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Abstract. From a general definition of nonlinear expectations, viewed as operators preserv-
ing monotonicity and constants, we derive, under rather general assumptions, the notions of
conditional nonlinear expectation and nonlinear martingale. We prove that any such nonlin-
ear martingale can be represented as the solution of a backward stochastic equation, and in
particular admits continuous paths. In other words, it is a g-martingale.

1. Introduction

A (possibly nonlinear) expectation on a probability space (�,F, P ) is a map

E : L2(�,F, P ) �−→ R

which satisfies the following properties:

if X1 ≥ X2 a.s., E[X1] ≥ E[X2], and

if X1 ≥ X2 a.s., E[X1] = E[X2] ⇐⇒ X1 = X2 a.s.

E[c] = c, for each constant c.

In particular, if E[·] is linear, then it becomes a classic expectation under the prob-
ability measure defined by PE (A) = E[1A], A ∈ F . In fact, there is a one-to-one
correspondence between the set of linear expectations and that of σ -additive prob-
ability measures on (�,F). But in the nonlinear case this one-to-one correspon-
dence no longer holds true: a nonlinear expectation can always induce a, generally
non-additive, ‘probability measure’ by P(A) = E[1A]. But, in general, a (possibly
non-additive) probability measure can not characterize a nonlinear expectation. For
example, if E is the classical linear expectation defined by the probability measure
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P , and f denotes a strictly increasing continuous function on R such that f (x) = x

whenever 0 ≤ x ≤ 1 , Ef [X] = f−1(E[f (X)]) defines a non linear expectation
(unless f is a linear mapping). But clearly, any such expectation induces the same
probability measure, that is P itself: P(A) = E[1A] = Ef [1A]. In fact, for each
nonlinear expectation E , f−1(E[f (X)]) defines a different nonlinear expectation
associated with the same non-additive probability.

A nonlinear expectation is said to be filtration-consistent under a given filtration
{Ft }t≥0 if, for each t ≥ 0, the corresponding conditional expectation E[X|Ft ] of
X under Ft , characterized by

E
[
E[X|Ft ]1A

]
= E[X1A], ∀A ∈ Ft ,

exists.
A type of filtration-consistent nonlinear expectations, under a Brownian filtra-

tion, was introduced in [11], under the name “g-expectation” (see Section 2 for
details). These g-expectations can be considered as a nonlinear extension of the
well-known Girsanov transformations. It is a nonlinear mapping, but it preserves
almost all other properties of the classical linear expectations. For more detailed
views on this topic, we refer to [11], [4], [12], or [1] where some special cases are
studied in depth, including the y-independent case, which will turn out to be the
natural setting behind the present work. For applications of g-expectations to utility
theory in economics, we refer to [3]. Note that the original motivation for studying
g-expectations comes from the theory of expected utility, which is fundamentally
important in economics. This theory is seriously challenged by the well-known
Allais paradox and Ellsberg paradox. The notion of non-additive probability, or
capacity, is then introduced to axiomatize the preferences which do not satisfy von
Neumann-Morgenstern’s axioms. Nonlinear expectations are another useful notion
in this setting.

A very interesting problem is: is this notion of g-expectation general enough
to represent all “enough regular” filtration-consistent nonlinear expectations? An-
swering this question is the main objective of the present paper. We will prove in
Section 7 that if for a large enough µ > 0, a nonlinear expectation E[·] is dominated
by the ‘µ|z|-expectation’ Eµ[·] (that is, the g-expectation defined by g(z) = µ|z|),
and if E[X + η|Ft ] = E[X|Ft ] + η for all Ft -measurable η, then, there exists a
unique g such that E[·] is the nonlinear expectation defined by g, still according
to the definition of [11]. Our main tool will be the decomposition theorem for
g-supermartingales proved in [12], developed here along a new version suitable
for continuous E-supermartingales, which we prove in Section 6. Basic definitions
about g-expectations are given in Section 2. Sections 3 and 4 give the general
framework of non-linear expectations, while Section 5 is devoted to martingales
defined under non-linear expectations.

2. Basic notations and results about g-expectations

Let (�,F, P ) be a probability space and let (Bt )t≥0, be a d-dimensional standard
Brownian motion on this space such that B0 = 0. Let (Ft )t≥0 be the filtration
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generated by this Brownian motion:

Ft = σ {Bs, s ∈ [0, t]} ∨ N ,

where N is the set of all P -null subsets. Let T > 0 be a given number. Without
loss of generality, in this paper, we always work in the space (�,FT , P ), and only
consider processes indexed by t ∈ [0, T ].

L2
F (0, T ;E) will denote the space of all E-valued, (Ft )t≤T -adapted processes

φ such that

E

∫ T

0
|φ(s)|2ds < ∞.

We will shorten this notation by putting L2
F (0, T )= L2

F (0, T ; R).
We first recall the notion of g-expectations, defined in [11], from which most

basic material of this section is taken . We are given a function g:

g(ω, t, y, z) : � × [0, T ] × R × Rd �−→ R

satisfying


(i) g(·, y, z) ∈ L2
F (0, T ), for each y ∈ R, z ∈ Rd;

(ii) g(·, y, 0) ≡ 0, for each y ∈ R;
(iii) ∃C0, µ > 0 such that ∀y1, y2 ∈ R, z1, z2 ∈ Rd,

|g(t, y1, z1) − g(t, y2, z2)| ≤ C0|y1 − y2| + µ|z1 − z2|.
(2.1)

For each given X ∈ L2(�,FT , P ), let (yX(·), zX(·)) ∈ L2
F (0, T ;R1 ×Rd) be the

unique solution of the following backward stochastic differential equation (BSDE):

−dyX(t) = g(t, yX(t), zX(t))dt − zX(t)dBt ,

yX(T ) = X.

(We refer to [9] for definitions and basic results about BSDEs; it will be enough
here to remember that, provided that g satisfies (2.1), there is a unique pair (yX(·),
zX(·)) of adapted processes solving the equation above).

Definition 2.1. (g-expectation) The g-expectation Eg[·] : L2(�,F, P ) �−→ R

is defined by
Eg[X] = yX(0).

Definition 2.2. (conditional g-expectation) The conditional g-expectation of X
with respect to Ft is defined by

Eg[X|Ft ] = yX(t).

If τ ≤ T is a stopping time, we define similarly

Eg[X|Fτ ] = yX(τ).

g-expectations and conditional g-expectations are in general not linear. However,
they meet the following basic properties of usual expectations (see [11] for proofs):
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Proposition 2.1.
(i) (preserving of constants): For each constant c, Eg[c] = c;

(ii) (monotonicity): If X1 ≥ X2 a.s., then Eg[X1] ≥ Eg[X2];
(iii) (strict monotonicity): If X1 ≥ X2 a.s., and P(X1 > X2) > 0, then

Eg[X1] > Eg[X2].

Proposition 2.2.
(i) If X is Ft -measurable, then Eg[X|Ft ] = X;

(ii) For all stopping times τ and σ ≤ T , Eg

[
Eg[X|Fτ ]|Fσ

]
= Eg[X|Fτ∧σ ];

(iii) IfX1 ≥ X2 a.s., thenEg[X1|Ft ] ≥ Eg[X2|Ft ]; if, moreover,P(X1 > X2) > 0,

then P
(
Eg[X1|Ft ] > Eg[X2|Ft ]

)
> 0;

(iv) For each B ∈ Ft , Eg[1BX|Ft ] = 1BEg[X|Ft ].

Proposition 2.3. Eg[X|Ft ] is the unique random variable η in L2(�,Ft , P ) such
that

Eg[1AX] = Eg[1Aη] for all A ∈ Ft . (2.2)

Definition 2.3. (g-martingales) A process (Yt )0≤t≤T such that E[Y 2
t ] < ∞ for

all t is a g-martingale (resp. g-supermartingale, g-submartingale) iff

Eg[Yt |Fs] = Ys, (resp. ≤ Ys,≥ Ys), ∀s ≤ t ≤ T .

In the following proposition, ‖ · ‖p denotes the norm of Lp(�,FT , P ).

Proposition 2.4. Let g(ω, t, y, z) : � × [0, T ] × R × Rd �−→ R be a given func-
tion satisfying (2.1). Then for every ε such that 0 < ε ≤ 1, there exists a constant
Cε such that, for every X,

|Eg[X]| ≤ Cε‖X‖1+ε (2.3)

Proof . This result comes from Girsanov’s Theorem. Indeed, if we write Eg[X] as
the initial value of the solution of a BSDE, it comes

Eg[X] = Y0 = X +
∫ T

0
g(s, Ys, Zs)ds −

∫ T

0
ZsdBs

= X −
∫ T

0
ZsdWs

where we have set

Wt = −
∫ t

0

g(s, Ys, Zs)

Zs

ds + Bt . (2.4)

(with the convention 0/0 = 0, (2.4) makes sense thanks to (2.1).)
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By Girsanov’s Theorem, W is then a Q-Brownian motion, where Q is the
probability mesure on (�,FT ) defined by

L := dQ

dP
= e

∫ T
0

g(s,Ys ,Zs )
Zs

dBs− 1
2

∫ T
0

∣∣∣ g(s,Ys ,Zs )
Zs

∣∣∣2

ds
.

Then, as L is in every Lp (1 ≤ p < ∞), Hölder’s inequality yields

|Eg[X]| = |EQ(X)|
= |E(LX)|
≤ ‖L‖ 1+ε

ε
‖X‖1+ε,

whence the claim. ✷

We shall often have to assume that

g does not depend on y. (2.5)

The importance of this special setting follows from the following lemma, which
is proven in [1], subsection 4.2:

Lemma 2.1. Let g(ω, t, y, z) : � × [0, T ] × R × Rd �−→ R be a given function
satisfying (2.1). Then

Eg[X + η|Ft ] = Eg[X|Ft ] + η, ∀η ∈ L2(�,Ft , P ) (2.6)

if and only if g satisfies (2.5)

We will always write in the sequel Eµ[X] ≡ Eg[X] for g = µ|z| and E−µ[X] =
Eg[X] for g ≡ −µ|z|. Note that

∀C > 0, Eµ[CX|Ft ] = CEµ[X|Ft ] (2.7)

and
∀C < 0, Eµ[CX|Ft ] = −CEµ[−X|Ft ].

Next lemma will be useful later.

Lemma 2.2. We have for all µ > 0 and X ∈ L2(�,FT , P ),

E
[
Eµ[X|Ft ]

2
]

≤ eµ
2(T−t)E[X2].

Proof . By definition,

Eµ[X|Ft ] = X +
∫ T

t

µ|Zs |ds −
∫ T

t

ZsdBs.

Ito’s formula gives

Eµ[X|Ft ]
2 = X2 +

∫ T

t

2µEµ[X|Fs]|Zs |ds−2
∫ T

t

Eµ[X|Fs]ZsdBs −
∫ T

t

Z2
s ds.
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Taking expectations, we deduce that

E
[
Eµ[X|Ft ]

2
]

= E[X2] +
∫ T

t

E[2µEµ[X|Fs]|Zs |]ds −
∫ T

t

E[Z2
s ]ds

≤ E[X2] + µ2
∫ T

t

E
[
Eµ[X|Fs]

2
]
ds

(because of 2ab ≤ a2 + b2). The claim follows then immediately from Gronwall’s
inequality. ✷

Next Proposition of Doob-Meyer’s type is taken from [12].

Proposition 2.5. Assume that g satisfies (2.1) and (2.5), and that (Yt ) is a right-
continuous g-supermartingale on [0, T ] such that E[supt≤T Y 2

t ] < ∞. Then there
exists a unique pair (M,A) of processes such that

M is a g-martingale;
A is an increasing càdlàg process;

Yt = Mt − At, ∀t ∈ [0, T ].

More specifically, Y is the unique solution of the BSDE

Yt = YT +
∫ T

t

g(s, Zs)ds + (AT − At) −
∫ T

t

ZsdBs, t ∈ [0, T ].

We end this Section by giving an appropriate version of a downcrossing in-
equality given in [5] as Theorem 6.

Proposition 2.6. Let g satisfy (2.1) and (Yt ) be a g-supermartingale on [0, T ]. Let
0 = t0 < t1 < · · · < tn = T , and a < b be two constants. Then the number
Db

a [Y, n] of downcrossings of [a, b] by {Xtj }0≤j≤n satisfies

E−µ
[
Db

a [Y, n]
]

≤ 1

b − a
Eµ[Y0 ∧ b − YT ∧ b].

Remark 2.1. Contrarily to Theorem 6 in [5], we need not assume that Y is posi-
tive: indeed, as g(·, y, 0) = 0, one checks easily that the proof given in [5] can be
carried over for every g-supermartingale.

Remark 2.2. This proposition allows us to prove, by classical means, that a
g-supermartingale (Yt ) admits a càdlàg modification if and only if the mapping t →
Eg(Yt ) is right-continuous. More details on this topic will be given in Lemma 5.2.

3. Filtration-consistent nonlinear expectations

We now turn to the main object of this paper.
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Definition 3.1. A nonlinear expectation is a functional:

E[·] : L2(�,FT , P ) �−→ R

which satisfies the following properties:
(i) Strict monotonicity:

if X1 ≥ X2 a.s., E[X1] ≥ E[X2], and

if X1 ≥ X2 a.s., E[X1] = E[X2] ⇐⇒ X1 = X2 a.s.

(ii) preserving of constants:

E[c] = c, for each constant c.

Lemma 3.1. Let t ≤ T and η1, η2 ∈ L2(�,Ft , P ). If

E[η11A] = E[η21A], ∀A ∈ Ft ,

then

η2 = η1, a.s. (3.1)

Proof . We choose A = {η1 ≥ η2} ∈ Ft . Since (η1 − η2)1A ≥ 0 and E[η11A] =
E[η21A], it follows that η11A = η21A a.s. Thus η2 ≥ η1 a.s. With the same ar-
gument we can prove that η1 ≥ η2 a.s. It follows that (3.1) holds. The proof is
complete. ✷

Definition 3.2. For the given filtration (Ft )0≤t≤T , a nonlinear expectation is called
F-consistent expectation(or F-expectation) if for each X ∈ L2(�,FT , P ) and for
each t ∈ [0, T ] there exists a random variable η ∈ L2(�,Ft , P ), such that

E[X1A] = E[η1A], ∀A ∈ Ft .

From Lemma 3.1 above, such an η is uniquely defined. We denote it by η =
E[X|Ft ]. E[X|Ft ] is called the conditional F-expectation of X under Ft . It is
characterized by

E[X1A] = E
[
E[X|Ft ]1A

]
, ∀A ∈ Ft . (3.2)

Remark that, if f is a continuous, strictly increasing function on R such that

f (0) = 0, E[X] = f−1
(
E[f (X)]

)
defines an F-expectation. Indeed, it is readily

seen that E[X|Ft ] := f−1
(
E[f (X)|Ft ]

)
satisfies (3.2).

The following lemma is obvious:

Lemma 3.2. Let g(ω, t, y, z) : �×[0, T ]×R×Rd �−→ R be a function satisfying
(2.1), then the related g-expectation Eg[·] is an F-expectation.
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Lemma 3.3. We have, for each 0 ≤ s ≤ t ≤ T ,

E
[
E[X|Ft ]|Fs

]
= E[X|Fs] a.s. (3.3)

In particular,

E
[
E[X|Ft ]

]
= E[X]. (3.4)

Proof . For each A ∈ Fs we have A ∈ Ft . Thus

E
[
E[E[X|Ft ]|Fs

]
1A

]
= E

[
E[X|Ft ]1A

]
= E[X1A]

= E
[
E[X|Fs]1A

]
It follows from Lemma 3.1 that (3.3) holds.

(3.4) follows then easily from the fact that F0 is the trivial σ -algebra (since
B0 = 0). ✷

Lemma 3.4. We have a.s.

E[X1A|Ft ] = E[X|Ft ]1A, ∀A ∈ Ft . (3.5)

Proof . For each B ∈ Ft , we have

E
[
E[X1A|Ft ]1B

]
= E[X1A1B ]

= E
[
E[X|Ft ]1A∩B

]
= E

[
[E[X|Ft ]1A]1B

]
.

✷

Lemma 3.5. For any X, ζ ∈ L2(�,FT , P ) and for each t ∈ [0, T ] and A ∈ Ft

we have
E[X1A + ζ1AC |Ft ] = E[X|Ft ]1A + E[ζ |Ft ]1AC

Proof . According to Lemma 3.4 above,

E[X1A + ζ1AC |Ft ] = E[X1A + ζ1AC |Ft ]1A + E[X1A + ζ1AC |Ft ]1AC

= E[(X1A + ζ1AC )1A|Ft ] + E[(X1A + ζ1AC )1AC |Ft ]

= E[X1A|Ft ] + E[ζ1AC |Ft ]

= E[X|Ft ]1A + E[ζ |Ft ]1AC .

✷

Lemma 3.6. For any X, Y ∈ L2(�,FT , P ), if X ≤ Y a.s., then we have for each
t ∈ [0, T ],

E[X|Ft ] ≤ E[Y |Ft ] a.s.

If moreover E[X|Ft ] = E[Y |Ft ] a.s. for some t ≥ 0, then X = Y a.s.
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Proof . Define Xt = E[X|Ft ] and Yt = E[Y |Ft ], and let A ∈ Ft . Because of the
monotonicity of E , we have

E(Xt1A) = E(X1A) ≤ E(Y1A) = E(Yt1A).

Now, take A = {Xt > Yt }. If P(A) > 0, the strict monotonicity of E implies that

E(Xt1A) > E(Yt1A).

Comparing the two above inequalities, we conclude that P(A) = 0.
At last, assume that E[X|Ft ] = E[Y |Ft ] a.s. for some t ≥ 0. Then E[X] =

E[Y ] and it follows again from the strict monotonicity of E that X = Y a.s. ✷

4. Eµ-dominated F -expectations

From now on, we will somewhat restrict the scope of our study. Recall that we have
defined Eµ[X] = Eg[X] for g ≡ µ|z| and E−µ[X] = Eg[X] for g ≡ −µ|z|.

We will study now F-expectations dominated by Eµ, for some large enough
µ > 0, according to the following

Definition 4.1. (Eµ-domination) Given µ > 0, we say that an F-expectation E is
dominated by Eµ if

E[X + η] − E[X] ≤ Eµ[η], ∀X, η ∈ L2(�,FT , P ) (4.1)

Remark 4.1. For any g satisfying (2.1) and (2.5), the associated g-expectation is
dominated by Eµ, where µ is the Lipschitz constant in (2.1).

Lemma 4.1. If E is dominated by Eµ for some µ > 0, then

E−µ[η] ≤ E[X + η] − E[X] ≤ Eµ[η]. (4.2)

Proof . It is a simple consequence of

E−µ[η|Ft ] = −Eµ[−η|Ft ].

✷

Lemma 4.2. If E is dominated by Eµ for some µ > 0, then E[·] is, for all ε ∈ ]0, 1],
a continuous operator on L1+ε(�,FT , P ) in the following sense:

∃C > 0, |E[ξ1]−E[ξ2]| ≤ C ‖ξ1 − ξ2‖L1+ε , ∀ξ1, ξ2 ∈ L2(�,FT , P ). (4.3)

Proof . The claim follows easily from Lemma 4.1 above and Proposition 2.4. ✷

Remark 4.2. Note that Lemma 4.2 provides easy examples of F-expectations that

are not µ-dominated : just take E[X] = f−1
(
E[f (X)]

)
with f (x) = x

5
3 and

ε = 1/2 for instance.
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Until the end of the paper, we will deal with F-expectations E[·] also satisfying
the following condition:

E[X + η|Ft ] = E[X|Ft ] + η, ∀X ∈ L2(�,FT , P ) and η ∈ L2(�,Ft , P )

(4.4)
Recall that, when E[·] is a g-expectation, (4.4) means that g satisfies (2.5). The
meaning of this condition is obvious: the nonlinearity depends only on the risks.

We observe also that an expectation EQ[·] under a Girsanov transformation
dQ

dP
satisfies this assumption.

Our first result connected to (4.4) will consist in deducing ‘Eµ-domination at
time t’ from (4.1). This will be correctly stated and proved in Lemma 4.4, but we
need first to introduce some new notation.

For a given ζ ∈ L2(�,FT , P ), we consider the mapping Eζ [·] defined by

Eζ [X] = E[X + ζ ] − E[ζ ] : L2(�,FT , P ) �−→ R. (4.5)

Lemma 4.3. If E[·] is an F-expectation satisfying (4.1) and (4.4), then the mapping
Eζ [·] is also an F-expectation satisfying (4.1) and (4.4). Its conditional expectation
under Ft is

Eζ [X|Ft ] = E[X + ζ |Ft ] − E[ζ |Ft ]. (4.6)

Proof . It is easily seen that Eζ [·] is a nonlinear expectation.
We now prove that the notion Eζ [X|Ft ] defined in (4.6) is actually the condi-

tional F-expectation induced by Eζ [·] under Ft .
Indeed, put G(X, ζ,Ft ) = E[X + ζ |Ft ] − E[ζ |Ft ]. We want to show that, for

all A ∈ Ft , Eζ (G(X, ζ,Ft )1A) = Eζ (X1A). Computations give:

Eζ [G(X, ζ,Ft)] = E
[
E[X+ζ |Ft ]−E[ζ |Ft ]+ζ

∣∣∣Ft

]
−E[ζ] (by (3.4))

= E
[
E[X+ζ |Ft]−E[ζ |Ft]+E[ζ |Ft]

]
−E[ζ] (by (4.4))

= E
[
E[X + ζ |Ft ]

]
− E[ζ ]

= E[X + ζ ] − E[ζ ].

Thus we have
Eζ [G(X, ζ,Ft )] = Eζ [X], ∀X. (4.7)

Now for each A ∈ Ft , we have,

G(X1A, ζ,Ft ) = E[X1A + ζ1A + ζ1AC |Ft ] − E[ζ |Ft ]

= E[(X + ζ )1A + ζ1AC |Ft ] − E[ζ |Ft ]

= E[X + ζ |Ft ]1A + E[ζ |Ft ]1AC − E[ζ |Ft ]

= (E[X + ζ |Ft ] − E[ζ |Ft ])1A

= G(X, ζ,Ft )1A.

From this with (4.7) it follows that Eζ [X|Ft ] satisfies (3.2):

Eζ [G(X, ζ,Ft )1A] = Eζ [G(X1A, ζ,Ft )] = Eζ [X1A], ∀A ∈ Ft .
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Thus Eζ [·] is an F-expectation with Eζ [·|Ft ] given by (4.6).

We now check that (4.1) is satisfied. For each X, η ∈ L2(�,FT , P ),

Eζ [X + η] − Eζ [X] = (E[X + η + ζ ] − E[ζ ]) − (E[X + ζ ] − E[ζ ])

= E[X + η + ζ ] − E[X + ζ ].

Since E[·] satisfies (4.1), Eζ [·] satisfies

Eζ [X + η] − Eζ [X] ≤ Eµ[η].

Finally, let η ∈ L2(�,Ft , P ); since E[·] satisfies property (4.4), thus

Eζ [X + η|Ft ] = E[X + ζ |Ft ] − E[ζ |Ft ] + η

= Eζ [X|Ft ] + η.

Thus Eζ [·] also satisfies property (4.4). The proof is complete. ✷

Lemma 4.4. Let E[·] be an F-expectation satisfying (4.1) and (4.4). Then, for each
t ≤ T , we have a.s.

E−µ[X|Ft ] ≤ E[X|Ft ] ≤ Eµ[X|Ft ], ∀X ∈ L2(�,FT , P ).

This lemma is a simple consequence of the following one, whose proof is inspired
by [1].

Lemma 4.5. Let E1[·] and E2[·] be two F-expectations satisfying (4.1) and (4.4).
If

E1[X] ≤ E2[X], ∀X ∈ L2(�,FT , P ),

then a.s. and for all t ,

E1[X|Ft ] ≤ E2[X|Ft ], ∀X ∈ L2(�,FT , P ).

Proof . Indeed, for all Y ∈ L2(FT ), we have by (4.4)

E1

[
Y − E1[Y |Ft ]

]
= E1

[
E1

[
Y − E1[Y |Ft ]|Ft

]]
= E1

[
E1[Y |Ft ] − E1[Y |Ft ]

]
= E1[0] = 0.

On the other hand,

E1

[
Y − E1[Y |Ft ]

]
≤ E2

[
Y − E1[Y |Ft ]

]
= E2

[
E2

[
Y − E1[Y |Ft ]|Ft

]]
.

Thus
E2

[
E2[Y |Ft ] − E1[Y |Ft ]

]
≥ 0, ∀Y ∈ L2(FT ).
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Now, for a fixed X ∈ L2(FT ), we set η = E2[X|Ft ] − E1[X|Ft ]. Since

η1{η<0} = 1{η<0}E2[X|Ft ] − 1{η<0}E1[X|Ft ]

= E2[X1{η<0}|Ft ] − E1[X1{η<0}|Ft ],

we have then
E2[η1{η<0}] = 0.

But sinceη1{η<0} ≤ 0, it follows from the strict monotonicity ofE2[·] thatη1{η<0} =
0 a.s. Thus

E2[X|Ft ] − E1[X|Ft ] ≥ 0 a.s.

The proof is complete. ✷

Lemma 4.6. If E meets (4.1) and (4.4), there exists a positive constant C such that,
for all X and η in L2(�,FT , P ), and for all t ≥ 0,

E
[
E[X + η|Ft ] − E[X|Ft ]

]
≤ C‖η‖L2 .

Proof . Indeed, Lemmas 4.3 and 4.4 above imply that

E
[
E[X + η|Ft ] − E[X|Ft ]

]
= E

[
EX[η|Ft ]

]
≤ E

[
Eµ[η|Ft ]

]
≤ Eµ

[
Eµ[η|Ft ]

]
= Eµ[η] ≤ C‖η‖L2 .

(Last equality coming from Lemma 4.2) ✷

5. F -Martingales

Henceforth, we will always assume that E is an F-expectation satisfying (4.1) for
some µ > 0, and (4.4) as well.

Definition 5.1. A process (Xt )t∈[0,T ] ∈ L2
F (0, T ) is called an E-martingale (resp.

E-supermartingale, -submartingale) if for each 0 ≤ s ≤ t ≤ T

Xs = E[Xt |Fs], (resp. ≥ E[Xt |Fs], ≤ E[Xt |Fs]).

Lemma 5.1. An Eµ-supermartingale (ξt ) is both an E-supermartingale and E−µ-
supermartingale. An E−µ-submartingale (ξt ) is both an E- and Eµ-submartingale.
An E-martingale (ξt ) is an E−µ-supermartingale and an Eµ-submartingale.

Proof . It comes simply from the fact that, for each 0 ≤ s ≤ t ≤ T ,

E−µ[ξt |Fs] ≤ E[ξt |Fs] ≤ Eµ[ξt |Fs].

✷

We will now prove through two lemmas that every E-martingale admits con-
tinuous paths.



Filtration-consistent nonlinear expectations and related g-expectations 13

Lemma 5.2. For each X ∈ L2(�,FT , P ) the process E[X|Ft ], t ∈ [0, T ] admits
a unique modification with a.s. càdlàg paths.

Proof . We can deduce from Lemma 5.1 that the process E[X|Ft ], t ∈ [0, T ], is an
E−µ-supermartingale. Hence we can apply the downcrossing inequality recalled in
Proposition 2.6.

This dowcrossing equality tells us that E[X|Ft ], t ∈ [0, T ] has P -a.s. finitely
many downcrossings of every interval [a, b] with rational a < b. By classical
methods, this imply the almost sure existence of left and right limits for the paths
of E[X|F·].

Define now Yt = lim
s↘t

s∈Q∩[0,T ]

E[X|Fs], whose existence a.s. has just been proved.

Taking A in Ft , we have that

Yt1A = lim
s↘t

s∈Q∩[0,T ]

E[X|Fs]1A,

the above limit being taken in L2. From Lemma 4.2, it follows that

E[Yt1A] = lim
s↘t

s∈Q∩[0,T ]

E
[
E[X|Fs]1A

]
.

But

E
[
E[X|Fs]1A

]
= E

[
E
[
E[X|Fs]1A

]∣∣∣Ft

]

= E
[

1AE
[
E[X|Fs]

∣∣∣Ft

]]

= E
[
1AE[X|Ft ]

]
.

It follows that a.s. Yt = E[X|Ft ].
Now it is again classical to prove, using the existence of left and right limits,

that the process Y defined above is a càdlàg modification of E[X|Ft ], t ∈ [0, T ],
and the lemma is proved. ✷

While this result shows that any E-martingale admits càdlàg paths, next one
will show that these paths are indeed continuous ones.

Lemma 5.3. For each X ∈ L2(�,FT , P ), let

y(t) = E[X|Ft ].

Then there exists a pair (g(·), z(·)) ∈ L2
F (0, T ;R × Rd) with

|g(t)| ≤ µ|z(t)| (5.1)

such that

y(t) = X +
∫ T

t

g(s)ds −
∫ T

t

z(s)dBs. (5.2)

In particular, y admits a.s. continuous paths.
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Furthermore, take X′ ∈ L2(�,FT , P ), put y′(t) = E[X′|Ft ], and let (g′(·),
z′(·)) ∈ L2

F (0, T ;R × Rd) be the corresponding pair. Then we have

|g(t) − g′(t)| ≤ µ|z(t) − z′(t)| (5.3)

Proof . Since
y(t) = E[X|Ft ], 0 ≤ t ≤ T ,

is an E-martingale, and since it is càdlàg, it is a right-continous Eµ-submartingale
(resp. E−µ-supermartingale) and we know from the g-supermartingale decom-
position theorem (Proposition 2.5) that there exist (zµ,Aµ) and (z−µ,A−µ) in
L2

F ([0, T ];R×Rd) with Aµ and A−µ càdlàg and increasing such that Aµ(0) = 0,
A−µ(0) = 0 and

y(t) = y(T ) +
∫ T

t

µ|zµ(s)|ds − Aµ(T ) + Aµ(t) −
∫ T

t

zµ(s)dBs.

y(t) = y(T ) −
∫ T

t

µ|z−µ(s)|ds + A−µ(T ) − A−µ(t) −
∫ T

t

z−µ(s)dBs.

Hence,

zµ(t) ≡ z−µ(t),

−µ|zµ(t)|dt + dAµ(t) ≡ µ|zµ(t)|dt − dA−µ(t),

whence
2µ|zµ(t)|dt ≡ dAµ(t) + dA−µ(t).

It follows that Aµ and A−µ are both absolutely continuous and we can write:

dAµ(t) = aµ(t)dt, dA−µ(t) = a−µ(t)dt

with
0 ≤ aµ(t), 0 ≤ a−µ(t).

We also have
aµ(t) + a−µ(t) ≡ 2µ|zµ(t)|,

so, if we define

z(t) = zµ(t)

g(t) = µ|z(t)| − aµ(t),

we get (5.2) and (5.1).
Now, we prove (5.3). We have

y(t) − y′(t) = E[X|Ft ] − E[X′|Ft ]

= E[X − X′ + X′|Ft ] − E[X′|Ft ]

= EX′ [X − X′|Ft ]
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Recall (Lemma 4.3 in Section 4) that EX′ [·] is another F-expectation satisfying
(4.1) and (4.4). Thus there also exists a pair (g̃(·), z̃(·)) ∈ L2

F ([0, T ];R×Rd) with

|g̃(t)| ≤ µ|z̃(t)| (5.4)

such that the EX′ -martingale y(t) − y′(t) satisfies

y(t) − y′(t) = X − X′ +
∫ T

t

g̃(s)ds −
∫ T

t

z̃(s)dBs.

On the other hand, we have

y(t) − y′(t) = X − X′ +
∫ T

t

[g(s) − g′(s)]ds −
∫ T

t

[z(s) − z′(s)]dBs.

It follows then that

g̃(t) ≡ g(t) − g′(t), and z̃(t) ≡ z(t) − z′(t).

This with (5.4) yields (5.3). The proof is complete. ✷

Let us note the following easy consequence of Lemma 5.3 :

Lemma 5.4. Let E[·] be an F-expectation satisfying (4.1) and (4.4). Then for each
X ∈ L2(�,FT , P ) andg ∈ L2

F (0, T ) the process E[X+∫ T

t
g(s)ds|Ft ], t ∈ [0, T ]

is a.s. continuous.

Proof . Indeed, we can write

E[X +
∫ T

t

g(s)ds|Ft ] = E[X +
∫ T

0
g(s)ds −

∫ t

0
g(s)ds|Ft ]

= E[X +
∫ T

0
g(s)ds|Ft ] −

∫ t

0
g(s)ds

because of (4.4). The claim follows then easily from Lemma 5.3. ��
To end this section, it is useful to remark that, by the same way as in Lemma

5.2, we can prove the following optimal sampling theorem for E-martingales (resp.
supermartingales, submartingales):

Lemma 5.5. Let the process X be an E-martingales (resp. supermartingale, sub-
martingale), and let σ and τ be two stopping times such that σ ≤ τ a.s. Then

E[Xτ |Fσ ] = Xσ (resp. ≤,≥ ).
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6. E-Supermartingale decompositions

Here again, E denotes an F-expectation satisfying (4.1) for some µ > 0, and (4.4)
as well.

Let a function f be given

f (ω, t, y) : � × [0, T ] × R �−→ R

satisfying, for some constant C1 > 0,{
(i) f (·, y) ∈ L2

F (0, T ), for each y ∈ R;
(ii) |f (t, y1) − f (t, y2)| ≤ C1|y1 − y2|, ∀y1, y2 ∈ R.

(6.1)

For a given terminal data X ∈ L2(�,FT , P ), we consider the following type of
equation:

Y (t) = E[X +
∫ T

t

f (s, Y (s))ds|Ft ] (6.2)

Theorem 6.1. We assume (6.1). Then there exists a unique process Y (·) solution
of (6.2). Moreover, Y (·) admits continuous paths.

The proof of this theorem is based on the following lemma.

Lemma 6.1. Define a mapping 1(y(·)) : L2
F (0, T ) �−→ L2

F (0, T ) by

1(y(·))(t) = E
[
X +

∫ T

t

f (s, y(s))ds|Ft

]
.

Then we have for all t:

E
[
|1(y1(·))(t) − 1(y2(·))(t)|2

]
≤ C2

1e
µ2T (T − t)E

[∫ T

t

|y1(s) − y2(s)|2ds
]
.

Proof . Let Y1(t) = 1(y1(·))(t), Y2(t) = 1(y2(·))(t): then

Y1(t) − Y2(t) = E
[
X +

∫ T

t

f (s, y1(s))ds|Ft

]
− E

[
X +

∫ T

t

f (s, y2(s))ds|Ft

]
.

Using Lemma 4.4, basic properties of Eµ (including its monotonicity) and (2.7),
we get

|Y1(t) − Y2(t)| ≤
∣∣∣Eµ

[∫ T

t

[f (s, y1(s)) − f (s, y2(s))]ds|Ft

]∣∣∣
∨

∣∣∣Eµ
[
−

∫ T

t

[f (s, y1(s)) − f (s, y2(s))]ds|Ft

]∣∣∣
≤ Eµ

[∣∣∣∫ T

t

[f (s, y1(s)) − f (s, y2(s))]ds
∣∣∣|Ft

]

≤ Eµ
[∫ T

t

|[f (s, y1(s)) − f (s, y2(s))]|ds|Ft

]

≤ C1Eµ
[∫ T

t

|y1(s) − y2(s)|ds|Ft

]
because of (2.7)
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Using Lemma 2.2, it follows that

E
[
|Y1(t) − Y2(t)|2

]
≤ C2

1E
[
Eµ[

∫ T

t

|y1(s) − y2(s)|ds|Ft ]
2
]

≤ C2
1e

µ2(T−t)E
[∫ T

t

|y1(s) − y2(s)|ds
]2

≤ C2
1e

µ2T (T − t)E
[∫ T

t

|y1(s) − y2(s)|2ds
]
.

This concludes the proof of the Lemma. ✷

Back to the proof of the Theorem, we deduce from the previous lemma that

E

∫ T

t

[
|Y1(s) − Y2(s)|2

]
ds ≤ C2

1e
µ2T (T − t)2E

[∫ T

t

|y1(s) − y2(s)|2ds
]
.

Now, choose η > 0 such that C2
1e

µ2T η2 < 1: 1 induces a contraction mapping
from L2

F (T − η, T ) into itself, which therefore admits a fixed point. This fixed
point is a solution of (6.2) on [T − η, T ].

Let us denote it by Y .
Now, for t ≤ T − η, we define the mapping

2(y(·))(t) = E
[
X +

∫ T

T−η

f (s, Y (s))ds +
∫ T−η

t

f (s, y(s))ds|Ft

]
.

Putting X′ = X + ∫ T

T−η
f (s, Y (s))ds, we can write the same computations as in

Lemma 6.1 to deduce

E
[
|2(y1(·))(t)−2(y2(·))(t)|2

]
≤ C2

1e
µ2T (T−η−t)E

[∫ T−η

t

|y1(s)−y2(s)|2ds
]
.

It suffices then to write down again the above reasonning to conclude the exis-
tence of a solution of (6.2) on t ∈ [T − 2η, T − η].

Since η is fixed, by iterating this method we conclude the existence of a solution
of (6.2) on the whole interval [0, T ].

We just have now to prove the uniqueness of the solution of (6.2). So, let Y1
and Y2 be two solutions. Lemma 6.1 gives then

E
[
|Y1(t) − Y2(t)|2

]
≤ C2

1e
µ2T T E

[∫ T

t

|Y1(s) − Y2(s)|2ds
]

and Gronwall’s inequality shows then that Y1 = Y2 a.s.
At last, Lemma 5.4 proves that the solution of (6.2) admits continuous paths,

and the proof is complete. ✷
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Theorem 6.2. (Comparison Theorem). Let Y be the solution of (6.2) and let Y ′
be the solution of

Y ′(t) = E[X′ +
∫ T

t

[f (s, Y ′(s)) + φ(s)]ds|Ft ]

where X′ ∈ L2(�,FT , P ) and φ ∈ L2
F (0, T ). If

X′ ≥ X, φ(t) ≥ 0, dP × dt-a.e., (6.3)

then we have
Y ′(t) ≥ Y (t), dP × dt-a.e. (6.4)

(6.4) becomes equality if and only if (6.3) become equalities.

Proof . We begin with the case φ(t) ≡ 0. For each δ > 0, we define

τ δ
1 = inf{t ≥ 0;Y ′(t) ≤ Y (t) − δ} ∧ T .

It is clear that if, for all δ > 0, τ δ
1 = T a.s., then (6.4) holds. Now if for some δ > 0

we have
P(Aδ) > 0,

where
Aδ = {τ δ

1 < T } ∈ Fτ δ
1
,

we then can define
τ2 = inf{t ≥ τ δ

1 ;Y ′(t) ≥ Y (t)}.
Since Y ′(T ) = X′ ≥ X = Y (T ), thus τ2 ≤ T and 1AδY ′(τ2) = 1AδY (τ2). It
follows that, for t ∈ [τ δ

1 , τ2], we have

1AδY (t) = E[1AδY (τ2) +
∫ τ2

t

1Aδf (s, 1AδY (s))ds|Ft ]

and

1AδY ′(t) = E[1AδY (τ2) +
∫ τ2

t

1Aδf (s, 1AδY ′(s))ds|Ft ]

But, according to Theorem 6.1, the solutions of the above equations must coin-
cide. This implies that Y ′(τ δ

1 )1Aδ = Y (τ δ
1 )1Aδ a.s., which contradicts the assump-

tion P(Aδ) > 0.
In order to prove the general case φ(s) ≥ 0, we define for n = 1, 2, 3, · · ·,

Y (n)(·) to be the solution of

Y (n)(t) = E
[

[X′ +
∫ T

iT
n

φ(s)ds] +
∫ T

t

f (s, Y (n)(s))ds|Ft

]
,

for t ∈
[ iT
n

,
(i + 1)T

n

[
,

and Y (n)(T ) = X′.
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Note that, due to (4.4), we can write

Y (n)(t) = E
[

[Y (n)
( (i + 1)T

n

)
+

∫ (i+1)T
n

iT
n

φ(s)ds]+
∫ (i+1)T

n

t

f (s, Y (n)(s))ds|Ft

]
,

for t ∈
[ iT
n

,
(i + 1)T

n

[
.

For t ∈ [(n−1)T /n, T ], Y (n)(t) coincides with the solution of (6.2) with termi-

nal dataX′+
∫ T

(n−1)T
n

φ(s)ds and generator f . SinceX′+
∫ T

(n−1)T
n

φ(s)ds ≥ X′ ≥ X,

it follows from the first part of the proof that Y (n)(t) ≥ Y (t) as soon as t ∈ [(n −
1)T /n, T [. In particular, Y (n)

(
(n−1)T

n

)
≥ Y

(
(n−1)T

n

)
. Then following the same

way as above, we prove thatY (n)(t) ≥ Y (t) as soon as t ∈ [(n−2)T /n, (n−1)T /n[,
and an obvious iteration gives Y (n)(t) ≥ Y (t) for all t ∈ [0, T ].

In order to prove that Y ′(t) ≥ Y (t), it is now sufficient to show the convergence
of the sequence (Y (n)) to Y ′. A computation analogous to the proof of Lemma 6.1

shows that, for fixed t ∈
[ iT
n

,
(i + 1)T

n

[
and an appropriate constant C,

E
[
|Y (n)(t) − Y ′(t)|2

]
≤ CE

[∫ t

iT
n

|φ(s)|ds + C1

∫ T

t

|Y (n)(s) − Y ′(s)|ds
]2

.

But [∫ t

iT
n

|φ(s)|ds + C1

∫ T

t

|Y (n)(s) − Y ′(s)|ds
]2

≤ 2
[∫ t

iT
n

|φ(s)|ds
]2 + 2C2

1 (T − t)

∫ T

t

|Y (n)(s) − Y ′(s)|2ds.

Using now Schwarz’s inequality we deduce that, for all t ∈ [0, T [,

E
[
|Y (n)(t) − Y ′(t)|2

]
≤ 2C

T

n
E

[∫ T

0
|φ(s)|2ds

]

+2CC2
1T E

[∫ T

t

|Y (n)(s) − Y ′(s)|2ds
]
. (6.5)

Gronwall’s Lemma applied to (6.5) shows then that E
[
|Y (n)(t)−Y ′(t)|2

]
→ 0,

and finally Y ′(t) ≥ Y (t).

Finally, we investigate possible equality in (6.4).
If Y (t) ≡ Y ′(t), the continuity of both Y and Y ′ shows that X = X′ a.s. Then

from Y (0) = Y ′(0), i.e.

E
[
X +

∫ T

0
f (s, Y (s))ds

]
= E

[
X +

∫ T

0
f (s, Y (s))ds +

∫ T

0
φ(s)ds

]
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it follows from the strict monotonicity of E that
∫ T

0 φ(s)ds = 0, whence φ = 0
dt × dP a.e. and the end of the proof. ✷

Our next result generalizes the decomposition theorem for g-supermartingales
proved in [12] to continuous E-supermartingales. The proof uses mainly arguments
from [12].

Theorem 6.3. (Decomposition theorem for E-supermartingales) Let E[·] be an
F-expectation satisfying (4.1) and (4.4), and let (Yt ) be a related continuous E-su-
permartingale with

E[ sup
t∈[0,T ]

|Y (t)|2] < ∞.

Then there exists an A(·) ∈ L2
F (0, T ;R) such that A(·) is continuous and increas-

ing with A(0) = 0, and such that Y (t) + A(t) is an E-martingale.

Proof . For n ≥ 1, we define y(n)(·), solution of the following BSDE:

y(n)(t) = E[Y (T ) +
∫ T

t

n(Y (s) − y(n)(s))ds|Ft ]

We have then the following

Lemma 6.2. We have, for each t and n ≥ 1,

Y (t) ≥ y(n)(t).

Proof . For δ > 0 and a given integer n, let us define

σn,δ : = inf{t; y(n)(t) ≥ Y (t) + δ} ∧ T .

If P(σn,δ < T ) = 0 for all n and δ, then the proof is done. If it is not the case, then
there exist δ > 0 and a positive integer n such that P(σn,δ < T ) > 0. We can then
define the following stopping times

τn,δ : = inf{t ≥ σn,δ; y(n)(t) ≤ Y (t)}.
It is clear that σn,δ ≤ τn,δ ≤ T . Because of Theorem 6.1, Y (t)− y(n)(t) is contin-
uous, hence we have

(i) y(n)(σ n,δ) ≥ Y (σn,δ) + δ on {σn,δ < T }; (6.6)

(ii) y(n)(τn,δ) ≤ Y (τn,δ)

But since (Y (s) − y(n)(s)) ≤ 0 on [σn,δ, τ n,δ], by monotonicity of E ,

y(n)(σ n,δ) = E[y(n)(τn,δ) +
∫ τn,δ

σn,δ

n(Y (s) − y(n)(s))ds|Fσn,δ ]

≤ E[y(n)(τn,δ)|Fσn,δ ]

≤ E[Y (τn,δ)|Fσn,δ ]
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Finally, since Y is an E-supermartingale, Lemma 5.5 gives us that

Y (σn,δ) ≥ y(n)(σ n,δ).

But as P(σn,δ < T ) > 0, this is contrary to (6.6). The proof is complete. ✷

Lemma 6.2 with Theorem 6.2 above imply that y(n)(·)monotonically converges
to some Y 0(·) ≤ Y (·). Indeed, writing φ(t) = Y (t) − y(n+1)(t) ≥ 0 shows that
(y(n)(·)) is an increasing sequence of functions.

Observe then that y(n)(t) +
∫ t

0
n(Y (s) − y(n)(s))ds is an E-martingale. By

Lemma 5.3, there exists (g(n), z(n)) ∈ L2
F (0, T ;R × Rd) with

|g(n)(s)| ≤ µ|z(n)(s)|, n = 1, 2, · · · , (6.7)

such that

y(n)(t) +
∫ t

0
n(Y (s) − y(n)(s))ds = y(n)(T ) +

∫ T

0
n(Y (s) − y(n)(s))ds

+
∫ T

t

g(n)(s)ds −
∫ T

t

z(n)(s)dBs,

hence, as y(n)(T ) = Y (T ),

y(n)(t) = Y (T ) +
∫ T

t

[g(n)(s) + n(Y (s) − y(n)(s))]ds −
∫ T

t

z(n)(s)dBs. (6.8)

(5.3) also tells us that

|g(n)(s) − g(m)(s)| ≤ µ|z(n)(s) − z(m)(s)|, n,m = 1, 2, · · · (6.9)

Let us denote, for each n = 1, 2, · · · ,

A(n)(t) = n

∫ t

0
(Y (s) − y(n)(s))ds

A(n) is a continuous increasing process such that A(n)(0) = 0.

We are now going to identify the limit of y(n)(·). To this end, we shall use the
following lemma:

Lemma 6.3. There exists a constant C which is independent of n such that

(i) E

∫ T

0
|z(n)(s)|2ds ≤ C; (ii) E[(A(n)

T )2] ≤ C. (6.10)
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Proof . From (6.8) and (6.7), we have

A(n)(T ) = y(n)(0) − y(n)(T ) −
∫ T

0
g(n)(s)ds +

∫ T

0
z(n)(s)dBs

≤ |y(n)(0)| + |y(n)(T )| +
∫ T

0
µ|z(n)(s)|ds + |

∫ T

0
z(n)(s)dBs |.

Since y(1)(t) ≤ y(n)(t) ≤ Y (t) for all t , we have |y(n)(t)| ≤ |y(1)(t)| + |Y (t)|.
Thus there exists a constant C, independent of n, such that

E[ sup
0≤t≤T

|y(n)(t)|2] ≤ C. (6.11)

It follows readily that there exist two constants C1 and C2, independent of n, such
that

E|A(n)(T )|2 ≤ C1 + C2E

∫ T

0
|z(n)(s)|2ds. (6.12)

On the other hand, Itô’s formula applied to |y(n)(·)|2 gives:

E[|y(n)(0)|2] = E|Y (T )|2 + E

∫ T

0
[2y(n)(s)g(n)(s) − |z(n)(s)|2]ds

+ 2E
∫ T

0
y(n)(s)dA(n)(s)

≤ E|Y (T )|2 + E

∫ T

0
[2µ|y(n)(s)||z(n)(s)| − |z(n)(s)|2]ds

+ 2E[A(n)(T ) sup
0≤s≤T

|y(n)(s)|],

whence, using that, for positive a, b and ε, 2ab ≤ εa2 + b2/ε (noting also that
E[|y(n)(0)|2] ≥ 0 !), we get

E

∫ T

0
|z(n)(s)|2ds ≤ E|Y (T )|2 + E

∫ T

0

[
2µ2|y(n)(s)|2 + 1

2
|z(n)(s)|2

]
ds

+ 2[E sup
0≤s≤T

|y(n)(s)|2]1/2[E|A(n)(T )|2]1/2,

and using the same inequality with ε = 4C2,

E

∫ T

0
|z(n)(s)|2ds ≤ 2E|Y (T )|2 + 4µ2E

∫ T

0
|y(n)(s)|2ds

+ 8C2[E sup
0≤s≤T

|y(n)(s)|2] + 1

2C2
[E|A(n)(T )|2]

≤ 2E|Y (T )|2 + 4µ2E

∫ T

0
|y(n)(s)|2ds

+ 8C2[E sup
0≤s≤T

|y(n)(s)|2] + C1

2C2
+ 1

2
E

∫ T

0
|z(n)(s)|2ds,

because of (6.12).
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Finally, it comes

E

∫ T

0
|z(n)(s)|2ds ≤ 4E|Y (T )|2 + 8µ2E

∫ T

0
|y(n)(s)|2ds

+16C2[E sup
0≤s≤T

|y(n)(s)|2] + C1

C2
,

and it is sufficient to note that, thanks to (6.11), the constant

sup
n

{
4E|Y (T )|2 +8µ2E

∫ T

0
|y(n)(s)|2ds+16C2[E sup

0≤s≤T

|y(n)(s)|2]+ C1

C2

}
<∞

to conclude that (6.10)–(i) and then (using (6.12)), (6.10)–(ii) hold true. The lemma
is proved. ✷

With the help of Lemma 6.3 above we can now end the proof of the Decompo-
sition Theorem.

Note first that (6.10)–(i) with (6.7) also implies

E
∫ T

0
|g(n)(s)|2ds ≤ µ2C.

(6.10)–(ii) obviously implies that

y(n)(·) ↗ Y (·), a.e., a.s.

From Theorem 2.1 in [12], it follows that we can write Y under the form

Y (t) = Y (T ) +
∫ T

t

g(s)ds + A(T ) − A(t) −
∫ T

t

z(s)dBs

for some (g, z) ∈ L2
F (0, T ;R ×Rd) and an increasing process A. From the result

in the first part of the same Theorem 2.1 in [12], we have that moreover

z(n)(·) → z(·), strongly in L2
F (0, T ).

But (6.9) gives then

g(n)(·) → g(·), strongly in L2
F (0, T ).

And finally, (6.8) gives

A(n)(t) �−→ A(t), strongly in L2(�,FT , P ).

Thanks to Lemma 4.6, we can pass to the L2-limit in both sides of

y(n)(t) = E[Y (T ) + A(n)(T ) − A(n)(t)|Ft ].

It follows that
Y (t) = E[Y (T ) + A(T ) − A(t)|Ft ].

Thus Y (t) + A(t) = E[Y (T ) + A(T )|Ft ] is an E-martingale (because of (4.4)).
Since A is increasing, the theorem is proved. ✷
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7. Inverse problem: an F -expectation is a g-expectation

We are now ready to state our main result, that is to identify any F-expectation to
a g-expectation, provided that (4.1) and (4.4) hold.

Theorem 7.1. We assume that an F-expectation E[·] satisfies (4.1) and (4.4) for
some µ > 0. Then there exists a unique function g = g(t, z) : � × [0, T ] × Rd

satisfying (2.1) and (2.5) such that

E[X] = Eg[X], ∀X ∈ L2(�,FT , P ).

In particular, every E-martingale is continuous a.s.
Moreover, we have |g(t, z)| ≤ µ|z| for all t ∈ [0, T ].

Proof . For each given z ∈ Rd , we consider the following forward equation{
dY z(t) = −µ|z|dt + zdBt ,

Y z(0) = 0.

We have E[supt∈[0,T ] |Y z(t)|2] < ∞. It is also clear that Y z is an Eµ-martingale,
thus an E[·]-supermartingale. Indeed, we can write Y z(t) = Eµ[Y z(T )|Ft ]. From
Theorem 6.3, we know the existence of an increasing process Az(·) with Az(0) = 0
and E[Az(T )2] < ∞, such that

Y z(t) = E[Y z(T ) + Az(T ) − Az(t)|Ft ].

Or
Y z(t) + Az(t) = E[Y z(T ) + Az(T )|Ft ], t ∈ [0, T ].

Then, from Lemma 5.3, there exists (g(z, ·), Zz(·)) ∈ L2
F (0, T ;R × Rd) with

|g(z, t)| ≤ µ|Zz(t)| such that

Y z(t) + Az(t) = Y z(T ) + Az(T ) +
∫ T

t

g(z, s)ds −
∫ T

t

Zz(s)dBs.

We also have
|g(z, t) − g(z′, t)| ≤ µ|Zz(t) − Zz′

(t)|. (7.1)

But on the other hand, since

Y z(t) = Y z(T ) +
∫ T

t

µ|z|ds −
∫ T

t

zdBs,

it follows that

Az(t) ≡ µ|z|t −
∫ t

0
g(z, s)ds

Zz(t) ≡ z

In particular, (7.1) becomes

|g(z, t) − g(z′, t)| ≤ µ|z − z′|. (7.2)
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Moreover,

Y z(t) + Az(t) = Y z(r) + Az(r) −
∫ t

r

g(z, s)ds +
∫ t

r

zdBs, 0 ≤ r ≤ t ≤ T ,

and Y z(t) + Az(t) is an E-martingale. But with the assumption (4.4) one has, for
each z ∈ Rd and r ≤ t

E[−
∫ t

r

g(z, s)ds +
∫ t

r

zdBs |Fr ] = E[Y z(t) + Az(t) − (Y z(r) + Az(r))|Fr ],

i.e.

E[−
∫ t

r

g(z, s)ds +
∫ t

r

zdBs |Fr ] = 0 0 ≤ r ≤ t ≤ T (7.3)

Now let {Ai}Ni=1 be a Fr -measurable partition of � (i.e., Ai are disjoint, Fr -mea-
surable and ∪Ai = �) and let zi ∈ Rd , i = 1, 2, · · · , N . From Lemma 3.5, and
the fact that g(0, s) ≡ 0, it follows that

E[−
∫ t

r

g(

N∑
i=1

zi1Ai
, s)ds +

∫ t

r

N∑
i=1

zi1Ai
dBs |Fr ]

= E[
N∑
i=1

1Ai

(
−

∫ t

r

g(zi, s)ds +
∫ t

r

zidBs

)
|Fr ]

=
N∑
i=1

1Ai
E[−

∫ t

r

g(zi, s)ds +
∫ t

r

zidBs |Fr ]

= 0

(because of (7.3)). In other words, for each simple function η ∈ L2(�,Fr , P ),

E[−
∫ t

r

g(η, s)ds +
∫ t

r

ηdBs |Fr ] = 0.

From this, the continuity of E[·] in L2 given by (4.3) and the fact that g is Lipschitz
in z, it follows that the above equality holds for η(·) ∈ L2

F (0, T ;Rd) :

E
[
−

∫ t

r

g(η(s), s)ds +
∫ t

r

η(s)dBs |Fr

]
= 0. (7.4)

We just have to prove now that

Eg[X] = E[X], ∀X ∈ L2(�,FT , P ).

To this end we first solve the following BSDE

−dy(s) = g(t, z(s))ds − z(s)dBs,

y(T ) = X.
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Since g is Lipschitz in z, there exists a unique solution (y(·), z(·)) ∈ L2
F (0, T ;R×

Rd). By the definition of g-expectation,

Eg[X] = y(0).

On the other hand, using (7.4), one finds

E[X] = E[y(0) −
∫ T

0
g(z(s), s)ds +

∫ T

0
z(s)dBs]

= y(0) + E[−
∫ T

0
g(z(s), s)ds +

∫ T

0
z(s)dBs]

= y(0) = Eg[X].

It follows that this g-expectation Eg[·] coincides with E[·]. As the uniqueness of g
readily follows from [2], the proof is complete. ✷

Remark 7.1. In this paper we have limited ourselves to treat the situation where
the filtration is generated by a Brownian motion. A natural question is whether our
nonlinear supermartingale decomposition approach can be applied to more general
situations. A general positive answer seems unlikely, due to the lack of compari-
son theorem for BSDE’s driven by discontinuous processes. However some partial
positive answers may be possible, but anyway some further efforts and techniques
will be required to overcome new difficulties due to non linearity and jumps.
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