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Abstract

The Rational Distributed lag Structural Form (RSF) representation of

an econometric model is imtroduced and its relationship to several
standard forms of representation discussed. The FIML estimation problem
for the RSF is then considered and formulated as a nonlinear, unconstrained
optimization problem. A solution +o the relation optimization problem is
then obtained by an application of the Davidon-Fletcher-Powell variablie
metric methed using simple first difference appro‘ximations for the
necsssary gradients. | This apprecach requires a minimum of effort on the
part of the model builder since there is no longer any need to aralytically
determine, and then program, the gradient expressions. The feasibility of

the method is demonstrated with several examples.
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1. INTROTUCTION

The rapid advances made in recent years in digital ccmputer technology
have provided the econometrician with computaticnal capabilities unheard
of a scant ten years ago. The researcher in the field of economics is
learning to take advantage of these develcopments as witnessed by the
increasing infiusnce of the computer in the development of economic and
econometric methodology. Larger and more nonlinear ecorometric modsls are
ncw treated as almost passe, especially with respect to ferecasting and
simdation. S:unlla:o developments are now taking place in the area of para-
meter estimation [12], [13],: [17] and [23]. _Systems of linear equations
w:.th lJ.ne.ar parameterizations have been cons:.dered together with a relaxa~
tion of the uncorrelatedness of the error precess to allow special first or
second order autoregressive structure. In each case the parameter estima-
tion was formulated as a maximization problem and the computer used in con-
Junction with some sort of function minimization algorithm. However, more
powerful and efficient function minimization algorithms are available; and
nonlinear parameterizations yielding very general and more flexible model
representations can be employed without exceeding the computational capabil-
ities of the moderm digital computer. It is these considerations which

provide the motivation for this paper.

'i‘he purpose of this paper is twofold: First, the Rational Distributed
Lag Structural Form (RSF) representation is to be introduced. This one
representation, while containing a nonlinear parameterization of the model,
is very general and encompasses all standard linear, stationary, constant
coefficient econometric models as special cases. In addition, the RST allows

for a very flexible class of error processes which admit almost all types of



recast as a nonlinear wnconstrained Optﬂnizatién problem and the variable
metric method applied to obtain an iterative solution. The detalls of
the implementaticn, especially with respect to the residual generation,
are also discussed. Section 5 contains an exposition of several numerical
examples wiich illustrate the method and illuminate its applicability to
econometric problems. Finally, Section § contains a surnary of the main

points of the paper and some conclusions.

2. THE RATTOMAI, STRUCTURAL FORM .(RSF) REPRESENTATION

The RSF representation can be characterized in two ways. First, the
general form of each individual equation in the model may be presented.
This description focuses attention on the precise way each of the variables
(endogenous and exogenous) interact with one another, and is useful in
discussions concerned with the computational problems involved in FIML
estimation. It is also useful in discussing the relationship between the
RSF and other single equation econometric models already in wide use.
Second, the entire system of equations may be considered as a whole and
presented in vector matrix notation. This description is analogous to
the more standard forms of simultaneous econcmetric models and, although
of less computational utility, is of value in examining the relationship
between the RSF and the various standard forms of simultanecus model repre-
sentations. A familiarity with both characterizations contributes to a
fuller understanding of the implications of the RSF representation; there-

fore both are presented here,
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lne exact form of each rational operator is quite arbitrary, being solely

determined by the degress of each polynomial involved, i.e., by {o, i3> 913 ".j
_; 2
: = o anta +h i T
{Rij’ Sij’ Dij}’ {Pi, Qi}. The 1 ading coe IIlC.l ents of the oy (]_), 245 (L),

and di(L) are fixed at unity in order o satisfy the conventional ro
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zation rile.

By "stacking™ each equation of the modal, as given in (2.1) - (2.3,

on top of one another and resorting to vector-matrix rotation, the RSF may

alternately be written asg” )
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where y + is now aG x 1 vector of endogencus variables observed at time t,

% 1s aK x 1 vector of exogenous variables observed at time t, and e, is a

Gh % 1 vector of random distrubances at time t. The rational matrix operators
T(L), UL), and V(L) are dimensiocned I‘ESDC'C!LIVEly as @ x G, Gx K, ard GDx Gb I
view of (2.1) and (2.2), it is clear: 't“"lat the ij ™ elements of these matrices
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2.1 Single Eouation Models (G=1)

In the univariate model the First subsaript, i, on the left-hand vari-

able becomes irmaterial so it is dispensed with. Moreover, all of the right-

hand side variables becomes eXogenous so that the first term on this side in

(2.2) may be dropped. Thus (2.2) reduces +o

@R et I gy Dt iy et
1= J

(1) The Univariate Time Series (ARMA) Model. By specifying X=0

all puvrely exogenous variables are exciuded leaving

_ cf{L)
YeTamy etk

or,

QL) f}t = (L) e,

where §t é Vi - k. This is just the autoregressive-moving average univariate
- time series model treated so extensively by Box & Jenkins [ 6], Phiilips [291,
and Aigner [ 1].

(ii) The Univariate Autoregressive-Moving Average Model with

Exogenous Inputs (ARMAX). By specifying K=1 and <(L) = d(L) = 1 there results

. _ b(L) .
Y T IO % St

This is the ARMAX model treated by Jorgenson [243, Steiglitz & McBride [351],

and Ihrymes, Klein, & Steiglitz [15] (where reference to many other works are
cited).



(1) The Polynomial Structural Form (PS7). Perhaps the mest widely
investigated simultaneous model is that which may be classed as z pelynomial
structural form. This is obtained as a special case of ((2.1) by constraining
each equation of the model to have a polynomial form similar +c that of (2.6).
In this situation each equation in (2.2) is constrained such that aij(L) =
aij(L) = di(L) 2 ai(L), i.e., the dencminator polynomials across any cne equa-
tion are identical, but not between equations. Thus each equation of (2.4)

may be written as

Gt 5-- Ko D..

= 1 1] A 1] r
J#L 351
j=1

A . R.
where ai(L) =1+ aiL ...t a?lLFl. IT all the coefficients of like powers

of L are collected together in coefficient matrices then (2.4) takes on the

special PSF form:
2.7 A(L)yt = B(L)xt + C(L)et + x

where x is G x 1 vector of constants and,

. | |
ALY = £ AL, deta s 0, RO max &, 6, .40..)
| k=0 * 7 A S SR

S |

o x .

B(L) = I BkL > S 4 max {3., D..+5..}

k=0 e S S M S
e . Q k
Cw) =Ly QLS L € =T, Q max fQ).

a1

The interpretation of the'{ék, B, and Ck} in terms of the coefficients of

the polynomials ai(L), Bij(L), bij(L) and ci(L) is somewhat complicated

. D34 .
because of the pure delays, L L] and L 1, However, in general, it may ke



(iv) The Pinal Form (FF). Returning to (2.4) in its original rational
description, it is seen that by specifying T(L)=I the traditional final form
(FF) model is obtained,s

Ve = u(L) X, * V(L)e,

A model such as the above could be estimated directly, however the extremely
complicated and dense nature of U(L) might make estimaticn impracticsbie.

Thus both T(L) and U(L) are estimated (each usually rather sparse), and the

equivalent IT cbtained by inversion (when the inverse exists) of T(L) and pre-

mdtiplication of (2.%4) by this inverse:
y. = THLUWx, + T H(LIV(Le
t t ot
In terms of polynomial form models, the FT is computed by inversion of A(L)
(when it exists) and premultiplication of (2.7) by A™F(L):
v, = ATT(LB(LIxX, + ATH(LIC(LYe
t *t t

Note that now a rational. form has been obtained.

(V) The Muliivariate Time Series Modzl. With the model (2.4) or (2.7)
it becomes possible to talk of miltivariate time series analysis - by excluding

all exogenous explanators. Thus, with U(L)=0:and no identities there results’

Ty, = Ville,.

Since V(L) has been constrained'in (2.4) to be a diagonal operator,

i :
T(L) must be included if it is desired to remove any inter-equaticn correla-
ton in the residuals. A similar model may be constructed using the poly-

nomial forms above. Namely,

A(L)y, = C(Le,
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econcmetric model are the numerical values for the parameters. Thase are
provided by the solution of an estimation problem, the formulation of which

is the subiect of the next section.

3. THE FIML ESTIMATION PROBLEM

The parareter estimation problem associated with the RSF representation
(2.1)-(2.2) will be approached using the method of maximm likelihood. This
requires reality to approximate an idealized environment characterised by
several assumptions concerning the nature of the model as well as the dominat--
ing statistical properties of the Process being modelled. Since the success
of the method depends on the relative validity of each of these underlying
assumptions, they will be briefly discussed in order that the limitations
inherent in the proposed approach be more fully understood. The conditions
guaranteeing the uniqueness and consistency of the estimates are then
reviewed. Hnally, the likelihood function is constructed, and the estima-~

tion problem stated in precise mathematical terms.

3.1 Basic Assumptions

There are six wnderlying assurptions governing the success of the FIML

estimation method described below:

(A.1) Staz‘:ic.mafi-ty. It is assumed that 21l the random distrubances
acting on the model be repreéentable as at least wide-sense- (covariance)
stationary stochastic processes. If nonstationary disturbances are
found to oceur, then it is assumed that staticnarity can be induced by

some simple data transformation such as differencing or exponential
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the economic specification together with the staristical properties of the
data guarantes the existence of a solution. However, the uniguenass and
consistency of the estimates cannot be established without +hs satisfaction
of conditions ccncerned with the structure specification and acmissihle
pErameter vaiues:
(C.lj_ :fgentification. ﬁhemparamsterization of the nodel, implicit
in the structure specificatioh, rust be such that no other pzrameteri-
zation is observationally equivalent [32]. For models spacified in the
PSF, a complete set of identificaticn conditions has been given by
Harman [21], [22]. Conditions for the RSF specification have not yet
been established in the global sense of Hannan's results for the PSE,
however, local results are available using the information matoix (se=
the work of Rothenberg [32]). For the present work, simple sufficient
conditions, requiring the absence of polynomial factor cancelstions

across any equation or between equations in (2.4), will be imposed.

(C.2) Stability. The parameters of the model must be such that the
solution of (2.4) for Ve remains finite for finite values of %, and e
as T+ «. This is equivalent to requiring that the poles of

det(TH(LIULY) = § and det(TN(LIV(LY) = 0 lie outside the unit.’

(C.3) Imverse-Stability (Invertibility). The pavemeters of the

model must be such that the solution of (2.%) for e, remains finite

for finite values of ¥, and X, as t> =, This is equivalent tc reguire-
- ) -1 )

ing that the poles of det(E_l(L}T(L)) = 0 ard det(V “(LIU(L)) = 0 lie

. . 7
cutside the unit circle.

In effect, conditions (C.2) and (C.3) restrict the set of admissible
parameters to some subset of the parameter space. Specifically, assume

that there are a total of m unknown parameters for a particuler RST
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The likelihocd function for the estimation of “he RSE mecel is obtained
by consiructing the joint probability Censity furction of the observed output

sequences, conditiored on the cbserved exczenous varizhles and +he model para-

neters. As a matter of notation defire

e = s ygs ooy Y]

and

Xt = [xl, Kos ovv s xt].
Then the joint density funetilon may be constructed recursively according

to

POY210,X0) = Dlys ¥yps e 5 Yiplo, ¥p)

Plyg[¥n s @, Xp) oy, e, Xp)
T g
: tglp(ytlyt—l’ © ? XT)'

Since e, is assumed to be normally distributed, and since Y, Bay be
expressed as a linear operation on & s ¥y Will also be normally distributed.
Therefore, the required joint density function m2y be constructed cnce

‘expressions can be determined for the conditional mean of +the Yy Process,
Y1 T E ¥y, 0, xp)s
and the conditional variance-covariance matrix,
- v _ 1 = iy G !
Stye-1 = Ellyg Vi) We¥ee 1"t = S Yile1d

The derivaticn of the conditicnal mezn, or equivalently, the one-
period prediction of Ye»> 18 extremely cumberscme using the representation
of (2.4). ' A much more lucid develcpment, equally valid, can be obtained

n
using the equivalent PSF representation (2.7).2° 1In terms of this
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it is not difficult to conclude that,

R S Q

(3.4) A =" A, + I
el T 0y M Ve T kg By Xt i1 Ot Seafeal,

The variance-covariance function of this estimate is cemputed using the
expression for the one-period prediction error obtained by subtr z2oting

(3.4) from (3.2):

- - 1 _1 —
(3.5) . AO_J-R(AO) - s.

St -1

The likelihood function can now be given by combining the exoression
for p(Yp|@, X.) with (3.4) and (3.5);

T jdetA, |

-1
T v
t=1 (5 @72 e |t-1}

t|t-1

1 .
(3.8) L(e) = exp {- 5 ¥y S

{2m
where L (0) has been used in place of p (+|+) to emphasize the dependence

on @ once YT and XI‘ have been observed.

3.4 The FIML Estimation Problem

In terms of the actual computation of estimates for ¢, it is more
convenient to work with the negative of the natrual logarithm of L (@) >

deroted by 2(@):

T A

= 1
(o) = In(2m) + = fn (det R) + 7*:51 Vel S Yele-1

o

- T 2n (|det AOI).

The maximum likelihcod estimate for @ will be that value of 68 which

minimizes £(@).
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uknown parameters ¢ are then recovered with the aid of (3.7) using

-

D>

[t N -

the estimated residual sequence {et|*; 1<t<T} evaluated at 8 =
e LSRT

Problem (P.1) constitutes a constrained parameter optimizaticn problem wnich
can be solved numerically using the theory of matheraticzl programing

=0 .

Before discussing such a solution, the subiect of identities is reconsidered.

-

3.5 The Inclusion of Identities

Suppose the first Gs 4 equations of the model now represent identities
(2.1). Then it would be possible to eliminate these exact eguations, via
substitution, in order to obtain a reduced sys em of Gb equations. Tne
pravicus results could then be used exactly as they stand. However, this
tedious substitution is unnecessary: The expression (3.9) can stiil be
used if R is Interpreted as the G x G, variance-covariance matrix of the
Gb x 1 wvector e, entering into only the behavioral equations (2.2). Whereas
beforédbéth‘Ao and R were G, ¥ G,> now Aj is G % G and R is G, % Gb‘ These

observations can be substantiated as follows.

Partition the orgiinal specificaticn of G equations, as given in
its PSF representation (3.4), according to whether an equation is
behavioral or definitional., Then the structure matrix will take the follow- i

ing form

where AOll is Gid X Gid and A022 is Gb % Gb' The elimination of the identities

via substituticn leads to a reduced system of Gb equations similar to (3.4),
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4. NUWMERICAL SOLUTION bP THE ESTIMATION PROBLIM

The general constrained sequential minimizaticn of J(9) is almost
impossible to solve because of the gemerally nonlinear form of the restric-
tions on & which dafine A. If only linsar restrictions existed (:hrich
would be the case if only first order lags appeared in the model), then a
trua nenlinear programming solution could be obtained by coupling an effic-
ient optimization algorithm to some constraint incorporation technique such
as Rosen's gradient projection method [19]1. Because a solution to the
general problem is sought, such specialized constrainsd methods can not be
used. Instead, it is suggested that the restrictions on 6 be incerporatsd
only in an implicit fashion - that the actual hill-climb on J(8) be executad
in a completely unconstrained fashion, with the progress and final results

monitored by the researcher to determine if any constraints have been violated.

There are several reascns justifying the relaxation of the constraints
imposed by conditions (C.2)-(C.3). First, and most important, the station-
arity assumption should guarantee the existence of stable and invertible
parameter estimates if the model has been adequately specified. Second, if
unstable and/or uninvertible estimates arise, the residual series generation
will become unbounded and result in numerical overilows which autcmatically
terminate the estimation. Thus, an indication that something is wrong
with the model is automatically provided. In other words, the need to expli-
citly impose stability and invertibility constraints implies misspacification;
i.e., violation of the underlying assumptions or hypotheses upcn which the

mxdel has been baged,
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: k
N o -ukH(e)Je(Gk)

X . . : Xk e

where o is a scalar "step size", H(8™) an eporoximaticon to the inverse
. Lk Ky o o S \
Hessian, Jgg» evaluated at &7, and Jo (87) is the gradient of J evaluate:

k . k . . . 3 .. .
ac 6. Each Imorovement of 8 constitutes an iterztion, and thass iteraticns

Droceed until covergence criteria are met, i.e., until

||H(sk)Je(ek)I| e
or,

ll6e ]} < <, -

The description of the exact details is beyond the scope of this paper
ard the interested reader is directed to werks dealing solely with this
algorithm [14], [18], [i9]. The algorithm automatically compuTes

X

X and H(Bk) ~ the user is only required to supply the ccnvergence para-

meters ey, €5, and the expressions for J(8) and Je(e).

The major derand placed upon the researcher by the glgorithm 1s the
need to evaluate JS(B). For simple models analytic expressions can be
derived and programrad with ease, but the desire to estimate a general
RSF makes such derivation and coding extremely involved. It is possible
to éenerate the required gradient vector by rumerical differencing, if
care is taken in choosing the form of differencing and in the paremeter
perturbations so that mmerical accuracy is preserved. A very rapid and
trivially implerented gradient generation scheme can be obtained using
a first difference approximation to the partial derivatives, In particular,

if 3J/35i denotes the il component of J, then
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Inttialization. This oparation consists of <he boskkeaping nacessary

to keep track of a1l the information provided as input fc the program.  This

a

includes the economic specification, the structure as defined the integew
set I, and the initial guess fer 6. In practice the required accuraciss of

the final estimate, e, and €y, &¥E input at this tims. Experience has shoum

1

. ' 4
that e, % g, = 10 is sufficient for most problems.

4

DFP. This operation contains the actual Davidon-Fletcher-Povall
algorithm. In the process of execution, repeated calls are made to the
external function which define the values of J(8) and Je(e) given .

Function and Gradient Eb&iuﬁtion.i This operation is called upon by
DFP and evaluates J(8) according to (3.8) given 9 and the observed data
series {yt; 1<t<T} and {x_; 1<t<T}. When a request is made for Js(e),
this operation repeatedly computes J(8) for each perturbation of 8 and
evaluates (4.1). In order to evaluate (3.9) the estimated residual series
{etlt; l<t<T} must be provided. This is accomplished by calling upon
the simulation-operation. a |

Stmulation. The function of this operation is to solve the system
of equations répresenting the model for the estimated residual series.
The implementation of this operation is crucial, and therefore is discussed

separately in the following subsection.

Output. This operation is entered after ewxit from the DFP algorithnm.
The results of the iterative minimization are used to produce ths final
parameter estimates, their estimated standard errors, and their estimated

variance-covariance matrix. In order to obtain these statistics, the
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However, the PSF representation (3.2) was only employed o exnedite the

-

darivation of the likelihood function, and the constructicn of <ha struc-

LT

Ture matrix, AD, in particular. In generzal, the use of (3.2) is 1o ke

e

avoided for two reasons. First, this approach reguires additicral werk in

converting the general RST representation to its equivalent PST represarta-

tion before a2 solution for is embarksd upon. Second, and mors

e,
t|t
important, such a precedure applied to the estimation of RST representation

parameters leads to a highly complex set of constraints betwesn the estimated

. = 12 . . .
parameters of the PSF. The gensral coding to incorporate these constraints

is prohibitive for all but the simplest models. It is far easier, and more
]

3

- 2

efficient, to utilize the original RSF specification.

The solution of the RSF representation defined by (2.1) - (2.2) for
e |¢ can be achieved simply and rapidiy (on a digital computer) cwing
to the special structure inherent in the specification. In particular, the
presence of one, and only one, random disturbance term in e=ch behavioral
equation permits the computation of the entire vector sequence for  rlt
to be carried out one element at a time. Thus, for each i (Gid+15:_g)

all that is reguired is the computation of e for 1<t<T vhere

st
d.(L)
(4.5) fitlt T e Yie
G .- K. D,.
~ i g..(L i b,.(L)
(5.8) Vit = Vip = 7 Blj ) . ij o I l_I( . 1jx_t
J=1 u;jfLi T3t 7=l aijELS 1
6 s K, s
= Yie - B Yinm LY
it :I:l it jzl T
T Vit T Yit.

This in turn requires the solution of a succession of Ki+Gi+l simple single

input-single output rational lag models: (1) G; solutions for each endoganous
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use of zerc starting values introduces ervors in tha residuzl cemputation,

however the invertibility condition together with sufficiently long data

L
series Insures that these errors remain nacllclbln

Consider next the problem of solving for the forecasted owipus of
T g i

the umivariate rationzl transfer function model

. b..(L) D..
~y  _ Cij ij

This problem is equivalent to solving the difference equation:

R;. . S
a 1] k3 P k
(4.8) vl =- . VY 1]

for 1<t<T. As before, a starting value problem arises due to the lagged

values of §Q Stk and Xj,t—ﬂ-ﬁ j. Since X3¢ 38 obsarved, its starting

problem can be solved similar to that for ¥. it above; the solution fc:rr'y;|

1]
gtarting values for §1t is slightly more complex since it depends on

is started at t = Dij+s" instead of t = 1. The method of determining

whether there are more than one right-hand side input terms in (2.2).
In the former case (one observed exogenous input) it is easy to see that if thei

solution is started at t = Rij then
~j - _
Yi, t-k E{yd,tle } Vi tk
for lfkfﬁij. Thus starting the solution process at toi where

toi = max {R , D. ]+S . }

permits the use of observad quantities for the starting variables. In the
latter case (more than one exogenous input) the forecasted output will
be the sum of the forecasted outputs for each separate *transfer function

Term,
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of e

-/t vhich begins at a different time period. The incenvenience of

this "ragged" origin can be easily overcome by specifying a cormon origin

cver all behavorial equations according to

(%.10) t, = mix {t 1}
The methods described above can be immediately applied to the identi-

ties of the model, (2.1), in exactly the same marmer. The only difference

arises from the absence of the error term - the steps involved with solution

of (4.5) or (4.7) are not required. The entire similation operation described

above may be surmarized by the following outline.

Stmulation Cperction.

1. for l<icG, solve (2.1) for Ve = v,

over t <t<T:
it o~

(a) for 15j5§i solve (4.2) with zero starting values for

A' - J »
yit and observed values for yjt (3 #1).

(b) for lgjgﬁi solve (4.8) with zero starting values for

~2 J‘_‘
y%t and observed values for th'

. -~ > . :‘j - . + -
(c} for T <t<T compute yitty suming the ¥;4 and store results

as y., for use in the behaviorel eguations.

2. for Gid + 1<i<G solve (2.2) for ei,t]t over toiﬁfT:

(a) for lfjggi solve (4.8) with starting values as cbove
(p) for lfjixi solve (4.B) with starting values as atove

(e) for T <t<T compute §it from (4.6)

(@) for t <t<T solve (4.7) with zaro starting values for

‘and store in e

]t for use in forming J(8).

®i,tlt
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The medel was first estimated over the entire gat of Chservaions

1 <t < 75 with an initial parameter guess

o' = [-0.%, 0.1, -0.4, -0.1, 0.0, 0.03

after 13 iterations the minirmdization of J(8) converged to a staticnary

point with each element of the gradient vector on the order of 10“5. The

resulting rodel was:

_ (+.115) (2.,115) (£.127)
. 0.762 _1.076 . 140.k35L

(5.1 Y1t = 15006180 *1t T190.7870 ort 10503 Gt
{+.158) (+.043) (+.131)

where the estimated standard errors of the paramsters ars given in parenthases,
This result was obtained assuming zero starting values wherever required In
the residual simulation. Since the entire observation interval was used,

this gives an indication of the model whick best fits the sample data and

does not result from any errors due to unknown starting values.

The model was then re-estimated using the same initial 6 only over a
shorter observation interval 5 ¢t £ 75. This situation imtroduces start-
ing value errors since now any unknown variables required as lagged inputs
fromt = 1,2,3,4 will be arbitfarily set 1o zaro. After 12 iterations the
algorithm converged to a stationary point of J(8) with a gradient whose

-5 ; .
elements were each on the order of 107 °. The resuiting model vas:

(£.123) {+.118) (+.132)
. 0.775 1.083 1+0. 4081,

(5.2) Vit T T90.57I0 *it T To0.7900 fot T IooELEC St
{(+£.1B1) (+,0uu) (.11

These estimates are easily within one standard error of the estimates of
(5.1), and both are at least within two standard errors of the tue model.

The stationary point represented by (5.2) was found to be unique in the
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vhen an equation was estimatad assuming uncorrelaced ervors., In this
respect, twe of thes equations were found +o have TOVIng average errors,
perhaps as a result of the use of first differencszs, whereas Crews and-
Fair assume only autoregressive errors. The sirgle equation estimatas

were as follows (with the estirated standard errcrs of ezch pararm

appearing in paren“theses):

2
. "IP = i AL + e ‘TT_E 7 e Lt
(5.3) e . ACDt + L.c:Jt + &CS_t aI_t + .r__-t + A &t a:}:?t + aGt
(5.4) AZ, = ACD_ + ACN.
C T T
(5.5) 8CD. = C.136 AGNP_ + [0.137 + 0.058L] aMCOD, ., -2.593 Doy
(+,018) (+.049) (=.048) ST (£1.,323)°7

+3.611 D + [1-0,398L] e

(£1.103) Ot - T(yl13ey 1t
(£,022) 1
(5.6) ACN_ = 0.073 ATNP,_ (+.0557) aAMO0D i e
t e ~0.10u7 t-2  1-0.872L "3t
(+.118}
(+.01u) {£.029)
(5.7) &£CS, = _0.073 4@NP, - 0.029 aMO0D,_, + 1 sy
1=0.872L T-0.6720 - T7-0.872L, °F
(+£.067)
(5.8) aIP_t = 0.124 AGNP, + 0,416 APE2, + 1 e
(+.019) {+.088) - I¥0.03LL
{2132}
(5.9) . AIHt = 0.0246 AGNP, + [0.061 + 0.088L + 0.038L2] AESQ
(%.,0151) (£.011) (=.013) (+.013)
+ 1 e .
T-0.230L, ot

(£.117)
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(5.18)  ADP,_ = 0.147 A@P, + 0.508 D... - 0.975 D
- S e
©o(e010) T (s.818) OHE (4 g7y 61T
- 0.822 D . - 4.407 Do, + 6.647 D,
(£.758) OGB4 (1 770) €91t (llgcgy 692t

+ [1-0.7131] e

]
(s.004) 7t

€. SUMMARY AND CONCLUSIONS
A unified approach to the representation ard estimation of lineaw,

discrete-time econcmetric models has been Presented which takes Sull

advantage of the computational capabilities provided by the ccmbination

of modern digital computers and the latest nonlinear minimization algorithms.
The RST represisntation was first introduced to provide a general framework
within which the estimation of almost 211 other standard linear econometric
models can be achieved through the use of just cne estimation metrhod. In
_particular, the RSF rmodel can be used to represent five different single

ecquation models:

(1 The univariate time series APMA model,
(ii1)  The univeriate ARMAX model,
(1ii) The univariate distributed lag model,
(iv}  The autoregressive multiple input model,
(v) The rational multiple input model,

and five different multiple equation models:
(vi) The polynomial structural form,
(vii) The polyrcmial reduced form model,
(viii) The simulfaneous distributed lag model,
(ix) The final form model,

(%) The multivariate (simu}taneous) time series model.
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and therefore introduce errcr iransients which co not decay to irsignificance -
even for long data series. In either case an altermative solution of +he
starting value problem is required. The concept of nuisance parameters
seems the easiest to implement. Such an approach entails the estimation o
the uninown sterting values along with the other parameters of the model.,
demzanding only minor alternations to any computer code originally desizned

for the zero value approximation.

Nurerical examples have been presented Cempnstrating: (i) the validit
of certain simplifying assumptions; and (ii) the practicality of the method
when confronted with a realistic problem. The first example of Section §
demonstrated the acceptibility of the zero starting value approximation on
& model estimated over only 70 observations. The parameter estimates based
cn the sample were not noticeably different (considering both standard errors
and the point estimates themselves) when the mcdel was estimated with evact
zevo starting values (sample periods 1 through 75), or estimated with true
starting values different from zero (sample periods 5 through 75). Experience
with other models suggests that these observations hold for samples as short
as 50 observations. The second example of Section § demonstrated the prac-
ticality in the light of a realistic simultanecus system. A total of 33
parameters were estimated without experiencing any difficulties. The DFP
algorithm achieved convergence well within the number of iterations ard

computation time to be expected in a problem of such size and complexity.

The researcher in econometric modelling now has at his disposal advarced

computational facilities and sophisticated optimization algorithms. By

appropriate combination of these assets a very general class of estimation
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6'=T[6] 9 ... 8,

Eg = f(a?j: k=1, pij 3 BEj 1 k=1, cij) 3 J=1, Gi ;
(an: kel, Ris 3 b}ij ke, 850 3 371, K s
c}ic a1, Q ;d]; Pk, By ) sl

m, = ;|£ Rij +;. 1+ Si:'.l) fPi+ Qi + 1(ki),

vhere l(ki) =1 if ki is estimated and zero ctherwise.

For each equation, the ordering proceeds from orne rationzl lag to

another with the denominator coefficients appearing before the
numerator coefficients. The rational lag parameters for the endogenous
and exogenous variables are then followed by the rational lag para-
meters of the random error term, with the constant for the equation
being positioned last in the subvector. This ordering is exactly thaz
which is obtained by reading (2.1) - (2.2} from left to right, and then
repeating the precess for each i.

N

The notation [ 2y is introduced to derote the product cperation,
k=1

1eees 29 ¢ 25 23 oun - gy

The associated PSF can be cbtained from (2.2) by multiplying each eguaticn
by its least common denominator. Assuming each dencminator of (2.2) has
roots distinct from all the others (a situtation almost always encountered

in practice) the least commen denominator becomes

ai(L) =Fj£1 aij(L)] . [jgl aij(L)] - d, (L),

where 2i(L) is as defined previous to (2.7). If any one equation is
already constrained to have a polyrcmial form then a; (L) is given
explicitly and does not have to be computed. :

A variety of practical applications of the estimaticn method using a
central differencing scheme has indicated that the gain in accuracy is
not worth the additional computaticnal burden. The simple first differ-
encing approximation to the gradient using the parameter perturbation
suggested in the text has proven more than satisfactory. The first
difference scheme has always given the same rate of convergence for

the DFP algorithm as the central difference scheme.
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The specilicaticn given in Chow & Fair [13] contains orly the

identity for @P. However, their paremeter constraints Bep = Bg
ard Yg.10 ~ Ygq &€ equivalent to the addition of an identizy agoregas-
>

ing durable and nondurable consumption while retaining only 3¢y end Y

'

as unknown parameters.

Since all of the equations are linear, and assumed to adegquately

describe the phenomena in a linear fashion, this alteraticn of the
data should not affect the final resul*s. The only possible changeas
that could occur would be in the correlation structure of tha ervor
terms (which Chow and Fair assume to be first order autorezressive).



