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ABSTRACT

The efficiency of the management of top-class ground-based astronomical facilities supported

by adaptive optics (AO) relies on our ability to forecast the optical turbulence (OT) and a

set of relevant atmospheric parameters. Indeed, in spite of the fact that the AO is able to

achieve, at present, excellent levels of wavefront corrections (a Strehl ratio up to 90 per cent

in H band), its performances strongly depend on the atmospheric conditions. Knowing in

advance the atmospheric turbulence conditions allows an optimization of the AO use. It has

already been proven that it is possible to provide reliable forecasts of the OT (C2
N profiles

and integrated astroclimatic parameters such as seeing, isoplanatic angle, wavefront coherence

time, etc.) for the next night. In this paper, we prove that it is possible to improve the forecast

performances on shorter time-scales (order of 1 or 2 h) with consistent gains (order of 2–8)

employing filtering techniques that make use of real-time measurements. This has permitted

us to achieve forecasts accuracies never obtained before and reach a fundamental milestone

for the astronomical applications. The time-scale of 1 or 2 h is the most critical one for an

efficient management of the ground-based telescopes supported by AO. We implemented this

method in the operational forecast system of the Large Binocular Telescope (LBT), named

Advanced LBT Turbulence and Atmosphere (ALTA) Center that is, at our knowledge, the

first operational system providing forecasts of turbulence and atmospheric parameters at short

time-scales to support science operations.

Key words: turbulence – atmospheric effects – methods: data analysis – methods: numerical –

site testing.

1 IN T RO D U C T I O N

In spite of the fact that the adaptive optics (AO) is able to

achieve, at present, excellent levels of correction of the perturbed

wavefront [Strehl ratio up to 90 per cent in H band on high contrast

imaging single-conjugate adaptive optics (SCAO) systems], the AO

performances are strongly dependent on the atmospheric conditions.

A couple of examples are emblematic in this respect. Performances

of the best SCAO systems for 8–10-m class telescopes can achieve a

Strehl ratio (SR) in H band of 90 per cent with a seeing of the order

of 0.4 arcsec but the SR can drastically decreases to 20 per cent

if the seeing is of the order of 1.2 arcsec. Looking at the problem

from a different point of view, if the seeing improves from 1 to

0.6 arcsec, the limit magnitude of the AO guide stars with which we

obtain a SR of 30 per cent can move from 13 to 15 mag for the same

instrument. Such a better seeing strongly increases the sky coverage

and opens new observational windows and new perspectives in

terms of scientific programs. This gain in magnitude should permit,

⋆ E-mail: masciadri@arcetri.astro.it

for example, to increase by a factor of 10 the number of accessible

active galactic nuclei (AGNs) from the ground (from the order of

10 to the order of 100).

The efficiency of modern ground-based astronomy, particularly

if supported by AO and interferometry, is, therefore, strongly

dependent on the ability to select the scientific programs to be

run during a night and the set-up of instrumentation to be used

during each night. This selection and management depends on the

atmospheric conditions and in particular on the optical turbulence

(OT) conditions (C2
N profiles) and is called, in the astronomical

context, ‘flexible scheduling’. All the top-class telescopes and

future generation telescopes (Extremely Large Telescopes – ELTs)

are planning to use the Service Mode to schedule the scientific

programs. Such a mode takes into account the status of the

atmospheric conditions besides the quality of the scientific programs

and this permits to concretely perform the flexible scheduling.

As extensively explained precedently (Masciadri, Lascaux & Fini

2013), the Service Mode is crucial and mandatory for an efficient

exploitation of the best ground-based astronomical facilities.

The idea to reconstruct C2
N profiles with mesoscale non-

hydrostatical models has been originally proposed by Masciadri,

C© 2019 The Author(s)
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Techniques to improve forecast performances 141

Vernin & Bougeault (1999). The authors proposed a parametrization

of the OT employing the prognostic equation of the turbulent kinetic

energy (TKE). These models are certainly the most suitable models

to be used for this kind of applications mainly because the general

circulation models (GCMs), which are extended on the whole

globe, have necessarily a lower horizontal resolution as extensively

explained in Masciadri et al. (2013). This approach has been

followed by successive developments in many other studies using

the ASTRO-MESO-NH code (Masciadri & Jabouille 2001; Masciadri

et al. 2002, 2004; Masciadri & Egner 2006; Lascaux, Masciadri &

Hagelin 2010, 2011; Hagelin et al. 2011; Masciadri, Lascaux &

Fini 2017) that, over the years, contributed to prove that C2
N and

integrated astroclimatic parameters can be reliably forecasted for

astronomical applications (at mid-latitudes and at polar latitudes)

following this approach.

In most recent years other studies concerning the OT forecast on

the whole atmosphere have been published using other mesoscale

models (Trinquet & Vernin 2007; Cherubini et al. 2008, 2011;

Giordano et al. 2013; Liu et al. 2015) or using GCMs (Ye 2011;

Osborn & Sarazin 2018). Methods employed include the TKE

prognostic equation approach and empirical approaches based

on description of the C2
N as a function of the temperature and

wind speed. Studies with GCMs are all performed with empirical

approaches. A very recent analysis (Masciadri et al. 2019) confirmed

the thesis that mesoscale models provide better performances than

GCMs in the estimate of the seeing. A different study (Turchi

et al. 2019) showed that a gain is obtained with mesoscale models

with respect to GCMs by forecasting the precipitable water vapour

(PWV). We remind that mesoscale models have been invented

exactly to bypass intrinsic limitations of the GCMs. This is not

therefore surprising.

The most recent version of the ASTRO-MESO-NH model has

been used to set-up an automatic and operational forecast system

for the OT and some relevant atmospheric parameters with the

goal to support the observations of the Large Binocular Telescope

(LBT) located at Mt. Graham (USA; Masciadri et al. 1999, 2017).

LBT is a binocular telescopes, with two 8.4-m primary mirrors

working in interferometric configuration; it is therefore considered

the precursor of the ELTs. The operational forecast system is called

the Advanced LBT Turbulence and Atmosphere (ALTA) Center,1 it

is running since a couple of years and it is in continuous evolution.

The Mauna Kea Weather Center2 is, at our knowledge, the only

other similar tool existing at present time.

The approach that our team followed so far, for an operational

application (see ALTA Center), consists on calculating the forecast

of the OT for the next night taking care to provide the forecast

a few hours before the beginning of the night, typically in the

early afternoon. Hereafter, we will call this as ‘standard’ strategy or

‘standard’ configuration. Results obtained so far with this approach

are very promising (Masciadri et al. 2017). The technique we

proposed and implemented in ALTA Center has a few important

appealing characteristics.

(i) The accuracy of the forecast system for the OT [or equivalently

the root-mean-square error (RMSE)] is of the same order of the

accuracy attainable with instruments. In other words, the dispersion

between prediction and observations is comparable to the dispersion

of observations obtained with different instruments (e.g. Masciadri

et al. 2017).

1http://alta.arcetri.inaf.it. Also accessible through lbto.org
2http://mkwc.ifa.hawaii.edu/

(ii) It permits to have a temporal frequency of the forecast of

2 min (but this can be further reduced in case of necessity). This

feature makes mesoscale models more attractive with respect to

GCMs having a frequency from 1 to 6 h.

(iii) It permits to implement operational forecast systems with

mesoscale models without the necessity of expensive clusters,

i.e. with a relative cheap approach preserving the best model

performances.

In this paper, we started from the consideration that, if we take

into account the overhead necessary to carry out a scientific program

and/or the logistic to switch the beam from an instrument to another

one on top-class telescopes, the most critical time-scale on which

to optimize observations supported by AO is of 1 or 2 h. It should

be, therefore, very useful to have forecasts on this time-scale and

to know if we can improve model performances with respect to

the standard strategy (characterized by longer time-scales). The

question is therefore: Is it possible to achieve this goal using

filtering techniques such as autoregression, Kalman filter, or neural

networks (also known as machine learning techniques)? The idea

behind this is that the knowledge of in situ measurement might

help in eliminating some short time-scales biases and trends that

affect the forecast of atmospheric models at longer time-scales. In a

preliminary analysis (Turchi et al. 2018) our team showed that such

an approach might be promising.

In this paper, we concentrated our attention on the autoregressive

(AR) technique that depends simultaneously on a continuous data

stream of real-time measurements taken in situ and on time series of

the atmospherical model outputs. We decided to start with the AR

method because the astronomical application implies the interest

for a specific point, the location of the telescope. It is highly

possible therefore that observations done in just one location can

be enough to achieve our objective. We considered here the ASTRO-

MESO-NH forecasts done using the standard strategy available in

the early afternoon. We defined the algorithm for the AR forecast,

we carried out a complete quantitative analysis on the impact of

such technique on the forecasts of the seeing and other relevant

atmospheric parameters, and we defined the best configuration to

obtain the highest gain, i.e. the best model performances. We finally

implemented this system in the automatic and operational forecast

system ALTA Center that has therefore, now, the possibility to

provide forecasts at different time-scales: the forecasts of the next

night on a time-scale of the order of 6–15 h and a forecast at short

time-scale, i.e. order of 1 h.

The plan of the paper is synthesized here. In Section 2, we

described the observations and in Section 3, the configuration of the

atmospherical model used for this study. In Section 4, it is reported

the principle of the autoregression method proposed and analysed

in this paper. Section 5 reports the results of the AR technique

performances in forecasting the various parameter using statistical

operators of different nature applied to a statistical sample of 1 yr.

In order to quantify the impact of the AR method on the forecasting

performances, we compare these results with respect of the ‘method

by persistence’, i.e. the simple use of real-time measurements. In

Section 6, we describe the implementation of the method in the

operational forecast system ALTA Center and finally, in Section 7,

the conclusions and perspectives are reported.

2 O BSERVATI ONS

Different typologies of observations have been considered as a

reference. For the atmospheric parameters we considered the real-

MNRAS 492, 140–152 (2020)
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142 E. Masciadri, G. Martelloni, and A. Turchi

Figure 1. Location of the DIMM running nightly at Mt. Graham and

measuring the seeing. The instrument is located on the top of the LBT

dome (see zoom in the square with white frame).

time measurements routinely done with sensors placed on the roof

of the telescope dome and successively stored in the LBT telemetry.

As described in Turchi, Masciadri & Fini (2017), the sensors are

installed on masts having different heights and located on the LBT

roof (53 m above the ground). Temperature (T) and relative humidity

(RH) sensors are located at 55.5 m above the ground (sensor at

2.5 m above the roof). Wind speed (WS) and wind direction (WD)

are both measured by two different anemometers placed in two

different locations on the roof that we call ‘front’ and ‘rear’ (at 56

and 58 m above the ground and 3 and 5 m above the roof). WS

measurements are computed using a combination of measurements

taken by the two sensors using an algorithm that takes into account

the relative position of the telescope line of sight with respect to

the wind direction. We refer the reader to Turchi et al. (2017) for

a detailed description of the algorithm. We considered only WD

measurements taken from the rear anemometer because we verified

that rear and front WD measurements are statistically equivalent.

Observations are stored with a frequency of around 1 s in the

LBT telemetry. For the seeing, i.e. the integral of the C2
N on the

whole atmosphere, we considered the measurements taken with

a Differential Image Motion Monitor (DIMM), a monitor installed

inside the LBT dome, close to the roof (Fig. 1), that nightly monitors

the turbulence affecting the quality of images on the scientific

camera. Looking at the position of the DIMM inside the telescope

dome, we deduce that this instrument necessarily measures also

the dome seeing (if any). On the other side, this represents the

real turbulence affecting the images obtained at the focus of the

telescope. Even if the LBT-DIMM does not measure the ‘pure’

atmospheric turbulence, it provides a more realistic estimate of the

turbulence affecting the images. It has been decided therefore to

assume the DIMM measurements as our reference and use these

estimates for the model validation. The elimination of the dome

seeing should not be trivial considering the information that are

accessible but it is visibly not really very relevant. Assuming the

DIMM as a reference means that we are calibrating the model to

take into account a surplus of turbulence due to the dome so that the

predicted turbulence is equivalent to the total turbulence affecting

in reality the camera. This is obviously done in statistical terms.

It is important to note that, at present, at Mt. Graham there is not

a vertical profiler running nightly. This means that there are no

real-time measurements of the wavefront coherence time (τ 0) and

the isoplanatic angle (θ0). Both parameters depend, indeed, on the

Table 1. ASTRO-MESO-NH model grid-nesting configuration. In the second

column the number of horizontal grid points, in the third column the domain

extension, and in the fourth column the horizontal resolution �X.

Domain Grid Domain size �X

points (km) (km)

Domain 1 80 × 80 800 × 800 �X = 10

Domain 2 64 × 64 160 × 160 �X = 2.5

Domain 3 120 × 120 60 × 60 �X = 0.5

Domain 4 100 × 100 10 × 10 �X = 0.1

integral of the C2
N on the atmosphere. We will treat therefore in this

study only the seeing as integrated astroclimatic parameter.

3 MO D EL

The atmospherical mesoscale model MESO-NH
3 (Lafore et al. 1998;

Lac et al. 2018) has been used in this study for the forecast of

the atmospheric parameters (T, RH, WS, and WD), while the

ASTRO-MESO-NH code (Masciadri et al. 1999, 2017) has been used

for the forecast of the OT, i.e. the seeing. In both cases it is

possible to retrieve the spatiotemporal evolution of three-, two-,

or mono-dimensional parameters over a specific limited area of the

Earth. In the case of the seeing, the model calculates first a 3D

map of the C2
N in a region around the telescope, and afterwards,

the C2
N is integrated on the whole atmosphere (∼20 km above

ground level, a.g.l.) to obtain the seeing, i.e. a 2D map. The same

model configuration described in Turchi et al. (2017) has been

implemented. We synthesize here the main elements to permit the

readers to follow. For what concerns the MESO-NH model, the system

of hydrodynamic equations is based upon an anelastic formulation

that permits an effective filtering of acoustic waves. The model uses

the Gal-Chen & Sommerville (1975) coordinates system on the

vertical and the C-grid in the formulation of Arakawa & Messinger

(1976) for the spatial digitalization. In this study, we used in

the wind advection scheme the ‘forward-in-time’ (FIT) numerical

integrator instead of the ‘leap-frog’ one. Such a solution allows

for longer time steps and therefore shorter computing time. The

model employs a one-dimensional 1.5 turbulence closure scheme

(Cuxart, Bougeault & Redelsperger 2000) and we used a one-

dimensional mixing length proposed by Bougeault & Lacarrere

(1989). The surface exchanges are computed using the interaction

soil biosphere atmosphere (ISBA) module (Noilhan & Planton

1989). The seeing (ε) is calculated with the ASTRO-MESO-NH code

developed by Masciadri et al. (1999) and since there in continuous

development by our group. The geographic coordinates of Mt.

Graham are (32.70131, −109.88906) and the height of the summit

is 3221 m above the sea level. We used a grid-nesting technique

(Stein et al. 2000) consisting in using different embedded domains

of the digital elevation models (DEM, i.e. orography) extended on

smaller surfaces, with progressively higher horizontal resolution but

with the same vertical grid. Simulations of the OT are performed

on three embedded domains centred on the summit where the

horizontal resolution of the innermost domain is �X = 500 m

(Table 1). We used four domains and a highest resolution of 100 m

(Table 1) for the WS because such a configuration better reconstructs

the WS close to the surface when the WS is strong. The model

is initialized with analyses provided by the general circulation

3http://mesonh.aero.obs-mip.fr/mesonh52 – we used the MASDEV5.2 version

of the code.

MNRAS 492, 140–152 (2020)
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Techniques to improve forecast performances 143

Figure 2. Left: temporal evolution of the forecast of the temperature for the whole night (2019 May 17) at Mt. Graham. The forecast is available at 14:00 MST

(Local Time) of the day before. On the x-axes is reported the time expressed in UT (bottom) and local time (top). Right: temporal evolution of the forecast of

the temperature available at 14:00 MST of the day before (black line); real-time measurements in situ (green line); forecast of the temperature using the AR

technique (red line). The latter is calculated at 04:00 UT and extended on the successive 4 h (see text).

model (GCM) HRES of the European Center for Medium Weather

Forecast (ECMWF) having an intrinsic horizontal resolution of

around 9 km. All simulations we performed with ASTRO-MESO-NH

start at 00:00 UT of the day J and we simulate in total 15 h.4 We

consider data starting from the sunset up to the sunrise. During

the 15 h the model is forced each 6 h (synoptic hours) with the

forecasts provided by the GCM related to the correspondent hours.

We consider the C2
N outputs with a temporal frequency of 2 min.

All the other atmospheric parameters have a temporal frequency of

the order of the second. In all cases the simulated data are extracted

from the innermost domain (domain 3 or 4 – see discussion on the

wind speed a few line above). We have a 54 vertical levels with a

first grid point of 20 m, a logarithmic stretching of 20 per cent up to

3.5 km above the ground and almost constant vertical grid size of

∼600 m up to 23.57 km. The height of the first grid point has been

fixed to be able to resolve the in situ measurements of the various

parameters analysed in this study.

4 AU TO R E G R E S S I V E M E T H O D

As we said in Section 1, the goal of this study is to verify if we can

improve the model performances of forecasts on time-scales of a few

hours. The method that we propose to use in this paper is based on

the autoregressive (AR) technique. We chose a formulation inspired

by Dzhaparidze et al. (1994). The method is based on a function that

depends on the difference between the real-time observations taken

in situ that we take as a reference (i.e. we assume to be the ‘truth’)

and on the forecasts performed by the atmospheric model. When

we say ‘atmospherical model’ we are referring to the forecast of the

model in standard configuration (see Section 3) that is available

early in the afternoon of the day before.5 The AR model X∗
t+1

calculated at the (t + 1) is

X∗
t+1 = Mt+1 + Xt+1, (1)

4To avoid misunderstandings found in the literature, we highlight that a

simulation of 15 h does not mean that we need 15 h to simulate that period.

It means that we reconstruct the atmospheric evolution of 15 h. The simulated

time and the effective calculation time required to perform a calculation are

two different concepts of ‘time’.
5For simplicity, we will call hereafter simply ‘model’ the MESO-NH or

the ASTRO-MESO-NH models, knowing that the first one is used for the

atmospheric parameters, the second one for the OT.

where M is the model output at the time (t +1) and the function X at

the time (t + 1) depends on the difference between the observations

and the atmospherical model outputs calculated on a polynomial

function built with the addition of P terms characterized by P

coefficient ai (called regressors) in the form

Xt+1 =

P∑

i=1

ai(OBSt−i+1 − MODt−i+1), (2)

where the variable OBS indicates the real-time measurements and

MOD the atmospheric model outputs in the standard configuration.

From one side, the larger is P, the larger is the number of the

regressors, the more accurate is the fit to the trend of the past obser-

vations. On the other side, we have interest in limiting the number

of the coefficients ai to limit the computation time. We identified an

optimal trade-off P = 50 for a temporal frequency of 1 min.

The values of the 50 regressors are obtained through a least mean

square (LSM) method applied to a finite number of nights in the

past, for example, the last 3, 4, 5, etc. nights.

Fig. 2 shows how the AR method works. The figure shows, as

an example, the forecast of the temperature but the same procedure

can be used for whatever parameter. On the left-hand side is shown

the standard forecast of the night of 2019 May 176 that is available

early in the afternoon. On the right-hand side is reported an example

of the AR method applied at 04:00 UT. The black line is the

standard forecast with the atmospheric model (same as the left-

hand side), the green line represents the real-time measurements

up to 04:00 UT (that is the present time), the red line represents

the forecast calculated at 04:00 UT with the AR method for the

successive 4 h. As we are interested here on studying the forecast

performances on time-scales of 1 or 2 h, we considered therefore an

AR forecast of 4 h that certainly covers this time-scale. We expect

that the effect of the data assimilation of the local measurements

provides an improvement of the forecast that is maximum close to

the present time (nowcasting) and it decreases with the time up to

disappear. The positive effect of the AR method vanishes after a

�T, i.e. when the performance of the AR method is equal to the

performance of the atmospheric model in standard configuration.

Later on, in Section 5, this aspect will be treated in a more detailed

way. If the same procedure described in Fig. 2 is repeated with the

6The date refer to the start of the night.

MNRAS 492, 140–152 (2020)
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144 E. Masciadri, G. Martelloni, and A. Turchi

Figure 3. Temporal sequence of the updated forecasts of the temperature with 1 h step during the night 2019 May 17. First image on top-left is the situation

at 04:00 UT of 2019 May 17, last image on bottom-right is the situation at 12:00 UT of 2019 May 17. The sequence is read by rows, from the left to the right.

The black line is the forecast of the temperature available at 14:00 local time of the day before. It is therefore always the same in all the pictures. The green

line is the real-time measurements. In each picture the end of the green line ends at the time in which the AR forecast is calculated. The red line is the forecast

of the temperature obtained with the AR technique. The red line in the last picture (bottom-right) represents the model forecast at 1 h for the whole night.

suitable frequency during the whole night, it is possible to obtain a

forecast on a time-scale of 1 h.

Fig. 3 reports the sequence of successive AR forecasts that are

recalculated at each full hour during the night. The sequence has

to be read from the top to the bottom, from the left to the right,

following the different rows. We observe that, in each successive

picture of the sequence, the green line becomes longer of 1 h and

the red line, showing the forecast related to the successive 4 h,

shifts of 1 h on the right. If we consider the red line of the last

picture (bottom-right) extended on the whole night, we have the

performance of the system on a time-scale of 1 h. We highlight that,

in this computation and procedure, we take into account only data

between the sunset and the sunrise.

As said previously, the unique free parameter remains the number

of nights (N) on the past on which to calculate the values of the

regressors. As we will see later on, N = 5 is a suitable number for

our application. The whole analysis presented in Section 5 has been

performed assuming this value of N.

5 R ESULTS

In order to quantify the model performances of the forecasts on 1 h

time-scale using the AR method built as described in Section 4,

it is necessary to consider a very rich statistical sample because

the AR method requires a sequence of observed data related to

successive nights in which it is important to minimize the number

of breaks (lack of measurements). We considered therefore data

of all the nights of the whole year 2018 and we calculated the

statistical operators (bias, RMSE, and σ )7 for temperature, relative

humidity, wind speed, wind direction, and the total seeing. Real-

time measurements and outputs of the atmospheric model in

standard configuration related to these parameters have been treated

using the same procedure: we first apply a moving average of 1 h

to filter out the high frequencies and put in evidence the forecast

trend, we perform a resampling on a time-scale of 20 min8 and we

conclude with the calculation of the various statistical operators.

Fig. 4 shows the scattering plot related to the temperature (left),

the wind speed (centre), and the relative humidity (right) obtained

with an AR at a time-scale of 1 h. Fig. 5 shows the scattering plot of

the WD at the same time-scale of 1 h obtained including all the data

(left), filtering out all the data associated with wind speed weaker

7We refer the reader to Masciadri et al. (2017) for the definition of the

statistical operators.
8A resampling on 10 min provides a very similar result.
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Techniques to improve forecast performances 145

Figure 4. Scattering plot between observations and AR method outputs for absolute temperature (left), wind speed (centre), and relative humidity (right).

Data are treated with a moving average on 1 h and resampling on 20 min. The number of nights on which the regressors are calculated is N = 5.

Figure 5. Scattering plot between observations and AR method outputs for the wind direction (left). Same results but filtering out all cases in which WS is

weaker than 3 m s−1 (centre) and weaker than 10 m s−1 (right). N = 5 as in Fig. 4.

than 3 m s−1 (centre) and filtering out all data having a wind speed

weaker than 10 m s−1. We skipped out the data associated with a WS

weaker than 3 m s−1 because under this condition it is extremely

difficult (and meaningless) to quantify the WD because of the high

variability of the WD. The central picture of Fig. 5 is therefore

more representative for the WD than the left one. We skipped out

data weaker than 10 m s−1 to quantify the model performances in

those cases that are certainly the most critical one for the ground-

based observations, i.e. those in which the WS is very strong. To

conclude, Fig. 6 shows the scattering plot for the seeing in the whole

year (left), in the summer (April–September) interval (centre), and

winter (October–March) interval (right).

Table 2 reports the RMSE obtained for the AR method at a

time-scale of 1 h and with the atmospheric model in the standard

configuration. As we observe that, in the standard configuration,9

the dispersion of the seeing increases for large seeing values but the

forecasts are less interesting for those cases. We decided, therefore,

to consider observations below 1.5 arcsec. From a practical point of

view, indeed, in the astronomical context it is poorly interesting to

9This feature has not been observed after the application of the AR technique

as one can see in Fig. 6.

discriminate seeing values between 1.5 arcsec and larger values.

We maintained both cases for the AR (Fig. 6) because the

RMSE are very similar. We observe that, for all the parameters,

the values of RMSE obtained with the AR method at a time-scale of

1 h are definitely better than for the standard configuration with

consistent gains that are variable depending on the parameters

between a minimum of a factor of 2.7 and a maximum of 4.9

(Table 3, first row). Those gains are definitely consistent and, at our

knowledge, these model performances have never been achieved

before. In Appendix A is reported a detailed description on the

number of nights used to analyse this statistics for each parameter.

The extremely small value of the RMSE for the temperature of the

order of 0.25◦C tells us that, with such performances in predicting

the temperature close to the ground, the elimination of the dome

seeing through a thermalization of the primary mirror temperature

and the atmosphere inside the dome with respect to the external

temperature is not a dream anymore, as declared by Racine et al.

(1991).

It remains to consider how to fix the number of nights on which

to calculate the regressors. Fig. 7 shows how the RMSE obtained

with the AR method changes as a function of the interval of time

�T on which we calculate the forecast and as a function of N.

We decided to consider �T = 1 h as a minimum value because,

MNRAS 492, 140–152 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
9
2
/1

/1
4
0
/5

6
4
7
3
6
5
 b

y
 B

ib
lio

te
c
a
 d

i S
c
ie

n
z
e
, U

n
iv

e
rs

ita
' d

e
g
li S

tu
d
i d

i F
ire

n
z
e
 u

s
e
r o

n
 2

6
 A

u
g
u
s
t 2

0
2
1



146 E. Masciadri, G. Martelloni, and A. Turchi

Figure 6. Scattering plot between observations and AR method outputs for the total seeing calculated on the whole year (left), in the summer period (centre)

and in the winter period (right). Summer period is included in the April–September interval, winter period in the October–March interval. In black results

considering all values, in red considering only observations below 1.5 arcsec (see discussion in the text). N = 5 as in Fig. 4.

Table 2. RMSE as obtained with the atmospheric model in the standard configuration and as obtained with the AR

method on a 1 h time-scale. In the case of the seeing we considered only seeing below 1.5 arcsec. This threshold is

more than representative for the AO applications and it guarantees a model performances comparable to the dispersion

obtained with measurements.

RMSE T RH WS

WD

(>3 m s−1) Seeing

(K) (%) (m s−1) (◦) (arcsec)

Atm. model standard

config.

0.98 14.17 2.81 34.71 0.30

AR (at 1 h) 0.25 2.91 1.00 9.73 0.11

Table 3. First row (excluding the table head): gain obtained for the RMSE

for the different atmospheric and astroclimatic parameters of the AR method

on a time-scale of 1 h with respect to the model standard configuration.

Second row: gain using the method by persistence on the same time-scale

with respect to the model standard configuration. Third row: gain of the AR

method with respect to the method by persistence on the same time-scale.

Gain T RH WS WD Seeing

AR 3.90 4.90 2.80 3.60 2.70

Persistence 2.40 3.00 1.80 2.40 2.00

AR/persistence 1.63 1.63 1.56 1.50 1.35

considering the logistic requiring a change of program or the

set-up of an instrument, makes poorly interesting to go below this

threshold. As expected, the gain is maximum at 1 h and it decreases

as �T increases.10 The black line represents, for each parameter, the

RMSE obtained with atmospherical model in standard configuration

that is obviously constant for the whole night. We note that there

is a saturation effect for N equal to 4 or 5. We decided therefore to

use N = 5 in our calculation because no further gain is visible for N

larger than 5. The point in which coloured lines cross the black line

represents the �T at which the AR stops to present an improvement

in the performances with respect to the standard configuration and

it starts to diverge. For �T larger than this threshold, the standard

configuration is more advantageous than the AR method. This is

exactly the expected trend as the in situ measurements stop to have

a positive influence on the forecast performances for �T too large.

10When �T = 0, we have the nowcasting.

We can observe that the AR continues to maintain a gain different

from zero up to a time-scale of the order of 4–6 h.11

Once analysed the gain obtained employing the AR approach,

it might be interesting to quantify which is the gain on a time-

scale of a few hours if we use just real-time measurements instead

of the filtering techniques. We call this approach ‘method by

persistence’. This means that, at each full hour, the forecast extended

on the successive 4 h is obtained by considering the present time

measurements as a constant for all its future evolution. Fig. 8 shows

the RMSE versus the �T obtained with the optimized AR method

(N = 5) and the persistence method. It is clearly visible that, as

expected, even if the use of pure real-time measurements provides

an improvement of the forecast performances on short time-scales

with respect to the standard configuration of the model, the AR

method that we propose has definitely a more important gain and

better performances for all the atmospheric parameters including the

OT with differences (with respect to the persistence method) that

are quantitatively not negligible. Table 3 (second row) reports the

gain of the persistence method with respect to the model forecast

in standard configuration. Table 3 (third row) reports the gain of

the AR method with respect to the persistence method. Looking

at Fig. 8 it is also possible to observe that, in the case of the AR

method, the gain persists for a much longer �T with respect to the

persistence approach. It is worth to note that, of course, the black

line of the model forecast in standard configuration is available

11The reason why we display the figure only up to 4 h is to avoid a too large

inhomogeneity in the statistical representativity of the samples. The number

of samples for each �T decreases indeed, as we increase �T.

MNRAS 492, 140–152 (2020)
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Figure 7. Dependency of the RMSE of different atmospheric parameters with respect to different �T. On the x-axes the ‘forecast time’ �T = (Tf − Ti), where

Ti is the time in which the forecast is calculated and Tf is the time for which the forecast refers to. Example: �T = 1 means a forecast at 1 h calculated at

Ti. Top-left: temperature; top-right: relative humidity; centre-left: wind speed; centre-right: wind direction of all data for which WS > 3 m s−1; bottom: total

seeing (we considered observations below 1.5 arcsec). The horizontal black line represents the RMSE calculated with the model in standard configuration.

much earlier than the start of the observing night. It is therefore

obviously worse with respect to the other two methods. The fair

comparison is therefore between the red and the blue lines.

To complete the analysis of the model performances, we finally

calculate the contingency tables for each parameter from which we

can retrieve the probability of detection (POD), the percentage of

correct detection (PC), and the extremely bad detection (EBD).

Contingency tables allow for the analysis of the relationship

between two or more categorical variables. We refer the readers

to Lascaux, Masciadri & Fini (2015) for a detailed definition and

description of this tool. To permit the readers to follow the text we

refer to Appendix B that contains a synthesis of the definitions of the

statistical operators. Here we just remind the principal role of the

contingency tables. Given a statistical sample of observations and

predictions, the contingency tables permit to calculate the number

of times in which observations and predictions fall in the same

intervals of values. We used 3 × 3 tables for all the parameters

with exception of the WD that requires a 4 × 4 table as it is a 2π

MNRAS 492, 140–152 (2020)
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Figure 8. Same as Fig. 7, but shown the RMSE for the AR method (red line) and the method per persistence (blue line). The horizontal black line represents

the RMSE calculated with the model in standard configuration.

periodic parameter. Starting from this distribution, it is possible to

calculate the probability to detect a specific atmospheric parameter

in specific intervals of values, the so-called PODi, PC, and EBD. The

thresholds of the intervals are calculated from the climatology of in

situ measurements and they are, usually, the first and third tertiles

of the cumulative distribution. Table 4 reports the first and third

tertiles calculated on 1 yr (2018) of measurements for the different

atmospheric parameters. These values are used as thresholds in

this study. Tables 5–10 report the results of PODi, PC, and EBD

for temperature, wind speed, relative humidity, wind direction,

and seeing in the different configurations: atmospheric model in

standard configuration and AR at 1 h time-scale. For temperature,

WS, RH, and seeing, we take i = 1, 2, 3; POD1 is the probability to

detect values smaller than the first tertile; POD2 is the probability

to detect values between the first and the third tertiles; POD3 is the

probability to detect values larger than the third tertile. For the WD

we take i = 1, 2, 3, 4 and POD1, POD2, POD3, and POD4 are,

respectively, the probability to detect a value in the range [0◦, 90◦],

MNRAS 492, 140–152 (2020)
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Techniques to improve forecast performances 149

Table 4. Climatology tertiles calculated on measurements extended on one

full solar year (2018) for the absolute temperature T, the wind speed WS,

the relative humidity RH, and the seeing.

Param. 1st tert. Median 3rd ter.

T (◦C) 1.00 4.11 8.23

WS (m s−1) 5.52 7.15 9.08

RH (%) 31.63 47.48 66.67

Seeing (arcsec) 0.93 1.05 1.20

Seeing

(<1.5 arcsec)

0.90 0.99 1.10

Table 5. Model performances in reconstructing the absolute temperature at

different time-scales: at 14 h, i.e. when we provide a forecast early in the

afternoon of the day (J-1) for the next night, and at 1 h with AR. POD1,

POD2, and POD3 are the probability of detection related to the intervals

T < 1st tertile, 1st tertile < T < 3rd tertile, and T > 3rd tertile. The 1st and

3rd tertiles are shown in Table 4.

Temperature (T)

Param. Forecast Forecast with AR

the day before (%) at 1 h (%)

POD1 96 99

POD2 91 98

POD3 96 99

PC 94 99

EBD 0 0

Table 6. As Table 5, but for the wind speed (WS).

Wind speed (WS)

Param. Forecast Forecast with AR

the day before (%) at 1 h (%)

POD1 72 91

POD2 48 83

POD3 75 93

PC 65 89

EBD 2 0

Table 7. As Table 5, but for the relative humidity (RH).

Relative humidity (RH)

Param. Forecast Forecast with AR

the day before (%) at 1 h (%)

POD1 91 98

POD2 73 95

POD3 71 97

PC 78 97

EBD 1 0

[90◦, 180◦], [180◦, 270◦], and [270◦, 360◦]. The same calculation

has also been done by rotating the thresholds of 45◦, i.e. 45◦, 135◦,

and 225◦.

In the case of the seeing, we calculate a contingency table that

takes into account an accuracy of 0.2 arcsec. In reality the dispersion

between the seeing measured by different and independent instru-

ments (such as Stereo-SCIDAR12 and DIMM) can reach values as

high as 0.29 arcsec (Masciadri et al. 2019), but we decided to use

12SCIDAR is for SCIntillation Detection And Ranging.

0.2 arcsec to be more conservative and because this is a technical

specification assumed in some top-class telescopes.

We observe that, for the AR forecasts at 1 h, in the case of

temperature, RH, WD, and seeing, almost all the PODi are very close

to the saturation (values in the [94, 99 per cent] range), i.e. with small

space for further improvements. The PC is also of the same order

of magnitude and the EBD basically equal to zero. The wind speed

is still very good, only POD2 = 83 per cent but the most important

ones (POD1 and POD3), i.e. the probability to detect extremely

weak and the extremely strong wind speed, are >90 per cent. This

tool might therefore be extremely important to face the so-called

‘low wind effect’, i.e. a significant deterioration of image quality

observed with high contrast imaging instruments such as Spectro-

Polarimetric High-contrast Exoplanet REsearch (SPHERE)13 (Milli

et al. 2018) when the wind speed is low or absent. This condition

enhances the radiative cooling of the spiders that obstruct the big

telescopes pupil, creating air temperature inhomogeneities on the

phase across the pupil. For WS ≤ 4 m s−1 we calculated that the

model is able to reconstruct the WS with an RMSE = 0.7 m s−1. On

the other extreme, we calculated that, for WS ≥ 10 m s−1, the model

well reconstructs the WS with a RMSE = 1.2 m s−1. This means

that the method is extremely efficient in predicting the conditions

of strong wind speed that represent the main cause of vibration of

the adaptive secondaries and/or the primary mirrors.

Looking at the same Tables 5–10, we observe that performances

of the atmospherical model in standard configuration are weaker

than those of the AR at 1 h as expected, but still very good. We

do not comment further results found in this configuration for the

atmospheric parameters as a precedent paper has been dedicated to

this aspect (Turchi et al. 2017). This calculation has been repeated

here (with the same statistical sample used for the AR method at

1 h) to be able to quantify the improvement in terms of model

performances on short time-scales. The new result of this paper is

however the estimate of statistical operators (PODi, PC, and EBD)

for the seeing (Table 10, second column) that reveals to be very

promising, i.e. all the PODi are of the order of 97–98 per cent.

We put the accent on the most relevant result obtained in this

analysis and related to the seeing. The most critical POD1, i.e.

the probability to detect a seeing weaker than the first tertile is

equal to 81 per cent for the standard configuration and it is equal to

98 per cent for the AR method at 1 h time step. Both are well above

the threshold of 33 per cent that is the percentage that corresponds to

the random case and the AR method is very close to the saturation in

terms of performances. Somehow weaker is the probability to detect

the seeing larger than the third tertile (65 per cent) in the standard

configuration as the larger is the seeing, the larger is the dispersion

between observations and numerical calculation. We have here more

space for further improvements of the technique.

6 A R FO R E C A S T S I N T H E O P E R AT I O NA L

SYSTEM

The study presented in this paper quantifies the improvements

obtained in terms of performances of the AR method on short

time-scales and, in particular, at 1 h. In this section, we describe

how this method has been implemented in the ALTA Center, the

operational forecast system conceived for the LBTO as we said in

the Introduction. We chose to implement the algorithm with N = 5

13High contrast imaging of the Very Large Telescope (VLT) located at the

focus of the UT3.
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for all the atmospheric parameters and N = 3 for the seeing. The

choice done for the seeing aims to minimize the number of breaks

in the sequence of data due to the number of nights in which the

telescope dome is closed and we do not have measurements of

the seeing. The algorithm has been implemented in the automatic

operational system that now works nightly providing forecasts

at two different time-scales: (a) a forecast of all the classical

atmospheric parameters (T, WS, WD, and RH) and the PWV and the

astroclimatic parameters (ε, θ0, τ 0) for the successive night that is

available early in the afternoon that we call standard configuration;

and (b) a forecast at short time-scales. Starting from the sunset, at

each full hour (e.g. ..., 02:00 UT, 03:00 UT, 04:00 UT, etc.), an AR

forecast is calculated and extended for the successive 4 h. At each

full hour, the forecast extended on 4 h is upgraded and shifted of

1 h as indicated in Fig. 3.

Obviously the AR method can be applied only to all the

parameters for which we have in situ real-time measurements that,

at present, are the T, RH, WS, WD, and seeing. So far at Mt. Graham

there are no monitors that can provide real-time measurements of

the isoplanatic angle (θ0) and the wavefront coherence time (τ 0), as

well as real-time measurements of the PWV. In the LBTO plans, it

is foreseen the implementation in situ of a new generation of Multi

Aperture Scintillation Sensor (MASS) that is under development.

This should permit to extend the AR forecast at 1 h step also to

these two parameters (θ0 and τ 0) that are extremely important for a

set of instruments supported by AO that are running at present such

as LUCI14 with the GLAO15 system ARGOS16 (Rabien et al. 2019)

and the Large Binocular Telescope Interferometry (LBTI; Hinz et al.

2016) or those that are planned for the near future such as SHARK-

VIS17 (Pedichini et al. 2016), SHARK-NIR (Farinato et al. 2018),

iLocator (Crepp et al. 2016) that will be supported by SOUL18

(Pinna et al. 2016), the AO system that will replace FLAO. At the

same time, also an instrument providing real-time measurements of

the PWV such as LHATPRO (Kerber et al. 2012) is under evaluation

as it should permit an upgrade of the forecasts at short time-scale

of a parameter such as PWV that is critical for LBTI scientific

programs such as those using the nulling interferometry in N band

– see HOST project (Ertel et al. 2018) looking for exozodiacal dust

near the habitable zone around nearby, main-sequence stars.

ALTA Center is an operational reality since a couple of years and

it is integral part of the operational observing strategy of the LBT

(Veillet et al. 2016) and, since 2019 April, it provides forecasts also

at short time-scale. We have almost completed the implementation

of a similar automatic operational system for Cerro Paranal, the site

of the VLT.19 In this astronomical site we can access also to in situ

real-time measurements of θ0, τ 0, and the PWV. We expect therefore

to be able to achieve forecasts with an equivalent high level in terms

of performances for the three principal astroclimatic parameters:

seeing, isoplanatic angle, and wavefront coherence time.

14LUCI is for LBT Utility Camera in the Infrared.
15GLAO is for Ground Layer Adaptive Optics.
16ARGOS is for Advance Rayleigh guided Ground layer adaptive Optics

System.
17SHARK is for System for coronagraphy with High order Adaptive optics

from R to K bands. Originally a unique instrument, in a successive phase it

has been decided to develop two different units in the visible (VIS) and in

the near-infrared (NIR).
18SOUL is for Single conjugated adaptive Optics Upgrade for the LBT.
19We point out that the operational forecast system for Cerro Paranal is not,

at present, an official ESO tool but it is the result of a research study.

Table 8. As Table 5, but for the wind direction (WD) using as a thresholds:

90◦, 180◦, and 270◦.

Wind direction (WD: 90◦, 180◦, and 270◦)

Param. Forecast Forecast with AR

the day before (%) at 1 h (%)

POD1 78 94

POD2 75 93

POD3 88 94

POD4 57 93

PC 81 94

EBD 2 0

Table 9. As Table 5, but for the wind direction (WD) using as a thresholds:

45◦, 135◦, and 225◦.

Wind direction (WD: 45◦, 135◦, and 225◦)

Param. Forecast Forecast with AR

the day before (%) at 1 h (%)

POD1 75 94

POD2 62 93

POD3 71 94

POD4 84 93

PC 74 94

EBD 1 0

Table 10. As Table 5, but for the seeing (ε). Values calculated assuming an

accuracy of 0.2 arcsec. We considered the seeing <1.5 arcsec.

Seeing (ε)

Param. Forecast Forecast with AR

the day before (%) at 1 h (%)

POD1 81 99

POD2 80 97

POD3 65 98

PC 79 98

EBD 14 1

7 C O N C L U S I O N S

In this paper, we analyse for the first time the possibility to

provide forecasts of a few fundamental atmospheric parameters

(temperature, wind speed, wind direction, and relative humidity)

and astroclimatic parameters such as the seeing at short time-scales

(order of 1 h). This time-scale is by far the most critical one for the

science operations of top-class telescopes for all those programs

using instrumentation supported by AO. The study is applied to

Mt. Graham, the site of the LBT where we have an operational

forecast system already running nightly, the ALTA Center. We

proposed to use a filtering technique to provide forecasts at short

time-scale, more precisely we use an AR technique based on the

simultaneous use of temporal series of real-time measurements

performed in situ and predictions provided by a non-hydrostatic

atmospheric model ASTRO-MESO-NH model. We demonstrated that

the model performances are improved by a not negligible quantity

for all the parameters and that a gain is still visible for a few hours.

The gain is maximum at 1 h and it decreases with the time until it

vanishes completely when effects of the knowledge of the in situ

observations looses its positive influence on the future. The values

of this threshold are between 4 and 6 h, depending on the parameter

(Fig. 7).
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The AR technique for the calculation of forecast at a time-scale

of 1 h produces a gain on model performances of a factor of 2.7 up to

almost 5 (depending on the atmospheric parameter). We quantified

the performances of the forecast method using different statistical

operators. From one side the bias, RMSE, and σ . From the other

side, the percentage of correct detection (PC), the probability of

detection (POD), and the extremely bad detection (EBD) retrieved

from the calculation of the contingency tables. For the time-scale

of 1 h, using the AR filter we obtain a RMSE = 0.25◦C for the

temperature, a RMSE = 2.91 per cent for the relative humidity, a

RMSE = 1 m s−1 for the wind speed, a RMSE = 9.73 degrees for

the wind direction when we filter out the wind speed weaker than

3 m s−1, and a RMSE = 0.11 arcsec for the seeing.

Looking at the analysis from the point of view of the contingency

tables and probability of detection, we find that all the PODi are

well above 90 per cent reaching in many cases (seeing, temperature,

RH, and WD) more than 95 per cent. This condition is already very

close to the saturation with small space for further improvement.

The WS also presents excellent performances for the PODi larger

than 90 per cent. POD2 is slightly weaker (83 per cent) and tells

us that is slightly more difficult to discriminate between the first

tertile (5.52 m s−1) and the third tertile (9.98 m s−1). Besides that,

the system is extremely efficient in predicting the weak wind speed

(with a RMSE = 0.7 m s−1) and in predicting the very strong wind

speed (with a RMSE = 1.2 m s−1) that makes the tool very useful to

face the low wind effect in high contrast imaging instruments (see

Section 5) and to identify the interval of time characterized by very

strong wind (WS > 10 m s−1).

Results obtained for the OT, and more precisely with the seeing,

are extremely satisfactory. We proved that the AR technique allows

us to reach a RMSE of the order of 0.11 arcsec at 1 h and PODi of

the order of 98 per cent. The most relevant result obtained in this

study is definitely related to the seeing. The most critical POD1,

i.e. the probability to detect a seeing weaker than the first tertile is

equal to 81 per cent for the standard configuration and it is equal

to 98 per cent for the AR method at 1 h time step. This definitely

represents a fundamental milestone for the implementation of the

flexible scheduling of ground-based top-class telescopes.

Besides that, we quantified the gain obtained by the AR approach

with respect to the use of pure real-time measurements, i.e. the

persistence method putting in evidence that the percentage of RMSE

gain is between 35 and 63 per cent and it is therefore far from being

negligible.

Once validated, we implemented this method in the automatic

and operational forecast system conceived for the LBTO named

ALTA Center. The outputs of such a forecast system are currently

automatically injected into the software driving the science oper-

ations at the LBTO. At our knowledge, this is the first automatic

operational system providing this kind of information, at least in

the astronomical context.

We are implementing a similar automatic and operational system

for the VLT and, in this case, we will be able to predict at

short time-scales, also the isoplanatic angle and the wavefront

coherence time thanks to the presence of instrument providing

real-time measurements of these parameters. It will be interesting

to quantify the performances of this method on different sites.

We point out that, at present, this is not an official operational

ESO tool.

In terms of filtering techniques, it is our intention to refine our

results to evaluate if other methods such as Kalman or machine

learning, and multiple ways to use them, might provide supplemen-

tary improvements of the technique.
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Table A1. Number or nights used for the analysis of model performances

using the AR method. T hey are extracted from the sample of 365 nights of

2018.

Year 2018 T RH WS WD Seeing

Number of

nights

351 351 324 324 229

APPEN D IX A : SAMPLE U SED FOR THE

STATISTICS A NA LY SIS

Table A1 summarizes the effective number of nights used for the

analysis for each parameter. For temperature and relative humidity

we have 351 nights, i.e. just a few nights have been missed, for

WS and WD we have a total of 324 nights, and for the seeing we

have a total of 229 nights. The reasons for the missing nights are

of different nature. For atmospheric parameter, the reason is mainly

given by sporadic failure of the sensors that, for some reason, did not

work in a few nights. We note that the anemometers (providing WS

and WD measurements) failed for a slightly larger number of nights

than temperature and relative humidity. In the case of the seeing the

justification for a smaller number of nights is mainly due to the

fact that measurements are performed with the LBT-DIMM located

inside the LBT dome. This means that when the dome is close for

whatever reason, measurements are missed. If we consider the shut-

down period of LBT (1.5 months in July–August) plus the number

of nights lost because of bad weather in 2018 and we subtract to the

total number of 365 in 1 yr, we find exactly the number of nights

(229) reported in Table A1 that corresponds to the allocated time of

LBT on 2018 (∼64 per cent of the total time).

APP ENDIX B: D EFINITIONS OF

C O N T I N G E N C Y TA B L E S , PC , P O D , A N D E B D

Table B1 is an example of a generic 3 × 3 contingency table where

the observations and simulations are divided into three categories

delimited by two thresholds. PC, PODi, and EBD can be defined

using a, b, c, d, e, f, g, h, i (number of times in which an observation

and a simulation fall inside each category) and N (the total events).

The percentage of correct detection, PC, is defined in equation (B1),

where PC = 100 per cent is the best score; the probability to detect

the value of a parameter inside a specific range of values (PODi) is

given by equations (B2)–(B4), where PODi = 100 per cent is the

best score. The extremely bad detection (EBD) probability is given

by equation (B5), where EBD = 0 per cent is the best score. For

a total random prediction and in case of a 3 × 3 contingency table

we have a = b = · · · = i = N/9 and PC = PODi = 33 per cent and

EBD = 22.2 per cent:

PC =
a + e + i

N

× 100; 0 ≤ PC ≤ 100 per cent, (B1)

POD(event1) =
a

a + d + g

× 100; 0 ≤ POD ≤ 100 per cent, (B2)

POD(event2) =
e

b + e + h

× 100; 0 ≤ POD ≤ 100 per cent, (B3)

POD(event3) =
i

c + f + i

× 100; 0 ≤ POD ≤ 100 per cent, (B4)

EBD =
c + g

N

× 100; 0 ≤ EBD ≤ 100 per cent. (B5)

Table B1. Generic 3 × 3 contingency table.

Intervals Observations

1 2 3 Total

Model 1 a b c a + b + c

(hit 1) 1 (Model)

2 d e f d + e + f

(hit 2) 2 (Model)

3 g h i g + h + i

(hit 3) 3 (Model)

Total a + d + g b + e + h c + f + i N = a + b + c + d + e + f + g + h + i

1 (OBS) 2 (OBS) 3 (OBS) Total of events

This paper has been typeset from a TEX/LATEX file prepared by the author.
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