(x; u)

=

1

i=0

U
k
n (�i(�x; u)
 In )

� (x� �x)[i] 


k�1

j=0

M
k�1
j (x� �x)[j] 
 �x[k�1�j]

=

1

i=0

k�1

j=0

U
k
n(�i(�x; u)
 In ) In 
M

k�1
j

� (x� �x)[i+j]

 �x[k�1�j]

=

1

i=0

k�1

j=0

U
k
n(�i(�x; u)
 In ) In 
M

k�1
j

� In 
 �x[k�1�j] (x� �x)[i+j]
: (22)

After the change of index r = i+ j, the sums in (22) become

U
k
n In 
 x

[k�1]
�(x; u) =

1

i=0

i+k�1

r=i

U
k
n(�i(�x; u)
 In )

� In 
M
k�1
r�i In 
 �x[k�r+i�1] (x� �x)[r]: (23)

From the following equivalence between summations:

1

i=0

i+k�1

r=i

( )i;k;r =

1

r=0

r

i=0_(r�k+1)

( )i;k;r; (24)

it follows that

U
k
n In 
 x

[k�1]
�(x; u) =

1

r=0

A
k;a
r (�x; u)(x� �x)[r] (25)

where Ak;a
r (�x; u) is given in (17). Now consider the second term in

(14). It can be written as

1

2
O

k
n In 
 x

[k�2]
F0 =

1

2
O

k
n F0 
 x

[k�2]

=
1

2
O

k
n(F0 
 In )x[k�2]: (26)

Since it is

x
[k�2] = (�x+ (x� �x))[k�2]

=

k�2

r=0

M
k�2
r �x[k�2�r] 
 (x� �x)[r]

=

k�2

r=0

M
k�2
r �x[k�2�r] 
 In (x� �x)[r]; (27)

from (26) and (27) it follows

1

2
O

k
n In 
 x

[k�2](t) F0 =

k�2

r=0

1

2
O

k
n(F0 
 In )Mk�2

r

� �x[k�2�r] 
 In (x� �x)[r]; (28)

i.e., from definitions (18)

1

2
O

k
n In 
 x

[k�2](t) F0 =

1

r=0

A
k;b
r (�x)(x� �x)[r]: (29)

Consider now the last term in (14). By repeated use of the property
(6) it can be written as

U
k
n In 
 x

[k�1]
FdW

1

=

s

j=1

U
k
n In 
 x

[k�1] (Fj 
 1)dW 1
j

=

s

j=1

U
k
n Fj 
 x

[k�1]
dW

1
j

=

s

j=1

U
k
n (Fj � 1)
 (In � x

[k�1]) dW
1
j

=

s

j=1

U
k
n(Fj 
 In )x[k�1]dW1

j ; (30)

i.e., considering the definition (20)

U
k
n In 
 x

[k�1]
FdW

1 =

s

j=1

Bjkx
[k�1]

dW
1
j : (31)

The Lemma is proved by substitution of (25), (29), and (31) into (14).

By neglecting in the summations in (3) and (15) the higher order
terms, greater than a chosen degree � , the differentials d(x[k](t)); k =
1; 2; . . ., given by (1) for k = 1 and by (14) for k � 2, and dy(t) are
approximated as follows:

d x
[k](t) '

�

r=0

A
k
r (�x; u(t))(x(t)� �x)[r]dt

+

s

j=1

Bjkx
[k�1](t) + Fjk dW

1
j (t);

dy(t) '

�

i=0

Hi(�x; u(t))(x(t)� �x)[i]dt+GdW
2(t) (32)

withAk
r (�x; u) andBjk , for k � 2 defined by (16)–(20), and for k = 1

A
1
r(�x; u) = �r(�x; u) 8r = 0; . . . ; �

Bj1 = 0 8j = 1; . . . ; s (33)

moreover

Fj1 = Fj ; Fjk = 0; 8j = 1; . . . ; s; 8k > 1: (34)

Consider now the following equivalence

�

r=0

A
k
r (�x; u)(x� �x)[r] =

�

j=0

A
k
j (�x; u)x

[j] (35)
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with

A
k
j (�x; u) =

�

r=j

(�1)r�jAk
r (�x; u)M

r
j In 
 �x[r�j] (36)

derived from the following identities

�

r=0

A
k
r(�x; u)(x� �x)[r]

=

�

r=0

r

j=0

A
k
r(�x; u)M

r
j x

[j] 
 (��x)[r�j]

=

�

j=0

�

r=j

(�1)r�jAk
r(�x; u)M

r
j In 
 �x[r�j] x

[j]
: (37)

Analogously, it comes that

�

i=0

Hi(�x; u)(x� �x)[i]dt =

�

j=0

Cj(�x; u)x
[j]
dt (38)

with

Cj(�x; u) =

�

i=j

(�1)i�jHi(�x; u)M
i
j In 
 �x[i�j] : (39)

It follows that the approximation (32) of the differentials d(x[k](t)) and
dy(t) can be rewritten, for k � 1, as

d x
[k](t) '

�

j=0

A
k
j (�x; u(t))x

[j](t)dt

+

s

j=1

Bjkx
[k�1](t) + Fjk dW

1
j (t);

dy(t) '

�

j=0

Cj (�x; u(t))x
[j](t)dt+GdW

2(t): (40)

The �-degree Carleman bilinear approximation of the stochastic dif-
ferential system (1) around a given �x 2 IRn is a system with state
X�(t) 2 IRn , with n� = n+n2+ � � �+n� , and output Y �(t) 2 IRq

that obey the equations

dX
�
k (t) =

�

j=0

A
k
j (�x; u(t))X

�
j (t)dt

+

s

j=1

(BjkX
�
k�1(t) + Fjk) dW

1
j (t)

dY
�(t) =

�

j=0

Cj(�x; u(t))X
�
j (t)dt+GdW

2(t) (41)

whereX�
k (t) 2 IRn ; k = 1; . . . ; � , denotes the k-th block component

of the state X�(t). Comparing the (32) and (41), it is clear that X�
k (t)

is aimed to approximate x[k](t); k = 1; . . . ; � , while Y �(t) should
approximate y(t).

The (41) can be put in a compact matrix form as follows

dX
�(t) = A�(�x; u(t))X�(t)dt+N�(�x; u(t))dt

+

s

j=1

B
�
jX

�(t) + F�
j dW

1
j (t);

dY
�(t) = C�(�x; u(t))X�(t)dt

+D�(�x; u(t))dt+GdW
2(t); (42)

with X�(0) = (xT0 � � � (x
[�]
0 )T )T ; k = 1; . . . ; �; Y �(0) = 0, and

A
� =

A
1
1 � � � A

1
�

...
. . .

...
A

�
1 � � � A

�
�

; N
� =

A
1
0

...
A

�
0

(43)

B
�
j =

0 0 � � � 0

Bj2 0 � � � 0

0
. . .

. . .
...

0 0 Bj� 0

; F
�
j =

Fj1

Fj2

...
Fj�

(44)

C
� = [C1 � � � C� ]; D

� = C0 (45)

III. THE FILTERING ALGORITHM

From the discussion in the previous section, it follows that the
bilinear Carleman approximation (42) is an approximated generation
model for the sequence (x(t); y(t)), produced by the exact model (1),
and therefore they can be used for the construction of an approximate
filter for system (1). From the approximation

x(t) ' In On�(n �n) X
�(t) (46)

if an estimate ~X�(t) of the extended state X�(t) is known, then the
following estimate of x(t) is obtained

~x(t) = In On�(n �n)
~X�(t): (47)

It is well known that the optimal estimate of X�(t) is provided by the
conditional expectation w.r.t. all the Borel transformations of the mea-
surements, whose computation in general can not be obtained through
algorithms of finite dimension. However, recalling that X�(t) is gen-
erated by the bilinear system (42), the suboptimal filter presented in
[9], specifically worked out for bilinear systems, can now be applied.
In particular, the best affine estimator is used here. The output of such
filter is the projection of X(t) onto the space L(Y �

t ) of all the affine
transformations of the random variables fY �(� ); t0 � � � tg. Let us
denote X̂�(t) = �[X�(t) jL(Y �

t )] such projection (formally, the pro-
jection � on the subspace L(Y �

t ) is a random variable in L(Y �
t ) such

that the differenceX�(t)��[X�(t)jL(Y �
t )] is orthogonal to L(Y �

t ),
i.e., is uncorrelated with all random variables in L(Y �

t )). The estimate
of x(t) obtained from X̂�(t) using (47), is denoted x̂�(t), i.e.

x̂
�(t) = In On�(n �n) X̂

�(t)

= In On�(n �n) � [X�(t) jL (Y �
t )] : (48)

In the filter equations the mean and covariance of X�(t) are required.
Lemma 3: LetmX (t) = IEfX�(t)g and	X (t) = Cov(X�(t))

denote the mean value and the covariance matrix of X�(t), respec-
tively. These obey the following equations:

_mX (t) = A�(�x; u(t))mX (t) +N�(�x; u(t))

_	X (t) = A�(�x; u(t))	X (t)

+ 	X A
�T (�x; u(t)) +Q(mX (t);	X (t)) (49)

where

Q(mX ;	X ) =

s

i=1

B
�
i	X B

�T
i

+

s

i=1

(B�
im

�
X + Fi) (B

�
im

�
X + Fi)

T (50)

with initial values mX (0) = (�T1 � � � �T� )
T ; 	X (0) = Cov(X�

0 ),
where the vectors �k are the moments defined in (2).
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The proof of Lemma 3 can be found in [9].
Theorem 1: The optimal linear estimate X̂�(t) of the processX�(t)

given by (42), obeys the equation

dX̂
�(t) = A�(�x; u(t))X̂�(t)dt

+N� (�x; u(t))dt+ P (t)C�T (�x; u(t))R�1

� (dY �(t)� (C�(�x; u(t))X̂�(t)

+D�(�x; u(t)))dt) (51)

with R = GGT and P (t) is the error covariance matrix

P (t) = IEf(X�(t)� X̂
�(t))(X�(t)� X̂

�(t))Tg (52)

evolving according to the following equation

_P (t) = A�(�x; u(t))P(t) + P (t)A�T (�x; u(t))

+ Q(t)� P (t)C�T (�x; u(t))R�1C�(�x; u(t))P(t) (53)

with P (0) = 	X (0), where Q(t) in (53) is defined as Q(t) =
Q(mX (t);	X (t)), with Q(�; �) defined by (50).

Proof: The proof is a straightforward consequence of ([9], Thm.
4.4). The equations are somewhat different (and shorter), because the
state noiseW1(t) and output noiseW2(t) have been assumed indepen-
dent in this paper.

Remark 1: The filter given in Theorem 1 provides the optimal affine
estimate of X�(t) as a function of the observations Y �(t). From this,
the estimate x̂�(t) is computed using (48). However, the available mea-
surement process is y(t) and not Y �(t). Therefore, the differential
dY �(t) in (51) should be replaced with dy(t). Note that in the filter
(51)–(53) the matrices A� ; N� ; C� and D� depend on �x and u(t)
through the terms �i(�x; u) and Hi(�x; u), defined in (4) as the co-
efficients of the polynomial approximations of �(x; u) and h(x; u)
around �x. Following a standard EKBF approach, these coefficients can
be re-computed at each time t as a function of the current estimate
x̂�(t). Formally, this kind of filter is written replacing �x with x̂�(t)
into the filter (51)–(53) as follows

dX̂
�(t) = A�(x̂�(t); u(t))X̂�(t)dt

+N�(x̂�(t); u(t))dt+ P (t)C�T (x̂�(t); u(t))R�1

� (dy(t)� (C�(x̂�(t); u(t))X̂�(t) +D�(x̂�(t); u(t)))dt)

(54)
_P (t) = A�(x̂�(t); u(t))P(t) + P (t)A�T (x̂�(t); u(t)) +Q(t)

� P (t)C�T (x̂�(t); u(t))R�1C�(x̂�(t); u(t))P(t) (55)

Remark 2: For � = 1 the (54)–(55) coincide with those of the
EKBF. However, note that for � = 2 such equations do not coincide
with those of the so called second-order EKBF (see [13]), in which
the Riccati equations are exactly the same of the plain EKBF, and a
second order Taylor approximation is used for the state process, where
the second order state increments are substituted with the components
of the error covariance matrix provided by the Riccati equation.

Remark 3: As discussed in Remark 1 of [15], the computational
burden for real-time implementation can be reduced by eliminating
the redundancies in the extended state vector X� . Recall that the

Kronecker power x[i] has ni components, of which only (
n+ i� 1

i
)

monomials are independent. It follows that X� has dimension

n + n2 + � � �n� , but only �

i=1(
n+ i� 1

i
) (i.e., (

n+ �

n
) � 1)

components are independent. This allows to define a reduced-extended

TABLE I
MEAN SQUARE ESTIMATION ERRORS FOR THE FILTER (51)–(53)

state that allows the derivation of filter equations with smaller size
(see [15] for further details).

IV. SIMULATION RESULTS

Numerical simulation results are here reported in order to show the
effectiveness of the proposed algorithm. Consider the following non-
linear system:

dx1(t) = (�x1(t) + x1(t)x2(t))dt+ adW
1(t);

dx2(t) = (�2x2(t)� 2x1(t)x2(t))dt+ bdW
1(t)

dy(t) = (x1(t)� x1(t)x2(k))dt+ 
dW
2(t) (56)

with a = b = 1; 
 = 2. The initial state x0 is a Gaussian standard
random vector (zero mean and identity covariance). Both filters
(51)–(53) and (54)–(55) have been implemented for � = 1; 2; 3;
using MATLAB©. The bilinearization point �x = 0 has been
chosen for the filter (51)–(53). The computations needed for the
filter derivation begin with the computation of the differential
dx[2](t) = [dx21(t) d(x1x2)(t) d(x1x2)(t) dx22(t)] (note the re-
dundancy in the components of dx[2](t)). The application of the Itô
formula (68) gives

dx
2
1(t) = 2x1(t)dx1(t) + a

2
dt

d(x1x2)(t) = x2(t)dx1(t) + x1(t)dx2(t) + ab dt

dx
2
2(t) = 2x2(t)dx2(t) + b

2
dt (57)

from which, substituting the differentials (56), we have

dx
2
1(t) = �2x21(t) + 2x21(t)x2(t) + a

2
dt+ 2x1(t)adW

1(t)

d(x1x2)(t) = �3x1(t)x2(t) + x1(t)x
2
2(t)� 2x21(t)x2(t) + ab dt

+ (ax2(t) + bx1(t))dW
1(t)

dx
2
2(t) = �4x22(t)� 4x1(t)x

2
2(t) + b

2
dt+ 2x2(t)bdW

1(t)

(58)

Note that for the filter design with � = 2 and �x = 0 the third order
terms x21x2 and x1x22 are neglected in the differential dx[2](t). Due to
lack of space, the differential dx[3](t) is not reported.

The results displayed below are obtained simulating both system
(56) and filter (51)–(53), in the time interval [0, 100] according to the
Euler-Maruyama method [17] with integration step � = 0:1. The per-
formance of the filters are evaluated computing the mean of the squared
estimation errors (MSE)

�x ;� =
1

N + 1

N

k=0

(xi(tk)� x̂
�
i (tk))

2 (59)

where tk = k�, with � = 0:1, and N = 1 000. Let �x ;0 de-
note the sample mean square error of the trivial estimate x̂0i (t) � 0.
The MSE �x ;� averaged over 5 000 simulation runs are reported in
Table I, where the improvement obtained by increasing the index � can
be recognized. Note that in this example the filter with � = 1 (i.e., the
Kalman-Bucy filter based on the linear approximation of the process
around �x = 0), provides worse performances than the trivial estimate
x̂0i (t) � 0. It is interesting to note that in this example a considerable
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Fig. 1. True and estimated states: the first component.

Fig. 2. True and estimated states: the second component.

TABLE II
MEAN SQUARE ESTIMATION ERRORS FOR THE FILTER (54)–(55)

improvement is obtained when the second-order Carleman approxima-
tion is used for the filter derivation (� = 2), while the third-order Car-
leman approximation (� = 3) does not provide a significant improve-
ment. The CPU times for the execution of a single run on a laptop with
2 GHz clock are

T�=1 = 0:079 s; T�=2 = 0:093 s; T�=3 = 0:22 s: (60)

Figs. 1 and 2 report the plots of the output of the last of the 5 000
simulation runs in the subinterval [0; 10]. Note that, due to the high
measurement noise, in some instants the estimates are quite far form
the true state. The mean square errors of the estimates produced by the
filter (54)–(55), based on the system bilinearization around the current
estimate x̂�(t), are reported in Table II. The performances are some-
what better, especially for � = 1, but not dramatically different from
those produced by the filter (51)–(53).

V. CONCLUSION

The problem of state estimation for stochastic nonlinear differen-
tial systems using bilinearized system approximation has been investi-
gated in this paper. The filtering algorithm here proposed is based on
two steps: first the nonlinear system is approximated by using a Car-
leman-like bilinearization approach, taking into account all the powers
of the polynomial approximation of the drift and output functions, up
to a chosen degree �; next, the equations of the optimal linear filter
for the approximating system are computed. This step is based on the
paper [9], concerning suboptimal state estimate of stochastic bilinear
systems. When the index � = 1, the proposed algorithm gives back the
classical Extended Kalman-Bucy Filter, i.e., the Kalman-Bucy filter ap-
plied to the linear approximation of the original differential system.

APPENDIX

The proofs here reported exploits the two following properties of the
rx operator:

rx 
 (f(x)
 g(x)) = (rx 
 f)
 g(x)+CT
p;q((rx 
 g)
 f(x))

(61)
for any differentiable f : IRn 7! IRp and g : IRn 7! IRq , and

8M 2 IR
r�s

; 8N 2 C
1(IRn

; IR
s�c);

rx 
 (MN(x)) = M(rx 
N(x)): (62)
Proof of Lemma 1:
Proof: By finite induction. For h = 1 it is easy to computerx


x = In, so that (9) is true for h = 1. Assume that (9) is true for some
h � 1, with h > 1, i.e.

rx 
 x
[h�1] = U

h�1
n In 
 x

[h�2]
: (63)

Then

rx 
 x
[h]=rx x
 x

[h�1]

=In 
 x
[h�1] + C

T
n ;n rx 
 x

[h�1]

 x

=In 
 x
[h�1] + C

T
n ;n U

h�1
n In 
 x

[h�2]

 x

=In 
 x
[h�1] + C

T
n ;n U

h�1
n 
 In In 
 x

[h�1]

= In + C
T
n ;n U

h�1
n 
 In In 
 x

[h�1]
: (64)

This proves (9), taking into account the definition of Uh
n in (11). The

proof of (10) is obtained by expandingr[2]
x 
x

[h] , forh � 2, as follows

r
[2]
x 
 x

[h]

= rx 
 rx 
 x
[h]

= rx 
 U
h
n In 
 x

[h�1]

= U
h
n rx 
 In 
 x

[h�1]

= U
h
nC

L
n ;n rx 
 x

[h�1]

 In

= U
h
nC

L

n ;n U
h�1
n In 
 x

[h�1]

 In (65)

r
[2]
x 
 x

[h]

= U
h
nC

L
n ;n U

h�1
n C

L
n ;n x

[h�1]

 In 
 In

= U
h
nC

L
n ;n U

h�1
n C

L
n ;n 
 In x

[h�1]

 In

= U
h
nC

L

n ;n U
h�1
n C

L

n ;n 
 In

� C
T
n ;n In 
 x

[h�1] = O
h
n In 
 x

[h�1]
: (66)



2172 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007

In the derivation of the Carleman approximation of system (1) the Itô
formula for the computation of stochastic differentials is needed (see
[24]). Consider the stochastic process

dxt = f(xt)dt+ g(xt)dWt = f(xt)dt+

p

k=1

g:;k(xt)dWk;t

(67)

where xt 2 IRn and Wt is a standard Wiener process in IRp. The
symbol g:;k(xt) denotes the k-th column of matrix g(xt). Consider a
transformation zt = r(t; x), where r(�; �) is a scalar function, twice
differentiable. The differential dzt, computed according to the Itô for-
mula, is as follows:

dzt =
@r

@t (t;x )

dt+
@r

@x (t;x )

dxt

+
1

2
i;j

@2r

@xi@xj
gi;:g

T
j;:

(t;x )

dt (68)

or, equivalently

dzt =
@r

@t (t;x )

dt+
@r

@x (t;x )

dxt +
1

2
tr
@2r

@x2
(ggT )

(t;x )

dt:

(69)

Using the Kronecker formalism the Itô differential can be written as

dzt =
@r

@t (t;x )

+ (rx 
 r) f j(t;x )

+
1

2
r[2]

x 
 r ~g2

(t;x )

dt

+ (rx 
 r)gj(t;x )dWt (70)

where

~g2 =

p

k=1

g
[2]
:;k (71)
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