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Abstract. This article presents a statistical theory for texture modeling. This theory combines filtering theory and

Markov random field modeling through the maximum entropy principle, and interprets and clarifies many previous

concepts and methods for texture analysis and synthesis from a unified point of view. Our theory characterizes the

ensemble of images I with the same texture appearance by a probability distribution f (I) on a random field, and

the objective of texture modeling is to make inference about f (I), given a set of observed texture examples. In our

theory, texture modeling consists of two steps. (1) A set of filters is selected from a general filter bank to capture

features of the texture, these filters are applied to observed texture images, and the histograms of the filtered images

are extracted. These histograms are estimates of the marginal distributions of f (I). This step is called feature

extraction. (2) The maximum entropy principle is employed to derive a distribution p(I), which is restricted to

have the same marginal distributions as those in (1). This p(I) is considered as an estimate of f (I). This step is

called feature fusion. A stepwise algorithm is proposed to choose filters from a general filter bank. The resulting

model, called FRAME (Filters, Random fields And Maximum Entropy), is a Markov random field (MRF) model,

but with a much enriched vocabulary and hence much stronger descriptive ability than the previous MRF models

used for texture modeling. Gibbs sampler is adopted to synthesize texture images by drawing typical samples from

p(I), thus the model is verified by seeing whether the synthesized texture images have similar visual appearances

to the texture images being modeled. Experiments on a variety of 1D and 2D textures are described to illustrate our

theory and to show the performance of our algorithms. These experiments demonstrate that many textures which

are previously considered as from different categories can be modeled and synthesized in a common framework.

Keywords: texture modeling, texture analysis and synthesis, minimax entropy, maximum entropy, Markov

random field, feature pursuit, visual learning

1. Introduction

Texture is an important characteristic of the appearance

of objects in natural scenes, and is a powerful cue in vi-

sual perception. It plays an important role in computer

vision, graphics, and image encoding. Understanding

texture is an essential part of understanding human

vision.

Texture analysis and synthesis has been an active re-

search area during the past three decades, and a large

number of methods have been proposed, with differ-

ent objectives or assumptions about the underlying
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texture formation processes. For example, in com-

puter graphics, reaction-diffusion equations (Witkin

and Kass, 1991) have been adopted to simulate some

chemical processes that may generate textures on skin

of animals. In computer vision and psychology, how-

ever, instead of modeling specific texture formation

process, the goal is to search for a general model which

should be able to describe a wide variety of textures

in a common framework, and which should also be

consistent with the psychophysical and physiological

understanding of human texture perception.

The first general texture model was proposed by

Julesz in the 1960’s. Julesz suggested that texture per-

ception might be explained by extracting the so-called

‘kth order’ statistics, i.e., the co-occurrence statistics

for intensities at k-tuples of pixels (Julesz, 1962). In-

deed, early works on texture modeling were mainly

driven by this conjecture (Haralick, 1979). A key draw-

back for this model is that the amount of data contained

in the kth order statistics is gigantic and thus very hard

to handle when k > 2. On the other hand, psychophys-

ical experiments show that the human visual system

does extract at least some statistics of order higher than

two (Diaconis and Freeman, 1981).

More recent work on texture mainly focus on the

following two well-established areas.

One is filtering theory, which was inspired by the

multi-channel filtering mechanism discovered and gen-

erally accepted in neurophysiology (Silverman et al.,

1989). This mechanism suggests that visual system

decomposes the retinal image into a set of sub-bands,

which are computed by convolving the image with a

bank of linear filters followed by some nonlinear proce-

dures. The filtering theory developed along this direc-

tion includes the Gabor filters (Gabor, 1946; Daugman,

1985) and wavelet pyramids (Mallat, 1989; Simoncelli

et al., 1992; Coifman and Wickerhauser, 1992; Donoho

and Johnstone, 1994). The filtering methods show ex-

cellent performance in classification and segmentation

(Jain and Farrokhsia, 1991).

The second area is statistical modeling, which char-

acterizes texture images as arising from probabil-

ity distributions on random fields. These include

time series models (McCormick and Jayaramamurthy,

1974), Markov chain models (Qian and Terrington,

1991), and Markov random field (MRF) models (Cross

and Jain, 1983; Mao and Jain, 1992; Yuan and Rao,

1993). These modeling approaches involve only a

small number of parameters, thus provide concise rep-

resentation for textures. More importantly, they pose

texture analysis as a well-defined statistical inference

problem. The statistical theories enable us not only to

make inference about the parameters of the underlying

probability models based on observed texture images,

but also to synthesize texture images by sampling from

these probability models. Therefore, it provides a rig-

orous way to test the model by checking whether the

synthesized images have similar visual appearances to

the textures being modeled (Cross and Jain, 1983). But

usually these models are of very limited forms, hence

suffer from the lack of expressive power.

This paper proposes a modeling methodology which

is built on and directly combines the above two

important themes for texture modeling. Our theory

characterizes the ensemble of images I with the same

texture appearances by a probability distribution f (I)

on a random field. Then given a set of observed texture

examples, our goal is to infer f (I). The derivation of

our model consists of two steps.

(I) A set of filters is selected from a general filter

bank to capture features of the texture. The filters are

designed to capture whatever features might be thought

to be characteristic of the given texture. They can be

of any size, linear or nonlinear. These filters are ap-

plied to the observed texture images, and histograms

of the filtered images are extracted. These histograms

estimate the marginal distributions of f (I). This step

is called feature extraction.

(II) Then a maximum entropy distribution p(I) is

constructed, which is restricted to match the marginal

distributions of f (I) estimated in step (I). This step is

called feature fusion.

A stepwise algorithm is proposed to select filters

from a general filter bank, and at each step k it chooses a

filter F (k) so that the marginal distributions of f (I) and

p(I) with respect to F (k) have the biggest distance in

terms of L1 norm. The resulting model, called FRAME

(Filters, Random fields And Maximum Entropy), is a

Markov random field (MRF) model,1 but with a much

more enriched vocabulary and hence much stronger de-

scriptive power compared with previous MRF models.

The Gibbs sampler is adopted to synthesize texture im-

ages by drawing samples from p(I), thus the model

is tested by synthesizing textures in both 1D and 2D

experiments.

Our theory is motivated by two aspects. Firstly,

a theorem proven in Section 3.2 shows that a distri-

bution f (I) is uniquely determined by its marginals.

Therefore if a model p(I) matches all the marginals of

f (I), then p(I) = f (I). Secondly, recent psychophys-

ical research on human texture perception suggests

that two ‘homogeneous’ textures are often difficult
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to discriminate when they have similar marginal

distributions from a bank of filters (Bergen and

Adelson, 1991; Chubb and Landy, 1991). Our method

is inspired by and bears some similarities to Heeger

and Bergen’s (1995) recent work on texture synthesis,

where many natural looking texture images were syn-

thesized by matching the histograms of filter responses

organized in the form of a pyramid.

This paper is arranged as follows. First we set

the scene by discussing filtering methods and Markov

random field models in Section 2, where both the ad-

vantages and disadvantages of these approaches are

addressed. Then in Section 3, we derive our FRAME

model and propose a feature matching algorithm

for probability inference and stochastic simulation.

Section 4 is dedicated to the design and selection of

filters. The texture modeling experiments are divided

into three parts. Firstly, Section 5 illustrates important

concepts of the FRAME model by designing three ex-

periments for one dimensional texture synthesis. Sec-

ondly a variety of 2D textures are studied in Section 6.

Then Section 7 discusses a special diffusion strategy

for modeling some typical texton images. Finally,

Section 8 concludes with a discussion and the future

work.

2. Filtering and MRF Modeling

2.1. Filtering Theory

In the various stages along the visual pathway, from

retina, to V1, to extra-striate cortex, cells with in-

creasing sophistication and abstraction have been dis-

covered: center-surround isotropic retinal ganglion

cells, frequency and orientation selective simple cells,

and complex cells that perform nonlinear operations.

Motivated by such physiological discoveries, the filter-

ing theory proposes that the visual system decomposes

a retinal image into a set of sub-band images by con-

volving it with a bank of frequency and orientation se-

lective linear filters. This linear filtering process is then

followed by some nonlinear operations. In the design

of various filters, Gaussian function plays an important

role due to its nice low-pass frequency property. To

fix notation, we define an elongated two-dimensional

Gaussian function as:

G(x, y | x0, y0, σx , σy)

= 1

2πσxσy

e−((x−x0)
2/2σ 2

x +(y−y0)
2/2σ 2

y )

with location parameters (x0, y0) and scale parameters

(σx , σy).

A simple model for the radially symmetric center-

surround ganglion cells is the Laplacian of Gaussian

with σx = σy = σ :

F(x, y | x0, y0, σ )

=
(

∂2

∂x2
+ ∂2

∂y2

)

G(x, y | x0, y0, σ, σ ). (1)

Similarly, a model for the simple cells is the Gabor

filter (Daugman, 1985), which is a pair of cosine and

sine waves with frequency ω and amplitude modulated

by the Gaussian function:

Fω(x, y) = G(x, y | 0, 0; σx , σy)e
−iωx . (2)

By carefully choosing the frequency ω and rotating

the filter in the x-y coordinate system, we obtain a

bank of filters which cover the entire frequency domain.

Such filters are used for image analysis and synthesis

successfully by Jain and Farrokhsia (1991) and Lee

(1992). Other filter banks have also been designed for

image processing (Simoncelli et al., 1992).

The filters mentioned above are linear. Some func-

tions are further applied to these linear filters to model

the nonlinear functions of the complex cell. One way to

model the complex cell is to use the power of each pair

of Gabor filter |(F ∗I)(x, y)|2. In fact, |(Fω ∗I)(x, y)|2
is the local spectrum S(ω) of I at (x, y) smoothed by

a Gaussian function. Thus it serves as a spectrum

analyzer.

Although these filters are very efficient in captur-

ing local spatial features, some problems are not well

understood. For example (i) given a bank of filters,

how to choose the best set of filters? Especially when

some of the filters are linear while others are nonlin-

ear, or the filters are highly correlated to each other,

(ii) after selecting the filters, how to fuse the fea-

tures captured by them into a single texture model?

These questions will be answered in the rest of the

paper.

2.2. MRF Modeling

MRF models were popularized by Besag (1973) for

modeling spatial interactions on lattice systems and

were used (Cross and Jain, 1983) for texture model-

ing. An important characteristic of MRF modeling

is that the global patterns are formed via stochastic

propagation of local interactions, which is particularly
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appropriate for modeling textures since they are char-

acterized by global but not predictable repetitions of

similar local structures.

In MRF models, a texture is considered as a real-

ization from a random field I defined over a spatial

configuration D, for example, D can be an array or

a lattice. We denote I(Ev) as the random variable at a

location Ev ∈ D, and let N = {NEv, Ev ∈ D} be a neigh-

borhood system ofD, which is a collection of subsets of

D satisfying (1) Ev /∈ NEv , and (2) Ev ∈ NEu ⇐⇒ Eu ∈ NEv .

The pixels in NEv are called neighbors of Ev. A subset C

of D is a clique if every pair of distinct pixels in C are

neighbors of each other; C denotes the set of all cliques.

Definition. p(I) is an MRF distribution with respect

toN if p(I(Ev) | I(−Ev)) = p(I(Ev) | I(NEv)), where I(−Ev)

denotes the values of all pixels other than Ev, and for

A ⊂ D, I(A) denotes the values of all pixels in A.

Definition. p(I) is a Gibbs distribution with respect

to N if

p(I) = 1

Z
exp

{

−
∑

C∈C
λC(I(C))

}

, (3)

where Z is the normalizing constant (or partition func-

tion), and λC( ) is a function of intensities of pixels in

clique C (called potential of C). Some constraints can

be imposed on λC for them to be uniquely determined.

The Hammersley-Clifford theorem establishes the

equivalence between MRF and the Gibbs distribution

(Besag, 1973):

Theorem 1. For a given N , p(I) is an MRF distri-

bution ⇐⇒ p(I) is a Gibbs distribution.

This equivalence provides a general method for spec-

ifying an MRF on D, i.e., first choose an N , and then

specify λC . The MRF is stationary if for every C ∈ C,

λC depends only on the relative positions of its pixels.

This is often assumed in texture modeling.

Existing MRF models for texture modeling are

mostly auto-models (Besag, 1973) with pair potentials,

i.e., λC ≡ 0 if |C | > 2, and p(I) has the following form

p(I) = 1

Z
exp

{

∑

Ev
g(I(Ev)) +

∑

Eu,Ev
βEu−EvI(Eu)I(Ev)

}

,

(4)

where β−Eu = βEu and βEu−Ev ≡ 0 unless Eu and Ev are

neighbors.

The above MRF model is usually specified through

conditional distributions,

p(I(Ev) | I(−Ev)) ∝ exp

{

g(I(Ev)) +
∑

Eu
βEv−EuI(Eu)I(Ev)

}

,

where the neighborhood is usually of order less than or

equal to three pixels, and some further restrictions are

usually imposed on g for p(I(Ev) | I(−Ev)) to be a linear

regression or the generalized linear model.

Two commonly used auto-models are the auto-

binomial model and the auto-normal model. The auto-

binomial model is used for images with finite grey

levels I(Ev) ∈ {0, 1, . . . , G −1} (Cross and Jain, 1983),

the conditional distribution is a logistic regression,

I(Ev) | I(−Ev) ∼ binomial(G, pEv), (5)

where

log
pEv

1 − pEv
= α +

∑

Eu
βEu−EvI(Eu).

It can be shown that the joint distribution is of the form

p(I) = 1

Z
exp

{

∑

Ev

(

αI(Ev) + log

(

G

I(Ev)

))

+
∑

Eu,Ev
βEu−EvI(Eu)I(Ev)

}

(6)

When G = 2, the auto-binomial model reduces to the

auto-logistic model (i.e., the Ising model), which is

used to model binary images.

The auto-normal model is used for images with con-

tinuous grey levels (Yuan and Rao, 1993). It is evident

that if an MRF p(I) is a multivariate normal distribu-

tion, then p(I) must be auto-normal, so the auto-normal

model is also called a Gaussian MRF or GMRF. The

conditional distribution is a normal regression,

I(Ev) | I(−Ev) ∼ N

(

µ +
∑

Eu
βEv−Eu(I(Eu) − µ), σ 2

)

,

(7)

and p(I) is of the form

p(I) = 1

(2πσ 2)n/2
|B|1/2

× exp

{

− 1

2σ 2
(I − µ)T B(I − µ)

}

, (8)

i.e., the multivariate normal distribution N (µ, σ 2 B−1)

where the diagonal elements of B are unity and the

off-diagonal (Eu, Ev) element of it is −βEu−Ev .
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Another MRF model for texture is the φ-model

(Geman and Graffigne, 1986):

p(I) = 1

Z
exp

{

−
∑

〈Eu,Ev〉
λ|Eu−Ev|φ(I(Eu) − I(Ev))

}

, (9)

where φ is a known even symmetric function, and the

φ-model can be viewed as extended from the Potts

model (Winkler, 1995).

The advantage of the auto-models is that the

parameters in the models can be easily inferred by auto-

regression, but they are severely limited in the follow-

ing two aspects: (i) the cliques are too small to capture

features of texture, (ii) the statistics on the cliques spec-

ifies only the first-order and second order moments

(e.g., means and covariances for GMRF). However,

many textures has local structures much larger than

three or four pixels, and the covariance information

or equivalently spectrum can not adequately charac-

terize textures, as suggested the existence of distin-

guishable texture pairs with identical second-order or

even third-order moments, as well as indistinguish-

able texture pairs with different second-order moments

(Diaconis and Freeman, 1981). Moreover, many tex-

tures are strongly non-Gaussian, regardless of neigh-

borhood size.

The underlying cause of these limitations is that

Eq. (3) involves too many parameters if we increase the

neighborhood size or the order of the statistics, even for

the simplest auto-models. This suggests that we need

carefully designed functional forms for λC( ) to ef-

ficiently characterize local interactions as well as the

statistics on the local interactions.

3. From Maximum Entropy to FRAME Model

3.1. The Basics of Maximum Entropy

Maximum entropy (ME) is an important principle in

statistics for constructing a probability distributions

p on a set of random variables X (Jaynes, 1957).

Suppose the available information is the expectations

of some known functions φn(x), i.e., E p[φn(x)] =
∫

φn(x)p(x)dx = µn for n = 1, . . . , N . Let Ä be the

set of all probability distribution p(x) which satisfy the

constraints, i.e.,

Ä = {p(x) | E p[φn(x)] = µn, n = 1, . . . , N }. (10)

The ME principle suggests that a good choice of the

probability distribution is the one that has the maximum

entropy, i.e.,

p∗(x) = arg max

{

−
∫

p(x) log p(x)dx

}

, (11)

subject to

E p[φn(x)] =
∫

φn(x)p(x)dx = µn,

n = 1, . . . , N ,

and
∫

p(x)dx = 1.

By Lagrange multipliers, the solution for p(x) is:

p(x; 3) = 1

Z(3)
exp

{

−
N

∑

n=1

λnφn(x)

}

, (12)

where3 = (λ1, λ2, . . . , λn) is the Lagrange parameter,

and Z(3) =
∫

exp{− ∑N
n=1 λnφn(x)}dx is the parti-

tion function that depends on 3 and it has the following

properties:

(i)
∂ log Z

∂λi

= 1

Z

∂ Z

∂λi

= −E p(x;3)[φi (x)]

(ii)
∂2 log Z

∂λi∂λ j

= E p(x;3)[(φi (x) − E p(x;3)[φi (x)])

× (φ j (x) − E p(x;3)[φ j (x)])]

In Eq. (12), (λ1, . . . , λN ) is determined by the con-

straints in Eq. (11). But a closed form solution for

(λ1, . . . , λN ) is not available in general, especially

when φn(·) gets complicated, so instead we seek nu-

merical solutions by solving the following equations

iteratively.

dλn

dt
= E p(I ;3)[φn(x)] − µn, n = 1, 2, . . . , N . (13)

The second property of the partition function Z(3)

tells us that the Hessian matrix of log Z(3) is the co-

variance matrix of vector (φ1(x), φ2(x), . . . , φN (x))

which is definitely positive,2 and log Z(3) is

strictly concave with respect to (λ1, . . . , λN ), so is

log p(x; 3). Therefore, given a set of consistent con-

straints, there is a unique solution for (λ1, . . . , λN ) in

Eq. (13).

3.2. Deriving the FRAME Model

Let image I be defined on a discrete domain D, D can

be a N × N lattice. For each pixel Ev ∈ D, I(Ev) ∈ L,

and L is an interval of R or L ⊂ Z. For each texture,
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we assume that there exists a “true” joint probability

density f (I) over the image spaceL|D|, and f (I) should

concentrate on a subspace of L|D| which corresponds

to texture images that have perceptually similar texture

appearances. Before we derive the FRAME model, we

first fix the notation as below.

Given an image I and a filter F (α) with α =
1, 2,. . . , K being an index of filter, we let

I(α)(Ev) = F (α) ∗ I(Ev) be the filter response at location

Ev, and I(α) the filtered image. The marginal empirical

distribution (histogram) of I(α) is

H (α)(z) = 1

|D|
∑

Ev∈D
δ
(

z − I(α)(Ev)
)

,

where δ( ) is the Dirac delta function. The marginal

distribution of f (I) with respect to F (α) at location Ev
is denoted by

f
(α)

Ev (z) =
∫ ∫

I(α)(Ev)=z

f (I)dI = E f

[

δ
(

z − I(α)(Ev)
)]

.

At first thought, it seems an intractable problem to

estimate f (I) due to the overwhelming dimensionality

of image I. To reduce dimensions, we first introduce

the following theorem.

Theorem 2. Let f (I) be the |D|-dimensional contin-

uous probability distribution of a texture, then f (I) is a

linear combination of f (ξ), the latter are the marginal

distributions on the linear filter response F (ξ) ∗ I.

Proof: By inverse Fourier transform, we have

f (I) = 1

(2π)|D|

∫

·
∫

e2π i〈I,ξ〉 f̂ (ξ)dξ

where f̂ (ξ) is the characteristic function of f (I), and

f̂ (ξ) =
∫

·
∫

e−2π i〈ξ,I〉 f (I)dI

=
∫

e−2π i zdz

∫

·
∫

〈ξ,I〉=z

f (I)dI

=
∫

e−2π i zdz

∫

·
∫

δ(z − 〈ξ, I〉) f (I)dI

=
∫

e−2π i z f (ξ)(z)dz

where 〈·, ·〉 is the inner product, and by definition

f (ξ)(z) =
∫

·
∫

δ(z − 〈ξ, I〉) f (I)dI is the marginal

distribution of F (ξ) ∗ I, and we define F (ξ)(Ev) = ξ(Ev)

as a linear filter. ✷

Theorem 2 transforms f (I) into a linear combination

of its one dimensional marginal distributions.3 Thus it

motivates a new method for inferring f (I): construct

a distribution p(I) so that p(I) has the same marginal

distributions f (ξ). If p(I) matches all marginal distri-

butions of f (I), then p(I) = f (I). But this method

will involve uncountable number of filters and each

filter F (ξ) is as big as image I.

Our second motivation comes from recent psy-

chophysical research on human texture perception, and

the latter suggests that two homogeneous textures are

often difficult to discriminate when they produce simi-

lar marginal distributions for responses from a bank of

filters (Bergen and Adelson, 1991; Chubb and Landy,

1991). This means that it is plausible to ignore some

statistical properties of f (I) which are not important

for human texture discrimination.

To make texture modeling a tractable problem, in the

rest of this paper we make the following assumptions

to limit the number of filters and the window size of

each filter for computational reason, though these as-

sumptions are not necessary conditions for our theory

to hold true. (1) We limit our model to homogeneous

textures, thus f (I) is stationary with respect to location

Ev.4 (2) For a given texture, all features which concern

texture perception can be captured by “locally” sup-

ported filters. In other words, the sizes of filters should

be smaller than the size of the image. For example,

the size of image is 256 × 256 pixels, and the sizes

of filters we used are limited to be less than 33 × 33

pixels. These filters can be linear or non-linear as we

discussed in Section 2.1. (3) Only a finite set of filters

are used to estimate f (I).

Assumptions 1 and 2 are made because we often

have access to only one observed (training) texture im-

age. For a given observed image Iobs and a filter F (α),

we let Iobs(α) denote the filtered image, and H obs(α)(z)

the histogram of Iobs(α). According to assumption 1,

f
(α)

Ev (z) = f (α)(z) is independent of Ev. By ergodicity,

H obs(α)(z) makes a consistent estimator to f (α)(z). As-

sumption 2 ensures that the image size is lager relative

to the support of filters, so that ergodicity takes effect

for H obs(α)(z) to be an accurate estimate of f (α)(z).

Now for a specific texture, let SK = {F (α), α =
1, . . . , K } be a finite set of well selected filters, and

f (α)(z), α = 1, . . . , K are the corresponding marginal

distributions of f (I). We denote the probability
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distribution p(I) which matches these marginal dis-

tributions as a set,

ÄK =
{

p(I) | E p

[

δ
(

z − I(α)(Ev)
)]

= f (α)(z)

∀z ∈ R, ∀α = 1, . . . , K , ∀Ev ∈ D
}

, (14)

where E p[δ(z − I(α)(Ev))] is the marginal distribution

of p(I) with respect to filter F (α) at location Ev. Thus

according to assumption 3, any p(I) ∈ Ä is perceptu-

ally a good enough model for the texture, provided that

we have enough well selected filters. Then we choose

from Ä a distribution p(I) which has the maximum

entropy,

p(I) = arg max

{

−
∫

p(I) log p(I)dI

}

, (15)

subject to

E p

[

δ
(

z − I(α)(Ev)
)]

= f (α)(z)

∀z ∈ R, ∀α = 1, . . . , K , ∀Ev ∈ D

and
∫

p(I)dI = 1.

The reason for us to choose the maximum entropy

(ME) distribution is that while p(I) satisfies the con-

straints along some dimensions, it is made as random

as possible in other unconstrained dimensions, since

entropy is a measure of randomness. In other words,

p(I) should represent information no more than that is

available. Therefore an ME distribution gives the sim-

plest explanation for the constraints and thus the purest

fusion of the extracted features.

The constraints on Eq. (15) differ from the ones

given in Section 3.1 in that z takes continuous real

values, hence there are uncountable number of con-

straints, therefore, the Lagrange parameter λ takes the

form as a function of z. Also since the constraints are

the same for all locations Ev ∈ D, λ should be indepen-

dent of Ev. Solving this maximization problem gives

the ME distribution:

p(I; 3K , SK )

= 1

Z(3K )
exp

{

−
∑

Ev

K
∑

α = 1

∫

λ(α)(z)δ(z − Iα(Ev))dz

}

,

(16)

= 1

Z(3K )
exp

{

−
∑

Ev

K
∑

α = 1

λ(α)
(

I(α)(Ev)
)

}

, (17)

where SK = {F (1), F (2), . . . , F (K )} is a set of selected

filters, and 3K = (λ(1)( ), λ(2)( ), . . . , λ(K )( )) is the

Lagrange parameter. Note that in Eq. (17), for each fil-

ter F (α), λ(α)( ) takes the form as a continuous function

of the filter response I(α)(Ev).

To proceed further, let’s derive a discrete form of

Eq. (17). Assume that the filter response I(α)(Ev) is

quantitized into L discrete grey levels, therefore z takes

values from set {z(α)

1 , z
(α)

2 , . . . , z
(α)
L }. In general, the

width of these bins do not have to be equal, and the num-

ber of grey levels L for each filter response may vary.

As a result, the marginal distributions and histograms

are approximated by piecewisely constant functions of

L bins, and we denote these piecewise functions as vec-

tors. H (α) = (H
(α)

1 , H
(α)

2 , . . . , H
(α)
L ) is the histogram

of I(α), H obs(α) denotes the histogram of Iobs(α), and

the potential function λ(α)( ) is approximated by vector

λ(α) = (λ
(α)

1 , λ
(α)

2 , . . . , λ
(α)
L ).

So Eq. (16) is rewritten as:

p(I; 3K , SK )

= 1

Z(3K )
exp

{

−
∑

Ev

K
∑

α = 1

L
∑

i = 1

λ
(α)
i δ

(

z
(α)
i − I(α)(Ev)

)

}

,

by changing the order of summations:

p(I; 3K , SK )

= 1

Z(3K )
exp

{

−
K

∑

α=1

L
∑

i=1

λ
(α)
i H

(α)
i

}

,

= 1

Z(3K )
exp

{

−
K

∑

α=1

〈

λ(α), H (α)
〉

}

. (18)

The virtue of Eq. (18) is that it provides us with

a simple parametric model for the probability dis-

tribution on I, and this model has the following

properties:

• p(I; 3K , SK ) is specified by 3K = (λ(1), λ(2), . . . ,

λ(K )) and SK .

• Given an image I, its histograms H (1), H (2), . . . ,

H (K ) are sufficient statistics, i.e., p(I; 3K , SK ) is

a function of (H (1), H (2), . . . , H (K )).

We plug Eq. (18) into the constraints of the ME distri-

bution, and solve for λ(α), α = 1, 2, . . . , K iteratively

by the following equations,

dλ(α)

dt
= E p(I;3K ,SK )

[

H (α)
]

− H obs(α). (19)
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In Eq. (19), we have substituted H obs(α) for f (α), and

E p(I;3K ,SK )(H (α)) is the expected histogram of the fil-

tered image I(α) where I follows p(I; 3K , SK ) with the

current 3K . Equation (19) converges to the unique so-

lution at 3K = 3̂K as we discussed in Section 3.1, and

3̂K is called the ME-estimator.

It is worth mentioning that this ME-estimator

is equivalent to the maximum likelihood estimator

(MLE),

3̂K = arg max
3K

log p(Iobs; 3K , SK )

= arg max
3K

− log Z(3K ) −
K

∑

α = 1

〈

λ(α), H obs(α)
〉

.

(20)

By gradient accent, maximizing the log-likelihood

gives Eq. (19), following property (i) of the partition

function Z(3K ).

In Eq. (19), at each step, given 3K and hence

p(I; 3K , SK ), the analytic form of E p(I;3K ,SK )(H (α)) is

not available, instead we propose the following method

to estimate it as we did for f (α) before. We draw a typ-

ical sample from p(I; 3K , SK ), and thus synthesize a

texture image Isyn. Then we use the histogram H syn(α)

of Isyn(α) to approximate E p(I;3K ,SK )(H (α)). This re-

quires that the size of Isyn that we are synthesizing

should be large enough.5

To draw a typical sample image from p(I; 3K , SK ),

we use the Gibbs sampler (Geman and Geman, 1984)

which simulates a Markov chain in the image space

L|D|. The Markov chain starts from any random image,

for example, a white noise image, and it converges

to a stationary process with distribution p(I; 3K , SK ).

Thus when the Gibbs sampler converges, the images

synthesized follow distribution p(I; 3K , SK ).

In summary, we propose the following algo-

rithm for inferring the underlying probability model

p(I; 3K , SK ) and for synthesizing the texture accord-

ing to p(I; 3K , SK ). The algorithm stops when the

subband histograms of the synthesized texture closely

match the corresponding histograms of the observed

images.6

Algorithm 1. The FRAME Algorithm

Input a texture image Iobs.

Select a group of K filters SK = {F (1), F (2), . . . ,

F (K )}.
Compute {H obs(α), α = 1, . . . , K }.
Initialize λ

(α)
i ← 0, i = 1, 2, . . . , L , α = 1,

2, . . . , K .

Initialize Isyn as a uniform white noise texture.

Repeat

Calculate H syn(α) α = 1, 2, . . . , K from Isyn, use

it for E p(I;3K ,SK )(H (α)) .

Update λ(α) α = 1, 2, . . . , K by Eq. (19),

p(I; 3K , SK ) is updated.

Apply Gibbs sampler to flip Isyn for w sweeps

under p(I; 3K , SK )

Until 1
2

∑L
i |H obs(α)

i − H
syn(α)

i | ≤ ǫ for α = 1,

2, . . . , K .

Algorithm 2. The Gibbs Sampler for w Sweeps

Given image I(Ev), flip counter← 0

Repeat

Randomly pick a location Ev under the uniform

distribution.

For val = 0, . . . , G − 1 with G being the number

of grey levels of I

Calculate p(I(Ev) = val | I(−Ev)) by

p(I; 3K , SK ).

Randomly flip I(Ev) ← val under p(val | I(−Ev)).

flip counter ← flip counter + 1

Until flip counter = w × M × N .

In Algorithm 2, to compute p(I(Ev) = val | I(−Ev)),

we set I(Ev) to val, due to Markov property, we only

need to compute the changes of I(α) at the neighbor-

hood of Ev. The size of the neighborhood is determined

by the size of filter F (α). With the updated I(α), we

calculate H (α), and the probability is normalized such

that
∑G−1

val=0 p(I(Ev) = val | I(−Ev)) = 1.

In the Gibbs sampler, flipping a pixel is a step of

the Markov chain, and we define flipping |D| pixels

as a sweep, where |D| is the size of the synthesized

image. Then the overall iterative process becomes an

inhomogeneous Markov chain. At the beginning of

the process, p(I; 3K , SK ) is a “hot” uniform distri-

bution. By updating the parameters, the process get

closer and closer to the target distribution, which is

much colder. So the algorithm is very much like a

simulated annealing algorithm (Geyer and Thompson,

1995), which is helpful for getting around local modes

of the target distribution. We refer to (Winkler, 1995)

for discussion of alternative sampling methods.

The computational complexity of the above algo-

rithm is notoriously large: O(U × w × |D| × G ×
K × F H × FW ) with U the number of updating steps

for 3K , w the number of sweeps each time we update
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3K , D the size of image Isyn, G the number of grey

levels of I, K the number of filters, and F H, FW are

the average window sizes of the filters. To synthesize

a 128 × 128 texture, the typical complexity is about

50 × 4 × 128 × 128 × 8 × 4 × 16 × 16 ≃ 27 billion

arithmetic operators, and takes about one day to run on

a Sun-20. Therefore, it is very important to choose a

small set of filter which can best capture the features

of the texture. We discuss how to choose filters in

Section 4.

3.3. A General Framework

The probability distribution we derived in the last sec-

tion is of the form

p(I; 3K , SK )

= 1

Z(3K )
exp

{

−
∑

Ev

K
∑

α = 1

λ(α)
(

I(α)(Ev)
)

}

. (21)

This model is significant in the following aspects.

First, the model is directly built on the features

I(α)(Ev) extracted by a set of filters F (α). By choos-

ing the filters, it can easily capture the properties of the

texture at multiple scales and orientations, either linear

or nonlinear. Hence, it is much more expressive than

the cliques used in the traditional MRF models.

Second, instead of characterizing only the first and

second order moments of the marginal distributions

as the auto-regression MRF models did, the FRAME

model includes the whole marginal distribution. In-

deed, in a simplified case, if the constraints on the

probability distribution are given in the form of kth-

order moments instead of marginal distributions, then

the functions λ(α)(·) in Eq. (21) become polynomi-

als of order m. In such case, the complexity of the

FRAME model is measured by the following two as-

pects: (1) the number of filters and the size of the filter,

(2) the order of the moments, m. As we will see in

later experiments, Eq. (21) enable us to model strongly

non-Gaussian textures.

It is also clear to us that all existing MRF texture

models can be shown as special cases of FRAME

models.

Finally, if we relax the homogeneous assumption,

i.e., let the marginal distribution of I(α)(Ev) depend

on Ev, then by specifying these marginal distributions,

denoted by f
(α)

Ev , p(I) will have the form

p(I) = 1

Z
exp

{

−
∑

Ev

K
∑

α=1

λ
(α)

Ev
(

I(α)
)

(Ev)

}

. (22)

This distribution is relevant in texture segmentation

where λ
(α)

Ev are assumed piecewise consistent with re-

spect to Ev, and in shape inference when λ
(α)

Ev changes

systematically with respect to Ev, resulting in a slowly

varying texture. We shall not study non-stationary tex-

tures in this paper.

In summary, the FRAME model incorporates and

generalizes the attractive properties of the filtering the-

ory and the random fields models, and it interprets

many previous methods for texture modeling in a uni-

fied view of point.

4. Filter Selection

In the last section, we build a probability model for a

given texture based on a set of filters SK . For computa-

tional reasons SK should be chosen as small as possible,

and a key factor for successful texture modeling is to

choose the right set of filters that best characterizes the

features of the texture being modeled. In this section,

we propose a novel method for filter selection.

4.1. Design of the Filter Bank

To describe a wide variety of textures, we first need

to design a filter bank B. B can include all previously

designed multi-scale filters (Daugman, 1985; Simon-

celli et al., 1992) or wavelets (Mallat, 1989; Donoho

and Johnstone, 1994; Coifman and Wickerhauser,

1992). In this paper, we should not discuss the optimal

criterion for constructing a filter bank. Throughout the

experiments in this paper, we use five kinds of filters.

1. The intensity filter δ( ), and it captures the DC com-

ponent.

2. The isotropic center-surround filters, i.e., the

Laplacian of Gaussian filters. Here we rewrite

Eq. (1) as:

F(x, y | 0, 0, T )

= const · (x2 + y2 − T 2)e
− x2+y2

T 2 (23)

where T =
√

2σ stands for the scale of the filter. We

choose eight scales with T =
√

2/2, 1, 2, 3, 4, 5, 6,

and denote these filters by LG(T ).

3. The Gabor filters with both sine and cosine compo-

nents. We choose a simple case from Eq. (2):

Gabor(x, y | 0, 0, T, θ)

= const · e
1

2T 2 (4(x cos θ+y sin θ)2+(−x sin θ+y cos θ)2)

× e−i 2π
T

(x cos θ+y sin θ), (24)
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We choose six scales T = 2, 4, 6, 8, 10, 12 and 6

orientations θ = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦. We

can see that these filters are not even approximately

orthogonal to each other. We denote by G cos(T, θ)

and G sin(T, θ) the cosine and sine components of

the Gabor filters.

4. The spectrum analyzers denoted by S P(T, θ),

whose responses are the power of the Gabor pairs:

|(Gabor ∗ I)(x, y)|2.

5. Some specially designed filters for one dimensional

textures and the textons, see Sections 5 and 7.

4.2. A Stepwise Algorithm for Filter Selection

For a fixed model complexity K , one way to choose

SK from B is to search for all possible combina-

tions of K filters in B and compute the corresponding

p(I; 3K , SK ). Then by comparing the synthesized tex-

ture images following each p(I; 3K , SK ), we can see

which set of filters is the best. Such a brute force search

is computationally infeasible, and for a specific texture

we often do not know what K is. Instead, we propose

a stepwise greedy strategy. We start from S0 = ∅ and

hence p(I; 30, S0) an uniform distribution, and then

sequentially introduce one filter at a time.

Suppose that at the kth step we have chosen Sk =
{F (1), F (2), . . . , F (k)}, and obtained a maximum en-

tropy distribution

p(I; 3k, Sk) = 1

Z(3k)
exp

{

−
k

∑

α=1

〈

λ(α), H (α)
〉

}

, (25)

so that E p(I;3k ,Sk )[H (α)] = f (α) for α = 1, 2, . . . , k.

Then at the (k + 1)th step, for each filter F (β) ∈ B/Sk ,

we denote by d(β) = D(E p(I;3k ,Sk )[H (β)], f (β)) the

distance between E p(I;3k ,Sk )[H (β)] and f (β), which are

respectively the marginal distributions of p(I; 3k, Sk)

and f (I) with respect to filter F (β). Intuitively, the

bigger d(β) is, the more information F (β) carries, since

it reports a big difference between p(I; 3k, Sk) and

f (I). Therefore, we should choose the filter which has

the maximal distance, i.e.,

F (k+1) = arg max
F (β)∈B/Sk

D
(

E p(I;3k ,Sk )

[

H (β)
]

, f (β)
)

. (26)

Empirically we choose to measure the distance d(β)

in terms of L p-norm, i.e.,

F (k+1) = arg max
F (β)∈B/Sk

1

2

∣

∣ f (β) − E p(I;3k ,Sk )

[

H (β)
]∣

∣

p
.

(27)

In the experiments of this paper, we choose p = 1.

To estimate f (β) and E p(I;3k ,Sk )[H (β)], we applied

F (β) to the observed image Iobs and the synthesized

image Isyn sampled from the p(I; 3k, Sk), and substi-

tute the histograms of the filtered images for f (β) and

E p(I;3k ,Sk )[H (β)], i.e.,

F (k+1) = arg max
F (β)∈B/Sk

1

2

∣

∣H obs(β) − H syn(β)
∣

∣. (28)

The filter selection procedure stops when the d(β)

for all filters F (β) in the filter bank are smaller than

a constant ǫ. Due to fluctuation, various patches of

the same observed texture image often have a certain

amount of histogram variance, and we use such a vari-

ance for ǫ.

In summary, we propose the following algorithm for

filter selection.

Algorithm 3. Filter Selection

Let B be a bank of filters, S the set of selected filters,

Iobs the observed texture image,

and Isyn the synthesized texture image.

Initialize k = 0, S ← ∅, p(I) ← uniform dist.

Isyn ← uniform noise.

For α = 1, . . . , |B| do

Compute Iobs(α) by applying F (α) to Iobs.

Compute histogram H obs(α) of Iobs(α) .

Repeat

For each F (β) ∈ B/S do

Compute Isyn(β) by applying F (β) to Isyn

Compute histogram H syn(β) of Isyn(β)

d(β) = 1
2
|H obs(β) − H syn(β)|,8

Choose F (k+1) so that d(k + 1) = max{d(β) :

∀F (β) ∈ B/S}
S ← S ∪ {F (k+1)}, k ← k + 1.

Starting from p(I) and Isyn, run algorithm 1 to

compute new p∗(I) and Isyn∗.

p(I) ← p∗(I) and Isyn ← Isyn∗.

Until d(β) < ǫ

Before we conclude this section, we would like to

mention that the above criterion for filter selection is

related to the minimax entropy principle studied in

(Zhu et al., 1996). The minimax entropy principle sug-

gests that the optimal set of filters SK should be cho-

sen to minimize the Kullback-Leibler distance between
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p(I; 3K , SK ) and f (I), and the latter is measured by

the entropy of the model p(I; 3K , SK ) up to a con-

stant. Thus at each step k + 1 a filter is selected so that

it minimizes the entropy of p(I; 3k, Sk) by gradient

descent, i.e.,

F (k+1) = arg max
F (β)∈B/Bk

entropy(p(I; 3k, Sk))

− entropy(p(I; 3+, S+))

where S+ = Sk ∪ {F (β)} and 3+ is the new La-

grange parameter. A brief derivation is given in the

Appendix.

5. Experiments in One Dimension

In this section we illustrate some important concepts of

the FRAME model by studying a few typical examples

for 1D texture modeling. In these experiments, the

filters are chosen by hand.

For one-dimensional texture the domain is a discrete

array D = [0, 255], and a pixel is indexed by x instead

of Ev. For any x ∈ [0, 255], I(x) is discretized into G

grey levels, with G = 16 in Experiments 1 and 3, and

G = 64 in Experiment 2.

Experiment 1. This experiment is designed to show

the analogy between filters in texture modeling and vo-

cabulary in language description, and to demonstrate

how a texture can be specified by the marginal distri-

butions of a few well selected filters.

The observed texture, as shown in Fig. 1(a), is a

periodic pulse signal with period T = 8, i.e., I(x) = 15

once every 8 pixels and I(x) = 0 for all the other pixels.

First we choose an intensity filter, and the filter response

is the signal itself. The synthesized texture by FRAME

is displayed in Fig. 1(b). Obviously it has almost the

same number of pulses as the observed one, and so

has approximately the same marginal distribution for

intensity. Unlike the observed texture, however, these

pulses are not arranged periodically.

To capture the period of the signal, we add one

more special filter, an 8 × 1 rectangular filter: [1, 1,

1, 1, 1, 1, 1, 1], and the synthesized signal is shown in

Fig. 1(c), which has almost the same appearance as in

Fig. 1(a). We can say that the probability p(I) specified

by these two filters models the properties of the input

signal very well.

Figure 1(d) is the synthesized texture using a non-

linear filter which is an 1D spectrum analyzer S P(T )

Figure 1. The observed and synthesized pulse textures: (a) the

observed, (b) synthesized using only the intensity filter, (c) intensity

filter plus rectangular filter with T = 8, (d) Gabor filter with T = 8,

and (e) Gabor filter plus intensity filter.

with T = 8. Since the original periodic signal has

flat power spectrum, and the Gabor filters only extract

information in one frequency band, therefore the tex-

ture synthesized under p(I) has power spectrum near

frequency 2π
8

but are totally free at other bands. Due

to the maximum entropy principle, the FRAME model

allows for the unconstrained frequency bands to be as

noisy as possible. This explains why Fig. 1(d) is noise

like while having roughly a period of T = 8. If we

add the intensity filter, then probability p(I) captures

the observed signal again, and a synthesized texture is

shown in Fig. 1(e).

This experiment shows that the more filters we use,

the closer we can match the synthesized images to the

observed. But there are some disadvantages for using

too many filters. Firstly, it is computationally expen-

sive, and secondly, since we have few observed exam-

ples, it may overly constrain the probability p(I), i.e.,

it may make p(I) ‘colder’ than it should be.

Experiment 2. In this second experiment we compare

FRAME against Gaussian MRF models by showing the

inadequacy of the GMRF model to express high order

statistics.

To begin with, we choose a gradient filter ∇ with im-

pulse response [−1, 1] for comparison, and the filtered

image is denoted by ∇I.

The GMRF models are concerned with only the

mean and variance of the filter responses. As an

example, we put the following two constraints on
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Figure 2. (a) The designed marginal distribution of ∇I, and (b) the

designed marginal distribution of 1I.

distribution p(I),

E p[∇I(x)] = 0 and E p[∇I(x)2] = 12.0 ∀x ∈D.

Since we use a circulant boundary, the first constraint

always holds, and the resulting maximum entropy

probability is

P(I) = 1

Z
exp

{

−λ
∑

x

(I(x + 1) − I(x))2

}

.

The numeric solution given by the FRAME algorithm

is λ = 0.40, and two synthesized texture images are

shown in Figs. 3(b) and (c). Figure 3(a) is a white noise

texture for comparison.

As a comparison, we now ask ∇I(x) to follow

the distribution shown in Fig. 2(a). Clearly in this

case E p[∇I(x)] is a non-Gaussian distribution with

first and second moments as before, i.e., mean = 0

and variance = 12.0. Two synthesized textures are

displayed in Figs. 3(d) and (e). The textures in

Figure 3. (a) The uniform white noise texture, (b, c) the texture

of GMRF, (d, e) the texture with higher order statistics, and (f) the

texture specified with one more filter.

Figs. 3(d) and (e) possess the same first and second

order moments as in Figs. 3(b) and (c), but Figs. 3(d)

and (e) have specific higher order statistics and looks

more specific than in Figs. 3(b) and (c). It demonstrates

that the FRAME model has more expressive power than

the GMRF model.

Now we add a Laplacian filter 1 with impulse re-

sponse [0.5, −1.0, 0.5], and we ask 1I(x) to follow the

distribution shown in Fig. 2(b). Clearly the number of

peaks and valleys in I(x) are specified by the two short

peaks in Fig. 2(b), the synthesized texture is displayed

in Fig. 3(f). This experiment also shows the analogy

between filters and vocabulary.

Experiment 3. This experiment is designed to

demonstrate how a single nonlinear Gabor filter is capa-

ble of forming global periodic textures. The observed

texture is a perfect sine wave with period T1 = 16, hence

it has a single Fourier component. We choose the spec-

trum analyzer S P(T ) with period T = 16. The synthe-

sized texture is in Fig. 4(a). The same is done for

another sine wave that has period T2 = 32, and corre-

spondingly the result is shown in Fig. 4(b). Figure 4

show clear globally periodic signals formed by single

local filters. The noise is due to the frequency resolu-

tion of the filters. Since the input textures are exactly

periodic, the optimal resolution will requires the Gabor

filters to be as long as the input signal, which is com-

putationally more expensive.

6. Experiments in Two Dimensions

In this section, we discuss texture modeling experi-

ments in two dimensions. We first take one texture

as an example to show in detail the procedure of Al-

gorithm 3, then we will apply Algorithm 3 to other

textures.

Figure 5(a) is the observed image of animal fur. We

start from the uniform noise image in Fig. 5(b). The

first filter picked by the algorithm is a Laplacian of

Gaussian filter LG(1.0) and its window size is 5 × 5.

It has the largest error (d(β) = 0.611) among all the

filters in the filters bank. Then we synthesize tex-

ture as shown in Fig. 5(c), which has almost the same

histogram at the subband of this filter (the error d(β)

drops to 0.035).

Comparing Fig. 5(c) with Fig. 5(b), we notice

that this filter captures local smoothness feature of

the observed texture. Then the algorithm sequen-

tially picks five more filters. They are (1) G cos(6.0,
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Figure 4. The observed textures are the pure sine waves with period T = 16, and 32, respectively. Periodic texture synthesized by a pair of

Gabor filters: (a) T = 16, and (b) T = 32.

Figure 5. Synthesis of the fur texture: (a) is the observed texture,

and (b, c, d, e, f) are the synthesized textures using K = 0, 1, 2, 3, 6

filters respectively. See text for interpretation.

120◦), (2) G cos(2.0, 30◦), (3) G cos(12.0, 60◦),
(4) G cos(10.0, 120◦), (5) intensity filter δ( ), each

of which captures features at various scales and

orientations. The sequential conditional errors for these

filters are respectively 0.424, 0.207, 0.132, 0.157,

0.059 and the texture images synthesized using k =

2, 3, 6 filters are shown in Figs. 5(d–f). Obviously,

with more filters added, the synthesized texture gets

closer to the observed one.

To show more details, we display the subband im-

ages of the 6 filters in Fig. 6, the histograms of these

subbands H (α) and the corresponding estimated param-

eters λ(α) are plotted in Figs. 7 and 8, respectively.

In Fig. 7, the histograms are approximately Gaus-

sian functions, and correspondently, the estimated λ(α)

in Fig. 8 are close to quadratic functions. Hence in this

example, the high order moments seemly do not play a

major role, and the probability model can be made sim-

pler. But this will not be always true for other textures.

In Fig. 8, we also notice that the computed λ(α) be-

comes smaller and smaller when α gets bigger, which

suggests that the filters chosen in later steps make less

and less contribution to p(I), and thus confirms our

early assumption that the marginal distributions of a

small number of filtered images are good enough to

capture the underlying probability distribution f (I).

Figure 9(a) is the scene of the mud ground with

footprints of animals, these footprints are filled with

Figure 6. The subband images by applying the 6 filters to the fur

image: (a) Laplacian of Gaussian (T = 1.0), (b) Gabor cosine (T =
6.0, θ = 120◦), (c) Gabor cosine (T = 2.0, θ = 30◦), (d) Gabor

cosine (T = 12, θ = 60), (e) Gabor cosine (T = 10.0, θ = 120◦),
and (f) intensity filter.
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Figure 7. a, b, c, d, e, f are respectively the histograms H (α) for α = 1, 2, 3, 4, 5, 6.

Figure 8. a, b, c, d, e, f are respectively the λ(α) for α = 1, 2, 3, 4, 5, 6.

water and get brighter. This is a case of sparse fea-

tures. Figure 9(b) is the synthesized texture using five

filters chosen by Algorithm 3.

Figure 10(a) is an image taken from the skin of chee-

tah. the synthesized texture using 6 filters is displayed

in Fig. 10(b). We notice that in Fig. 10(a) the texture

is not homogeneous, the shapes of the blobs vary with

spatial locations and the left upper corner is darker than

the right lower one. The synthesized texture, shown in

Fig. 10(b), also has elongated blobs introduced by dif-

ferent filters, but we notice that the bright pixels spread

uniformly across the image.
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Figure 9. (a) The observed texture—mud, and (b) the synthesized one using five filters.

Figure 10. (a) The observed texture—cheetah blob, and (b) the synthesized one using six filters.

Finally we show a texture of fabric in Fig. 11(a),

which has clear periods along both horizontal and

vertical directions. We want to use this texture to test

the use of non-linear filters, so we choose two spectrum

analyzers to capture the first two salient periods, one in

the horizontal direction, the other in the vertical direc-

tion. The filter responses I(α) α = 1, 2, are the sum

of squares of the sine and cosine component responses.

The filter responses are shown in Figs. 11(c, d), and are

almost constant. We also use the intensity filter and the

Laplacian of Gaussian filter LG(
√

2/2) (with window

size 3 × 3) to take care of the intensity histogram and

the smoothness. The synthesized texture is displayed

in Fig. 11(b). If we carefully look at Fig. 11(b), we can

see that this synthesized texture has mis-arranged lines

at two places, which may indicate that the sampling

process was trapped in a local maximum of p(I).

7. The Sampling Strategy for Textons

In this section, we study a special class of textures

formed from identical textons, which psychophysicists

studied extensively. Such texton images are consid-

ered as rising from a different mechanism from other

textures in both psychology perception and previous

texture modeling, and the purpose of this section is

to demonstrate that they can still be modeled by the
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Figure 11. (a) The input image of fabric, (b) the synthesized image with two spectrum analyzers plus the Laplacian of Gaussian filter. (c, d)

the filter response of the two spectrum analyzers for the fabric texture.

FRAME model, and to show an annealing strategy for

computing p(I; 3K , SK ).

Figures 12(a) and (b) are two binary (−1, +1 for

black and white pixels) texton images with circle and

cross as the primitives. These two image are simply

generated by sequentially superimposing 128 15 × 15

masks on a 256×256 lattice using uniform distribution,

provided that the dropping of one mask does not destroy

the existing primitives. At the center of the mask is a

circle (or a cross).

For these textures, choosing filters seems easy: we

simply select the above 15×15 mask as the linear filter.

Figure 12. Two typical texton images (a) circle, and (b) cross.

Take the circle texton as an example. By applying the

filter to the circle image and a uniform noise image,

we obtain the histograms H obs (solid curve) and H(x)

(dotted curve) plotted in Fig. 13(a). We observe that

there are many isolated peaks in H obs, which set up

“potential wells” so that it becomes extremely unlikely

to change a filter response at a certain location from

one peak to another by flipping one pixel at a time.

To facilitate the matching process, we propose the

following heuristics. We smooth H obs with a Gaussian

window Gσ , or equivalently run the “heat” diffusion

equation on H obs(x, t) within the interval [x0, xN ],

where x0 and xN are respectively the minimal and

maximal filter response.

d H obs(x, t)

dt
= ∂2 H obs(x, t)

∂2x
,

H obs(x, 0) = H obs(x),
∂ H obs

∂x
(x0) = 0,

∂ H obs

∂x
(xN ) = 0,

The boundary conditions help to preserve the total

“heat”. Obviously, the larger t is, the smoother the

H obs(x, t) will be. Therefore, we start from matching

H(x) to H obs(x, t) with a large t (see Fig. 14(a), then
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Figure 13. (a) The solid curve is the histogram of the circle image, and the dotted curve is the histogram of the noise image, and (b) the

estimated λ( ) function in the probability model for the image of circles.

Figure 14. The diffused histogram Hobs(x, t) with t get smaller and smaller from a to f.

gradually decrease t and match H(x) to the histograms

shown in Figs. 14(b–f) sequentially. This process is

similar to the simulated annealing method. The intu-

itive idea is to set up “bridges” between the peaks in

the original histogram, which encourages the filter re-

sponse change to the two ends, where the texton forms,

then we gradually destruct these “bridges”.

At the end of the process, the estimated λ func-

tion for the circle texton is shown in Fig. 13(b), and

the synthesized images are shown in Fig. 15. We no-

tice that the cross texton is more difficult to deal

with because it has slightly more complex structures

than the circle, and may need more carefully designed

filters.

8. Discussion

Although there is a close relationship between FRAME

and the previous MRF models, the underlying philoso-

phies are quite different. Traditional MRF approaches

favor the specification of conditional distributions

(Besag, 1973). For auto-models, p(I(Ev) | I(−Ev)) are

linear regressions or logistic regressions, so the mod-

eling, inference, and interpretation can be done in a
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Figure 15. Two synthesized texton images.

traditional way. While it is computationally efficient

for estimating the β coefficients, this method actually

limits our imagination for building a general model.

Since the only way to generalize auto-models in the

conditional distribution framework is to either increase

neighborhood size, and thus introduce more explana-

tory variables in these auto-regressions, or introduce

interaction terms (i.e., high order product terms of the

explanatory variables). However, even with a modest

neighborhood (e.g., 13 × 13), the parameter size will

be too large for any sensible inference.

Our FRAME model, on the contrary, favors the spec-

ification of the joint distribution and characterizes lo-

cal interactions by introducing non-linear functions of

filter responses. This is not restricted by the neighbor-

hood size since every filter introduces the same num-

ber of parameters regardless of its size, which enables

us to explore structures at large scales (e.g., 33 × 33

for the fabric texture). Moreover, FRAME can easily

incorporate local interactions at different scales and

orientations.

It is also helpful to appreciate the difference between

FRAME and the Gibbs distribution although both focus

on the joint distributions. The Gibbs distribution is

specified via potentials of various cliques, and the fact

that most physical systems only have pair potentials

(i.e., no potentials from the cliques with more than

two pixels) is another reason why most MRF models

for textures are restricted to auto-models. FRAME, on

the other hand, builds potentials from finite-support fil-

ters and emphasizes the marginal distributions of filter

responses.

Although it may take a large number of filters to

model a wide variety of textures, when it comes to mod-

eling a certain texture, only a parsimonious set of the

most meaningful filters needs to be selected. This se-

lectivity greatly reduces the parameter size, thus allows

accurate inference and modest computing. So FRAME

is like a language: it has an efficient vocabulary (of fil-

ters) capable of describing most entities (textures), and

when it comes to a specific entity, a few of the most

meaningful words (filters) can be selected from the vo-

cabulary for description. This is similar to the visual

coding theory (Barlow et al., 1989; Field, 1989) which

suggests that the sparse coding scheme has advantages

over the compact coding scheme. The former assumes

non-Gaussian distributions for f (I), whereas the latter

assumes Gaussian distributions.

Compared to the filtering method, FRAME has the

following advantages: (1) solid statistical modeling,

(2) it does not rely on the reversibility or reconstruc-

tion of I from {I(α)}, and thus the filters can be designed

freely. For example, we can use both linear and non-

linear filters, and the filters can be highly correlated

to each other, whereas in the filtering method, a ma-

jor concern is whether the filters form a tight frame

(Daubechies, 1992).

There are various classifications for textures with

respect to various attributes, such as Fourier and

non-Fourier corresponding to whether the textures

show periodic appearance; deterministic and stochastic

corresponding to whether the textures can be charac-

terized by some primitives and placement rules; and

macro- and micro-textures in relation to the scales of

local structures. FRAME erases these artificial bound-

aries and characterizes them in a unified model with

different filters and parameter values. It has been well

recognized that the traditional MRF models, as spe-

cial cases of FRAME, can be used to model stochas-

tic, non-Fourier micro-textures. From the textures we

synthesized, it is evident that FRAME is also capable

of modeling periodic and deterministic textures (fab-

ric and pulses), textures with large scale elements (fur

and cheetah blob), and textures with distinguishable

textons (circles and cross bars), thus it realizes the full

potential of MRF models.
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But the FRAME model is computationally very ex-

pensive. The computational complexity of the FRAME

model comes from two major aspects. (1) When bigger

filters are adopted to characterize low resolution fea-

tures, the computational cost will increase proportion-

ally with the size of the filter window. (2) The marginal

distributions E p[H (α)] are estimated from sampled im-

ages, which requires long iterations for high accuracy

of estimation. One promising way to reduce the com-

putational cost is to combine the pyramid represen-

tation with the pseudo-likelihood estimation (Besag,

1977). The former cuts the size of low resolution fil-

ters by putting them at the high levels of the pyramid as

did in (Popat and Picard, 1993), and the latter approx-

imates E p[H (α)] by pseudo-likelihood and thus avoid

the sampling process. But this method shall not be

studied in this paper.

No doubt many textures will not be easy to model,

for example some human synthesized textures, such as

textures on oriental rugs and clothes. It seems that the

synthesis of such textures requires far more sophisti-

cated or high-level features than those we used in this

paper, and these high-level features may correspond to

high-level visual process. At the same time, many the-

oretical issues remain yet to be fully understood, for

example, the convergence properties of the sampling

process and the definition of the best sampling proce-

dures; the relationship between the sampling process

and the physical process which forms the textures of

nature and so on; and how to apply this texture model

to the image segmentation problem (Zhu and Yuille,

1996). It is our hope that this work will simulate future

research efforts in this direction.

Appendix: Filter Pursuit and Minimax Entropy

This appendix briefly demonstrates the relationship

between the filter pursuit method and the minimax

entropy principle (Zhu et al., 1996).

Let p(I; 3K , SK ) be the maximum entropy distri-

bution obtained at step k (see Eq. (18)), since our

goal is to estimate the underlying distribution f (I),

the goodness of p(I; 3K , SK ) can be measured by the

Kullback-Leibler distance between p(I; 3K , SK ) and

f (I) (Kullback and Leibler, 1951):

K L( f (I), p(I; 3K , SK ))

=
∫

f (I) log
f (I)

p(I; 3K , SK )
dI

= E f [log f (I)] − E f [log p(I; 3K , SK )].

Since E p(I;3K ,SK )[H (α)] = E f [H (α)] for α = 1, 2, . . . ,

K , it can be shown that E f [log p(I; 3K , SK )] =
E p(I;3K ,SK )[log p(I; 3K , SK )] = −entropy(p(I; 3K ,

SK )), thus

K L( f (I), p(I; 3K , SK ))

= entropy(p(I; 3K , SK )) − entropy( f (I)).

As entropy( f (I)) is fixed, to minimize K L( f, p(I;
3K , SK ))we need to choose SK such that p(I; 3K , SK )

has the minimum entropy, while given the selected fil-

ter set SK , p(I; 3K , SK ) is computed by maximizing

entropy(p(I)). In other words, for a fixed filter number

K , the best set of filters is chosen by

SK = arg min
SK ⊂B

{

max
p∈ÄK

entropy(p(I))

}

(29)

where ÄK is defined as Eq. (14). We call Eq. (29) the

minimax entropy principle (Zhu et al., 1996).

A stepwise greedy algorithm to minimize the en-

tropy proceeds as the following. At step k + 1,

suppose we choose F (β), and obtain the ME distribu-

tion p(I; 3+, S+) so that E p(I;3+,S+)[H (α)] = f (α) for

α = 1, 2, .., k, β. Then the goodness of F (β) is mea-

sured by the decrease of the Kullback-Leibler distance

K L( f (I), p(I; 3k, Sk))−K L( f (I), p(I; 3+, S+)). It

can be shown that

K L( f (I), p(I; 3k, Sk)) − K L( f (I), p(I; 3+, S+))

= 1

2

(

f (β) − E p(I;3k ,Sk )

[

H (β)
]T )

M−1

×
(

f (β) − E p(I;3k ,Sk )

[

H (β)
])

, (30)

where M is a covariance matrix of H (β), for details see

(Zhu et al., 1996). Equation (30) measures a distance

between f (β) and E p(I;3k ,Sk )[H (β)] in terms of vari-

ance, and therefore suggests a new form for the distance

D(E p(I;3k ,Sk )[H (β)], f (β)) in Eq. (26), and this new

form emphasizes the tails of the marginal distribution

where important texture features lies, but the computa-

tional complexity is higher than the L1-norm distance.

So far we have shown the filter selection in Algorithm 3

is closely related to a minimax entropy principle.
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Notes

1. Among statisticians, MRF usually refers to those models where

the Markov neighborhood is very small, e.g., 2 or 3 pixels away.

Here we use it for any size of neighborhood.

2. Here, it is reasonable to assume that φn(x) is independent of

φ j (x) if i 6= j .

3. It may help understand the spirit of this theorem by comparing it

to the slice-reconstruction of 3D volume in tomography.

4. Throughout this paper, we use circulant boundary conditions.

5. Empirically, 128 × 128 or 256 × 256 seems to give a good esti-

mation.

6. We assume the histogram of each subband I(α) is normalized

such that
∑

i H
(α)
i = 1, therefore, all the {λ(α)

i , i = 1, . . . , L}
computed in this algorithm have one extra degree of freedom for

each α, i.e., we can increase {λ(α)
i , i = 1, . . . , L} by a constant

without changing p(I; 3K , SK ). This constant will be absorbed

by the partition function Z(3K ).

7. Note that the white noise image with uniform distribution are the

samples from p(I; 3K , SK ) with λ
(α)
i = 0.

8. Since both histograms are normalized to have sum = 1, then

error ∈ [0, 1]. We note this measure is robust with respect to the

choice of the bin number L (e.g., we can take L = 16, 32, 64),

as well as the normalization of the filters.

References

Barlow, H.B., Kaushal, T.P., and Mitchison, G.J. 1989. Finding min-

imum entropy codes. Neural Computation, 1:412–423.

Bergen, J.R. and Adelson, E.H. 1991. Theories of visual texture

perception. In Spatial Vision, D. Regan (Eds.), CRC Press.

Besag, J. 1973. Spatial interaction and the statistical analysis of lat-

tice systems (with discussion). J. Royal Stat. Soc., B, 36:192–

236.

Besag, J. 1977. Efficiency of pseudolikelihood estimation for simple

Gaussian fields. Biometrika, 64:616–618.

Chubb, C. and Landy, M.S. 1991. Orthogonal distribution analy-

sis: A new approach to the study of texture perception. In Comp.

Models of Visual Proc., M.S. Landy et al. (Eds.), MIT Press.

Coifman, R.R. and Wickerhauser, M.V. 1992. Entropy based algo-

rithms for best basis selection. IEEE Trans. on Information Theory,

38:713–718.

Cross, G.R. and Jain, A.K. 1983. Markov random field texture mod-

els. IEEE, PAMI, 5:25–39.

Daubechies, I. 1992. Ten Lectures on Wavelets, Society for Industry

and Applied Math: Philadephia, PA.

Daugman, J. 1985. Uncertainty relation for resolution in space, spa-

tial frequency, and orientation optimized by two-dimensional vi-

sual cortical filters. Journal of Optical Soc. Amer., 2(7).

Diaconis, P. and Freedman, D. 1981. On the statistics of vision: The

Julesz conjecture. Journal of Math. Psychology, 24.

Donoho, D.L. and Johnstone, I.M. 1994. Ideal de-noising in an or-

thonormal basis chosen from a libary of bases. Acad. Sci. Paris,

Ser. I. 319:1317–1322.

Field, D. 1987. Relations between the statistics of natural images

and the response properties of cortical cells. J. of Opt. Soc. Amer.,

4(12).

Gabor, D. 1946. Theory of communication. IEE Proc., 93(26).

Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distri-

bution, and the Bayesian restoration of images. IEEE Trans. PAMI,

6:721–741.

Geman, S. and Graffigne, C. 1986. Markov random field image mod-

els and their applications to computer vision. In Proc. Int. Congress

of Math., Berkeley, CA.

Geyer, C.J. and Thompson, E.A. 1995. Annealing Markov chain

Monto Carlo with applications to ancestral inference. J. of Amer.

Stat. Assoc., 90:909–920.

Haralick, R.M. 1979. Statistics and structural approach to texture. In

Proc. IEEE, 67:786–804.

Heeger, D.J. and Bergen, J.R. 1995. Pyramid-based texture analy-

sis/synthesis. Computer Graphics, in press.

Jain, A.K. and Farrokhsia, F. 1991. Unsupervised texture segmenta-

tion using Gabor filters. Pattern Recognition, 24:1167–1186.

Jaynes, E.T. 1957. Information theory and statistical mechanics.

Physical Review, 106:620–630.

Julesz, B. 1962. Visual pattern discrimination. IRE Trans. of Infor-

mation Theory, IT-8:84–92.

Kullback, S. and Leibler, R.A. 1951. On information and sufficiency.

Annual Math. Stat., 22:79–86.

Lee, T.S. 1992. Image representation using 2D Gabor wavelets.

To appear in IEEE Trans. of Pattern Analysis and Machine

Intelligence.

Mallat, S. 1989. Multiresolution approximations and wavelet or-

thonormal bases of L2(R). Trans. Amer. Math. Soc., 315:69–87.

Mao, J. and Jain, A.K. 1992. Texture classification and segmen-

tation using multiresolution simultaneous autoregressive models.

Pattern Recognition, 25:173–188.

McCormick, B.H. and Jayaramamurthy, S.N. 1974. Time series mod-

els for texture synthesis. Int. J. Comput. Inform. Sci., 3:329–343.

Popat, K. and Picard, R.W. 1993. Novel cluster-based probability

model for texture synthesis, classification, and compression. In

Proc. SPIE Visual Comm., Cambridge, MA.

Qian, W. and Titterington, D.M. 1991. Multidimensional Markov

chain models for image textures. J. Royal Stat. Soc., B,

53:661–674.

Silverman, M.S., Grosof, D.H., De Valois, R.L., and Elfar, S.D.

1989. Spatial-frequency organization in primate striate cortex. In

Proc. Natl. Acad. Sci. U.S.A., 86.

Simoncelli, E.P., Freeman, W.T., Adelson, E.H., and Heeger, D.J.

1992. Shiftable multiscale transforms. IEEE Trans. on Information

Theory, 38:587–607.

Tsatsanis, M.K. and Giannakis, G.B. 1992. Object and texture clas-

sification using higher order statistics. IEEE Trans on PAMI,

7:733–749.

Winkler, G. 1995. Image Analysis, Random Fields and dynamic

Monte Carlo Methods, Springer-Verlag.

Witkin, A. and Kass, M. 1991. Reaction-diffusion textures. Com-

puter Graphics, 25:299–308.

Yuan, J. and Rao S.T. 1993. Spectral estimation for random fields

with applications to Markov modeling and texture classification.

Markov Random Fields, Chellappa and Jain (Eds.), pp. 179–

209.

Zhu, S.C. and Yuille, A.L. 1996. Region Competition: unifying

snakes, region growing, and Bayes/MDL for multi-band image

segmentation. IEEE Trans. on PAMI, 18(9).

Zhu, S.C., Wu, Y.N., and Mumford, D.B. 1996. Minimax entropy

principle and its applications. Harvard Robotics Lab. Technique

Report.


