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Abstract. The study of filtration of the suspension in a porous medium is 
a vital problem in the design and construction of tunnels and hydraulic 
structures. An exact solution is constructed for an unsteady flow of a 
monodisperse suspension in a homogeneous porous medium with size-
exclusion mechanism for particle retention. The concentrations of 
suspended and precipitated particles are calculated in case of a linear 
blocking filtration coefficient. 

1. Introduction 
The study of the motion of the tiny solid particles in a porous soil is a vital problem in the 
design and construction of tunnels and hydraulic structures. During the filtration of the 
suspension in a porous medium some of the suspended particles pass through the pores 
along with the flow of the carrier fluid and others get stuck in the filter pores. Deep bed 
filtration, accompanied by the formation of deposit in the entire porous medium, and not 
only in its surface layer, significantly affects the properties of rocks and soil layers [1, 2]. In 
a variety of technical and biological systems for cleaning surface and waste water and 
liquid industrial waste, solid particles are retained when the suspension moves through the 
filter medium [3]. 

The mathematical model of the particle transport and retention in a filter is based on the 
mechanical and geometric interaction of particles with a porous medium [4–6]. A 
homogeneous porous medium with pores having the same cross section throughout its 
entire length is considered. It is assumed that the particles pass freely through large pores 
and get stuck at the entrance of pores if the particle diameter is larger than the pore 
diameter. One pore is blocked by one particle and vice versa. The retained particles can not 
be knocked out of the pores by the carrier fluid flow or another suspended particles, and 
remain permanently in the pores. As the retained particles concentration grows, the number 
of free small pores decreases, and the rate of deposit formation slows down. If all small 
pores are clogged by the retained particles, the retained particles concentration S reaches 
the maximum possible limit value 

M
S . The coefficient of proportionality ( )S�  between 

the growth rate of the deposit and the suspended particles concentration is called the 
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filtration coefficient. The blocking filtration coefficient tends to zero when all small pores 
are blocked ( ) 0

M
S� � . 

For different filtration models of a stationary suspension flow in a porous medium,
exact and asymptotic solutions are obtained [7–12]. In the absence of analytical solutions, 
numerical calculations are performed [13–15]. 

Standard filtration models for the suspension flow in a porous medium assume that a 
suspension with constant suspended particles concentration is injected into the filter inlet. 
In the paper the exact solution of the filtration problem for a suspension with variable 
concentration of suspended particles at the filter inlet is obtained. Numerical calculations of 
the suspended and retained particles concentrations are performed for a linear blocking 
filtration coefficient. 

2. Governing equations
Consider two basic dimensionless equations for the suspended and retained particles of a 
suspension in a porous medium. Let ( , )C x t is the concentration of suspended particles, 

( , )S x t is the retained particles concentration. The particles concentrations satisfy the 
equation of continuity, which, taking into account the immobility of the deposit, has the 
form 

0C C S

t x t

� � �
� � �

� � �
.    (1) 

The growth rate of the retained particles concentration is proportional to the 
concentration of suspended particles from which it is formed. It also depends on the current 
value of the retained particles concentration ( , )S x t : the more pores of small diameter are 
clogged by particles, the slower the growth rate of the deposit. The equation for deposit 
growth is 

( )S
S C

t

�
� �

�
.     (2) 

Here the filtration coefficient ( ) 0S� �  for 0S � . 
The system of equations (1), (2) is considered in the domain 

{0 1, 0}x t�� 	 	 � . 

The boundary conditions for the system (1), (2) are given at the filter inlet 0x �  and at 
the initial time 0t � : 

0( , ) ( )
x

C x t p t
�
� ;    (3) 

0( , ) 0
t

C x t � � ; 0( , ) 0
t

S x t � �     (4) 

Conditions (4) indicate that at the initial moment 0t �  the porous medium does not 
contain any suspended and retained particles. A suspension with variable suspended 
particles concentration (3) is injected into the porous medium and moves in the filter with 
the velocity 1v � . The characteristic line t x�  of the equation (1) – the front of the 
suspended and retained particles concentrations is the mobile boundary of the suspension. 
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In the subdomain of an empty porous medium 0 {0 1, 0 }x t x� � 	 	 	 	  the solution is 
zero; in the subdomain of the suspension {0 1, }

S
x t x� � 	 	 �  the solution is positive. 

3. The solution at the filter inlet 
At the filter inlet 0x �  the equation (2) has the form 

( ) ( )S
S p t

t

�
� �

�
.     (5) 

Division of both sides of (5) by ( )S�  and integration with respect to the variable t

gives 

0

( )
( )

t

S t
dt P t

S

� �
�

�
 . (6)

where 
0

( ) ( )
t

P t p t dt� 
 . 

Using condition (4), the integral in the left part of (6) can be written as 

(0, )

0

( )
( )

S t

dS
P t

S

�
�
 .    (7) 

Formula (7) specifies the retained particles concentration at the filter inlet. 

4. The solution on the concentrations front 
Denote the characteristic variables 

,t x x x� � � � . 

Equation (1) takes the form

0C S

x

� �
� �

� ��
.     (8) 

On the suspended and retained particles concentrations front t x�  the deposit 
concentration 0S � . Substitution of (2) into (8) gives 

(0) 0C
C

x

�
�� �

�
.     (9) 

The solution of the equation (9) with the condition 0 (0)
x

C p� � is

(0)(0) x
C p e

��� .     (10) 
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5. The exact solution of the filtration problem 
From (2)

( )
S t

C

S

� �
�
�

. (11)

Substitution of (11) into (1) gives 

0
( ) ( )

S t S t S

t S x S t

 �  �� � � � � � �
� � �� � � �� � � � �� � � �

.   (12) 

Using the formula 

( ) ( )
S t S x

x S t S

 �  �� � � � � �
�� � � �� � � �� � � �

, 

the equation (12) can be transformed to 

0
( ) ( )

S t S x S

t S t S t

 �  �� � � � � � �
� � �� � � �� � � � �� � � �

.   (13) 

Integration of (13) with respect to the variable t gives 

( )
( ) ( )

S t S x
S K x

S S

� � � �
� � �

� �
.   (14) 

The function ( )K x  is determined by the initial condition (4): ( ) 0K x � . 
The equation (14) in the characteristic variables takes the form 

0
( )

S x
S

S

� �
� �

�
.     (15) 

Transfer of the term S to the right side of (15), division by S, and integration with 
respect to x gives 

0
( )

x

S x
dx x

S S

� �
� �

�
 .    (16) 

After the change of the variable in the integral equation (16) takes the form 

( , )

(0, )
( )

S x

S

dS
x

S S

�

�

� �
�
 .    (17) 

An inverse change of variables gives 

( , )

(0, )
( )

S x t x

S t

dS
x

S S

�

� �
�
 .    (18) 
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Formulas (7), (11), (18) determine the exact solution of the problem (1) – (4) in the 
domain 

S
� . 

6. The linear filtration coefficient 
Consider a model with the linear blocking filtration coefficient 

( ) ( ), 0
M M

S S S S� � � � � .   (19) 

In this case, the retained particles concentration at the filter inlet 0x �

� �( )(0, ) 1 P t

M
S t S e

��� � . (20)

In the domain 
S

�  the suspended and retained particles concentrations are given by explicit 
formulas 

� �( )

( )

1
( , )

1M

P t x

M

S x P t x

S e

S x t

e e

� �

� � �

�
�

� �
; 

( )

( )
( )( , )

1M

P t x

S x P t x

e p t x
C x t

e e

� �

� � �
�

�
� �

.  (21) 

7. Numerical calculation of the filtration periodic mode 
Let the suspended particles concentration at the filter inlet vary periodically: 

( ) 1 cosp t t� � � . The calculation of the filtration problem (1) – (4) with the filtration 
coefficient (19) was performed for the parameters 1, 1

M
S� � � . 

Fig. 1 shows the graphs of the suspended particles concentration: a) the time 
dependence at the filter inlet 0x �  and the filter outlet 1x � ; b) the dependence on the 
coordinate x for 1t �  and 3t �  (decreasing), 2t �  and 4t �  (increasing), and limit values 
for large even and odd integers t. The dashed line indicates the maximum value 2C �  of 
the suspended particles concentration. 
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Fig. 1. a) The graphs of 0( , )
x

C x t �  and 1( , )
x

C x t � . b) The graphs of ( , )
t const

C x t � . 

Fig. 2 presents the graphs of the retained particles concentration: a) time dependence at 
the filter inlet (left) and filter outlet (right); b) dependence on the coordinate x for 

0.5, 1, 2, 5t �  (from bottom to top). The dashed line indicates the maximum limit value 
1S �  of the retained particles concentration. 

 
 

    
 

DOI: 10.1051/, 00097 (2017) 71170009117MATEC Web of Conferences matecconf/201
XXVI R-S-P Seminar 2017, Theoretical Foundation of Civil Engineering 

7

5



t

S

1 2 3 4 5 6 7 8

0.25

0.5

0.75

1

0   

x

S

0.25 0.5 0.75 1

0.25

0.5

0.75

1

0

Fig. 2. a) The graphs of 0( , )
x

S x t �  and 1( , )
x

S x t � . b) The graphs of ( , )
t const

S x t � . 

8. Conclusion 
The exact solution of the one-dimensional filtration problem of a suspension in a 
homogeneous porous medium for any variable concentration of suspended particles at the 
filter inlet is constructed. In the case of a linear blocking filtration coefficient, explicit 
analytic formulas are obtained for the solution, generalizing the known solution for the flux 
of a suspension of constant concentration [7]. 

According to Fig. 1 a), b) the suspended particles concentration quickly goes to the 
periodic mode with the period of the injected suspension concentration at the filter inlet. 
With increasing time, the retained particles concentration tends to the limiting value 
(Figures 2a) and b)), which is determined by the blocking filtration coefficient (19).

The exact solution gives way to simplify the determination of parameters of the 
filtration process in laboratory and field conditions [16]. 
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