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e consider three sets of phenomena that feature prominently in the financial economics literature: (1) con-

ditional mean dependence (or lack thereof) in asset returns, (2) dependence (and hence forecastability) in
asset return signs, and (3) dependence (and hence forecastability) in asset return volatilities. We show that they
are very much interrelated and explore the relationships in detail. Among other things, we show that (1) volatil-
ity dependence produces sign dependence, so long as expected returns are nonzero, so that one should expect
sign dependence, given the overwhelming evidence of volatility dependence; (2) it is statistically possible to
have sign dependence without conditional mean dependence; (3) sign dependence is not likely to be found via
analysis of sign autocorrelations, runs tests, or traditional market timing tests because of the special nonlinear
nature of sign dependence, so that traditional market timing tests are best viewed as tests for sign dependence
arising from variation in expected returns rather than from variation in volatility or higher moments; (4) sign
dependence is not likely to be found in very high-frequency (e.g., daily) or very low-frequency (e.g., annual)
returns; instead, it is more likely to be found at intermediate return horizons; and (5) the link between volatility
dependence and sign dependence remains intact in conditionally non-Gaussian environments, for example, with

time-varying conditional skewness and/or kurtosis.
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1. Introduction

We consider three sets of phenomena that feature
prominently in the financial economics literature:
(1) approximate conditional mean independence (and
hence little or no forecastability) in asset returns,
(2) dependence (and hence forecastability) in asset
return signs, and (3) dependence (and hence fore-
castability) in asset return volatilities. We argue that
they are very much interrelated, forming a tangled
and intriguing web, a full understanding of which
leads to a deeper understanding of the subtleties of
financial market dynamics. Let us introduce them
in turn.

First, consider conditional mean independence,
by which we mean that an asset return’s condi-
tional mean does not vary with the conditioning
information set. Approximate conditional mean inde-
pendence then implies that out-of-sample return fore-
casting will be difficult, if not impossible. This view
is widely held and stems from both introspection and
observation. That is, financial economic theory sug-
gests that asset returns should not be easily forecast
using readily available information and forecasting
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techniques, and a broad interpretation of four decades
of empirical work suggests that the data support
the theory (e.g., Fama 1970, 1991). Consequently, we
believe that conditional mean independence is rea-
sonably viewed as a good working approximation to
asset return dynamics.'

Second, consider dependence and hence forecasta-
bility of market direction (the return sign). Profitable
trading strategies result from successful forecasting
of market direction, quite apart from whether one is
successful at forecasting returns themselves. A well-
known and classic example, discussed routinely even

! We emphasize the word “approximation” because weak condi-
tional mean dependence may appear at both long horizons (e.g.,
Fama and French 1988, 1989; Campbell and Shiller 1988) and
short horizons (e.g., Lo and MacKinlay 1999) for a variety of rea-
sons, ranging from low-frequency variation in risk premia to high-
frequency variation in market microstructure noise. The evidence
of long-horizon conditional mean dependence remains controver-
sial, however, because of serious statistical complications includ-
ing possibly spurious regressions (e.g., Kirby 1997), data snooping
biases (e.g., Foster et al. 1997), and small sample biases (Nelson and
Kim 1993), which may distort standard inference procedures when
applied to long-horizon prediction regressions.
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at the MBA textbook level (e.g., Levich 2001, Chap-
ter 8), involves trading in speculative markets. If, for
example, the yen-dollar exchange rate is expected to
increase, reflecting expected depreciation of the yen
relative to the dollar, and hence a negative expected
return on the yen, one would sell yen for dollar,
whether in the spot or derivatives markets. Positive
profits will be made when the sign forecast is cor-
rect. Generalizations to multiple asset classes, such
as stock and bond markets, involve basing alloca-
tion strategies on forecasts of the sign of the return
spread. Recent literature shows that asset return sign
forecasting can often be done with surprising suc-
cess; see, among others, Breen et al. (1989), Leitch
and Tanner (1991), Wagner et al. (1992), Pesaran and
Timmermann (1995), Kuan and Liu (1995), Larsen
and Wozniak (1995), Womack (1996), Gencay (1998),
Leung et al. (2000), Elliott and Ito (1999), White (2000),
Pesaran and Timmermann (2004), and Cheung et al.
(2005).

Finally, consider dependence and forecastability of
asset return volatility. A huge literature documents
the notable dependence, and hence forecastability, of
asset return volatility, with important implications not
only for asset allocation, but also for asset pricing
and risk management. Bollerslev et al. (1992) pro-
vide a fine review of evidence in the GARCH tradi-
tion, while Ghysels et al. (1996) survey results from
stochastic volatility modeling, Franses and van Dijk
(2000) survey results from regime-switching volatil-
ity models, and Andersen et al. (2005a) survey results
from realized volatility modeling. Interesting exten-
sions include models of time variation in higher-
ordered conditional moments, such as the conditional
skewness models of Harvey and Siddique (2000) and
the conditional density model of Hansen (1994). The
recent literature also contains intriguing theoretical
work explaining the empirical phenomenon of volatil-
ity forecastability, such as Brock and Hommes (1997)
and de Fontnouvelle (2000).

In this paper, we characterize in detail the rela-
tionships among the three phenomena and three
literatures discussed briefly above: (1) asset return
conditional mean independence, (2) sign dependence,
and (3) conditional variance dependence. It is well
known that conditional mean independence and con-
ditional variance dependence are statistically compat-
ible. However, much less is known in general about
sign dependence, and in particular about the relation-
ship of sign dependence to conditional mean inde-
pendence and volatility dependence. Hence, we focus
throughout on sign dependence. Among other things,
we show that

(1) Volatility dependence produces sign depen-
dence, so long as expected returns are nonzero.
Hence, one should expect sign dependence, given the
overwhelming evidence of volatility dependence.

(2) It is statistically possible to have sign (and
volatility) dependence, while at the same time, mean
independence.

(3) Sign dependence is not likely to be found via
analysis of sign autocorrelations or other tests (such
as runs tests or traditional tests of market timing)
because the nature of sign dependence is highly
nonlinear.

(4) Sign dependence is not likely to be found in
high-frequency (e.g., daily) or low-frequency (e.g.,
annual) returns. Instead, it is more likely to appear at
intermediate return horizons of two or three months.

(5) The link between volatility forecastability and
sign forecastability remains intact in conditionally
non-Gaussian environments, for example, with time-
varying conditional skewness and/or kurtosis; in fact,
it is significantly enriched.

We derive results (1), (2), and (5) theoretically in
a general setting, we derive (3) and (4) via a com-
plementary calibrated simulation experiment using a
popular model of return dynamics, and we provide a
preliminary empirical exploration using the S&P 500
in conjunction with RiskMetrics volatility forecasts.

Before moving on, we wish to emphasize that our
basic contention, namely, that sign dependence exists
and has fundamental connections to volatility depen-
dence, in no way requires conditional mean indepen-
dence; instead, we simply invoke conditional mean
independence to make our point as clearly as pos-
sible. This is fortunate because although conditional
mean independence is a reasonable approximation for
many purposes, it is also the subject of some con-
troversy on both the theoretical and empirical fronts,
with both theory and empirics ultimately proving
inconclusive. Classical dynamic asset pricing theory
predicts a positive equilibrium relationship between
conditional first and second moments (e.g., Merton
1973, Ferson and Harvey 1991), but it is now rec-
ognized that theory is also consistent with a nega-
tive relationship (e.g., Abel 1988, Backus and Gregory
1993, Gennotte and Marsh 1993). Similarly inconclu-
sive results hold on the empirical side: positive but
often insignificant dependence is found in Baillie and
DeGennaro (1990), French et al. (1987), Campbell and
Hentschel (1992), and Ghysels et al. (2005), whereas
negative dependence is found in Campbell (1987),
Nelson (1991), Lettau and Ludvigson (2005), and
Brandt and Kang (2004), and both are found in Glosten
et al. (1993), Harvey (2001), and Turner et al. (1989).

We proceed as follows. In §2, we build intuition
by sketching the main results in simple contexts,
focusing primarily on the conditionally Gaussian case.
We discuss the basic framework, we arrive at the basic
result that volatility dynamics produce sign dynam-
ics, and we draw the implications. In §§3 and 4, we
focus in greater depth on sign dependence, and we
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provide basic results on sign realizations, sign fore-
casts, and the relation between the two, stressing
both the measurement (§3) and detection (§4) of sign
forecastability. In §5, we perform a detailed simula-
tion experiment, which not only illustrates our basic
results but also extends them significantly, by charac-
terizing the nature of sign forecastability as a function
of forecast horizon. We provide an illustrative empir-
ical application in §6, and conclude in §7.

2. Conditional Mean Dependence,
Sign Dependence, and Volatility

Dependence: Basic Results

Here, we explore the links between conditional mean
dependence, sign dependence, and volatility depen-
dence. We have used the terms repeatedly, but thus
far, not defined them precisely, relying instead on
readers’ intuition, so let us begin with some pre-
cise definitions. First, we will say that a return series
R,,, displays conditional mean dependence (condi-
tional mean dynamics, conditional mean forecasta-
bility, conditional mean predictability) if E(R,, |(},)
varies with Q,.? Second, we will say that R,,, dis-
plays sign dependence (sign dynamics, sign forecasta-
bility, sign predictability) if the return sign indicator
series I(R,,; > 0) displays conditional mean depen-
dence; that is, if E(I(R,,; > 0) | Q,) varies with Q,.?
Finally, we will say that R,,; displays conditional
variance dependence (conditional variance dynam-
ics, conditional variance forecastability, conditional
variance predictability, volatility dependence, volatil-
ity dynamics, volatility forecastability, volatility pre-
dictability) if o7 |, = Var(R; | ;) varies with (,.

We now proceed to characterize the relationships
among sign, volatility dynamics, and conditional
mean dynamics.

2.1. Sign Dynamics Follow from Volatility
Dynamics

Consider the prevalence of volatility dynamics in
high-frequency asset returns, and the positive ex-
pected returns earned on risky assets. To take the sim-
plest possible example, which nevertheless conveys
all of the basic points, assume that the returns on a
generic risky asset are distributed as

Rt+1 |Qt ~ N(l"L/ O-t2+]“)/ o> O/ (1)

2Here and throughout, “returns” are excess returns relative to the
risk-free rate.

®Equivalently, R,,, displays sign dependence if the conditional
probability of a positive return, Pr(R,,; > 0] €,), varies with €,
because Pr(R,.; >0]Q,) =E(I(R,;;) >0]Q,).

and therefore display conditional variance depen-
dence but no conditional mean dependence. The
probability of a positive return is then

Pr,(R,;1 >0) =1—Pr,(R,;; <0)

=1_Pr<Rt+1_:Uv < —M )
Ot Ot

:(I)<‘T:f1t>’ @)

where ®(-) is the N(0, 1) cumulative density function
(c.d.f.). Note that although the distribution is symmet-
ric around the conditional mean, and the conditional
mean is constant by assumption, the sign of the return
is nevertheless forecastable because the probability of
a positive return is time varying (and above 0.5 if u >
0). As volatility moves, so too does the probability of
a positive return: the higher the volatility, the lower
the probability of a positive return, as illustrated in
Figure 1.

The surprising result that the sign of the return
is forecastable although the conditional mean is con-
stant hinges interestingly on the interaction of a
nonzero mean return and nonconstant volatility. A
zero mean would render the sign unforecastable, as
would constant volatility; hence the tradition in finan-
cial econometrics of removing unconditional means
and working with zero-mean series disguises sign
forecastability. Note also that a large volatility relative
to the mean renders the sign nearly unpredictable.
It is interesting to note that the key link between
sign forecastability and volatility dynamics parallels
the literature on optimal prediction under asymmet-
ric loss. In sign forecasting, volatility dynamics inter-
act with a nonzero mean to produce time variation
in the probability of a positive return, and hence sign
forecastability. In forecasting under asymmetric loss,
as in Christoffersen and Diebold (1996, 1997), volatil-
ity dynamics similarly produce time variation in the
optimal point forecast of a series with a constant con-
ditional mean.

Our setup above was intentionally simple, but it
is easy to see that the results are maintained under
a number of interesting variations. To take just one
example (we discuss several in the online supplement
on the Management Science website at http://mansci.
pubs.informs.org/ecompanion.html), note that if
returns are conditionally non-Gaussian (e.g., con-
ditionally skewed), the result in Equation (2) that
volatility forecastability implies sign forecastability
still holds.

2.2. Sign Dynamics Do Not Require Conditional
Mean Dynamics

Forecasting market direction is of interest for active

asset allocation, and a substantial body of evidence
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Figure 1 The Dependence of Sign Probability on Volatility
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Notes. We show two Gaussian return densities, each with expected return of 10%. The first return has a standard deviation of 5%, and hence is positive
with probability 0.98 (the area to the right of zero under the more-peaked density function). The second return has a standard deviation of 15%, and hence is
positive with smaller probability 0.75 (the area to the right of zero under the less-peaked density function).

suggests that it can be done, as per the references given
earlier. Successful directional forecasting implies that
returns must be somehow dependent. When direc-
tional forecasting is found to be empirically success-
ful, it is tempting to assert that it is driven by (per-
haps subtle) nonlinear conditional mean dependence,
which would be missed in standard analyses of (lin-
ear) dependence, such as those based on return auto-
correlations.

The key insight is that although sign dynamics
could be due to conditional mean dependence, they
need not be. In particular, we have demonstrated
that volatility dynamics produce sign dynamics,
so that one should expect sign dynamics in asset
returns, given the overwhelming evidence of volatil-
ity dynamics, even if returns display near conditional
mean independence.

Moreover, as noted above, in a general equilibrium
involving risk-averse market participants observed
prices will, of course, not in general evolve as mar-
tingales, which is to say that observed returns may
in general display some conditional mean dynamics
because of perhaps time-varying risk premia over the
business cycle. Any such conditional mean dynam-
ics may, of course, contribute to sign forecastabil-
ity as well. In our analysis, we intentionally assume
the absence of conditional mean dynamics for sev-
eral reasons. First, as discussed earlier, the evidence
suggests that conditional mean independence is a
reasonable empirical approximation to asset return
dynamics, despite the fact that dynamic asset pric-
ing theory predicts dependence between first and
second moments. Second, we want to focus on the
subtle and little-understood connection between sign
dynamics and wvolatility dynamics. Third, standard
expansions suggest that even if conditional mean

dynamics are operative, one may expect that con-
ditional variance dynamics will dominate.* To see
this, consider a Taylor series expansion of u; 1|,/7;.1|;
about the mean

Bi1)t/Orape X )0+ (g — p)o ™"
+ (o — o . 3)

Based on this, consider the variance of w;,|;/0;,1);- To
first order, the variance of ,,,; is multiplied by o2,
which is a large number, while the variance of 1/0,,,
is multiplied by 12, a smaller number. However, the
variance of 1/0,,,|, is huge and should be the domi-

nant term.

2.3. An Intriguing Decomposition
It is interesting to interpret the phenomena at hand
through the decomposition®

Ry =sign(R,q) - [R;44]- “4)

In the simple models just described (and, to a good
approximation, in observed return data), both of
the right-hand side components of returns display
persistent dynamics and hence are forecastable, yet
the left-hand side variable, returns themselves, are
unforecastable. This is an example of a nonlinear
“common feature,” in the terminology of Engle and
Kozicki (1993): both signs of returns and absolute
returns are conditional mean dependent and hence
forecastable, yet their product can be conditional
mean independent, and hence unforecastable.

* The authors thank a referee for suggesting this, and for the Taylor
series argument.

®See Rydberg and Shephard (2003) for an extensive and authorita-
tive treatment of this and related decompositions in the context of
ultrahigh-frequency financial asset price movements.
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3. Measuring the Strength of Sign
Forecastability

Here, we examine a number of questions relevant to
measuring sign forecastability. How, if at all, does the
derivative of a sign forecast with respect to volatility
vary as a function of volatility, and in what volatility
region is the derivative largest? What is the correla-
tion between sign forecasts and realizations, and how,
if at all, is the correlation related to the volatility of
sign forecasts?

3.1. The Responsiveness of Sign Forecasts to
Volatility Changes

In the simple setup developed thus far, we achieve

probability forecastability only from volatility dynam-

ics. A key issue is how much the probability forecast

changes when the volatility changes, and the obvious

measure is the derivative

dPr, (R, ;>0
R = 29( t+1 ), (5)
Ot
where we choose the notation N for “responsive-
ness.”® Immediately,

G e

where f(-) is the probability density function (p.d.f.)
of standardized returns.

In Figure 2, we work in a Gaussian environment
and plot 9 as a function of the information ratio, u/o.
Note that % is always negative (i.e., the probability
of a positive return is always decreasing in the con-
ditional standard deviation). Crucially, however, R is
not monotone in w/o; instead, it achieves a minimum
at w/o = /2 = 1.41. This makes sense: for u/o close
to zero, the conditional probability of a positive return
can deviate little from 1/2, and hence responsiveness
is tiny. Similarly, for very large w/o, the conditional
probability of a positive return can deviate little from
1, and hence responsiveness is again tiny. Interme-
diate values of u/o, however, can produce greater
responsiveness. The maximal forecastability as mea-
sured by 3t that occurs when u /o ~ 1.41 is rather high
for an information ratio. The frequency with which
we hit that “sweet spot” depends on the volatility of
volatility, to which we shall return.

3.2. The Correlation between Sign Forecasts and
Realizations

To characterize the correlation between sign forecasts

and realizations, first note that

Cov(l1, Pt+1\t) = E(It+1pt+1u) - E(It+1)E(Pt+1|t)
= E(I,,P,yy ) — P2, (7)

© This is also known as the “marginal effect” in the binary response
literature.
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Figure 2 Responsiveness of Sign Probability to Volatility Movements
Plotted Against the Information Ratio, 1/o
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Notes. We plot 9,, the derivative of the probability of a positive return with
respect to return volatility, as a function of the information ratio, u/o. We
assume Gaussian returns.

where P is the unconditional probability of a positive
return and I, is the indicator variable of an ex post
realized positive return. Second, use the law of iter-
ated expectations to get

E(It+1pt+1\t) = E(Et(1t+lpf+1|f)) = E(Et(1t+1)Pf+1|t)
= E(P%y))- (8)
Hence, we have
Cov(li1, Priayr) = E(met) —P2= Var(Pyqy:), (9)

so the covariance between the forecast and the real-
ization is equal to the variance of the forecast.” Con-
verting to correlation, we can write

Var(Pyq 1)
Std(1t+1)5td(Pt+1 \ )
_ Std(Pyyqr)

JPA=P)’

where P = E(I;). Note that the correlation between
sign forecasts and realizations depends only on the
standard deviation of the forecast, which, of course,
will depend on the particular return process at hand.
Despite its generality, the correlation expression fur-
nishes considerable insight. In particular, because the
optimal probability forecast P, is driven entirely
by the volatility ;.,,, we have that Corr(l,;, P,yq,),
which is proportional to Std(P,,,;), is therefore driven
by the volatility of volatility.

Corr(ly 1, Prap) =

(10)

4. Detecting Sign Forecastability

Now, we examine questions relevant to the detec-
tion of sign forecastability. First, we examine the
serial correlation structure of sign realizations, and

7 Alternatively, and perhaps more intuitively, note that regression
of I,;; on P, yields a unit coefficient by definition of I,; and
Py That is, Cov(lyy, Pryyyp)/Var(Py, ) = 1, which implies that
Cov(ly4, Pr+1\r) = Var(Pt+1|t)'
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we argue that it is not likely to be useful for iden-
tifying sign forecastability because the optimal sign
predictor turns out to be highly nonlinear. Hence,
linear diagnostic tools discard valuable information.
Next, we study the efficacy of runs tests for detecting
sign forecastability and show that they have parallel
deficiencies. Finally, we examine the ability of tradi-
tional market timing tests to detect sign forecastabil-
ity, and we argue that although they may have good
power to detect sign forecastability arising from time-
varying expected returns, they have little or no power
to detect sign forecastability arising from variation in
volatility (or higher-ordered conditional moments).

4.1. Serial Correlation of Signs
The basic insight is simply that

Corr(l;14, I}) < Corr(Piq s, Ii11), (11)

which follows immediately from the fact that the opti-
mal time-t forecast of I,,;, P,,;|, has a higher corre-
lation with I,,; than anything else observed at time
t, including I,.® The inequality leads one to suspect—
although, of course, it does not definitively prove—
that the size of the sign autocorrelation is likely to be
much less than the maximum attainable because I, is
not likely to be highly correlated with P,,,;, which is
driven directly by o,,4,;, not I;. Hence, we conjecture
that the autocorrelations of the sign sequence may be
small, even if sign predictability is high. In §5, we
shall provide a quantitative assessment of this effect
in a realistically calibrated simulation.

4.2. Runs Tests

Working with a 0-1 sign sequence naturally leads one
to consider tests of sign forecastability based on the
number of runs in the sign sequence, and there is a
long tradition of doing so in empirical finance; see,
for example, Campbell et al. (1997, Chapter 2) for an
overview. We now consider whether runs tests are
likely to be more useful for detecting sign depen-
dence than the serial correlation coefficients discussed
above.

A run is simply a string of consecutive zeros or
ones. Hence, the number of runs is the number of
switches from 0 to 1, plus the number of switches
from 1 to 0, plus 1,

Nruns =1 + 2(1 - It)It+1 + th(l - If+1)/ (12)
t t

which can be written as

Nyns =142PT =23 LI, (13)
t

8 The inequality can also be established by formally deriving the
equality Corr(l,,,, I,) = Corr(P, ;, I, 1)Corr (P4, L,)-

where P = (1/T) Y, L. Solving the N, equation for
> LI, and exploiting the fact that I? = I, yields the
estimator,

(L/T) > Iy — P

Corr(l..,, 1) = i
(t+1 t) P(l—P)
N —1

B (14)
2TP(1— D)

This expression makes clear that there is no informa-
tion in the number of runs in a sign sequence that
is not also in the first-order autocorrelation of the
sequence, and conversely. Thus, our earlier conjec-
ture that sign predictability is unlikely to be found
using autocorrelations of the sign sequence translates
as well into a conjecture that it is unlikely to be found
using runs tests. In general, tests that rely only on
the sign sequence omit important information about
volatility dynamics, which is potentially valuable for
detecting sign predictability.

4.3. Market Timing Tests

Here, we discuss some popular market timing tests
and their relationship to return sign forecasts, and we
argue that none of them are likely to be useful for cap-
turing sign forecastability when it arises via volatility
dynamics, as we have emphasized.

The literature on market timing is intimately con-
cerned with signs and sign forecasting. For example,
Henriksson and Merton (1981) argue that p; +p, — 1
can be interpreted as the multiplier to apply to the
value of perfect market timing, where p, is the proba-
bility of a correctly forecasted negative return and p,
is the probability of a correctly forecasted positive
return. Breen et al. (1989) show that in the regression

I(Ryy1 >0)=a+ bI(Pt+1|t > 0.5) + €44, (15)

we have that b = p, + p, — 1. Hence, the absence of
Henriksson and Merton (1981) market timing ability
corresponds to b =0, which is easily tested using stan-
dard methods. Cumby and Modest (1987) examine
the closely related regression,

Rypy=a+bI(Py, ), >0.5) +eq, (16)

and similarly test the significance of b.’

Note that all of the tests above process P, in a
particular way: P, |, enters them only through the
indicator function I(P,,,, > 0.5)."° Hence, for exam-
ple, a Py, of 0.5001 is treated fundamentally differ-
ently from a Py, of 0.4999, whereas a P, of 0.9999

?See also Merton (1981), Whitelaw (1997), and Busse (1999). Note,
however, that this framework does not include the quadratic regres-
sion tests of Treynor and Mazuy (1966) and Ferson and Schadt
(1996), which are used in mutual fund performance evaluation.

The same is true for generalizations of the Henriksson and
Merton (1981) test, such as Pesaran and Timmermann (1992).
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is treated no differently from a P, of 0.5001. This
is particularly unfortunate because although volatility
dynamics lead to sign forecastability (i.e., variation in
P,1);), the time-varying P, ,;, may well never drop
below 0.5. Such is the case, for example, in the leading
example of a fixed positive expected return with sym-
metric conditional density analyzed earlier, so that the
tests discussed above would have no power to detect
sign dependence. Hence, the traditional market tim-
ing tests are best viewed as tests for sign dependence
arising from variation in expected returns rather than
from variation in volatility (or higher-ordered condi-
tional moments).

5. Sign Forecasting for Various Data
Frequencies and Forecast Horizons:

A Simulation Experiment

We have shown that return sign forecastability arises
from the interaction of nonzero expected returns and
volatility forecastability. As expected returns approach
zero, or as volatility forecastability approaches zero,
sign forecastability approaches zero."! Hence, one
does not expect strong sign forecastability for very
high-frequency returns such as daily, despite their
high volatility forecastability, because expected daily
returns are negligible. Similarly, one does not expect
strong sign forecastability for very low-frequency
returns such as annual, despite the high expected
returns, because annual return volatility forecastabil-
ity is negligible. One might therefore conjecture that
sign forecastability will be highest at some interme-
diate horizon between such very short and very long
extremes. In this section, we evaluate this conjecture.

When analyzing sign dynamics at various hori-
zons, one is quickly faced with the challenge that
few discrete-time dynamic models with time-varying
volatility are closed in distribution under increasing
horizons.> We therefore work with Heston’s (1993)
affine continuous-time stochastic volatility model,
which is arguably the most widely applied modern
univariate stochastic process for equity and equity
index returns. In Heston’s (1993) model, the condi-
tional characteristic function is known for any hori-
zon, so Fourier inversion techniques can be used to
compute sign probability forecasts.

1 Of course, higher-ordered conditional moment dynamics can also
contribute to sign predictability, as we discuss in detail in the
online supplement.

12 For penetrating insight into the difficulties involved in the tempo-
ral aggregation of discrete-time volatility models, see Meddahi and
Renault (2004), Meddahi (2001), Darolles et al. (2001), and Heston
and Nandi (2000).

5.1. Simulation Design

The stochastic volatility model parsimoniously cap-
tures many of the stylized facts of asset returns,
including skewness, leptokurtosis, and volatility per-
sistence, and its conditional density can be calcu-
lated easily at any forecast horizon. For all of these
reasons—both substantive and methodological—it
has become a standard benchmark in empirical asset
pricing."?

The Heston (1993) stochastic volatility model is

dS(t) = wSdt + o (H)Sdz,,
do?(t) = k(0 — o*(t))dt + no(t)dz,,

where S(t) is the asset price process and o?(t) is the
variance process, and where Corr(dz,, dz,) = p. The
expected instantaneous rate of return is u, the long-
run variance is 0, the speed of variance adjustment
is governed by «, and the volatility of volatility is
governed by 7.

Using Ito’s lemma, the stochastic volatility process
can conveniently be written in terms of the log asset
price, x(t), as

dx(t) = (u — 02(t)/2)dt + o (t)dz,,

do?(t) = k(0 — o*(t))dt + no(t)dz,.
Note that although the instantaneous drift is sim-
ply a constant, the continuously compounded return
has a slightly time-varying mean from the Ito
transformation.

The probability of an increase in the asset price
between time t and t + 7, or equivalently, the prob-
ability of a positive return during [t, ¢ + 7], can be
calculated using the inverse characteristic function
technique.* In particular,

Prprp =Pr(x(t+7)>x(t) [x(t) =x, a*(t) = o?)

11 exp(—iyx)f(x, o2, 7; )
=3 + ﬂ_[o Re( W dy,
(19)
where f(x, 0%, 7; ) is the characteristic function for

horizon 7, i =+ —1, Re(-) takes the real part of a com-
plex number, and the characteristic function is

f(x, 0%, 1; ) =exp(C(r, ) + D(7, $)a* +ipx), (20)

17)

(18)

13 The stochastic volatility model has been estimated by Andersen
et al. (2002), Bakshi et al. (1997), Benzoni (2002), Chernov et al.
(2003), Chernov and Ghysels (2000), Eraker et al. (2003), Jones
(2003), and Pan (2002), among others. We intentionally work with
a very simple version of the model, with a single volatility factor,
no volatility jumps, and no volatility long memory. One could, of
course, examine even richer models with multiple volatility factors
and/or volatility jumps as in Alizadeh et al. (2002), Bates (2000),
Chernov et al. (2003), and Duffie et al. (2000), and long memory in
volatility as in Andersen et al. (2001a, b; 2003).

" As in the Gaussian case, computation of the sign probability

requires numerical integration, but the well-behaved integrand ren-
ders the integration straightforward.
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where

C(r, ) = ppit + :—§<(K —pni+d)r

ber, lp):(K—pnl/Ji—i-d)( 1— exp(dr) ) )

7> 1—gexp(dr)
_ k—pnpi+d
= e pmi—d’ @)
and
d =/ (pnpi — k)2 + (i + y2). (24)

As we have shown, the structure of the Heston
model makes certain key calculations tractable, which
explains its popularity. We will now exploit that
tractability to illustrate several important aspects of
optimal sign forecasting, including the existence of a
nontrivial optimal horizon for sign prediction. Before
doing so, however, we note that the Heston model
actually limits the possible amount of sign predictabil-
ity. In particular, to ensure in discrete-time simula-
tions that the variance process stays strictly positive
almost surely in the Heston model, it is necessary to
restrict the volatility of volatility (7), such that n? <
20k. This limits the amount of sign predictability that
the Heston model can generate because it requires the
volatility of volatility to be small relative to the uncon-
ditional variance and the conditional variance persis-
tence, whereas sign predictability is greatest when the
volatility of volatility is high, when conditional vari-
ance persistence is high, and when the unconditional
variance is low relative to the mean. Other stochastic
volatility specifications, although less tractable mathe-
matically, imply no such limits to sign predictability.'®
In this sense, then, our simulation results below on
sign predictability using the Heston model as a data-
generating process are, if anything, conservative rela-
tive to those that could be obtained using alternative
models.

We simulate prices at five-minute intervals and
assume 24-hour trading with 250 trading days per
year. For the purpose of sign prediction, we pro-
ceed by discarding the intraday observations and take
daily to be the highest frequency of interest. We cal-
ibrate the parameters to typical values estimated in
the empirical literature. Our benchmark values are
w=0.10, k =2, § =0.015, n =0.15, and p = —0.50,

15 The volatility of volatility restriction in the Heston (1993) model
has been found to be restrictive in option valuation as well. Cir-
cumventing the restriction, Duffie et al. (2000) suggest a model
with correlated jumps in returns and jumps in volatility. Bakshi and
Cao (2003) find that the new model significantly improves on the
Heston (1993) model when valuating individual equity options.

which imply a daily mean of about 0.037%, a daily
unconditional standard deviation of 0.77%, uncon-
ditional skewness of about —0.1, and unconditional
excess kurtosis of about 1.1 The annualized mean
reversion parameter k =2 implies a daily persistence
of about 1 —2/250=0.99 in a standard GARCH(1,1)
model. Note also that the parameters satisfy the n* <
20k condition.

5.2. Simulation Results

In Figure 3, we plot the sign forecasts from a typi-
cal sample path of the simulated process, computed
using (19). We show daily, weekly, monthly, quarterly,
semiannual, and annual conditional as well as uncon-
ditional sign probabilities. As we move from daily to
annual returns, the volatility of the conditional sign
probabilities first increases and then decreases. By
(10), this supports our conjecture that sign predictabil-
ity should increase and then decrease with horizon.
In contrast, the unconditional probability of a positive
return increases monotonically (and at a decreasing
rate) with horizon.

In Figure 4, we focus more directly and thoroughly
on our conjecture that sign dynamics will be most
prevalent at intermediate frequencies; examining the
correlation between sign forecasts and realizations
as a function of horizon. Consider first the top line
where w = 0.10, which is our benchmark parameter
value. The correlation is quite low for the highest fre-
quency returns, then it increases, and then it tapers
off again as we aggregate toward annual returns.
The correlation is highest at horizons of approxi-
mately 2-3 months (corresponding to 40-60 trading
days). Interestingly, then, despite the fact that sign
predictability is driven by volatility predictability,
which is highest at very high frequencies, the interac-
tion between decreasing volatility predictability and
increasing expected returns under temporal aggrega-
tion results in maximization of sign predictability at
medium horizons.

Consider now the middle and lower lines in
Figure 4 corresponding to u = 0.05 and u = 0,
respectively, with all other parameters kept at their
benchmark values. As expected, signs are less fore-
castable at all horizons for smaller w; the figure
provides a precise quantitative characterization. Inter-
estingly, some sign forecastability remains even when
@ =0 because of the nonzero leverage effect, p, inter-
acting with the volatility dynamics."”

In the online supplement, we explore an alternative parameteri-
zation with no leverage, and the results are qualitatively similar.

171t is interesting to note that even when both drift and leverage are
zero, there is a small degree of sign forecastability as the horizon
increases, coming from the Ito term, —g?(t)/2, in the drift of the
log price process. Meddahi and Renault (2004) find similar effects
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Notes. We simulate asset prices from a stochastic volatility model parameterized as dS(t) = 0.10S dt + ¢(t)S dz, and do?(t) = 2(0.015 — ¢?(t)) dt +

0.150(t) dz,, with Corr(dz,, dz,)

= —0.5. We then calculate at each of 500 periods the conditional probability of a positive return at daily, weekly, monthly, and

annual horizons. The horizontal line in each subplot denotes the unconditional probability of a positive return, which equals the average conditional probability.

In Figure 5, we explore the effects of lower volatil-
ity persistence. The top line again corresponds to our
benchmark parameter value; that is, k =2. The mid-
dle line shows the correlation between sign forecasts
and realizations when k =5 (corresponding to a daily
volatility persistence of about 0.98) and the bottom
line when k =10 (corresponding to a daily volatility

arising under aggregation. By defining dS(t)/S(t) to have a sym-
metric distribution, an asymmetry is automatically introduced in
the distribution of S(t 4 7). See the online supplement for further
details.

persistence of about 0.96), with all other parameters
kept at their benchmark values. As expected, signs
are less forecastable at all horizons for lower volatility
persistence, and the figure again provides a precise
quantitative characterization.

In Figure 6, we show another important result, also
suggested but not conclusively established by our ear-
lier analytic work: the simple autocorrelation of the
sign realization is small compared to the correlation
between the forecasted and realized signs, at all hori-
zons, suggesting that attempts to detect, model, or
forecast signs by simple linear autoregressive models
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Figure 4 Correlation Between Sign Forecasts and Realizations Across Figure 7 Responsiveness of Sign Probability to Volatility
Horizons—Various Expected Return Parameters Movements in Heston’s (1993) Stochastic Volatility Model
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Notes. We simulate asset prices from a stochastic volatility model param-
eterized as dS(t) = pSdt + o(t)Sdz, and da?(t) = 2(0.015 — o?(t))dt +
0.15¢(t)dz,, with Corr(dz,, dz,) = —0.5 and p = 0.10, 0.05, and 0.00,
respectively. We then calculate the ex ante conditional probability of a positive
return as well as the ex post return sign realization at nonoverlapping hori-
zons ranging from 1 to 250 trading days (one year). We calculate the sample
correlation between the forecast and the realization across a large number of
realizations, making use of the quasi-analytic result (10) in the text.

Figure 5 Correlation Between Sign Forecasts and Realizations Across
Horizons—Various Volatility Persistence Parameters
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Notes. We simulate dS(t) = 0.10Sdt 4 o(t)Sdz, and da?(t) = «(0.015 —
a?(t))dt + 0.15¢(t)dz,, with Corr(dz,, dz,) = —0.5, and with volatility per-
sistence parameter k = 2, 5, and 10, respectively. We then calculate the
ex ante conditional probability of a positive return as well as the ex post return
sign realization at nonoverlapping horizons ranging from 1 to 250 trading
days (one year). We calculate the sample correlation between the forecast
and the realization using a large number of realizations, making use of the
quasi-analytic result (10) in the text.

Figure 6 Correlation Between Sign Forecasts and Realizations and
First Autocorrelation of Return Signs—Various Horizons,
Benchmark Parameters
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Notes. The correlation between sign forecasts and realizations is as in Fig-
ure 4. We compute the first autocorrelation of the sign sequence by simulat-
ing asset prices from a stochastic volatility model parameterized as dS(t) =
0.108dt + ¢ (t)Sdz, and do?(t) = 2(0.015 — o?(t))dt + 0.150(t)dz,, with
Corr(dz,, dz,) = —0.5. We then construct an indicator sequence of return
signs for each horizon, and we calculate the sample autocorrelation from a
long simulated sequence of returns, using the quasi-analytic result (10) in
the text.

Notes. We take the numerical derivative of the conditional probability, 7, . ¢,
from Heston’s (1993) stochastic volatility model with respect to the stan-
dard deviation o (t). We plot this derivative against the annualized information
ratio, /o, Where p is the annualized drift and g, |, is the annualized
expected average standard deviation over the forecast horizon, r. We use the
benchmark parameters from Figure 6, with a forecast horizon of 40 trading
days (7 =40/250).

are not likely to be fruitful. It appears that the non-
linear volatility dynamics that drive sign dynamics
make the linear forecastability in signs quite small. In
our setup, tomorrow’s sign is linked to tomorrow’s
volatility, which is much more correlated with today’s
volatility than with today’s sign.

Finally, in Figure 7, we take the numerical deriva-
tive of the conditional probability, P, in Equa-
tion (19) with respect to the standard deviation o (t).
We plot this derivative against the annualized infor-
mation ratio defined as u/0;,,;,, where u =0.1is the
(annualized) mean of the instantaneous return drift
and o,,,; is the annualized expected average stan-
dard deviation over the forecast horizon, 7.1®* We use
the benchmark parameters from Figure 6, with a fore-
cast horizon of 40 days (7 = 40/250). Figure 7 thus
confirms in a richer environment the result found in
the stylized Gaussian model in Figure 2. In particu-
lar, in a dynamic volatility setting when volatility is
very low, the sign probability does not respond to
changes in volatility—it is simply 1. Similarly, when
the volatility is very high, it dominates the mean
return, and the sign probability remains near 1/2.
However, for intermediate levels of volatility, the sign
probability responds to changes in volatility. Specifi-
cally, in this case, when u/o,, .|, is close to 1.5; that is,
when 0., is close to 6.67% in annual terms, the
sign predictor reaches a maximum level of respon-
siveness to volatility changes. Figure 7 thus shows
that the “sweet spot” for sign forecast responsiveness
to volatility changes is found at a low but not com-
pletely unrealistic level of volatility.

" Note that the expected average variance in the Heston (1993)
model can be calculated from o7, = 6 + (1 — exp(—«7))/
(k7)(0*(t) — 6).
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6. Empirics

We now present a simple empirical example, pro-
ducing daily sign forecasts of returns on the S&P
500 index (SPINDX, from the Center for Research in
Security Prices (CRSP)) from January 1, 1963 through
December 31, 2003, at horizons ranging from h =1
through h =250 days.”” The example illustrates our
methods, provides preliminary evidence as to their
applied relevance, and lays the groundwork for addi-
tional exploration.

Let R, ., be the h-day return, and define the
“positive return” indicator as I,,;, =1 if R,,1,.;, >0
and I, , =0 otherwise. We want to forecast I,,,, and
our earlier theoretical analysis strongly suggests using
a model of the form

o =F(£) e, 3)
Oy
where F(-) is a monotone function with a left limit of
zero and a right limit of one, u is the h-day expected
return, and o, is a forecast of h-day return volatility.
An obvious choice of F(-) is the logistic,

, (26)

which produces the popular logistic regression (logit)
model.

Hence, we proceed via logistic regression of I,
on 1/0,. The issue remains as to what to use for o;;
indeed, as we have shown and stressed, the key
ingredient of a sign forecast is a volatility forecast.
Volatility forecasts can be obtained using a variety of
approaches, including GARCH volatilities, stochastic
volatilities, implied volatilities, and realized volatil-
ities, as surveyed in Andersen et al. (2005b, c).
Here, we proceed using the popular RiskMetrics
approach, which has links not only to the traditional
GARCH approach, but also to the more recent “real-
ized volatility” models of Hsieh (1991) and Andersen
et al. (2003), measuring any day’s variance (and fore-
casting any future day’s variance) as an exponen-
tially weighted moving average of past daily squared
returns, with the customary smoothing parameter
of 0.94.%°

Each day we compute out-of-sample one-day
through 250-day return sign probability forecasts

¥ We do not include dividends, because SPINDX does not. In addi-
tion, we do not subtract a risk-free rate. Doing so would require
complete daily term structure data for every day since 1963. It
would, of course, be of interest to move to excess returns, including
dividends in subsequent more elaborate investigations.

2 Tn future work, it would be of interest to contrast the results
reported below with those produced using other volatility mod-
els. In particular, certain of our empirical results may be driven
by the fact that RiskMetrics volatility forecasts do not mean revert,
whereas those from most other models do.

Figure 8 Daily RiskMetrics Volatility (Annualized)
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Note. We show the time series of daily (annualized) RiskMetrics volatilities
from January 1, 1963 through December 31, 2003, obtained using the stan-
dard smoothing parameter of 0.94.

using five-year rolling estimation windows and dif-
ferent logit models for each horizon to allow expected
returns to change over time and horizon.?! In Figure 8,
we show the volatility series. Its well-known pro-
nounced fluctuations and high persistence are imme-
diately apparent. The key issue, of course, is whether
the pronounced and predictable volatility dynamics
translate empirically into similarly pronounced and
predictable sign dynamics, as in the earlier simulation
exercise.

The results are encouraging. In Figure 9, we show
the conditional sign probability forecasts for the same
six horizons as in the simulations, together with
unconditional probabilities superimposed for visual
reference. The unconditional sign probabilities natu-
rally increase with horizon, and the conditional sign
probabilities fluctuate widely and persistently around
them—indeed noticeably more so than in the sim-
ulation example—reflecting the wide and persistent
empirical fluctuations in S&P 500 volatility.

In Figure 10, we show the correlation between the
out-of-sample sign probability forecast and the sign
realization, as well as the first-order autocorrelation of
the sign realization for various horizons. The humped
patterns, with the correlations larger than the auto-
correlations, conform roughly to the theory. It is inter-
esting to note, however, that both the correlations and
the autocorrelations are generally much larger than in
our earlier simulation example, which uses an affine
volatility model with low volatility of volatility.

7. Concluding Remarks and

Directions for Future Research
Our contribution is twofold. First, we show that
given the widely accepted volatility dynamics in stock

2 All told, we estimate roughly 100,000 logit models.
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Figure 9 Conditional Probability Forecasts—Various Horizons
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Note. We show the time series of conditional probabilities of a positive S&P 500 return at six horizons, assessed using a logit model in conjunction with a

RiskMetrics volatility forecast.

returns, one should not be surprised to find sign
forecastability in returns, even if returns are condi-
tional mean independent. Hence, sign dependence is
likely widespread, but it is not necessarily indicative
of time-varying expected returns and should not be
interpreted as such.

Second, we explore a variety of aspects of sign
forecastability, analytically, numerically, and empiri-
cally. For example, we show analytically that sign
probability forecasts are most sensitive to changes in
volatility when volatility is at an intermediate level,
and we show in a realistically calibrated simulation
exercise that sign forecastability appears strongest at
intermediate horizons of two or three months. In
addition, we show that the nonlinear nature of sign
dependence makes it unlikely to be found via tradi-

tional approaches such as analysis of sign autocorre-
lations, runs tests, or market timing tests.

Importantly, our results relate not only to academic
concerns, but also to those of practitioners, who com-
monly use market timing strategies linked to volatility
movements, as documented, for example, in Rattray
and Balasubramanian (2003) and Gross et al. (2003).
To the best of our knowledge, however, we are the
first to provide a rigorous scientific investigation of
the links between volatility dynamics and directional
market movements.

As for future work, the obvious next step is to for-
mulate trading strategies based on sign forecasts (e.g.,
by trading digital options) and to assess their efficacy
in generating positive risk-adjusted excess returns.
Interestingly, the analysis of this paper makes clear
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Figure 10 Forecast Correlation and Return Sign Autocorrelation—
Various Horizons
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Note. We show the empirical analog of Figure 6 based on probability fore-
casts produced using a logit model in conjunction with a RiskMetrics volatil-
ity forecast.

that such strategies should be related to “volatility
timing” strategies, such as those of Fleming et al.
(2001, 2003) and Johannes et al. (2002), in which
portfolio shares are dynamically adjusted based on
forecasts of the variance-covariance matrix of the
underlying assets. Sign/volatility dynamics could
also be exploitable in safety-first problems, as in
Roy (1952), Bawa (1978), and Hagigi and Kluger
(1987). One could progress significantly, moreover, by
incorporating skewness and kurtosis dynamics, using
the methods of El Babsiri and Zakoian (2001). Such
“moment timing” will require evaluation measures
more widely applicable than simple Sharpe ratios,
such as Stutzer’s (2001) portfolio performance index.

Other explorations may also prove interesting. One
example is generation of probability forecasts for
future returns exceeding any given value x or per-
centile @, and developing the links to related work
such as Engle and Manganelli (2002) and Taylor
(2005). Another example is estimating nonparamet-
rically the maximally predictable nonlinear func-
tion f(-) of returns. The results of Chen et al. (2000)
indicate that the optimal function will be monotone,
as is the sign function, but the issue remains open
as to whether and how the maximally predictable
nonlinear function of returns diverges from the sign
function.

An online supplement to this paper is available on
the Management Science website (http://mansci.pubs.
informs.org/ecompanion.html).

Acknowledgments

This work was supported by the National Science Founda-
tion, the Guggenheim Foundation, the Wharton Financial
Institutions Center, FQRSC, IFM2, and SSHRC. For helpful
comments, the authors thank David Hsieh and two anony-
mous referees, as well as David Bates, Antulio Bomfim,
Michael Brandt, Xiaohong Chen, Michel Dacorogna,

Graham Elliott, Rene Garcia, Christian Gourieroux, Clive
Granger, Anthony Hall, Wolfgang Hardle, Joanna Jasiak,
Michael Johannes, Blake LeBaron, Bruce Lehman, Martin
Lettau, Nour Meddahi, Theo Nijman, Jonathan Reeves,
Sergei Sarkissian, Frank Schorfheide, Allan Timmermann,
Harald Uhlig, Pietro Veronesi, Ken West, Hal White,
Jonathan Wright, and seminar participants at the European
Central Bank, the Federal Reserve Board, McGill University,
University of California at San Diego, University of Penn-
sylvania, the Third Annual Conference on Financial Econo-
metrics at the University of Waterloo, the Econometric Soci-
ety Winter Meetings in Washington, D.C., the NBER/NSF
Time Series Meeting in Philadelphia, the New York Univer-
sity Stern Conference in Honor of the 2003 Nobel Prize in
Economics, the Northern Finance Association annual meet-
ings, the European Finance Association annual meetings,
Singapore Management University, and the Federal Reserve
Bank of St. Louis. Sean Campbell, Chayawat Ornthanalai,
and Clara Vega provided outstanding research assistance.
All inadequacies are ours alone.

References

Abel, A. 1988. Stock prices under time-varying dividend risk.
J. Monetary Econom. 22 375-393.

Alizadeh, S., M. W. Brandt, F. X. Diebold. 2002. Range-based esti-
mation of stochastic volatility models. . Finance 57 1047-1092.

Andersen, T. G., L. Benzoni, J. Lund. 2002. Estimating jump-
diffusions for equity returns. J. Finance 57 1239-1284.

Andersen, T. G., T. Bollerslev, F. X. Diebold. 2005a. Parametric and
nonparametric volatility measurement. L. P. Hansen, Y. Ait-
Sahalia, eds. Handbook of Financial Econometrics. North-Holland,
Amsterdam, The Netherlands. Forthcoming.

Andersen, T. G., T. Bollerslev, P. F. Christoffersen, F. X. Diebold.
2005b. Volatility and correlation forecasting. G. Elliott, C. W. J.
Granger, A. Timmermann, eds. Handbook of Economic Fore-
casting. North-Holland, Amsterdam, The Netherlands. Forth-
coming.

Andersen, T. G., T. Bollerslev, P. F. Christoffersen, F. X. Diebold.
2005¢. Practical volatility and correlation modeling for finan-
cial market risk management. M. Carey, R. Stulz, eds. Risks of
Financial Institutions. University of Chicago Press, Chicago, IL.
Forthcoming.

Andersen, T. G., T. Bollerslev, E. X. Diebold, H. Ebens. 2001a.
The distribution of realized stock return volatility. J. Financial
Econom. 61 43-76.

Andersen, T. G., T. Bollerslev, F. X. Diebold, P. Labys. 2001b. The
distribution of realized exchange rate volatility. J. Amer. Statist.
Assoc. 96 42-55.

Andersen, T. G., T. Bollerslev, F. X. Diebold, P. Labys. 2003. Model-
ing and forecasting realized volatility. Econometrica 71 579-626.

Backus, D., A. Gregory. 1993. The relations between risk premia
and conditional variances. J. Bus. Econom. Statist. 11 177-185.

Baillie, R. T., R. P. DeGennaro. 1990. Stock returns and volatility.
J. Financial Quant. Anal. 25 203-214.

Bakshi, G., C. Cao. 2003. Risk-neutral kurtosis, jumps and option
pricing: Evidence from 100 most actively traded firms on the
CBOE. Working paper, University of Maryland, College Park,
MD.

Bakshi, G., C. Cao, Z. Chen. 1997. Empirical performance of alter-
native option pricing models. J. Finance 52 2003-2049.

Bates, D. 2000. Post-"87 crash fears in the S&P 500 futures option
market. . Econometrics 94 181-238.



1286

Christoffersen and Diebold: Financial Asset Returns
Management Science 52(8), pp. 12731287, © 2006 INFORMS

Bawa, V. S. 1978. Safety-first, stochastic dominance, and optimal
portfolio choice. J. Financial Quant. Anal. 13 255-271.

Benzoni, L. 2002. Pricing options under stochastic volatility:
An empirical investigation. Working paper, University of
Minnesota, Minneapolis, MN.

Bollerslev, T., R. Y. Chou, K. F. Kroner. 1992. ARCH modeling in
finance: A selective review of the theory and empirical evi-
dence. J. Econometrics 52 5-59.

Brandt, M. W., Q. Kang. 2004. On the relationship between the con-
ditional mean and volatility of stock returns: A latent VAR
approach. J. Financial Econom. 72 217-257.

Breen, W,, L. R. Glosten, R. Jagannathan. 1989. Economic signifi-
cance of predictable variations in stock index returns. J. Finance
44 1177-1189.

Brock, W. A., C. H. Hommes. 1997. A rational route to randomness.
Econometrica 65 1059-1095.

Busse, J. A. 1999. Volatility timing in mutual funds: Evidence from
daily returns. Rev. Financial Stud. 12 1009-1041.

Campbell, J. 1987. Stock returns and the term structure. J. Financial
Econom. 18 373-399.

Campbell, J., L. Hentschel. 1992. No news is good news: An asym-
metric model of changing volatility in stock returns. J. Financial
Econom. 31 281-318.

Campbell, J., R. Shiller. 1988. Stock prices, earnings and expected
dividends. J. Finance 46 661-676.

Campbell, J., A. W. Lo, A. C. MacKinlay. 1997. The Econometrics of
Financial Markets. Princeton University Press, Princeton, NJ.

Chen, X., L. P. Hansen, J. A. Scheinkman. 2000. Principal compo-
nents and the long run. Working paper, New York University,
New York, University of Chicago, Chicago, IL, and Princeton
University, Princeton, NJ.

Chernov, M., E. Ghysels. 2000. A study towards a unified approach
to the joint estimation of objective and risk neutral measures
for the purpose of option valuation. J. Financial Econom. 56
407-458.

Chernov, M., A. R. Gallant, E. Ghysels, G. Tauchen. 2003. Alter-
native models for stock price dynamics. J. Econometrics 116
225-257.

Cheung, Y.-W.,, M. D. Chinn, A. G. Pascual. 2005. Empirical
exchange rate models of the nineties: Are any fit to survive?
J. Internat. Money Finance 24 1150-1175.

Christoffersen, P. E, E X. Diebold. 1996. Further results on fore-
casting and model selection under asymmetric loss. J. Appl.
Econometrics 11 561-572.

Christoffersen, P. F, F. X. Diebold. 1997. Optimal prediction under
asymmetric loss. Econometric Theory 13 808-817.

Cumby, R. E., D. M. Modest. 1987. Testing for market timing ability:
A framework for forecast evaluation. J. Financial Econom. 19
169-189.

Darolles, S., C. Gourierou, J. Jasiak. 2001. Compound autoregres-
sive models. Working paper, York University, Toronto, Ontario,
Canada.

de Fontnouvelle, P. 2000. Information dynamics in financial mar-
kets. Macroeconomic Dynam. 4 139-169.

Duffie, D., J. Pan, K. Singleton. 2000. Transform analysis and asset
pricing for affine jump-diffusions. Econometrica 68 1343-1376.

El Babsiri, M., ].-M. Zakoian. 2001. Contemporaneous asymmetry
in GARCH processes. J. Econometrics 101 257-294.

Elliott, G., T. Ito. 1999. Heterogeneous expectations and tests of
efficiency in the yen/dollar forward foreign exchange market.
J. Monetary Econom. 43 435-456.

Engle, R. F, S. Kozicki. 1993. Testing for common features. ]. Bus.
Econom. Statist. 11 369-380.

Engle, R. F,, S. Manganelli. 2002. CAViaR: Conditional autoregres-
sive value at risk by regression quantiles. J. Bus. Econom. Statist.
11 167-176.

Eraker, B., M. Johannes, N. Polson. 2003. The role of jumps in
returns and volatility. J. Finance 58 1269-1300.

Fama, E. F. 1970. Efficient capital markets: A review of theory and
empirical work. J. Finance 25 383-417.

Fama, E. F. 1991. Efficient capital markets II. ]. Finance 46 1575-1617.

Fama, E., K. French. 1988. Dividend yields and expected stock
returns. J. Financial Econom. 19 3-29.

Fama, E., K. French. 1989. Business conditions and expected returns
on stocks and bonds. J. Financial Econom. 25 23-49.

Ferson, W. E., C. R. Harvey. 1991. The variation of economic risk
premiums. J. Political Econom. 99 385-415.

Ferson, W. E., R. W. Schadt. 1996. Measuring fund strategy and
performance in changing economic conditions. J. Finance 51
425-462.

Fleming, J., C. Kirby, B. Ostdiek. 2001. The economic value of
volatility timing. J. Finance 56 329-352.

Fleming, J., C. Kirby, B. Ostdiek. 2003. The economic value of
volatility timing using realized volatility. J. Financial Econom.
67 473-509.

Foster, D., T. Smith, R. Whaley. 1997. Assessing goodness-of-fit
of asset pricing models: The distribution of the maximal R>.
J. Finance 52 591-607.

Franses, P. H., D. van Dijk. 2000. Nonlinear Time Series Models
in Empirical Finance. Cambridge University Press, Cambridge,
UK.

French, K. R.,, W. Schwert, R. F. Stambaugh. 1987. Expected stock
returns and volatility. . Financial Econom. 19 3-29.

Gencay, R. 1998. Optimization of technical trading strategies and
the profitability in security markets. Econom. Lett. 59 249-254.

Gennotte, G., T. A. Marsh. 1993. Variations in economic uncer-
tainty and risk premiums on capital assets. Eur. Econom. Rev.
37 1021-1044.

Ghysels, E., A. Harvey, E. Renault. 1996. Stochastic volatility.
G. S. Maddala, C. R. Rao, eds. Statistical Methods in Finance.
Handbook of Statistics, Vol. 14. North-Holland, Amsterdam, The
Netherlands, 119-191.

Ghysels, E., P. Santa-Clara, R. Valkanov. 2005. There is a risk-return
tradeoff after all. J. Financial Econom. 76 509-548.

Glosten, L. R., R. Jagannathan, D. E. Runkle. 1993. On the relation
between the expected value and the volatility of the nominal
excess return on stocks. J. Finance 48 1779-1801.

Gross, L., J. Keh, S. Leventhal, O. Sarfati. 2003. Individual implied
volatility predicts future stock movement. Research report,
Equity Derivative Sales, Citigroup, New York.

Hagigi, M., B. Kluger. 1987. Safety first: An alternative performance
measure. J. Portfolio Management 13 34-40.

Hansen, B. E. 1994. Autoregressive conditional density estimation.
Internat. Econom. Rev. 35 705-730.

Harvey, C. R. 2001. The specification of conditional expectations.
J. Empirical Finance 8 573-638.

Harvey, C. R., A. Siddique. 2000. Conditional skewness in asset
pricing tests. J. Finance 55 1263-1296.

Henriksson, R. D., R. C. Merton. 1981. On market timing and
investment performance II: Statistical procedures for evaluat-
ing forecasting skills. J. Bus. 54 513-533.

Heston, S. L. 1993. A closed-form solution for options with stochas-
tic volatility with applications to bond and currency options.
Rev. Financial Stud. 6 327-343.

Heston, S. L., S. Nandi. 2000. A closed-form GARCH option valu-
ation model. Rev. Financial Stud. 13 585-625.

Hsieh, D. A. 1991. Chaos and nonlinear dynamics: Application to
financial markets. J. Finance 46 1839-1877.

Johannes, M., N. Polson, J. Stroud. 2002. Sequential optimal portfo-
lio performance: Market and volatility timing. Working paper,
Columbia University, New York.



Christoffersen and Diebold: Financial Asset Returns
Management Science 52(8), pp. 1273-1287, ©2006 INFORMS

1287

Jones, C. 2003. The dynamics of stochastic volatility: Evidence from
underlying and options markets. J. Econometrics 116 181-224.

Kirby, C. 1997. Measuring the predictable variation in stock and
bond returns. Rev. Financial Stud. 10 579-630.

Kuan, C.-M., T. Liu. 1995. Forecasting exchange rates using feed-
forward and recurrent neural networks. |. Appl. Econometrics
10 347-364.

Larsen, G. A,, Jr., G. D. Wozniak. 1995. Market timing can work in
the real world. J. Portfolio Management 21 74-81.

Leitch, G., J. E. Tanner. 1991. Economic forecast evaluation: Profits
versus the conventional error measures. Amer. Econom. Rev. 81
580-590.

Lettau, M., S. Ludvigson. 2005. Measuring and modeling varia-
tion in the risk-return tradeoff. Y. Ait-Shalia, L. P. Hansen, eds.
Handbook of Financial Econometrics. North-Holland, Amsterdam,
The Netherlands.

Leung, M. T., H. Daouk, A.-S. Chen. 2000. Forecasting stock indices:
A comparison of classification and level estimation models.
Internat. J. Forecasting 16 173-190.

Levich, R. M. 2001. International Financial Markets, 2nd ed. McGraw-
Hill, New York.

Lo, A. W,, A. C. MacKinlay. 1999. A Non-Random Walk Down Wall
Street. Princeton University Press, Princeton, NJ.

Meddahi, N. 2001. An Eigenfunction approach for volatility model-
ing. Working paper, University of Montreal, Montreal, Quebec,
Canada.

Meddahi, N., E. Renault. 2004. Temporal aggregation of volatility
models. J. Econometrics 119 355-379.

Merton, R. C. 1973. An intertemporal capital asset pricing model.
Econometrica 41 867-887.

Merton, R. C. 1981. On market timing and investment perfor-
mance I: An equilibrium theory of value for market forecasts.
J. Bus. 54 363-406.

Nelson, C., M. Kim. 1993. Predictable stock returns: The role of
small sample bias. ]. Finance 48 641-661.

Nelson, D. B. 1991. Conditional heteroskedasticity in asset returns:
A new approach. Econometrica 59 347-370.

Pan, J. 2002. The jump-risk premia implicit in options: Evidence
from an integrated time-series study. J. Financial Econom. 63
3-50.

Pesaran, H., A. G. Timmermann. 1992. A simple non-parametric
test of predictive performance. |. Bus. Econom. Statist. 10
461-465.

Pesaran, M. H., A. G. Timmermann. 1995. Predictability of stock
returns: Robustness and economic significance. J. Finance 50
1201-1228.

Pesaran, M. H., A. G. Timmermann. 2004. How costly is it to ignore
breaks when forecasting the direction of a time series? Internat.
J. Forecasting 20 411-425.

Rattray, S., V. Balasubramanian. 2003. The new VIX as a market
signal—It still works. Research report, Goldman Sachs, Equity
Derivatives Strategy, New York.

Roy, A. D. 1952. Safety-first and the holding of assets. Econometrica
20 431-449.

Rydberg, T. H., N. Shephard. 2003. Dynamics of trade-by-trade
price movements: Decomposition and models. ]. Financial
Econometrics 1 2-25.

Stutzer, M. 2001. A portfolio performance index and its implica-
tions. Working paper, University of lowa, Iowa City, IA.

Taylor, J. W. 2005. Generating volatility forecasts from value at risk
estimates. Management Sci. 51 712-725.

Treynor, J., K. Mazuy. 1966. Can mutual funds outguess the market?
Harvard Bus. Rev. 44 131-136.

Turner, C. M., R. Startz, C. R. Nelson. 1989. A Markov model of het-
eroskedasticity, risk, and learning in the stock market. . Finan-
cial Econom. 25 3-22.

Wagpner, J., S. Shellans, R. Paul. 1992. Market timing works where
it matters most: In the real world. . Portfolio Management 18
86-90.

White, H. 2000. A reality check for data snooping. Econometrica 68
1097-1126.

Whitelaw, R. F. 1997. Time-varying Sharpe ratios and market tim-
ing. Working paper, New York University, New York.

Womack, K. L. 1996. Do brokerage analysts’ recommendations have
investment value? . Finance 51 137-167.



