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Abstract

A financial system is fragile if a small shock has a large effect. Sunspot
equilibria, where the endogenous variables depend on extrinsic uncer-
tainty, provide an extreme illustration. However, fundamental equilibria,
where outcomes depend only on intrinsic uncertainty, can also be fragile.
We study the relationship between sunspot equilibria and fundamental
equilibria in a model of financial crises. The amount of liquidity is en-
dogenously chosen and determines asset prices. The model has multiple
equilibria, but only some of these are the limit of fundamental equilibria
when the fundamental uncertainty becomes vanishingly small. We show
that under certain conditions the only robust equilibria are those in which
extrinsic uncertainty gives rise to asset price volatility and financial crises.

JEL Classification: D5, D8, G2

1 Excess sensitivity and sunspots

There are numerous historical examples of financial fragility, where shocks that
are small in relation to the economy as a whole have a significant impact on the
financial system. For example, Kindleberger (1978, pp. 107-108) argues that
the immediate cause of a financial crisis

*Earlier versions of this paper were presented at the Cowles Foundation Conference on
“The Future of American Banking: Historical, Theoretical, and Empirical Perspectives”, at
Boston University, New York University, Northwestern University, the University of Iowa,
and the Federal Reserve Bank of Kansas City. We are grateful to the participants for their
comments, particularly Russell Cooper, Douglas Diamond, Stephen Morris, Lasse Pedersen,
and Stacey Schreft. The financial support of the National Science Foundation, the Wharton
Financial Institutions Center at the University of Pennsylvania, and the C.V. Starr Center
for Applied Economics at New York University are gratefully acknowledged.
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. may be trivial, a bankruptcy, a suicide, a flight, a revelation, a
refusal of credit to some borrower, some change of view which leads
a significant actor to unload. Prices fall. Expectations are reversed.
The movement picks up speed. To the extent that speculators are
leveraged with borrowed money, the decline in prices leads to further
calls on them for margin or cash, and to further liquidation. As
prices fall further, bank loans turn sour, and one or more mercantile
houses, banks, discount houses, or brokerages fail. The credit system
itself appears shaky and the race for liquidity is on.”

Fisher (1933, pp. 341-42) elaborated one mechanism by which a small shock
might lead to a recession. He identified overindebtedness and deflation as the
key factors.

“Assuming, accordingly, that, at some point of time, a state of
overindebtedness exists, this will tend to lead to liquidation, through
the alarm of debtors or creditors or both. Then we may deduce the
following chain of consequences... (1) Debt liquidation leads to dis-
tress selling and to (2) Contraction of deposit currency, as bank
loans are paid off, and to a slowing down of velocity of circula-
tion. This contraction of deposits and of their velocity, precipitated
by distress selling, causes (3) A fall in the level of prices, in other
words, a swelling of the dollar. Assuming [no reflation] there must
be (4) A still greater fall in the net worths of business, precipitating
bankruptcies....” [emphasis in originall

Schnabel and Shin (2002), in documenting the financial crisis of 1763, argue
that the bankruptcy of the de Neufville brothers’ banking house forced them to
sell their stocks of commodities. In the short run, the liquidity of the market
is limited and commodity sales result in lower prices. These price declines in
turn put other intermediaries under strain and they were forced to sell. A
collapse in commodity prices and a financial crisis followed. Schnabel and Shin
draw a parallel between the 1763 crisis and the Long Term Capital Management
(LTCM) episode in 1998. They suggest that without the rescue coordinated by
the Federal Reserve Bank of New York, there might have been a collapse in
asset prices and a widespread financial crisis similar to that in 1763.

Allen and Gale (1998) describe a model in which financial crises are caused
by exogenous asset-return shocks. When asset returns are very low, banks
are unable to meet their commitments and are forced to default and liquidate
assets. Forced assets sales by a large number of banks will depress asset prices
and exacerbate the crisis, as Fisher described.

By a crisis we mean a profound drop in the value of asset prices which
affects the solvency of a large number of banks and their ability to meet their
commitments to their depositors. If the price movement is large enough some
banks are forced into liquidation, but there may also be crises in which banks
avoid default, although their balance sheet is under extreme pressure. In the
current paper we investigate endogenous crises, where small or negligible shocks



set off self-reinforcing and self-amplifying price changes. We use a simple version
of the general equilibrium model introduced in Allen and Gale (2003), henceforth
AG. The key element of the model is the role of liquidity in determining asset
prices. Banks initially choose the amount of liquidity to hold in their portfolios.
Subsequent small shocks cause a collapse in asset prices and a financial crisis
because the amount of liquidity available is fixed by their initial portfolio choices.

We model liquidity preference in the standard way by assuming that con-
sumers have stochastic time preferences. There are three dates, t = 0, 1,2, and
all consumption occurs at dates 1 and 2. There are two types of consumers,
early consumers, who only value consumption at date 1 and late consumers,
who only value consumption at date 2. Consumers are identical at date 0 and
learn their true type, “early” or “late”, at the beginning of date 1.

There are two types of investments in this economy, short-term investments,
which yield a return after one period and long-term investments, which take two
periods to mature. There is a trade-off between liquidity and returns: long-term
investments have a higher yield but take longer to mature.

Banks are modeled as risk-sharing institutions that pool consumers’ endow-
ments and invest them in a portfolio of long- and short-term investments. In
exchange for their endowments, banks give consumers a deposit contract that
allows a consumer the option of receiving either a fixed amount of consumption
at date 1 or a fixed amount of consumption at date 2. This provides individual
consumers with insurance against liquidity shocks by intertemporally smoothing
the returns paid to depositors. There is free entry into the banking sector: in a
competitive equilibrium banks must maximize the expected utility of depositors
in order to attract customers.

As a benchmark, we first consider an economy in which there is no aggre-
gate uncertainty. More precisely, we assume that both asset returns and the
total number of early consumers in the economy are non-stochastic. Despite
the absence of aggregate uncertainty, individual banks can be uncertain about
the number of early consumers among their depositors and, hence, about their
demand for liquidity at date 1. The asset market plays a crucial role in providing
liquidity at date 1. Banks that have an above average demand for liquidity can
sell long-term assets to banks that have a lower than average demand. Because
the number of early consumers is constant across the entire economy, the ag-
gregate demand for and supply of liquidity are in balance and the asset market
serves to reallocate liquidity among banks as necessary.

The asset market is important because it integrates the financial system and
allows banks to share liquidity. However, it is also a source of financial fragility.
To see this, we have to understand the relationship between asset prices and
the bank’s decision to sell assets. If the asset price is high, the bank can meet
its liquidity needs by selling a small proportion of its long-term assets. As
the asset price falls, the bank has to sell a larger proportion of its long-term
assets. In extreme cases, the asset price is so low that the bank cannot meet
its commitments and defaults. At that point it is forced to liquidate all its
long-term assets. This “backward bending” supply curve for long-term assets
explains why the asset market can clear at more than one price. The asset price



and the quantity of long-term assets supplied move in opposite directions, so
that the value of assets supplied does not change very much.

We distinguish equilibria in several ways. In the first place, we distinguish
fundamental equilibria, in which the endogenous variables are functions of the
exogenous primitives or fundamentals of the model (endowments, preferences,
technologies) from sunspot equilibria, in which endogenous variables may be in-
fluenced by extraneous variables that have no direct impact on fundamentals. In
a fundamental equilibrium, a crisis is driven by exogenous shocks to fundamen-
tals, such as asset returns or liquidity demands. In the absence of aggregate real
shocks, asset prices are non-stochastic and a crisis cannot arise. In a sunspot
equilibrium, by contrast, asset prices fluctuate in the absence of aggregate real
shocks and crises appear to occur spontaneously.

So far, we have suggested there might be multiple equilibria, only some of
which are characterized by crises. We want to go further and suggest that some
equilibria are more robust than others. To test for robustness we perturb the
benchmark economy by introducing a small amount of aggregate uncertainty.
Specifically, we assume there is a small amount of uncertainty about the total
number of early consumers in the economy. However small the amount of aggre-
gate uncertainty, the equilibria of the perturbed economy always exhibit crises
with positive probability. Furthermore, the probability of a crisis is bounded
away from zero as the aggregate uncertainty becomes vanishingly small. Thus,
in a robust equilibrium of the limit economy there must be extrinsic uncertainty.
The fundamental equilibrium of the limit economy is not robust.’

These results help us understand the relationship between two traditional
views of financial crises. One is that they are spontaneous events, unrelated
to changes in the real economy. Historically, banking panics were attributed to
“mob psychology” or “mass hysteria” (see, e.g., Kindleberger (1978)). The mod-
ern theory explains banking panics as equilibrium coordination failures (Bryant
(1980), Diamond and Dybvig (1983)). An alternative view is that financial crises
are a natural outgrowth of the business cycle (Gorton (1988), Calomiris and Gor-
ton (1991), Calomiris and Mason (2000), Allen and Gale (1998, 2000a-d)). The
formal difference between these two views is whether a crisis is generated by
intrinsic or extrinsic uncertainty. Intrinsic uncertainty is caused by stochastic
fluctuations in the primitives or fundamentals of the economy. Examples would
be exogenous shocks that effect liquidity preferences or asset returns. Extrinsic
uncertainty, often referred to as sunspots, by definition has no effect on the
fundamentals of the economy. 2+3

IThe limit economy has two types of equilibria with extrinsic uncertainty. In a trivial
sunspot equilibrium, prices are random but the allocation is essentially the same as in the
fundamental equilibrium and no banks default. In a non-trivial sunspot equilibrium, the
equilibrium allocation is random as well as the prices.

2Strictly speaking, much of the banking literature exploits multiple equilibria without ad-
dressing the issue of sunspots. We adopt the sunspots framework here because it encompasses
the standard notion of equilibrium and allows us to address the issue of equilibrium selection.

3The theoretical analysis of sunspot equilibria began with the seminal work of Cass and
Shell (1982) and Azariadis (1981), which gave rise to two streams of literature. The Cass-
Shell paper is most closely related to work in a Walrasian, general-equilibrium framework;



Our model combines the most attractive features of both traditional ap-
proaches. Like the sunspot approach, it produces large effects from small shocks.
Like the real business cycle approach, it makes a firm prediction about the con-
ditions under which crises will occur.* However, it is important to distinguish
the present model of systemic or economy-wide crises from models of individual
bank runs or panics. Panics are the result of coordination failure (Bryant (1980),
Diamond and Dybvig (1983)). If late consumers expect a run, it is optimal for
them to join it; if late consumers do not expect a run, it is optimal for them to
wait until date 2 to withdraw. Whether a run occurs depends entirely on the
depositors’ expectations, not on the value of the bank’s assets. Furthermore,
a run on a single bank can occur independently of what is happening to other
banks.

In the crisis model, by contrast, default only occurs if it is unavoidable, that
is, the value of the bank’s portfolio is too low to allow the bank to meet its
commitments.® Furthermore, default occurs as part of a general crisis. Banks
fail because asset prices are too low and asset prices are low because banks are
selling assets when liquidity is scarce. From the point of view of a single, price-
taking bank, default results from an exogenous shock to asset prices. From the
point of view of the banking sector as a whole, the “shock” is endogenous. But
note that only the simultaneous failure of a non-negligible number of banks can
affect asset prices.

Our work is related to the wider literature on general equilibrium with incom-
plete markets (GEI). As is well known, sunspots do not matter when markets are
complete. (For a precise statement, see Shell and Goenka, (1997)). The incom-
pleteness in our model reveals itself in two ways. First, sunspots are assumed to
be non-contractible, that is, the deposit contract is not explicitly contingent on
the sunspot variable. In this respect we are simply following the incomplete con-
tracts literature (see, for example, Hart (1995)). Secondly, there are no markets
for Arrow securities contingent on the sunspot variable, so financial institutions
cannot insure themselves against asset price fluctuations associated with the
sunspot variable. This is the standard assumption of the GEI literature (see,
for example, Geanakoplos et al. (1990) or Magill and Quinzii (1996)).

There is a small but growing literature related to financial fragility. Financial
multipliers were introduced by Bernanke and Gertler (1989). In the model of
Kiyotaki and Moore (1997), the impact of illiquidity at one link in the credit
chain has a large impact further down the chain. Chari and Kehoe (2000) show

the Azariadis paper is most closely related to the macroeconomic dynamics literature. For
a useful survey of applications in macroeconomics, see Farmer (1999); for an example of the
current literature in the general equilibrium framework see Gottardi and Kajii (1995, 1999).

4Models of sunspot phenomena typically have many equilibrium, including as a special
case the fundamental equilibria in which extrinsic uncertainty has no effect on endogenous
variables. Thus, financial fragility remains a possibility but not a necessity.

5This is a refinement of the equilibrium concept. We assume that late consumers withdraw
at the last date whenever it is incentive compatible for them to do so. Bank runs occur only
when it is impossible for the bank to meet its obligations in an incentive-compatible way. Such
runs are called essential in AG to distinguish them from the coordination failures in Diamond
and Dybvig (1983).



that herding behavior can cause a small information shock to have a large effect
on capital flows. Lagunoff and Schreft (2001) show how overlapping claims
on firms can cause small shocks to lead to widespread bankruptcy. Bernardo
and Welch (2002) develop a model of runs on financial markets and asset price
collapses based on the anticipation of liquidity needs.

The rest of the paper is organized as follows. Section 2 contains the basic
assumptions of the model. Section 3 describes the optimal contracts offered
by banks and the rules governing default and liquidation. Section 4 defines
equilibrium. A few special cases of the model are considered in Section 5.
Section 6 contains a full analysis of the equilibria of the economy. We consider
the limit economy with no aggregate uncertainty and then perturb the economy
by introducing aggregate uncertainty. We show that, in any equilibrium of the
economy with aggregate uncertainty, crises occur with positive probability. We
also show that the limit of a sequence of equilibria corresponding to a sequence of
perturbed economies is an equilibrium in the limit economy and we characterize
the limit equilibria. Section 7 contains a discussion. Proofs are gathered in
Section 8.

2 Assets and preferences

The model we use is a special case of AG.

Dates. There are three dates t = 0,1,2 and a single good at each date. The
good can be used for consumption or investment.

Assets. There are two assets, a short-term asset (the short asset) and a long-
term asset (the long asset).

e The short asset is represented by a storage technology. Investment in the
short asset can take place at date 1 or date 2. Omne unit of the good
invested at date t yields one unit at date t + 1, for t =0, 1.

e The long asset takes two periods to mature and is more productive than
the short asset. Investment in the long asset can only take place at date
0. One unit invested at date 0 produces r > 1 units at date 2.

Consumers. There is a continuum of ex ante identical consumers, whose measure
is normalized to unity. Each consumer has an endowment (1,0, 0) consisting of
one unit of the good at date 0 and nothing at subsequent dates. There are
two (ex post) types of consumers at date 1, early consumers, who only value
consumption at date 1, and late consumers, who only value consumption at
date 2. If  denotes the probability of being an early consumer and ¢; denotes
consumption at date ¢t = 1,2, the consumer’s ex ante utility is

u(cr, e23m) = nU(cx) + (L= n)Ufcz).



The period utility function U : R4 — R is twice continuously differentiable and
satisfies the usual neoclassical properties, U'(c) > 0,U"(c) < 0, and lim o U’ (¢) =
00.

Uncertainty. There are three sources of intrinsic uncertainty in the model. First,
each individual consumer faces idiosyncratic uncertainty about her preference
type (early or late consumer). Secondly, each bank faces idiosyncratic uncer-
tainty about the number of early consumers among the bank’s depositors. For
example, different banks could be located in regions subject to independent lig-
uidity shocks. Thirdly, there is aggregate uncertainty about the fraction of early
consumers in the economy. Aggregate uncertainty is represented by a state of
nature 6, a non-degenerate random variable with a finite support and a den-
sity function f(6). The bank’s idiosyncratic shock is represented by a random
variable «, with finite support and a density function g(«). The probability of
being an early consumer at a bank in state («, 6) is denoted by n(«, #), where

n(a,0) = a+e0

and € > 0 is a constant. We adopt the usual “law of large numbers” convention
and assume that the fraction of early consumers at a bank in state (a, ) is
identically equal to the probability n(a,d). The economy-wide average of « is
assumed to be constant and equal to the mean @ = ) ag(a). Thus, there is
aggregate intrinsic uncertainty only if ¢ > 0.

Information. All uncertainty is resolved at date 1. The true value of 0 is
publicly observed,® the true value of a for each bank is publicly observed, and
each consumer learns his type, i.e., whether he is an early consumer or a late
consumer.

Asset markets. There are no asset markets for hedging against aggregate uncer-
tainty at date 0, for example, there are no Arrow securities contingent on the
state of nature 6. At date 1, there is a market in which future (date-2) con-
sumption can be exchanged for present (date-1) consumption. If p(f) denotes
the price of future consumption in terms of present consumption at date 1, then
one unit of the long asset is worth p(6)r at date 1 in state 6.

Markets are incomplete at date 0 but complete at date 1. We assume that
market participation is incomplete: financial institutions such as banks can
participate in the asset market at date 1 but individual consumers cannot.”

3 Banking

Banks are financial institutions that provide investment and liquidity services to
consumers. They do this by pooling the consumers’ resources, investing them

61t is not strictly necessary to assume that 0 is observed. In equilibrium, all that agents
need to know is the equilibrium price p(#), which may or may not reveal 6.

7As Cone (1983) and Jacklin (1986) showed, if consumers have access to the capital market,
it is impossible for banks to offer risk sharing that is superior to the market.



in a portfolio of short- and long-term assets, and offering consumers future
consumption streams with a better combination of asset returns and liquidity
than individual consumers could achieve by themselves. Banks also have access
to the interbank capital market, from which consumers are excluded.

Banks compete by offering deposit contracts to consumers in exchange for
their endowments and consumers respond by choosing the most attractive of the
contracts offered. Free entry ensures that banks earn zero profits in equilibrium.
The deposit contracts offered in equilibrium must maximize consumers’ welfare
subject to the zero-profit constraint. Otherwise, a bank could enter and make
a positive profit by offering a more attractive contract.

Anything a consumer can do, the bank can do. So there is no loss of gen-
erality in assuming that consumers deposit their entire endowment in a bank
at date 0.8 The bank invests y units per capita in the short asset and 1 — y
units per capita in the long asset and offers each consumer a deposit contract,
which allows the consumer to withdraw either d; units at date 1 or ds units at
date 2. Without loss of generality, we set do = co. This ensures that consumers
receive the residue of the bank’s assets at date 2. Then the deposit contract is
characterized by the middle-period payment d; = d.

If p(0) denotes the price of future consumption at date 1 in state 6, then the
value of the bank’s assets at date 1 is y + p(0)r(1 —y).

A consumer’s type is private information. An early consumer cannot mis-
represent his type because he needs to consume at date 1; but a late consumer
can claim to be an early consumer, withdraw d at date 1, store it until date 2
and then consume it. The deposit contract is incentive compatible if and only
if the residual payment to late consumers at date 2 is at least d. Since the late
consumers are residual claimants at date 2, it is possible to give them at least
d units of consumption if and only if

(e, 0)d + (1 —n(a, 0))p(0)d < y + p(0)r(l —y). (1)

8This is not simply an application of the Modigliani-Miller theorem. The consumer may
do strictly better by putting all his “eggs” in the bank’s “basket”. Suppose that the deposit
contract allows the individual to hold m units in the safe asset and deposit 1 —m units in the
bank. The bank invests y in the short asset and 1 —m — y in the long asset. If the bank does
not default at date 1, the early consumers receive d + m and the late consumers receive

p(O)r(1 —m —y) +y —n()d
(1 —n(9))p(6)

If the bank defaults, early and late consumers receive

+m.

p(O)r(l —m —y) +y+m.
Suppose that m > 0 and consider a reduction in m and an increase in y and d of the same
amount. It is clear that the early consumers’ consumption is unchanged. So is the late

consumers’ consumption if the bank defaults. The change in the late consumers’ consumption
when the bank does not default is

Ay —n(6)Ad — —Am m
@ —none) """ ) P20

because p(f) < 1 and Am < 0. Thus, it is optimal for the bank (and for the consumer) to
choose m = 0.



The left hand side is a lower bound for the present value of consumption when
early consumers are given d and late consumers are given at least d. The right
hand side is the value of the portfolio. Thus, condition (1) is necessary and
sufficient for the deposit contract d to satisfy incentive compatibility and the
budget constraint simultaneously. We often refer to the inequality in (1) as the
incentive constraint for short.

In what follows, we assume that bank runs occur only if they are unavoidable.
In other words, late consumers will withdraw at date 2 as long as the bank can
satisfy the incentive constraint. If (1) is violated, then all consumers will want
to withdraw at date 1. In the event of bankruptcy, the bank is required to
liquidate its assets in an attempt to provide the promised amount d to the
consumers who withdraw at date 1. Whatever withdrawal decisions consumers
make, the consumers who withdraw at date 2 will receive less than the consumers
who withdraw at date 1. Hence, in equilibrium, all consumers must withdraw
at date 1. Then each consumer receives the liquidated value of the portfolio
y+pO)r(l —y).

Let z4(d, y, a, 0) denote the consumption at date ¢ if the bank chooses (d, y)
and the bank is in state (a, ) at date 1. Let @ = (21, x2), where

d if (1) is satisfied

x1(d,y, 0, 0) = { y+p(@)r(l —y) otherwise,

y+p@)r(l—y)—nd . ; ;
2a(d,y, a,0) = =G if (1) is satisfied
y+p@)r(l—y) otherwise,

and n = n(«, #). Using this notation, the bank’s decision problem can be written
as

(DP1)

An ordered pair (d,y) is optimal for the given price function p(-) if it solves
(DP1).

4 Equilibrium

The bank’s decision problem is “non-convex”. To ensure the existence of equi-
librium, we take advantage of the convexifying effect of large numbers and allow
for the possibility that ex ante identical banks will choose different deposit con-
tracts d and portfolios y. Each consumer is assumed to deal with a single bank
and each bank offers a single contract. In equilibrium, consumers will be indiffer-
ent between banks offering different contracts. Consumers allocate themselves
to different banks in proportions consistent with equilibrium.

To describe an equilibrium, we need some additional notation. A partition of
consumers at date 0 is defined by an integer m < oo and an array p = (py, ..., Pp)



of numbers p; > 0 such that Y ;" p; = 1. Consumers are divided into m groups
and each group ¢ contains a measure p; of consumers. We impose an arbitrary
bound m on the number of groups to rule out pathological cases.” The banks
associated with group ¢ offer a deposit contract d; and a portfolio y;, both
expressed in per capita terms. An allocation consists of a partition (m, p) and
an array (d,y) = {(d;,y;)};~, such that d; > 0and 0 <y; <1 fori=1,...,m.

To define the market clearing conditions we need some additional notation.
Let z(d;,yi, 0, 0) = (T1(ds, ys, @, 0), To(d;, ys, @, 0)) denote the bank’s demand
for goods. If the bank is solvent then a fraction n(«,8) get paid zq (d;, ys, @, 6)
at date 1 and a fraction (1 — n(d;, v, , 0)) get paid x2(d;, v, a, 0)) at date 2.
Then the bank’s total demand for goods is given by

2(di, yi, o, 0) = (n(a, )21 (diy yi, o, 0), (1 —n(ds, yi, o, 0))w2(di, yi, i, 0)).

If the bank is bankrupt, on the other hand, then everyone gets paid x1(d;, y;, o, 6)
xo(d;, yi, @, 0) at date 1 and the bank’s total demand for goods is

z(di, yi, o, 0) = (x1(ds, yi, , 0),0).

An allocation (m,p,d,y) is attainable if it satisfies the market-clearing condi-
tions

> piE [ (di i, 0)] <> pigi, (2)
and
Zpi {E [jl(dhy’iaa?e) +‘f2(di7yi7a79])}

= sz‘ {yi+r(1—wi)},

for any state 6. In the market-clearing conditions, we take expectations with
respect to a because the cross-sectional distribution of idiosyncratic shocks is
assumed to be the same as the probability distribution. The first inequality
says that the total demand for consumption at date 1 is less than or equal to
the supply of the short asset. The inequality may be strict, because an excess
supply of liquidity can be re-invested in the short asset and consumed at date
2. The second condition says that total consumption at date 2 is equal to the
return from the investment in the long asset plus the amount invested in the
short asset at date 1, which is the difference between the left and right hand
sides of (2).

In equilibrium, it must be the case that p(d) < 1. Otherwise banks could
make an arbitrage profit at date 1 by selling goods forward and investing the
proceeds in the short asset. If p(#) < 1 then no one is willing to invest in the
short asset at date 1 and (2) must hold as an equation. A price function p(-) is

9In general, two groups are sufficient for existence of equilibrium.

10



admissible (for the given allocation) if it satisfies the following complementary
slackness condition:

For any state 6,p(6) < 1 and p(#) < 1 implies that (2)
holds as an equation.

Now we are ready to define an equilibrium.

An equilibrium consists of an attainable allocation (m, p,d,y) and an admis-
sible price function p(-) such that, for every group i = 1, ..., m, (d;,y;) is optimal
given the price function p(-).

5 A first look at equilibrium

5.1 Autarkic equilibria

In order to illustrate the model and its properties, we begin with some special
cases. Consider first the case in which there is no aggregate uncertainty (e = 0)
and banks receive no idiosyncratic shocks (« is a constant). In this case banks
have no need to rely on the asset market to provide liquidity. Autarky is optimal.
To see this, consider the problem faced by a central planner. In the absence of
aggregate uncertainty, optimal risk sharing requires the consumption allocation
to be non-stochastic. An early consumer receives ¢; and a late consumer receives
ca, where ¢; and cy are constants. The total demand for consumption is acy
at date 1 and (1 — a)cq at date 2. The planner provides consumption at each
date by holding the asset with the highest return. Thus, consumption at date
1 is provided by holding the short asset and consumption at date 2 is provided
by holding the long asset. So the planner chooses y to satisfy ac; = y and
(1 —a)cg = (1 —y). In the first best (ignoring the incentive constraint), the
allocation (c1, ¢a,y) is chosen to solve the following problem:

max aU(ecr)+ (1 —a)U(e2)
st. 0<y<l1
acy =y
(1-a)ea=r(1-y).

This problem uniquely determines (c1,c2,y). Note that the optimal consump-
tion allocation must satisfy the first-order condition

U'(er) = rU'(c2),

which implies that ¢; < co, so the incentive constraint is strictly satisfied. This
means that the incentive-efficient and Pareto-efficient allocations are identical.

Now consider what a bank can achieve. On the one hand, the bank cannot
do better than the first best. On the other hand, it can achieve the first best
by choosing the same portfolio y and setting d = ¢;. To show that this is an
equilibrium, we only need to find a price that makes the portfolio choice optimal
at date 0 and clears the market at date 1. The first order condition for (DP1)

11



for the choice of y given that the incentive constraint is satisfied, there is no

default and € = 0, is

Since there is no aggregate uncertainty, it is natural to assume that there is a
non-stochastic price p(6) = p at date 1. It then follows from (3) that

1
p=-.
r
At this price, one unit invested in either asset at date 0 yields one unit at date
1. The banks will hold only the long asset between date 1 and date 2 because
at this price the yield on the short asset, one, is dominated by the return on the
long asset, r. Thus, (d,y,p) defines an equilibrium.

The equilibrium is special in several ways. First, there is no aggregate uncer-
tainty, intrinsic or extrinsic. Secondly, the allocation is Pareto-efficient. Finally,
the market plays no role, apart from determining the equilibrium price. Banks
can achieve the first best while remaining autarkic.

Autarky is not actually necessary for equilibrium: since banks are indifferent
between the two assets at date 0, they may choose to hold different portfolios
initially and then use the asset market at date 1 to reshuffle their liquidity
holdings. Thus, an attainable allocation (p, m,d,y) is an equilibrium allocation
for the price p if d; = ¢; for all ¢ and the market-clearing condition

Zpiadi =acy = Zpiyi

is satisfied. So there is a continuum of equilibria differing in the portfolios chosen
but identical in terms of consumption and consumer welfare.

One further point we can make using this special case is to show how random
prices can arise in equilibrium. Consider the symmetric equilibrium in which
all banks choose the same portfolio y; = ac; and suppose that in place of
the constant price p we choose a price function p(f). In order to maintain
equilibrium, we need to satisfy two market-clearing conditions. First, we have
to make banks willing to hold the portfolio y between date 0 and date 1 and,
secondly, we have to make the banks willing to hold (only) the long asset between
date 1 and date 2. Tt follows from (3) that the first condition is satisfied if

1

o Lﬂ(@] " W
The second condition is satisfied if p(6) < 1 for each 6. There are clearly many
price functions that will satisfy these conditions. The uncertainty about prices
that can arise in equilibrium is an example of extrinsic uncertainty or sunspot
activity. This is a trivial example because the sunspot activity has no effect on
the equilibrium allocation. We refer to this as a trivial sunspot equilibrium in
the sequel.
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To make this quite concrete, consider the following example. Let U(c:) =
log(c:) be the period utility function, let a = 0.8 be the fraction of early con-
sumers and let

0 — 0 w. pr. 0.65
11 w. pr. 0.35.

As a benchmark, consider the autarkic equilibrium corresponding to the
economy with no aggregate uncertainty, € = 0. There is a constant price

1
0)=p=-—.
pO)=p=—
The value of the bank’s portfolio at date 1 is y + pr(1 —y) = 1 in each state.
Since the bank’s objective function is Cobb-Douglas, it will spend a fraction «
of its budget on early consumers and a fraction 1 — « on late consumers. Thus,
ac; = a and (1 — a)pes = (1 — a), or

(c1,c2) = (1,7).

The short term asset is used to provide for the consumption needs of the early
consumers and the long term asset is used to provide for the needs of the late
consumers. If every bank chooses the same portfolio y, the market-clearing
conditions require

Yy =ac; = a.

The numerical values for this equilibrium, which we term the fundamental equi-
librium, are summarized below.

E[U] = 0.081,
y = 0.800,
(c1,c2) = (1.000,1.500),
p = 0.667

There is a second equilibrium whose equilibrium parameters are summarized
below.

E[U] = 0.081,
y = 0.800,
(c1(0),c2(0)) = (1.000,1.500),6 =0, 1,

p(0) _ 0.943

p(1) o 0432 |°
There is no exogenous aggregate uncertainty, because ¢ = 0, and yet the asset
prices are very different in the two states. We term this equilibrium a trivial

sunspot equilibrium. There are many other trivial sunspot equilibrium in this
example.
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Note that price fluctuations in trivial sunspot equilibria have no impact on
the equilibrium allocation because banks are autarkic. A portfolio containing
a positive proportion of the long asset will have a high value in state 0, where
the price of long assets at date 1 is high, p(0) = 0.943, and a low value in state
1, where the price of the long asset is low, p(0) = 0.432; however, the maturity
structure of the portfolio is perfectly matched to the demand for consumption,
so changes in portfolio value are matched by changes in the present value of
consumption.

In general, the construction of a trivial sunspot equilibrium requires that
all banks hold the same amount of the short asset y; = ad;. Although there
is a continuum of trivial sunspot equilibrium, differing in the equilibrium price
function, they have identical allocations, including the choice of portfolio.

5.2 Aggregate intrinsic uncertainty

The second case we want to look at is one in which there is a small amount of
aggregate (intrinsic) uncertainty, that is, € > 0. For the moment we maintain
the assumption that « is a constant so banks face no idiosyncratic uncertainty.
Somewhat surprisingly, it turns out that introducing a small amount of aggre-
gate uncertainty imposes different qualitative features on the equilibrium. In
particular, there is no counterpart of the “natural” fundamental equilibrium of
the limit economy in which prices are constant.

In any equilibrium with € > 0, there must be a positive probability of default.
To see this, suppose that, contrary to what we want to show, there does exist
an equilibrium in which the banks never default. Then the market clearing
condition at date 1 implies

(o +€0) Z pid; < Z PiVis

for every value of 6. If the inequality is strict there is an excess supply of liquidity
and p(#) = 1. The right hand side represents the supply of liquidity, which is
inelastic and independent of §. The left hand side represents the demand for
liquidity, which is inelastic and linearly dependent on 6. Then if ¢ > 0 and
the distribution of € is not degenerate, the inequality must be strict at least
with positive probability. This means that p(f) = 1 with positive probability.
Clearly, we cannot have p(6) = 1 with probability one because this would violate
condition (3). In fact, p(6) = 1 with probability one implies that the return on
the long asset between date 0 and date 1 is p(8)r > 1, so the short asset is
dominated, y; = 0, and the market clearing condition cannot be satisfied at
date 1. In order to satisfy condition (3) with a positive supply of liquidity at
date 1 we must have p(d) < 1/r with positive probability. To sum up, either
default occurs with positive probability in equilibrium or there is non-negligible
price asset-price volatility.

We can illustrate these features of the equilibrium with the example in-
troduced earlier, except that now we set ¢ = 0.01. In this case there is no
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equilibrium that is close to the fundamental equilibrium. However, there is an
equilibrium close to the non-trivial sunspot equilibrium.

As we argued above, there must be default in equilibrium. But if default
occurs with positive probability, the banks cannot all choose the same portfolio
y and the same deposit contract d. If they do, all banks will go bankrupt in the
bad state, there will be no one left to buy the liquidated assets of the defaulting
banks, and the price will fall to zero. Anticipating this, a bank could do better
by remaining solvent in this state and buying up all the assets.

There must be at least two groups of banks, let us call them safe (denoted by
a superscript s) and risky (denoted by the superscript r), who choose different
portfolios and offer different deposit contracts. Let p; = 0.996 be the measure
of safe banks and p, = 0.004 the measure of risk banks. The other parameters
for the equilibrium are listed below.

E[U®] = E[U"] = 0.078,

v 1 [0810
v | T | 0016 |’

(¢§(0),¢5(0)) (0.998,1.488)
(ci(1),e3(1)) | _ ](0.998,1.520)
(c1(0),¢5(0)) (1.405,1.488) | ’
(c1(1),c5(1)) (0.651,0.651)

p(0) | | 0.940

0 =] 6 ]
Notice that both safe and risky banks achieve the same expected utility for their
investors, but the safe banks choose a much higher investment in the short asset
whereas the risky banks invest most of their deposits in the long asset. When
0 = 0, the asset price is high and risky banks can meet the demand for liquidity
by selling a portion of their long assets in the market at date 1. The safe banks
supply the necessary liquidity in exchange for long assets. When 6§ = 1, the
asset price collapses, making risky banks unable to meet their commitments
and forcing them to default and liquidate their assets. The price of the long
asset is determined by the amount of “cash in the market”, that is, p(1) equals
the ratio of the excess liquidity of the safe banks to the long assets of the risky
banks.

Thus, introducing a small amount of uncertainty changes the properties of
equilibrium. Notice that these properties hold for every value of ¢ > 0, however
small. What this suggests is that some of the equilibria of the limit economy with
¢ = 0 are not robust, in the sense that a small amount of aggregate uncertainty
(¢ > 0) leads to a big change in equilibrium properties. To see which equilibria
are robust, we need to characterize the equilibrium set of the limit economy
with € = 0 (Section 6.1) and then characterize the limits of equilibria of the
perturbed economies with ¢ > 0 (Section 6.5). But first we consider the effect
of idiosyncratic risk on banks.
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5.3 Non-autarkic equilibria

In the preceding examples, markets could be used in equilibrium, but they
played no essential role in achieving the first-best outcome. To illustrate a less
trivial role for markets, consider the case where there is again no aggregate
uncertainty (¢ = 0) but banks face idiosyncratic risk (« is a non-degenerate
random variable). Once again, because there is no aggregate uncertainty, it is
natural to consider an equilibrium in which the price of future consumption p
is non-stochastic. As before, equilibrium requires p = 1/r. If a bank chooses
(d,y) at date 0 the incentive constraint at date 1 is

ad+p(l—a)d<y+pr(l—y) =1

Since the value of « is uncertain, the bank may well choose (d,y) so that there
is a positive probability of default at date 1. The avoidance of default requires
the bank to lower d or increase y and either change will be costly in terms of the
consumers’ expected utility. For example, if the proportion of early consumers
is low (a = ar), with high probability and high (o« = ar), with low probability,
then the choice of d will be close to what it would be in an equilibrium with a
non-stochastic @« = ay. This value of d satisfies ard + p(1 — ar)d < 1 but it
may be that agd+p(1 —ag)d > 1. If the probability of ay is not too great, it
is optimal for the bank to default in that state, rather than distort its decisions
in the more likely state a = . Default in this case is a means of introducing
greater flexibility into the risk sharing contract.

While uncertainty about liquidity preference, as measured by «, is a plausible
reason for default, it is not our main interest here. So, in what follows, we
assume the parameters of the model are such that it is never optimal for the
bank to choose default in the equilibrium with the non-stochastic price p and
in the absence of aggregate uncertainty. Then the bank’s choice of (d,y) will
always satisfy the incentive constraint and the decision problem can, without
loss of generality, be written as follows:

e B[00 i)
st. ad+p(l—a)d <1

In the absence of default, the early consumers receive d and the late consumers
receive the remainder. Since the value of the portfolio is y + pr(1 —y) = 1 at
date 1 the late consumers receive 1 — ad in present value terms, which is worth
r(1 — ad)/(1 — a) per capita at date 2. This explains the objective function
of the bank. We can add the incentive constraint without loss of generality
because we have assumed that it is not optimal to allow default. The value of
d that solves this problem must satisfy the first order condition

E [aU'(d) — arl’ <r 11_ O‘dﬂ >0

—

with equality if the incentive constraint is not binding. Once again, the deposit
contract is uniquely determined by this condition, but the choice of portfolio
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is not. Since banks are indifferent between the two assets at date 0, they can
hold any amount of the short asset as long as the market clearing condition is
satisfied at date 1. Whatever amount of the short asset they hold, they need to
use markets to provide liquidity for their depositors. Because the bank’s demand
for liquidity ad is random, there is no way the bank can remain autarkic and
achieve optimal risk sharing.

Precisely because all banks rely in a non-trivial way on the market for lig-
uidity, a change in price will have real effects on the consumption allocation
available to the bank’s depositors. If sunspot equilibria occur, they have real
effects.

This section has provided a first look at equilibrium. We have shown that
the introduction of a small amount of aggregate uncertainty can have a large
effect on the set of equilibria. The next section provides a full characterization
of the set of equilibria and how it varies with e.

6 Analysis

6.1 Equilibria in the limit

In this section we first characterize the equilibria of the limit economy in which
€ = 0. There is no aggregate intrinsic uncertainty in the model, but there may
still be aggregate extrinsic uncertainty (sunspots). We first classify equilibria
in the limit economy according to the impact of extrinsic uncertainty. An equi-
librium (m, p,d,y,p) in the limit economy is a fundamental equilibrium (F) if
x(d;, yi, o, 0) is constant for each ¢ and « and if p(#) is constant. In that case,
the sunspot variable 6 has no influence on the equilibrium values. An equilib-
rium (m, p,d,y,p) of the limit economy is a trivial sunspot equilibrium (T) if
x(d;, yi, o, 0) is constant for each ¢ and « and p(#) is not constant. In this case,
the sunspot variable 6 has no effect on the allocation of consumption but it does
affect the equilibrium price p(6). An equilibrium (m, p, d, y, p) which is neither
an F nor a T is called a non-trivial sunspot equilibrium (N), that is, an N is an
equilibrium in which the sunspot variable has some non-trivial impact on the
allocation of consumption.

We saw examples of these different kinds of equilibria in Section 5. In the
economy with no aggregate uncertainty (¢ = 0) and no idiosyncratic uncertainty
for banks (a constant), the F has a non-stochastic price p and a non-stochastic
consumption allocation (¢1,c2). For the same economy, we also saw that there
are many T, in which the real allocation is the same as in the F but the equi-
librium price p(@) varies with §. By contrast, in the economy with no aggregate
uncertainty (¢ = 0) and idiosyncratic uncertainty for banks (« is not a constant),
the banks must use the market to obtain liquidity so fluctuations in asset prices
do have real effects. In other words, any sunspot equilibrium is an N.

We can also classify equilibria according to the variety of choices made by
different groups of banks. An equilibrium (m, p,d, y,p) is pure if each group of
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banks makes the same choice:

(divyi) = (d]7yj)7vzv.] = 17 ceey M

An equilibrium (m, p, d, y, p) is semi-pure if the consumption allocations are the
same for each group of banks:

x(diayha;e) = x(djayj7a79)7Vi7j = 17 ey TN

Otherwise, (m,p,d,y,p) is a mized equilibrium where different types of bank
provide different allocations (but the same ex ante expected utility). In our
first look, we saw examples of each of these three types. For example, in the
case of the economy with no aggregate uncertainty (¢ = 0) and no idiosyncratic
uncertainty for banks (« constant), there is a unique pure F, namely the one
in which ad; = y; for all i. However, for the same economy there is also a
large number of semi-pure equilibria F' in which the consumption allocation is
the same for all banks but the portfolios are different. In a T, however, price
fluctuations require that each bank be autarkic (ad; = y;) so any T is pure.
The role of mixed equilibria is to ensure existence when default introduces non-
convexities.

6.2 Equilibrium with non-stochastic «

In the special case with « constant the following theorem partitions the equi-
librium set into two cases with distinctive properties.

Theorem 1 Suppose that « is constant and let (p, m,x,y,p) be an equilibrium
of the limit economy, in which € = 0. There are two possibilities:

(1) (p,m,z,y,p) is a semi-pure, fundamental equilibrium
in which the probability of default is zero;

(73) (p, m,x,y,p) is a pure, trivial sunspot equilibrium
in which the probability of default is zero.

Proof. See Section 8. m

By definition, an equilibrium must be either an F, T, or N. What Theorem 1
shows is that an N does not occur and each of the remaining cases is associated
with distinctive properties in terms of symmetry and probability of default.

Because the incentive constraint does not bind in either the F or T, both
achieve the first-best or Pareto-efficient allocation. No equilibrium can do bet-
ter. Any bank can guarantee this level of utility by choosing ad; = y;, where
d; is the deposit contract chosen in the F. For this choice of (d;, ;) prices have
no effect on the bank’s budget constraint and the depositors will receive the
first-best consumption. In an N, by contrast, agents receive noisy consumption
allocations. Because they are risk averse, the noise in their consumption allo-
cations is inefficient. Since we have seen that the bank can guarantee more to
the depositors, this kind of equilibrium cannot exist.
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6.3 Equilibrium with stochastic «

Banks may choose (d;, y;) so that they are forced to default in some states be-
cause of uncertainty about the idiosyncratic shock «. In order to distinguish
crises caused by aggregate extrinsic uncertainty from defaults caused by id-
iosyncratic shocks, we will assume that the parameters are such that default is
never optimal in the F. In that case, the bank’s optimal choice of (d;,y;) must
satisfy the incentive constraint, so the bank’s optimal decision problem can be
written as follows. At the equilibrium price p = 1/r, the value of the bank’s
assets at date 1 is y; + pr(1 — y;) = 1, independently of the choice of y;. In
the absence of default, the budget constraint implies that the consumption at
date 2 is given by (1 — ad;)/(1 — @). The incentive constraint requires that
r(1 — ad;)/(1 — «) > d;. Thus, the decision problem can be written as:

max EaU(d;)+ (1 —a)U (r(1—ad;)/(1 —a))]
st r(1—ad;)/(1 —«) > d;,Va.

This is a convex programming problem and has a unique solution for d;. As
noted, y; is indeterminate, but the equilibrium allocation must satisfy the

market-clearing condition
S = Y
i i

where @ = E'[a]. Note that there is a single pure F (p,m,d,y,p), in which
yi = E[ad;] for every i =1,...,m.

In the case of idiosyncratic shocks, the following theorem partitions the
equilibrium set into two cases, F and N.

Theorem 2 Let (p,m,d,y,p) be an equilibrium of the limit economy, in which
e = 0. There are two possibilities:

(1) (p,m,d,y,p) is a semi-pure, fundamental equilibrium
in which the probability of default is zero;

(77) (p,m,d,y,p) is a non-trivial sunspot equilibrium
which is pure if the probability of default is zero.

Proof. See Section 8. m

The fundamental equilibrium is semi-pure for the usual reasons and there is
no default by assumption. Unlike the case with no idiosyncratic shocks (non-
stochastic a), there can be no trivial sunspot equilibrium. To see this, suppose
that some bank group ¢ with measure p,; chooses (d;, y;) and that default occurs
with positive probability. Then consumption for both early and late consumers
is equal to y; +p(0)r(1 —y;), which is independent of p(#) only if y; = 1. In that
case there is no point in choosing d > 1 and so no need for default. If there is
no probability of default, then the consumption of the late consumers is

yi +p0)r(1 —y;) — ad;
(1 —a)p(0) '
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This is independent of p() only if y; = ad;, which cannot hold unless « is a
constant. Thus, there can be no T.

The only remaining possibility is an N. If the probability of default is zero,
then the bank’s decision problem is a convex programming problem and the
usual methods suffice to show uniqueness of the optimum choice of (d, y) under
the maintained assumptions.

Aslong as there is no possibility of default, an equilibrium (m, p, d, x, p) must
be either an F or a T. If there is a positive probability of default, the equilibrium
(m, p,d, z,p) must be an N. Any N is characterized by a finite number of prices.
To see this, let B C {1,...,m} denote the groups that default at some state 6.
If p(f) < 1 then complementary slackness and the market-clearing condition (2)
imply that

Zpiwi(a) + Z ap;d; = sz'yz‘-

i€B i¢B i

Substituting for w;(0) = y; + p(0)r(1l — y;) gives

D oW+ pO)r(L—y))+ > apdi = > piyi,

icB i¢B i

or

_ 2o PiYi = Dien PilYi — ZieB ap;d;
2ien Pir(1—yi) 7

where the denominator must be positive. If not, then ) ;. pp;r(1 —4;) = 0,
which implies that y; = 1 for every ¢ € B. The budget constraint implies that
x;1(0) < 1, in which case there can be no default, contradicting the definition of
B. So the denominator must be positive. The expression on the right hand side
can only take on a finite number of values because there is a finite number of
sets B. Thus, there can be at most a finite number of different prices observed
in equilibrium.
We have proved the following corollary.

p(0)

Corollary 3 Let (p,m,d,y,p) be an equilibrium. There are three possibilities:

In an F, p(-) has a single value: p(0) = 1/r;
In a T, p(-) can have a finite or infinite number of values;
In an N, p(-) has a finite number of values.

The properties of equilibria in the limit economy are summarized in the
following table.

| Symmetry | Type | Default | # of p(-) |
Semi-pure F No One
Pure T No Finite or infinite
Mixed or pure | N Possible | Finite
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6.4 Limit equilibria

An equilibrium of the limit economy with no aggregate intrinsic uncertainty
is robust if the equilibrium does not change very much when the economy is
perturbed by introducing a small amount of intrinsic uncertainty. In other
words, an equilibrium in the limit is robust if it is the limit as € \, 0 of sequences
of equilibria of the corresponding perturbed economies.

We have already seen that introducing a small amount of aggregate uncer-
tainty € > 0 changes the properties of equilibria. However, we have to be very
careful in interpreting these results because the changes can be quite subtle. A
few examples will illustrate the possibilities. The first is an example of a ro-
bust T, that is, a trivial sunspot equilibrium that is the limit of equilibria with
vanishing aggregate uncertainty. The second example illustrates a non-robust
T, that is, a trivial sunspot equilibrium that is not the limit of equilibria with
vanishing aggregate uncertainty. The third example illustrates a robust N, that
is, a non-trivial sunspot equilibrium that is the limit of equilibria with vanishing
aggregate uncertainty. The fundamental equilibrium is never robust, of course.

Example 1. Consider the example studied in Section 5. We saw that when
¢ = 0 there is a fundamental equilibrium with no price variation and trivial
sunspot equilibria with price variation (see Table 1 for a summary). When & > 0
there were two groups of banks, safe and risky, adopting different strategies at
date 0 and that the risky banks defaulted with positive probability at date 1.
There are two parameters that determine the impact of default in equilibrium.
One is the proportion of banks choosing the risky strategy. The other is the
probability of the bad state # = 1 in which the risky banks default. As we
let € \, 0, price volatility is bounded away from zero so there must be non-
negligible price volatility in the limit. Further, it is optimal for a bank to
choose the risky strategy and default with positive probability for each € > 0
and the same must be true in the limit. However, the proportion of risky banks
converges to zero as € \, 0, so in the limit there is no default. In the terminology
introduced earlier, the limit of the fundamental equilibrium with a vanishingly
small amount of aggregate uncertainty is a trivial sunspot equilibrium. This is
in fact the equilibrium discussed in Section 5, but with the addition of the risky
banks with p, = 0. The equilibrium parameters are described in Table 1, Panel
1B.

Ezxample 2. Introducing a small amount of aggregate uncertainty destabilizes
the equilibrium in which prices are constant p = 1/r. It can also destabilize
equilibria in which prices are not constant. Consider the following variation on
Example 1, in which U(c¢;) = Ln(et), r = 1.5, @« = 0.5, and

0 — 0 w.pr. 07
11 w. opr.03

generate the equilibria shown in Table 2. The safe banks hold enough liquidity
to meet depositors’ demand when @ = 1. This means they hold surplus liquidity
when 6 = 0 and so the market-clearing price is p(0) = 1. This is the only price
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at which they are willing to hold surplus liquidity. It is not optimal to adopt
the risky default strategy in this equilibrium, which proves that it cannot be
the limit of a sequence of equilibria with p, > 0 and a positive probability of
default. This is a failure of lower hemi-continuity.

Example 3 Introducing a small amount of aggregate uncertainty in Example 1
destabilizes the equilibrium in which prices are constant p = 1/r, but it does not
destabilize the first-best allocation. This is because « is constant, so that a bank
can achieve the first best without using markets and without being affected by
price volatility. Hence, when € > 0 is small, the bank can do almost as well.
Thus, even if there is price volatility and a positive probability of default, the
welfare loss is small and vanishes as ¢ \, 0. In order to get a big welfare impact
from a small amount of aggregate uncertainty, we need idiosyncratic risk for
banks.

Consider the following variation on Example 1, in which U(c;) = Ln(c),
r=1.5,

075 w. pr. 0.5
1 0.85 w.pr. 0.5

and

0 — 0 w.pr.0.65
11 w. pr. 035

The equilibria that occur in this example are shown in Table 3. It can be seen
that the fundamental equilibrium in Panel 3.1A4 is unchanged from Panel 1.1A.
However the sunspot equilibria in Panels 1.1B and 3.1B are not the same. Trade
occurs at the low price and this adversely affects the welfare of the safe banks
as well as the risky banks. In Panel 3.1B, d? is lowered to 0.995 from 1 in Panel
1.1B to reduce the effects of trading at this low price. Similarly, y° is increased
to 0.810 from 0.800. Expected utility is lowered from 0.081 in Panel 3.14 to
0.080 in Panel 3.1B. As with the autarkic equilibria introducing a small amount
of aggregate uncertainty eliminates equilibria with a non-stochastic price. Only
the sunspot equilibrium is robust. Panel 3.2 shows the equilibrium with intrinsic
uncertainty € = 0.010 close to the sunspot equilibrium. In this case p; = 0.996
and p, = 0.004 so that there is entry by both types of bank.

6.5 Limit theorems

The definition of equilibrium presented in Section 4, prices p() and consumption
x(+,0) are functions of §. When ¢ = 0, a change in 6 has no effect on prefer-
ences, so any dependence of p(6) or z(-,0) on 0 represents extrinsic uncertainty.
When € > 0, on the other hand, a change in 6 has an effect on preference, so
so any dependence of p(6) or z(-,6) on 6 represents intrinsic uncertainty. Thus,
an equilibrium for an economy with aggregate uncertainty, € > 0, is by defini-
tion “fundamental” in the sense that endogenous variables depend only on real
exogenous shocks. To avoid confusion with the fundamental equilibrium in the
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limit economy with ¢ = 0, we use the letter A to denote equilibria with aggregate
uncertainty.

The next theorem characterizes the properties of equilibria in perturbed
economies.

Theorem 4 Let (m,p,d,y,p) denote an A. Then either there is a positive prob-
ability of default or there is non-trivial price volatility, i.e., p(6) = 1 with positive
probability and p(0) < 1/r with positive probability.

Proof. See Section 8. m

We note several other properties of equilibrium with € > 0. First, there
cannot be a state in which all banks are in default, for this would imply p(6) = 0
which is inconsistent with equilibrium. Hence, any equilibrium with default
must be mixed. Secondly, as we have seen, if there is no default there must be
a positive probability that p(6) = 1. Finally, in the absence of default, for any
value of € > 0, the volatility of asset prices, as measured by the variance of p(-),
is bounded away from zero. Both assets are held at date 0 in equilibrium and
this requires that the high returns to the long asset, associated with p(0) = 1,
must be balanced by low returns associated with p(f) < 1/r. These properties
are all preserved in the limit as ¢ — 0.

The next result shows that the limit of a sequence of equilibria is an equi-
librium in the limit.

Theorem 5 Consider a sequence of perturbed economies corresponding to € =
1/q, where q is a positive integer, and let (m2, p9,d?, y?,p?) be the corresponding
As. For some convergent subsequence q € @ let

(m?, p°,d° %, p°) = lim(m, p?, d*, y", p).

Ifd? >0, and 0 < 32 < 1 fori = 1,..m° then (mY p% 20,4°,p°) is an
equilibrium of the limit economy.

Proof. See Section 8. m

Theorem 5 shows that, under certain conditions, the limit of a sequence of
equilibria as € — 0 is an equilibrium of the limit economy where ¢ = 0. We are
also interested in the opposite question, namely, which equilibria of the limit
economy in which € = 0 are limits of equilibria from the perturbed economy in
which € > 07 This requirement of lower hemi-continuity is a test of robustness:
if a small perturbation of the limit economy causes an equilibrium to disappear,
we argue that the equilibrium is not robust. Since there are many equilibria of
the limit economy, it is of interest to see whether any of these equilibria can be
eliminated by being shown to be non-robust.

We have shown in Theorem 4 that equilibria of the perturbed economy are
characterized by default or non-trivial asset price uncertainty. Furthermore,
because the random variable 6 has a finite support, the probability of these
events is bounded away from zero, uniformly in €. The fundamental equilibrium
of the limit economy with € = 0 has none of these properties. However, this
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does not by itself prove that the fundamental equilibrium is not robust. It could
be the limit of a sequence of equilibria of the perturbed economy if the fraction
of banks that defaults in equilibrium converges to zero as ¢ — oo. However, if
the fundamental equilibrium were the limit referred to in Theorem 5, then it
must be the case that (a) default is optimal in the limit and (b) there is no price
volatility in the limit. These two properties can be shown to be inconsistent.

Corollary 6 If (m°, p°,20,9°,p%) is the equilibrium of the limit economy men-
tioned in Theorem 5, then (mP, p°, 20, 40 p°) is not an F of the limit economy,
i.e., it must be either an N or a T.

Proof. Suppose that, contrary to what we wish to prove, (m?, p°, 2% %, p°)
is the fundamental equilibrium. Then p°(f) = 1/r < 1 with probability one
and, hence, p?(0) < 1 for all § and all ¢ sufficiently large. From Theorem 4 we
know that this implies some group ¢ defaults with positive probability for all
sufficiently large q. Thus, in the limit, default must be optimal for group ¢ and
p! — p? = 0. However, we assumed in Section 6.3 that default is not optimal for
stochastic « and it is clear that it is not optimal with non-stochastic « because

U< max {aU(en) +(1-a)U ()

This contradiction proves that (m°, p% 2% 4%, p%) is not an F, i.e., the F is not
robust. ®

This shows that the limit of a sequence of equilibria of the perturbed economy
must be either a T or N, but not an F. So this approach of regarding sunspot
equilibria as a limiting case of A actually eliminates the F in the limit economy
or, in other words, selects the sunspot equilibria as the only robust equilibria.

Corresponding types of equilibria
— Place Figure 1 here —

7 Discussion

In this paper, we have investigated the relationship between intrinsic and extrin-
sic uncertainty in a model of financial crises. Our general approach is to regard
extrinsic uncertainty as a limiting case of intrinsic uncertainty. In our model,
small shocks to the demand for liquidity are always associated with large fluc-
tuations in asset prices. These price fluctuations cause financial crises to occur
with positive probability. This is the sense in which there is financial fragility.
In the limit, as the liquidity shocks become vanishingly small, the model con-
verges to one with extrinsic uncertainty. The limit economy has three kinds of
equilibria,

¢ fundamental equilibria, in which there is neither aggregate uncertainty nor
a positive probability of crisis;
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e trivial sunspot equilibria, in which prices fluctuate but the real allocation
is the same as in the fundamental equilibrium;

e and non-trivial sunspot equilibria, in which prices fluctuate and financial
crises can occur with positive probability.

Introducing small shocks into the limit economy destabilizes the first type of
equilibrium, leaving the second and third as possible limits of equilibria of the
perturbed economy. If o is a constant, the limiting equilibrium as ¢ — 0 is a
trivial sunspot equilibrium. If « is random, the limiting equilibrium as ¢ — 0
is a non-trivial sunspot equilibrium. We argue that only the sunspot equilibria
are robust, in the sense that a small perturbation of the model causes a small
change in these equilibria. This selection criterion provides an argument for the
relevance of extrinsic uncertainty and the necessity of financial crises.

Although crises in the limit economy arise from extrinsic uncertainty, the
causation is quite different from the bank run story of Diamond and Dybvig
(1983). In the Diamond-Dybvig story, bank runs are spontaneous events that
depend on the decisions of late consumers to withdraw early. Given that almost
all agents withdraw at date 1, early withdrawal is a best response for every
agent; but if late consumers were to withdraw at date 2, then late withdrawal
is a best response for every late consumer. So there are two “equilibria” of
the coordination game played by agents at date 1, one with a bank run and
one without. This kind of coordination failure plays no role in the present
model. In fact, coordination failure is explicitly ruled out: a bank run occurs
only if the bank cannot simultaneously satisfy its budget constraint and its
incentive constraint. (For a fuller discussion of these issues, see Allen and Gale
(2003)). When bankruptcy does occur, it is the result of low asset prices. Asset
prices are endogenous, of course, and there is a “self-fulfilling” element in the
relationship between asset prices and crises. Banks are forced to default and
liquidate assets because asset prices are low and asset prices are low as a result
of mass bankruptcy and the association liquidation of bank assets.

One interesting difference between the present story and Diamond and Dy-
bvig (1983) is that here a financial crisis is a systemic event. A crisis occurs
only if the number of defaulting banks is large enough to affect the equilibrium
asset price. In the Diamond-Dybvig model, by contrast, bank runs are an id-
iosyncratic phenomenon. Whether a run occurs at a particular bank depends
on the decisions taken by the bank’s depositors. It is only by coincidence that
runs are experienced by several banks at the same time.

At the heart of our theory is a pecuniary externality: when one group of
banks defaults and liquidates its assets, it forces down the price of assets and
this may cause another group of banks to default. This pecuniary externality
may be interpreted as a form of contagion.

Allen and Gale (2000a) describes a model of contagion in a multi-region
economy. Bankruptcy is assumed to be costly: long-term projects can be lig-
uidated prematurely but a fraction of the returns are lost. This deadweight
loss from liquidation creates a spillover effect in the adjacent regions where the
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claims on the bankrupt banks are held. If the spillover effect is large enough,
the banks in the adjacent regions will also be forced into default and liquidation.
Each successive wave of bankruptcies increases the loss of value and strengthens
the impact of the spillover effect on the next region. Under certain conditions, a
shock to one small region can propagate throughout the economy. By contrast,
in the present model, a bank’s assets are always marked to market. Given the
equilibrium asset price p, bankruptcy does not change the value of the bank’s
portfolio. However, if a group of banks defaults, the resulting change in the
price p may cause other banks to default, which will cause further changes in p,
and so on. The “contagion” in both models is instantaneous.

Several features of the model are special and deserve further consideration.

Pecuniary externalities “matter” in our model because markets are incom-
plete: if banks could trade Arrow securities contingent on the states 6, they
would be able to insure themselves against changes in asset values (Allen and
Gale (2003)). No trade in Arrow securities would take place in equilibrium,
but the existence of the markets for Arrow securities would have an effect. The
equilibrium allocation would be incentive-efficient, sunspots would have no real
impact, and there would be no possibility of crises.

It is important that small shocks lead to large fluctuations in asset prices
(and large pecuniary externalities). We have seen, in the case of trivial sunspot
equilibria, that small price fluctuations have no real effect. What makes the
pecuniary externality large in this example is inelasticity of the supply and de-
mand for liquidity. Inelasticity arises from two assumptions. First, the supply
of liquidity at date 1 is fixed by the decisions made at date 0. Secondly, the
assumption of Diamond-Dybvig preferences implies that demand for consump-
tion at date 1 is interest-inelastic. This raises a question about the robustness
of the results when more general preferences are allowed.

One justification for the Diamond-Dybvig preferences is that they provide a
cheap way of capturing, within the standard, Walrasian, auction-market frame-
work, some realistic features of alternative market clearing mechanisms. In an
auction market, prices and quantities adjust simultaneously in a tatonnement
process until a full equilibrium is achieved. An alternative mechanism is one in
which quantities are chosen before prices are allowed to adjust. An example is
the use of market orders. If depositors were required to make a withdrawal de-
cision before the asset price was determined in the interbank market, the same
inelasticity of demand would be observed even if depositors had preferences that
allowed for intertemporal substitution. There may be other institutional struc-
tures that have the qualitative features of our example. An investigation of these
issues goes far beyond the scope of the present paper, but it is undoubtedly one
of the most important topics for future research.

The model of banks that we have used is special, but the same general
arguments apply to other types of intermediary. As long as intermediaries use
non-contingent contracts and markets are incomplete, small liquidity shocks will
result in extreme price volatility and intermediaries will be subject to default.

In analyzing this model of liquidity and crises, we have ignored the possibility
of intervention by the central bank or government. A full understanding of
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the laisser-faire case should be seen as a prelude to the analysis of optimal
intervention. In the same way, the analysis of a “real” model is a prelude to the
introduction of fiat money into the model. These are both important topics for
future research.

8 Proofs

8.1 Proof of Theorem 1

By definition, an equilibrium (p,m,d,y, p) must be either an F, T, or N. The
theorem is proved by considering each case in turn.

Case (i). If (p,m,d,y,p) is an F then by definition the price p(#) is constant
and, for each group i, the consumption allocation x(d;, yi, v, 0) is constant. In
particular, x(d;,y;,, ) = d; with probability one so there is no default in
equilibrium.

Let p denote the constant price and ¢; = (¢;1, ¢;2) the consumption allocation
chosen by banks in group i. The decision problem of a bank in group i is

max [aU(c;i1) + (1 — @)U(c2)]
st i1 <cp,0<y; <1
acii + (1 — a)peip < yi +pr(l —y;).

Clearly, y; will be chosen to maximize y; + pr(1 —y;). Then the strict concavity
of U(-) implies that ¢; is uniquely determined and independent of i. Thus, the
equilibrium is semi-pure: ¢; = ¢; for any ¢ and j.

Case (ii). Suppose that (p,m,d,y,p) is a T. Then by definition p() is
not constant and, for each group i, the consumption allocation z(d;, y;, o, 6) is
constant. In particular, x1(d;, y;, o, 0) = d; with probability one so there is no
default in equilibrium.

Let ¢; denote the consumption allocation chosen by banks in group i. The
budget constraint at date 1 reduces to

acip —y; = —p(0)(1 — a)acis — r(l —y;)), as.
Since p(#) is not constant, this equation can be satisfied only if
acii —yi = (1 —a)eg —r(l —y;) = 0.
Then the choice of (¢;,y;) must solve the problem

max FlaU(c) + (1 — a)U(ei2)]
st 1 <cp,0<y <1
acit =Y, (1 — a)cip = 7(1 — ;).

The strict concavity of U(+) implies that this problem uniquely determines the
value of ¢; and hence y;, independently of i. Consequently, the equilibrium is
pure.
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Case (iii). Suppose that (p, m,d,y,p) is an N. The allocation of consumption
for group i is x(d;, y;, @, 0), and the expected utility of each group is the same

E[u(x(divyi7a79)7a] = E[u(x(dj7yj7a79)7a] 7Vi7j'

The mean allocation ), p;x(d;, yi, o, 0) satisfies the market clearing conditions
for every 6 and hence consumption bundle E [}, p;z(d;, ys, v, 0)] is feasible for
the planner. Since agents are strictly risk averse,

This contradicts the equilibrium conditions, since the individual bank could
choose

Zpix(dhyivave)‘| 7(3‘) > ZpiE[u(x(dﬁyiva?e)?a)] :

Yo = ady = aF

Z pix(di7 Yi, ., 9)]

and achieve a higher utility.

8.2 Proof of Theorem 2

Again we let (p, m,d,y,p) be a fixed but arbitrary equilibrium and consider each
of three cases in turn.

Case (i). If (p,m,d,y,p) is an F, p(#) is constant and, for each group 14
and each «, the consumption allocation x(d;, y;, @, 8) is constant. In particular,
x1(d;, yi, o, 0) = d; with probability one so there is no default in equilibrium.

Let p denote the constant price and ¢; () = (¢;1 (), ¢i2(ar)) the consumption
allocation chosen by banks in group ¢. The decision problem of a bank in group
118

max F[aU(ci(a)) + (1 — a)U(ciz(@))]
sit. cin(a) <cp(a),0<y; <1
acii(a) + (1 — a)peip(a) <y; +pr(l —yi).

Clearly, y; will be chosen to maximize y; + pr(1 —y;). Then the strict concavity
of U(+) implies that ¢;(«) is uniquely determined and independent of ¢ (but not
of a). Thus, the equilibrium is semi-pure: ¢; = ¢; for any ¢ and j.

Case (ii). Suppose that (p, m,d,y,p) is a T. Then by definition p(#) is not
constant and, for each group ¢ and «, the consumption allocation x(d;, y;, o, 6)
is constant. In particular, x1(d;,y;, o, 0) = d; with probability one so there is
no default in equilibrium.

Let ¢;(«) denote the consumption allocation chosen by banks in group i.
The budget constraint at date 1 reduces to

acip(a) —y; = —p(0)(1 — a)acia(a) —r(l —y;)), as.
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Since p(0) is not constant, this equation can be satisfied only if
acii(a) —y; = (1 — a)cp(a) —r(1 —y;) = 0.

Since « is not constant this can only be true if ¢;1(a) = ¢ia(a) = 0, a contra-
diction. Thus, there cannot be a T when « is not constant.

Case (iii). The only remaining possibility is that (p, m,d,y,p) is an N. If
there is no default in this equilibrium, then each bank in group i solves the
problem

) _ yitp(@)r(1—yi)—ad;
max E[O‘g)(ff) +)(1 QU (1rgrishat )|
yitp(0)r(1—yi )
st = 4

This is a convex programming problem and it is easy to show that the strict
concavity of U(-) uniquely determines (d;,y;). Thus an N without default is
pure.

8.3 Proof of Theorem 4

Suppose that the probability of default in (p,m,d,y,p) is zero. Then for each
group 14, x1(d;, y;, o, 0) = d; and the market-clearing condition (2) implies

ZE lom(e,0)] d; < Zpiyi- (5)

There are two cases to consider. In the first case, Y, p;y; = 0. Then d; = 0 for
every 7 and the utility achieved in equilibrium is

E {n(a, O)U(0) + (1 — n(a, 0))U <#(a€))] .

By holding a small amount é > 0 of the short asset, positive consumption could
be guaranteed at the first date. Optimality requires that

B a0 (57 )| + 2 |0 - wte o (75555)
< B [ma,e)v(m (1= (e, 0)U <T<ae>)] .
for any & > 0. In the limit as § — 0,

s (i)

which contradicts the assumption that U’ (0) = co.
In the second case, Y. p;y; > 0. Then the market-clearing condition (5) and
the fact that n(a, d) = a + €6 together imply that

Z pin(a, 0)d; < Z PiYi
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with positive probability. The complementary slackness condition implies that
p(0) = 1 with positive probability and the short asset will be dominated by the
long asset at date 0 unless p(6) < 1/r with positive probability. Thus, the price
volatility is non-trivial if the probability of default is zero.

8.4 Proof of Theorem 5

Continuity and the convergence of {(p?, m,d?,y9,p?)} immediately implies the
following properties of the limit point (p°, m,d", y°, p°):

(i) 3, p? =1 and p? > 0 for every i so (p°,m) is a partition.

(ii) For every i, (d9,vY) € Ry x [0,1]. The market-clearing conditions

Z p?E [a‘%l(d?v y?? @, 9)|9] < Z p’(i)y?7
and

szOE {ai'l(d%yz(')?a? 9) + (1 - Oé)j}g(d,?,y?, a, 9)|0}
=> ol {ud +r(1—y))}

are satisfied in the limit and the complementary slackness condition holds. Thus,
(d°,y?) is an attainable allocation.

It remains to show that (d?,?) is optimal for each i. Let W9(d;, y;, o, 6)
denote the utility associated with the pair (d;,y;) in the perturbed economy
corresponding to € = 1/q when the price function is p? and let WO(d;, y;, o, 6)
denote the utility associated with the pair (d;,y;) in the limit economy cor-
responding to ¢ = 0, where the price function is p°. The function W2(-) is

discontinuous at the bankruptcy point defined implicitly by the condition
(a +(1- a)po(e)) d; = y; +p0(9)r(1 — i) (6)

If (6) occurs with probability zero in the limit, then it is easy to see from the
assumed convergence properties that

Wq(d747 yZ? a? 9) - Wo(dz7 yZ? a? 9)7 a's'
and hence

qll)nolo E [Wq(di7 Yi, @, 9)] =FE [Wo(di7 Yi, &, 9)] .
Let (d?, 1Y) denote the pair corresponding to the limiting consumption allocation
29 and let {(d?,y!)} denote the sequence of equilibrium choices converging to
(d?,4?). There may exist a set of states (o, ) with positive measure such that
(d?,y?) implies default in state (a, ) for arbitrarily large ¢ but that (d,y!)
does not imply default in state («, ). Then at least we can say that

liminf W9(d¢,y?, a,0) < WO (d?, 4, , 0), as.
q
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and this implies that

liminf B [W9(d{,y!, o, 0)] < E [WO(d7, 9}, c,0)] .
q

Now suppose, contrary to what we want to prove, that (d?,y?) is not optimal.
Then there exists a pair (d;,y;) such that E [WO(d;, y;, o, 0)] > E [W°(d?,4?, v, 6)].
If d; = 0 then (6) holds with probability zero and it is clear that for some suffi-
ciently large value of ¢, F [Wo(di, Yi, Q, 9)] > E [Wi(dl,yl, o, 0)], contradicting
the equilibrium conditions. If d; > 0, then either the critical condition (6) holds
with probability zero or we can find a slightly lower value d’ < d that does
satisfy the critical condition. To see this, note first that the critical condition
uniquely determines the value of p°(6) as long as

(1—a)d#rl—y)

which is true for almost every value of d. Secondly, if the value of p®(6) for
which the critical condition is satisfied is an atom, we can always find a slightly
smaller value d; < d; such that the value of p°(6) for which the critical condition
is satisfied is not an atom. Furthermore, reducing d slightly will at most reduce
the payoff by a small amount, so for d; < d; and close enough to d; we still have
E [Wo(dg,yi, a, 9)] > F [Wo(d?,y?,a, 9)] Then this leads to a contradiction
in the usual way.
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Table 1

Equilibria for Example 1

(c1(0),¢5(0))
” . { E[U? [ Yy } (ci(1),¢5(1)) { p(0)
E[UT] y' (c1(0),¢5(0)) p(1)
(ci(1), e5(1))
L.1A 0 0.081 0.800 (1.000, 1.500) 0.667
(1.000, 1.500)
L1B 0 0.081 [0.800 ] (1.000, 1.500) 0.943
‘ 0.081 0 (1.414,1.500) 0.432
) ol (0.648, 0.648)
(0.998, 1.488)
12 | o010 0.078 [0.810 ] (0.998,1.520) 0.940
‘ ' 0.078 0.016 (1.405,1.488) 0.430
) ol ) (0.651,0.651)
Table 2
Equilibria for Example 2
(c1(0), ¢5(0))
4| e { E[U?] } [ v’ ] (¢5(1), e3(1) p(0) ]
E[U] Y (c1(0),¢5(0)) p(1)
(ci(1), e5(1))
21A] 0 0.203 0.500 (1.000, 1.500) 0.667
(1.000, 1.500)
515l o [0.203 ] 0.500 (1.000, 1.500) 1.000
' 0.111 0 (1.500, 1.500) 0.375
) ] (0.563,0.563)
(0.996, 1.497)
0.199 0.508 (0.996, 1.507) 1
2.2 10010 0.110 0 (1.500, 1.500) 0.374
) ' (0.561,0.561)
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Table 3

Equilibria for Example 3

ci(0)7c§L(0)7c5H(0)g
4 . [ E[Uf] { y } (1), 8% (1), 57 (1) [p(O)
E[U"] Yy CI(O),CEL(O),CSH(O); p(1)
i (1), 5 (1), 5" (1)
314 0 0.081 0.800 (1.000, 1.500) 0.667
(0.998, 1.648,1.283)
a1l o 0.080 [ 0.798 ] (0.998, 1.648,1.283) 0.910
' 0.080 0 (1.364, 1.502, 1.503) 0.455
i i i (0.682,0.682, 0.682) i
(0.995, 1.414, 1.624)
39 | 0010 0.077 [ 0.809 ] (0.995, 1.700, 1.366) 0.940
' ' 0.077 0 (1.360,1.502, 1.503) 0.430
( )

0.678, 0.678, 0.678
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Figure 1A
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Figure 1B
Equilibrium correspondence
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