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Abstract We present a model of a financial market where some traders are “cursed”

when choosing how much to invest in a risky asset, failing to take into account what

prices convey about others’ private information. In contrast to rational-expectations

equilibrium (REE), the model predicts extensive trade, which can increase in the pres-

ence of more private information. The price responds more to public information and

less to private information than in REE, causing momentum in asset returns. Also in

contrast to REE, cursed traders with more precise private information can be worse off

than traders with less precise information. We contrast our results to other models of

departures from REE and show that trading volume among cursed agents converges to

infinity when the number of agents becomes large, while natural forms of overconfidence

predict that volume should remain bounded.
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1 Introduction

People might rationally trade financial assets for a variety of non-speculative motives, such as

portfolio rebalancing and liquidity. But ever since Milgrom and Stokey (1982), researchers have

understood that common knowledge of rationality combined with a common prior precludes purely

speculative trade. In most people’s estimation, the volume of trade in financial markets greatly

exceeds what can be plausibly explained by models using rational-expectations equilibrium (REE).1

Researchers have sought to explain this excessive volume by relaxing the common-prior assumption.

Harrison and Kreps (1978) show how non-common priors about an asset’s payoff generate volume

in a dynamic model where risk-neutral traders cannot sell the asset short. Scheinkman and Xiong

(2003) use their framework to explore traders who are “overconfident”: all signals about the payoff

are observed by all traders, yet certain traders overestimate the information content of certain

signals.2 In these complete-information models, trade derives from traders’ agreeing to disagree. A

second approach incorporates overconfidence into incomplete-information models by assuming that

privately informed traders agree to disagree because they are overconfident about the precision of

their private information. Daniel, Hirshleifer and Subrahmanyam (1998, 2001) and Odean (1998),

for example, show how such overconfidence can increase trading volume.3

Models of agreeing to disagree depict traders who recognize their disagreements in beliefs and

1For example, according to French’s (2008) presidential address to the American Finance Association, the

capitalized cost of trading exceeds 10% of market capitalization and turnover in 2007 was 215%, creating a

puzzle that “[f]rom the perspective of the negative-sum game, it is hard to understand why equity investors

pay to turn their aggregate portfolio over more than two times in 2007” (page 1552).

2Hong, Sheinkman and Xiong (2006) model overconfidence similarly, allowing also for heterogenous priors,

in a model where the number of shares of a risky asset increases over time due to the expiry of lock-up clauses.

3Other models of trade deriving from differences in beliefs include Varian (1985), where traders have differ-

ent subjective priors, DeLong, Shleifer, Summers, Waldmann (1990), where symmetrically informed traders

disagree because some of them (“noise traders”) misperceive next-period prices for exogenous reasons, and

Harris and Raviv (1993) and Kandel and Pearson (1995), where traders disagree about the informativeness

of public signals. Hong and Stein (2007) provide an overview of this literature.
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trade based on them. This paper takes a different tack: people trade because they neglect disagree-

ments in beliefs. This approach may seem retrograde, moving the theory of asset markets back

to before the rational-expectations revolution, but it builds on evidence and modeling outside the

context of financial markets that people do not sufficiently attend to the information content of

others’ behavior—even in the absence of intrinsic disagreements. We present a simple and tractable

model of markets where some or all traders, when choosing their demands, do not attend to the

informational content of prices or others’ trades. We draw out several implications that follow

from this simple assumption, and contrast the model to fully rational models as well as to existing

alternatives. The most important implication is also the most basic: trading volume is higher

than in REE. Other predictions follow as well. The price responds more to public information and

less to private information than in REE, making changes in asset prices predictable from public

information. In contrast to REE, trading volume can increase in the precision of traders’ private

information. Also in contrast to REE, traders with more precise private information can be worse

off than traders with less precise information. We contrast our predictions to those of models based

on agreeing to disagree, and specifically to overconfidence. Most notably, whereas our model pre-

dicts that the per-trader volume of trade grows with the number of agents in the market, we show

that when traders are overconfident but don’t neglect disagreements, per-trader volume declines to

zero.

Ours is not the first paper to investigate the possibility that some market participants fail to

invert prices. Hong and Stein (1999) assume that some or all traders are “newswatchers” who trade

based on news or signals they observe without inverting price to infer news that they haven’t yet

heard. They show how prices move predictably when information diffuses gradually through the

market, similar to our result, but do not explore the other implications we focus on in this paper.

Section 2 outlines the basic model upon which our approach builds. Based on evidence from

strategic situations, Eyster and Rabin (2005) define cursed equilibrium in Bayesian games by the

requirement that every player correctly predicts the behavior of others, but fails to fully attend to

its informational content. Cursed equilibrium is meant to capture the intuitive psychology behind

the “winner’s curse” in common-values auctions, as well as related phenomena in other strategic

2



settings.4 Section 2 then illustrates the workings of cursed equilibrium in a simple zero-sum game

of speculative trade. Cursed equilibrium predicts that agents should trade in that example. As

we point out in Section 6, this prediction is supported by direct experimental evidence, but is

hard to generate under alternative approaches such as overconfidence, agreeing to disagree, and

non-common priors.

Section 3 introduces our formal set-up, based on Grossman (1976), Hellwig (1980) and Diamond

and Verrechia (1981). We consider a market in which traders can exchange a risky for a riskless

asset over one period. Traders observe public and private signals about the risky asset’s payoff, and

receive random endowments correlated with that payoff. We define cursed-expectations equilibrium

(CEE) by the requirement that some traders do not fully extract information from asset prices.

CEE transposes the concept of cursed equilibrium from strategic games to price-taking competitive

settings. As an application of a more general equilibrium concept, it has the methodological benefit

of not having been designed specifically to explain the particular financial-market puzzles that we

explore. For tractability, we assume that traders have constant-absolute-risk-aversion (CARA)

preferences, and that each either fully extracts or entirely fails to extract information from prices.

Section 4 analyzes the model without random endowments. As in Grossman (1976), there is a

unique linear REE with the classical prediction of no trade, and a price that aggregates efficiently

all public and private signals. We next solve for CEE when all traders are cursed. Although each

cursed trader relies too much upon his own private signal when estimating the asset payoff, because

other traders fail to appreciate how that signal influences the price, private signals enter the price

with a smaller weight than in REE. Conversely, the public signal enters the price with a larger weight

because each trader relies on it more than in REE. These two effects make returns a predictable

function of observables: future return depends positively on past return and negatively on the public

4Cursedness explains the voluminous evidence on over-bidding in common-values auctions, reviewed in

Kagel and Levin (2002), better than Bayesian Nash equilibrium does. Additional evidence consistent with

cursedness comes from settings ranging from social learning (Weizsäcker (2010)), voting (Esponda and Vespa

(2013)), and trade in positive-sum (Samuelson and Bazerman (1985), Holt and Sherman (1994)) and zero-

sum (Carrillo and Palfrey (2011)) environments.
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signal in a bivariate regression, and it depends positively on past return in a univariate regression.

The positive coefficient on past return accords with the empirical evidence on momentum.5

We show additionally that traders with more precise private signals trade more than those with

less precise ones, but can be worse off because cursedness causes them to trade too aggressively.

The total volume of trade approaches infinity as the number of agents becomes large, and is hump-

shaped in the average precision of private signals. Intuitively, there is little private information

when either signals are very imprecise—everybody knows very little—or when signals are very

precise—everybody is fully informed.

We complete Section 4 by solving for CEE when some traders are rational, focusing, for tractabil-

ity, on the case where rational traders observe no private signals. Rational traders exploit the

under-reaction of price to cursed traders’ private signals by engaging in momentum trading, buying

when the price goes up and selling when it goes down. This attenuates the price under-reaction to

private signals. We show that one consequence of this result is that cursed traders with more precise

private signals are worse off than those with less precise signals under a larger set of parameter

values.

Section 5 analyzes the model with random endowments. As in Hellwig (1980) and Diamond

and Verrechia (1981), trade happens even in REE because the correlation between endowments

and the asset payoff generates a hedging motive. We show that REE trading volume is inverse

hump-shaped in the precision of private signals—the exact opposite result than when traders are

cursed. Intuitively, adverse selection (Akerlof (1970), Hirshleifer (1971)) reduces volume when there

are private signals, but disappears when everybody knows little due to imprecise signals or is fully

informed because of very precise signals.

Section 6 contrasts our approach to others in the literature, such as overconfidence, agreeing to

disagree, and non-common priors. We discuss reasons for concern about the ubiquitous assumption

that traders exaggerate the quality of their private information, so that they are overconfident at

the time of trade.6 But we concentrate mostly on contrasting the implications of overconfidence and

5See Jegadeesh and Titman (1993), and Jegadeesh and Titman (2011) for a recent survey.

6This form of overconfidence is not exactly equivalent to people’s sensation that they are more skilled
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cursedness. We embed in our setting a form of overconfidence that most closely resembles Odean

(1998), where traders are rational except that they overestimate the precision of their own private

signal. We follow Odean in assuming that traders understand the mapping between the price and

other traders’ private information—but they agree to disagree about the meaning of that informa-

tion. We show that overconfidence leads to prices that depend too much on private information

and too little on public information relative to REE—the exact opposite of our findings with cursed

traders. Odean also derives results under an additional assumption that traders underestimate the

precision of other traders’ signals. This assumption is a cousin of sorts to cursedness, and traders

who downplay the informativeness of others’ signals exhibit similar behavior to cursed ones. We

replicate Odean’s results in our setting, showing that traders who are overconfident or dismissive

of others’ signals trade too much.

More interesting is the contrast in the extent of over-trading as the number of agents becomes

large. Whereas the total volume of trade from cursedness converges to infinity with the number of

traders, overconfident volume converges to a finite constant regardless of whether the overconfident

also undervalue others’ signals. Intuitively, while each trader thinks he knows more than he does,

he understands that the total amount of “valid” information reflected in the price in a large market

swamps his own information. Hence, the same no-trade logic that prevails in REE prevails also in

large markets of overconfident traders.7

We also show, however, that in a large market of cursed overconfident traders, per-trader

volume remains significant. In this sense, cursedness and overconfidence work as complements,

and cursedness helps vindicate the basic intuition from the literature that overconfidence can be a

significant source of trading volume.

than they are, as in the work of Malmendier and Tate (2005) on CEOs. Instead, it corresponds to people

thinking “my private signals are better than they are,” which might result from people thinking they are

better than others at reading information, making it akin to ego-related overconfidence.

7Our finding that the per-trader volume of overconfident trade vanishes in large markets would also

hold if all signals in the model were made public, which resembles the form of overconfidence assumed in

Scheinkman and Xiong (2003).
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We conclude in Section 7. We discuss some of the limits of our model, especially the challenges

in extending cursedness to multi-period settings. We also discuss how cursedness may interact with

other biases. In particular—as per the case of overconfidence discussed in Section 6—cursedness

may often serve as an “enabler” of various cognitive and other types of errors traders seem subject

to: many errors matter significantly for prices and volume only if and only if traders are cursed.

2 Cursed Equilibrium

In this section, we summarize Eyster and Rabin’s (2005) concept of cursed equilibrium, before

adapting it to price-taking settings in Section 3, in a new concept called cursed-expectations equi-

librium. Cursed equilibrium is defined in finite Bayesian games of the form

({Ai}i=1,...,N , {Ti}i=0,...,N , p, {ui}i=1,...,N ) .

For each player i = 1, . . . , N , Ai is a finite set of available actions and Ti is a finite set of types,

including one, T0, for nature. We denote the set of action profiles by A ≡ ×
i=1,...,N

Ai and the set

of type profiles by T ≡ ×
i=0,...,N

Ti. We assume that all players share the common prior probability

distribution p over T . Player i’s utility function is ui : A× T → R.

A strategy for player i, σi : Ti → △Ai, specifies a probability distribution over actions for each

type. We denote by σi(ai|ti) the probability that type ti plays action ai when he follows strategy

σi. We denote the set of action profiles for players other than i by A−i ≡ ×
j ̸=0,i

Aj , and the set of

type profiles for nature and players other than i by T−i ≡ ×
j ̸=i

Tj . We denote by a−i and t−i generic

elements of these sets. We denote by σ−i(a−i|t−i) the probability that types t−i play action profile

a−i when they follow strategy σ−i ≡ {σj}j ̸=0,i. Finally, we denote by p(t−i|ti) the distribution of

player i’s beliefs about other players’ types conditional on his own type ti. The standard solution

concept for these games is Bayesian Nash equilibrium.

Definition 1 A strategy profile σ is a Bayesian Nash equilibrium if for each player i, each type

ti ∈ Ti, and each a∗i such that σi(a
∗
i |ti) > 0:

a∗i ∈ arg max
ai∈Ai

∑
t−i

p(t−i|ti)

∑
a−i

σ−i(a−i|t−i)ui(ai, a−i; ti, t−i)

 . (1)
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To define cursed equilibrium, we compute for each type of each player the average strategy of

other players, averaged over the other players’ types. For type ti of player i we define

σ−i(a−i|ti) ≡
∑

t−i∈T−i

pi(t−i|ti) · σ−i(a−i|t−i).

This is the marginal probability that other players play action profile a−i, and is derived by aver-

aging over type profiles t−i the probabilities σ−i(a−i|t−i) that other players play a−i conditional on

t−i. We associate to each player i a cursedness parameter χi ∈ [0, 1].

Definition 2 A strategy profile σ is a cursed equilibrium if for each player i, each type ti ∈ Ti,

and each a∗i such that σi(a
∗
i |ti) > 0:

a∗i ∈ arg max
ai∈Ai

∑
t−i

p(t−i|ti)

∑
a−i

(1− χi)σ−i(a−i|t−i)ui(ai, a−i; ti, t−i)

+ χiσ−i(a−i|ti)ui(ai, a−i; ti, t−i)

 . (2)

Player i best-responds to beliefs that with probability 1− χi the other players’ actions depend

on their types (the probability of action profile a−i in (2) is conditional on type profile t−i) and with

probability χi actions do not depend on types (the probability of a−i in (2) is the marginal). When

χi = 0, player i is rational, and his objective is as in Bayesian Nash equilibrium (Eq. (1)). When

χi = 1, player i is fully cursed, and neglects entirely the relationship between the other players’

actions and their types. Note that while cursed players fail to map actions to types, they assess

correctly the probability distribution of other players’ actions. We refer to a player with cursedness

parameter χ as a χ-cursed player.8

8Although the formalization of cursed equilibrium looks as if players believe that their opponents foolishly

under-utilize available information, Eyster and Rabin (2005, pp. 1629) motivate cursedness very differently:

players do not have a theory that others are misusing information. Rather, when thinking through their

own strategies, players fail to attend to the informational content of others’ behavior. This distinct moti-

vation matches our emphasis in Section 6 and elsewhere in this paper on how our approach contrasts with

disagreement models in the finance literature where people recognize and embrace their differences in beliefs.
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To see the logic of cursed equilibrium, and to provide initial intuitions for our analysis below,

we consider the following game. A seller has an asset that he knows to be worth s to himself and

a potential buyer, but the buyer does not know s. Instead, the buyer has beliefs that s is the

realization of the random variable S with support [0, 1] and cumulative distribution function F .

The buyer makes the seller a take-it-or-leave-it offer for the asset.

Regardless of his beliefs about the buyer’s strategy, the seller maximizes utility by accepting p

if any only if s ≤ p. In a Bayesian Nash equilibrium, the buyer understands this, and so chooses p

to maximize F (p)× (E[S|S ≤ p]− p). Because E[S|S ≤ p] < p for each p > 0, the buyer’s optimal

offer is p∗ = 0. This illustrates Milgrom and Stokey’s (1982) celebrated result on the absence of

speculative trade between rational agents.

Given the seller’s strategy, a χ-cursed buyer believes that a seller with s ≤ p accepts with

probability (1−χ)× 1+χ×F (p), the χ-weighted average of that type of seller’s actual probability

(= 1 for s ≤ p) of accepting, and the average probability of accepting among all types of seller.

Similarly, the buyer believes that a seller with s > p accepts with probability (1−χ)×0+χ×F (p).

Consequently, the buyer believes that the average type of seller who accepts p is (1 − χ)E[S|S ≤

p] + χE[S]. The buyer thus chooses p to maximize F (p) × ((1− χ)× E[S|S ≤ p] + χ× E[S]− p).

Since E[S] > 0, the buyer’s optimal offer is p∗ > 0. Moreover, since the buyer’s objective function

is supermodular in (p, χ) for p ∈ [0,E[S]], Topkis’s Theorem implies that p∗ increases in χ. In

summary, cursedness produces trade in no-trade settings, and the more cursed the buyer, the

higher the volume of trade is.

3 Model, Equilibrium Concept, and Equilibrium Conditions

In this section, we begin by defining cursed-expectations equilibrium in a general version of our

model, before making more specific assumptions on traders’ cursedness parameters, the distribu-

tion of their information, and their utility functions, which allow us to derive analytically tractable,

linear equilibria. There are two periods, 1 and 2, and two assets that pay off in terms of a con-

sumption good in Period 2. One asset is riskless and pays off one unit of the consumption good

with certainty. The other asset is risky and pays d = d + ϵ + ζ units, where d is a constant and
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(ϵ, ζ) are random variables with mean zero. We use the riskless asset as the numeraire, and denote

by p the price of the risky asset in Period 1. Our choice of numeraire implies that the price of the

risky asset in Period 2 is d and the riskless rate is zero. We assume that the risky asset is in zero

supply.

There are N traders who can exchange the two assets in Period 1. Trader i = 1, .., N observes

the private signal

si = ϵ+ ηi, (3)

as well as the public signal

s = ϵ+ η, (4)

which is also observed by all other traders. The random variables ({ηi}i=1,..,N , η) have mean zero.

The signals are observed in Period 1. They provide information about the component ϵ of the risky

asset’s payoff but not about ζ.

Trader i starts with a zero endowment of the riskless and the risky assets, and receives an

endowment zid of the consumption good in Period 2. We refer to zi as the endowment shock, and

assume that it is observed in Period 1 and has mean zero. Through its correlation with d, the

endowment generates a hedging motive to trade. When, for example, zi > 0, trader i is exposed

to the risk that d will be low and wishes to hedge by selling the risky asset. We assume that the

variables (ϵ, ζ, {ηi}i=1,..,N , η, {zi}i=1,..,N ) are mutually independent.

The budget constraint of trader i is

Wi = xi(d− p) + zid, (5)

where xi denotes the number of shares of the risky asset held by the trader in Period 1. We impose

no portfolio constraints, e.g., on short sales or leverage, and assume that xi can take any value in

R.

Traders maximize expected utility of consumption in Period 2. We denote by ui(Wi) the utility

of trader i. If the trader is rational, he maximizes the expected utility

E[ui(xi(d− p) + zid)|{si, s, zi, p}],
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where we use (5) to substitute for Wi. A rational trader conditions his estimate of the asset payoff d

on his private signal, the public signal, the endowment shock, and the price. To derive the objective

of a cursed trader, we adapt the analysis of Section 2 to our price-taking setting. From the point of

view of trader i, the actions of other traders are summarized in the price p, which trader i observes.

Therefore, there is no need to compute the average actions of other traders as is done in Section 2.

We focus instead on trader i’s posterior distribution conditional on the price. Recall from Section

2 that a χi-cursed player i best-responds to beliefs that with probability 1− χi the other players’

actions depend on their types and with probability χi actions do not depend on types. Therefore,

player i’s posterior beliefs conditional on observing action profile a−i are the average of the true

posteriors with weight 1 − χi (since player i treats actions by other players as informative about

types with probability 1 − χi) and the beliefs before observing a−i with weight χi (since player i

treats actions as uninformative with probability χi). We adapt this result, proven as Lemma 1 of

Eyster and Rabin (2005), in our setting by replacing a−i with the price p. If trader i is χi-cursed,

he maximizes the expected utility

(1− χi)E[ui(xi(d− p) + zid)|{si, s, zi, p}] + χiE[ui(xi(d− p) + zid)|{si, s, zi}],

which is an average of the rational expected utility with weight 1−χi and the expected utility not

conditioned on price with weight χi.

Our definition of cursed-expectations equilibrium combines utility maximization under cursed

expectations with market clearing. As in the case of REE, the equilibrium involves a price function

p that depends on all the random variables in the model. These are the private signals {si}i=1,...,N ,

the public signal s, and the endowment shocks {zi}i=1,...,N .

Definition 3 A price function p({si}i=1,...,N , s, {zi}i=1,...,N )) and demand functions {xi(si, s, zi, p)}i=1,...,N

are a cursed-expectations-equilibrium (CEE) if:

(i) (Optimization) For each trader i = 1, . . . , N , and each (si, s, zi, p),

xi ∈ argmax
x

{(1− χi)E[ui(x(d− p) + zid)|{si, s, zi, p}] + χiE[ui(x(d− p) + zid)|{si, s, zi}]} ,

(6)
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(ii) (Market Clearing) For each ({si}i=1,...,N , s, {zi}i=1,...,N ),

N∑
i=1

xi = 0. (7)

We next specialize our analysis by making three assumptions, which allow us to derive tractable

linear equilibria. First, the variables (ϵ, ζ, {ηi}i=1,..,N , η, {zi}i=1,..,N ) follow normal distributions,

with variances denoted by (σ2
ϵ , σ

2
ζ , {σ2

ηi}i=1,..,N , σ2
η, {σ2

zi}i=1,..,N ) and precisions, i.e., the inverses

of the variances, denoted by (τϵ, τζ , {τηi}i=1,..,N , τη, {τzi}i=1,..,N ). Second, traders have negative

exponential, or constant absolute risk aversion (CARA), utility functions: ui(Wi) = − exp(−αiWi),

where αi is the coefficient of absolute risk aversion. Third, traders can either be rational (χi = 0)

or fully cursed (χi = 1). The third assumption keeps the analysis tractable because when χi ∈

(0, 1) expected utility involves a weighted average of exponential functions of normally distributed

variables, whose maximization does not yield a closed-form solution.

A linear CEE price function has the form

p = d+
N∑
i=1

Aisi +As−
N∑
i=1

Bizi, (8)

for coefficients ({Ai}i=1,..N , A, {Bi}i=1,..N ). For CARA utility and χi ∈ {0, 1}, we can write trader

i’s objective in (6) as

− E [exp [−αi (xi(d− p) + zid)] |Ii]

= − exp

[
−αi

(
xi (E(d|Ii)− p) + ziE(d|Ii)−

1

2
αi(xi + zi)

2Var(d|Ii)
)]

, (9)

where the information set Ii is equal to {si, s, zi, p} if χi = 0 and to {si, s, zi} if χi = 1. The second

step in (9) follows because all variables are normally distributed. The first-order condition yields

the demand

xi =
E(d|Ii)− p

αiVar(d|Ii)
− zi. (10)

Combining (10) with the market-clearing condition (7), we derive conditions in Proposition 1

so that (8) is an equilibrium price. Proposition 1 does not show existence or uniqueness of
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({Ai}i=1,..N , A, {Bi}i=1,..N ) satisfying these conditions, both of which are instead demonstrated

in the special cases studied in subsequent sections.9

To state Proposition 1, we introduce some notation. From the perspective of a rational trader

i, the price (8) includes information on (si, s, zi), which the trader knows, and on ({si}j ̸=i, {zi}j ̸=i),

which he does not. The latter information is summarized in the signal∑
j ̸=iAjsj −

∑
j ̸=iBjzj∑

j ̸=iAj
, (11)

which the trader can extract from the price. Using (3) and (4), we can write this signal as ϵ+ θi,

where

θi ≡
∑

j ̸=iAjηj −
∑

j ̸=iBjzj∑
j ̸=iAj

. (12)

We denote the variance of θi by σ2
θi

and its precision by τθi . We set

T ≡
∑
i∈C

τϵ + τηi + τη
αi(τϵ + τζ + τηi + τη)

+
∑
i∈R

τϵ + τηi + τη + τθi
αi(τϵ + τζ + τηi + τη + τθi)

,

where R denotes the set of rational traders and C that of cursed traders.

Proposition 1 The price (8) is an equilibrium price if and only if ({Ai}i=1,..N , A, {Bi}i=1,..N )

satisfy the conditions

τηi
αi(τϵ + τζ + τηi + τη)

= Ai

T −
∑
j∈R

τθj
αj(τϵ + τζ + τηi + τη + τθj )

∑
k ̸=j Ak

 , (13)

Bi = Aiαi
τϵ + τζ + τηi + τη

τζτηi
, (14)

for i ∈ C;

τηi
αi(τϵ + τζ + τηi + τη + τθi)

= Ai

T −
∑

j∈R\{i}

τθj
αj(τϵ + τζ + τηi + τη + τθj )

∑
k ̸=j Ak

 , (15)

Bi = Aiαi
τϵ + τζ + τηi + τη + τθi

τζτηi
, (16)

9A broader issue related to uniqueness is whether equilibria with non-linear price functions exist. Since

cursed traders’ demand functions are independent of the price function, this issue is easier to address than

in REE. We can show that the linear CEE derived in Section 4.2 is unique among all possible equilibria.
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for i ∈ R; and

∑
i∈C

τη
αi(τϵ + τζ + τηi + τη)

+
∑
i∈R

τη
αi(τϵ + τζ + τηi + τη + τθi)

= AT . (17)

4 No Endowment Shocks

This section analyzes the model in the case where there are no endowment shocks. This case is

derived by setting the variances {σ2
zi}i=1,..,N of endowment shocks equal to zero. The shocks are

then equal to their mean, which is zero. Without endowment shocks, traders lack a hedging motive

to trade, and trade can occur only because of the private signals. The price (8) takes the form

p = d+

N∑
i=1

Aisi +As. (18)

4.1 All Traders Rational

We begin with the benchmark case where all traders are rational. Proposition 2 shows that the co-

efficients ({Ai}i=1,..N , A) in the price (18), which are characterized by the conditions in Proposition

1, are uniquely determined.

Proposition 2 Suppose that there are no endowment shocks and all traders are rational. The price

(18) is an equilibrium price if and only if

Ai =
τηi

τϵ +
∑N

j=1 τηj + τη
, (19)

A =
τη

τϵ +
∑N

j=1 τηj + τη
. (20)

There is no trade in equilibrium.

That there is no trade in equilibrium is a manifestation in the context of our model of the

no-trade theorem of Milgrom and Stokey (1982). Since traders start with zero endowments in the

risky asset and receive no endowment shocks, no-trade is a Pareto-efficient allocation and hence

the unique equilibrium outcome.
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The coefficients ({Ai}i=1,..N , A) with which the private and the public signals enter into the

price are proportional to these signals’ precisions. Therefore, the price aggregates all the signals

efficiently, as in Grossman (1976). The price equals the expected value of the asset payoff d

conditional upon all of the signals in the market (see Lemma A.1 in the Appendix).

4.2 All Traders Cursed

We next turn to the case where all traders are cursed. Proposition 3 shows that the coefficients

({Ai}i=1,..N , A) in the price (18) are uniquely determined.

Proposition 3 Suppose that there are no endowment shocks and all traders are cursed. The price

(18) is an equilibrium price if and only if

Ai =

τηi
αi(τϵ+τζ+τηi+τη)∑N

j=1

τϵ+τηj+τη

αj(τϵ+τζ+τηj+τη)

, (21)

A =

∑N
j=1

τη
αj(τϵ+τζ+τηj+τη)∑N

j=1

τϵ+τηj+τη

αj(τϵ+τζ+τηj+τη)

. (22)

Unlike in the case where all traders are rational, the coefficients ({Ai}i=1,..N , A) are not pro-

portional to the precisions of the corresponding signals. Therefore, the price does not aggregate

the signals efficiently. Proposition 4 compares the coefficients ({Ai}i=1,..N , A) in the rational and

cursed cases.

Proposition 4 Suppose that there are no endowment shocks and all traders are cursed. Compared

to the case where all traders are rational:

(i) The coefficient A with which the public signal enters into the price is larger.

(ii) The sum across traders of the coefficients {Ai}i=1,..,N with which private signals enter into

the price is smaller. The coefficient Ai for any given trader i can be larger or smaller.

(iii) The ratio Ai/A is smaller.
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In both the rational and the cursed case, the price is a weighted average of traders’ conditional

expectations of the asset payoff d. This follows by substituting the demands {xi}i=1,..,N given by

(10), for {zi}i=1,..,N = 0, into the market-clearing condition (7) and solving for p:

p =

∑N
i=1

E(d|Ii)
αiVar(d|Ii)∑N

i=1
1

αiVar(d|Ii)
. (23)

Trader i’s conditional expectation receives weight
1

αiVar(d|Ii)∑N
j=1

1
αjVar(d|Ij)

in the weighted average. This

weight is larger for traders who are less risk averse or observe more precise signals because they trade

more aggressively on any given discrepancy between the price and their conditional expectation.

In the rational case, all traders have the same conditional expectation because they learn from

the price, which aggregates all the signals efficiently. Therefore, the price is also equal to that

conditional expectation. In the cursed case, conditional expectations differ because traders do not

learn other traders’ signals from the price.

Since cursed traders form conditional expectations using fewer signals than rational traders,

they attach larger weight to each signal they use. The public signal thus receives larger weight in

each trader’s conditional expectation than in the rational case, and hence enters the price with a

larger coefficient (Result (i) of Proposition 4). The private signal of any given trader i receives larger

weight in that trader’s conditional expectation but zero weight in all other traders’ expectation.

When trader i’s risk aversion is low, the first effect dominates and that signal enters the price

with a larger coefficient than in the rational case. The second effect dominates, however, when the

coefficients are averaged across traders (Result (ii)). Note that when traders are symmetric, the

coefficient corresponding to each trader equals the average coefficient, and hence is smaller than in

the rational case. Finally, trader i gives the correct weight to his private signal relative to the public

signal. Because, however, other traders give zero weight to trader i’s private signal but positive

weight to the public signal, the price in the cursed case underweights the former signal relative to

the latter (Result (iii)).

Since private signals are unlikely to be observable to the empiricist, Proposition 4 does not

by itself identify observable consequences of cursedness. However, the results of Proposition 4 do

have observable implications for the predictability of asset returns. We define the return of the
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risky asset between Periods 1 and 2 as the difference between the asset payoff d and the price

p. We examine whether this return can be predicted using information available in Period 1, i.e.,

whether including such information improves the accuracy of a return forecast. When all traders

are rational, the return is not predictable based on past information because p is the expectation

of d conditional on all the signals available in Period 1.

Proposition 5 Suppose that there are no endowment shocks and all traders are cursed. The linear

regression

d− p = γ1(p− d) + γ2s+ ν (24)

yields coefficients γ1 > 0 and γ2 < 0. Both coefficients are zero when all traders are rational.

The regression (24) predicts the asset return between Periods 1 and 2 using the public signal

s and the difference between the price p and the unconditional expectation d of the asset payoff.

The difference p − d can be interpreted as the return between a Period 0, in which no signals are

observed and the asset trades at d, and Period 1. Hence, the regression measures the extent to

which past return and the public signal predict future return. Since the price p is influenced by

the private and the public signals, and the regression (24) controls for the latter, the coefficient γ1

measures the effect of the private signals.

Because (γ1, γ2) are non-zero, the return between Periods 1 and 2 is predictable. Holding the

public signal constant, high private signals in Period 1 predict a price rise in Period 2 (γ1 > 0).

Holding instead the private signals constant, a high public signal in Period 1 predicts a price drop

(γ2 < 0). The price thus under-reacts to the private signals and over-reacts to the public signal.

The under-reaction is consistent with Result (ii) of Proposition 4 that the average coefficient with

which the private signals enter into the price is smaller in the cursed than in the rational case. The

over-reaction is consistent with Result (i) that the coefficient with which the public signal enters

into the price is larger in the cursed than in the rational case.

We next predict the asset return between Periods 1 and 2 using only the public signal or only the

return between Periods 0 and 1. The coefficient γ in each of these univariate regressions combines

the effects of γ1 and γ2. Since γ1 and γ2 have opposite signs, the sign of γ is a priori ambiguous.
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Proposition 6 Suppose that there are no endowment shocks and all traders are cursed. The linear

regressions

d− p = γs+ ν, (25)

d− p = γ(p− d) + ν, (26)

yield coefficients γ = 0 and γ > 0, respectively. Both coefficients are zero when all traders are

rational.

Since γ = 0 in the regression (25), the return between Periods 1 and 2 cannot be predicted using

the public signal alone, even when traders are cursed. This stems from the fact that cursed traders

process correctly the limited set of signals that they observe, and the public signal belongs to that

set. The law of iterative expectations thus implies that when a trader’s conditional expectation of

the asset payoff d is “conditioned down” on the public signal s, it must equal the expectation of d

conditional on s. Since the price p equals a weighted average of traders’ conditional expectations

of d (Eq. (23)), the expectation of p conditional on s equals that of d conditional on s, and so d− p

cannot be predicted by s.

The return between Periods 1 and 2 can be predicted based on the return between Periods 0

and 1 only. Since γ > 0, a high return between Periods 0 and 1 predicts a price rise in Period 2,

which means that returns exhibit momentum. Since the price in Period 2 is equal to the asset’s

payoff, momentum in our model reflects price under-reaction to information. This under-reaction is

driven by the price response to the private signals. Because the price under-reacts to information,

the return between Periods 0 and 1 has lower variance than when traders are rational. Variance

averaged across the return between Periods 0 and 1 and that between Periods 1 and 2 is also lower.

Corollary 1 Suppose that there are no endowment shocks and all traders are cursed. Compared to

the case where all traders are rational, the variance of the return between Periods 0 and 1 is lower,

and so is the variance averaged across the return between Periods 0 and 1 and that between Periods

1 and 2.

The positive coefficient on past return in the regression (26) is consistent with the empirical

evidence on return momentum (Jegadeesh and Titman (1993)). The zero coefficient on the public
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signal in the regression (25), however, appears at odds with the evidence on post-earnings drift

(Bernard and Thomas (1989)). Indeed, according to that evidence, earnings announcements work

their way into stock prices slowly, implying a positive coefficient. One way to reconcile our analysis

with the evidence is to assume that some traders cannot observe and process announcements im-

mediately. An announcement would then would be formally equivalent to a private signal observed

by a subset of traders, and the coefficient in (25) would be positive.

We next explore the implications of cursedness for trading volume. Since cursed traders do not

learn others’ signals from the price, they trade with each other even without endowment shocks.

We define the trading volume generated by trader i as the absolute value of the quantity xi that

the trader trades in equilibrium. Proposition 7 computes expected trading volume in two special

cases, and examines how it depends on the precision of private signals.

Proposition 7 Suppose that there are no endowment shocks and all traders are cursed.

(i) When all traders have the same risk-aversion coefficient α and observe private signals with

the same precision τηc, the expected volume that each generates is√
2(N − 1)τηc

πN

τζ
α(τϵ + τζ + τηc + τη)

. (27)

Volume increases in the number of traders N . It is hump-shaped in the common precision τηc

of private signals, with the hump located at τηc = τϵ + τζ + τη.

(ii) When all traders have the same risk-aversion coefficient α and the shock ζ has zero variance,

the expected trading volume generated by trader i is

√
2

πN

√
(τϵ + τη)2[τηc + (N − 2)τηi ] + (τϵ + τη)

[
Nτ2ηc + (N − 2)τ2ηi

]
+ (Nτηc − τηi)τηcτηi

α(τϵ + τηc + τη)
,

(28)

where τηc denotes the average precision of private signals. Trader i generates more volume

than trader j if and only if he observes a more precise private signal (τηi > τηj ).

The intuition why volume is hump-shaped in the precision of private signals when traders are

symmetric (Case (i) of Proposition 7) is as follows. Under symmetry, the quantity that a trader
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trades in equilibrium is equal to the difference between his conditional expectation of the asset payoff

and the average conditional expectation of all traders, adjusted by his risk aversion and conditional

variance. The difference in conditional expectations is zero when private signals have zero precision

because traders then do not use them and share the same conditional expectation. It is also zero

when private signals have infinite precision because they must then reveal the same information.

For intermediate values of precision the dispersion in conditional expectations is positive, making

volume hump-shaped in the common precision τηc of private signals.

Adjusting by risk aversion and conditional variance preserves the hump-shaped pattern. The

hump is located at a larger value of τηc, and so the adjustment causes trading volume to be

increasing in τηc over a larger interval. This is because an increase in signal precision reduces

traders’ conditional variances, hence making traders less uncertain and more eager to trade.

Case (ii) of Proposition 7 allows signal precision to differ across traders. Traders’ conditional

expectations can then differ both because of the private signals and because each trader weights

the public signal differently when forming his expectation. For analytical simplicity we eliminate

the shock ζ about which traders cannot learn by setting its variance to zero. For σ2
ζ = 0, the

hump in trading volume in Case (i) occurs for τηc = ∞, and so volume is always increasing in τηc.

Proposition 7 shows that the same comparison applies in the cross section: traders who observe

more precise signals generate more volume than those observing less precise signals.

When traders are symmetric, the per-trader volume increases in market size as measured by the

number N of traders. This is because the weight that each trader’s private signal receives in the

trader’s conditional expectation is independent of N while the weight that it receives in the price

converges to zero when N becomes large. Hence, each trader’s beliefs become more discordant with

price as N increases. Since per-trader volume increases in N , total volume converges to infinity

when N becomes large: cursedness produces large volume in large markets.

We finally compute traders’ expected utilities and examine how they depend on the precision

of private signals. We evaluate expected utility in the ex-ante sense, before signals are observed

(Period 0). We also focus on the true expected utilities, i.e., compute the expectation under the

true joint distribution of the signals and the price, rather than the distribution perceived by cursed
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traders.

Proposition 8 Suppose that there are no endowment shocks, all traders are cursed and have the

same risk-aversion coefficient α, and the shock ζ has zero variance. The expected utility of trader

i is

− 1√
1 +

(τϵ+τη)2[Nτηi−(2N−1)τηc]−(τϵ+τη)[N(2N−1)τ2ηc−2N(N+1)τηcτηi+(N−2)τ2ηi ]−(Nτηc−τηi )τηcτηi
N(τϵ+τηc+τη)2(τϵ+Nτηc+τη)

, (29)

where τηc denotes the average precision of private signals. A trader i who observes a more precise

signal than a trader j (τηi > τηj ) has higher expected utility if

(τϵ + τη)
2 + 2(N + 1)(τϵ + τη)τηc − τ2ηc > 0. (30)

When (30) fails, there exist τηi > τηj such that trader i has lower expected utility than trader j.

Proposition 8 shows that cursed traders who observe more precise signals can be worse off

relative to those observing less precise signals. This is not a manifestation of the standard result

that asymmetric information makes traders worse off by destroying trading opportunities (Akerlof

(1970), Hirshleifer (1971)). Indeed, the standard result compares expected utilities when traders are

uninformed to those when some traders become informed and equilibrium prices change. Propo-

sition 8 compares instead expected utilities of two traders who differ in the precision of their

information, are present in the market at the same time, and face the same equilibrium price.

To explain how signal precision affects expected utility, we consider a trader who observes a

completely uninformative private signal. Because the trader does not learn from the price, he falls

victim to trading against others’ private signals, e.g., buys when others observe negative signals.

If the trader observes instead an informative signal, less of that trading occurs because his signal

is better aligned with others’ signals, e.g., is more likely to be negative when others’ signals are

negative. At the same time, a new effect appears: because the trader does not learn from the price,

he trades overly aggressively on his signal and becomes exposed to excessive risk. When the second

effect dominates, traders with more precise signals are worse off relative to those with less precise

signals.
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According to (30), the second effect dominates when the average precision τηc of private signals

is high, but the first effect dominates when the number N of traders is large. Intuitively, when

precision is high, signals are essentially identical and information is symmetric. As a consequence,

returns are not predictable (the regression coefficients in Propositions 5 and 6 are zero) and trading

against others’ signals does not generate a loss. Hence, the first effect disappears. When instead

the market is large, returns remain predictable. Indeed, even though the price aggregates a large

number of signals and provides highly precise information, cursed traders neglect that information

and rely only on their own signals.

4.3 Rational and Cursed Traders

We next introduce rational traders in a market where all traders are cursed, and study how this

modifies the properties derived in Section 4.2. For simplicity, we assume that the rational traders

receive no private signals. Thus, the price (18) takes the form

p = d+
∑
i∈C

Aisi +As, (31)

which allows rational traders to back out a weighted average of cursed traders’ signals from price.

Proposition 9 shows that the coefficients ({Ai}i∈C , A) are uniquely determined.

Proposition 9 Suppose that there are no endowment shocks, there are cursed and rational traders,

and rational traders receive no private signals. The price (31) is an equilibrium price if and only if

Ai =

[
1 +

∑
j∈R

τθ
αj(τϵ+τζ+τη+τθ)∑

j∈C

τηj
αj(τϵ+τζ+τηj+τη)

]
τηi

αi(τϵ+τζ+τηi+τη)∑
j∈C

τϵ+τηj+τη

αj(τϵ+τζ+τηj+τη)
+
∑

j∈R
τϵ+τη+τθ

αj(τϵ+τζ+τη+τθ)

, (32)

A =

∑
j∈C

τη
αj(τϵ+τζ+τηj+τη)

+
∑

j∈R
τη

αj(τϵ+τζ+τη+τθ)∑
j∈C

τϵ+τηj+τη

αj(τϵ+τζ+τηj+τη)
+
∑

j∈R
τϵ+τη+τθ

αj(τϵ+τζ+τη+τθ)

, (33)

where

τθ ≡

[∑
j∈C

τηj
αj(τϵ+τζ+τηj+τη)

]2
∑

j∈C
τηj

α2
j (τϵ+τζ+τηj+τη)2

. (34)
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The coefficients {Ai}i∈C are proportional to their counterparts in the case where all traders are

cursed. Since in that case the price does not aggregate the private signals efficiently, aggregation

remains inefficient even in the presence of rational traders. Rational traders merely alter the weight

with which the public signal and the inefficient aggregate of the cursed traders’ private signals enter

into the price. Proposition 10 characterizes these effects.

Proposition 10 Suppose that there are no endowment shocks, there are cursed and rational traders,

and rational traders receive no private signals.

(i) The coefficient Ai with which the private signal of a cursed trader i ∈ C enters into the price

is larger than in the rational traders’ absence.

(ii) The coefficient A with which the public signal enters into the price is smaller than in the

rational traders’ absence.

(iii) An increase in the private signal of any cursed trader, holding other signals constant, raises

the quantity that rational traders buy in equilibrium. An increase in the public signal, holding

other signals constant, lowers that quantity.

The intuition for Proposition 10 is that rational traders exploit the predictability of asset returns

caused by cursedness. When all traders are cursed, the public signal enters into the price with a

larger weight than when all traders are rational (Result (i) of Proposition 4) and is negatively

correlated with the asset’s future return holding the price constant (Proposition 5). Therefore,

rational traders sell the asset when the public signal is high, and this lowers the weight with which

that signal enters into the price. Conversely, private signals receive a lower average weight when

all traders are cursed than when they are rational (Result (ii) of Proposition 4) and this causes the

price to be positively correlated with the asset’s future return holding the public signal constant

(Proposition 5). Therefore, rational traders buy the asset when cursed traders’ private signals are

high, and this raises the weight with which these signals enter into the price. Rational traders act

as momentum traders, buying when the price is high and selling when it is low.

The presence of rational traders strengthens the result of Section 4.2 that cursed traders who

observe more precise signals can be worse off relative to those observing less precise signals. Propo-
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sition 11 shows that this result holds for a larger set of parameter values than in Proposition

8.

Proposition 11 Suppose that there are no endowment shocks, there are Nc cursed and Nr rational

traders with the same risk-aversion coefficient α, rational traders receive no private signals, and

the shock ζ has zero variance. A cursed trader i who observes a more precise signal than a cursed

trader j (τηi > τηj ) has higher expected utility if

(τϵ + τη)
2 + 2(Nc + 1)(τϵ + τη)τηc − τ2ηc − 2(τϵ + τη)(τϵ +Ncτηc + τη)τηc(2µ− τηcµ

2) > 0, (35)

where τηc denotes the average precision of cursed traders’ private signals and

µ ≡ Nr(Nc − 1)

Nc(τϵ + τηc + τη) +Nr(τϵ +Ncτηc + τη)
. (36)

If (35) is violated, then there exist τηi > τηj such that trader i has lower expected utility than trader

j. The term 2µ − τηcµ
2 is positive, and hence (35) is satisfied for smaller set of parameter values

than (30) when Nc = N .

Recall from Section 4 that an increase in signal precision has two effects on the expected utility

of a cursed trader. The positive effect is that the trader takes smaller positions when trading

against others’ signals. The negative effect is that he trades overly aggressively on his own signal

and becomes exposed to excessive risk. In the presence of rational traders, return predictability

is smaller, and so is the loss from trading against others’ signals. Thus, the positive effect of an

increase in signal precision is weaker.

When the number of traders becomes large, holding constant the ratio of rational to cursed

traders, (35) becomes (τϵ + τη)
2 − τ2ηc > 0 and can fail to hold. Thus, unlike in Section 4, cursed

traders with more precise signals are not always better off than those with less precise signals, in

large markets. This is because the addition of a large number of rational traders causes return

predictability to disappear.
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5 Endowment Shocks

In this section we introduce endowment shocks. Our main reason to do this is to perform com-

parative statics of trading volume when all traders are rational. Such comparative statics are not

possible when there are no endowment shocks because volume is then equal to zero. We only

consider the case where all traders are rational; by continuity, comparative statics of volume when

all traders are cursed are as in Proposition 7, provided that endowment shocks are small. For

simplicity, we assume that rational traders are symmetric in terms of risk aversion, signal precision,

and endowment shock precision. Thus, the price (18) takes the form

p = d+Ac

N∑
i=1

si +As−Bc

N∑
i=1

zi. (37)

Proposition 9 shows that the coefficients (Ac, A,Bc) are uniquely determined.

Proposition 12 Suppose that all traders are rational, have the same risk-aversion coefficient α,

observe private signals with the same precision τηc, and receive endowment shocks with the same

precision τzc. The price (37) is an equilibrium price if and only if

Ac =

τηc +
(N−1)τηcτzc

τzc+
B2
c

A2
c
τηc

N

(
τϵ + τηc + τη +

(N−1)τηcτzc

τzc+
B2
c

A2
c
τηc

) , (38)

A =
τη

τϵ + τηc + τη +
(N−1)τηcτzc

τzc+
B2
c

A2
c
τηc

, (39)

and Bc
Ac

> 0 is the unique solution to the cubic equation(
τzc +

B2
c

A2
c

τηc

)(
Bc

Ac
τζτηc − α(τη + τζ + τηc + τη)

)
− α(N − 1)τηcτzc = 0. (40)

When τzc = ∞, the coefficients Ac on the private signals and A on the public signal coincide

with their counterparts in Proposition 2, derived in the case where all traders are rational and there

are no endowment shocks. This is because endowment shocks are equal to zero when τzc = ∞.

When instead τzc = 0, Ac and A coincide with their counterparts in Proposition 3, derived in the
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case where all traders are cursed and there are no endowment shocks. This is because endowment

shocks have infinite variance when τzc = 0, and hence the price has infinite noise and provides no

information to rational traders. For 0 < τzc < ∞, Ac and A lie between the two extremes.

Proposition 13 Suppose that all traders are rational, have the same risk-aversion coefficient α,

observe private signals with the same precision τηc, and receive endowment shocks with the same

precision τzc. The expected volume that each trader generates is√√√√√ 2(N − 1)B
2
c

A2
c
τηc

πNτzc

(
τzc +

B2
c

A2
c
τηc

) . (41)

Volume increases in the number of traders N and is inverse hump-shaped in the common precision

τηc of private signals.

The result of Proposition 13 that volume with rational traders is inverse hump-shaped in the

precision of private signals is in sharp contrast to the result of Proposition 7 that volume with

cursed traders is hump-shaped. The intuition for the inverse hump-shaped pattern is as follows.

Starting from the case where precision is zero, an increase in precision reduces volume because

it introduces adverse selection (Akerlof (1970), Hirshleifer (1971)). Adverse selection disappears

again when precision is infinite because traders’ signals are identical.

When the shock ζ about which traders cannot learn has zero variance, the hump in volume

occurs for τηc = ∞, and so volume is always decreasing in τηc. Intuitively, when precision is infinite

traders know the asset payoff perfectly. Therefore, while there is no adverse selection, there are

also no gains from risk-sharing. Notice that when ζ has zero variance, the corresponding hump

with cursed traders also occurs for τηc = ∞, and so volume is always increasing in τηc.

6 Overconfidence and Agreeing to Disagree

Researchers have proposed models for speculative trade based on the idea that traders hold dif-

ferent views of the world, about which they “agree to disagree.” This is modeled as non-common

priors on the distribution of asset payoffs, or as common priors but disagreement over the informa-

tion that different signals convey about payoffs. Models of overconfidence give empirical content
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to non-common priors by specifying a particular relationship between belief heterogeneity and the

correct interpretation of signals—allowing empirical predictions such as that people who interpret

signals more modestly have more accurate beliefs, and that in general people hold overly strong

beliefs relative to the true underlying uncertainty. Although this research is based explicitly on

prevailing wisdom about overconfidence in psychology, some caution is in order. Despite identifi-

able circumstances in which people over-infer from information, in other identifiable circumstances

people systematically under-infer. For instance, people over-infer from small samples. But they

under-infer from large ones.10 Without a stronger sense of the nature of the private information de-

picted by these models, it is unclear whether overconfidence is as compelling a general phenomenon

as has been portrayed in the literature.

Cursedness may provide an important alternative to overconfidence and agreeing-to-disagree

for explaining excess trading volume and other market phenomena. It also gives a fundamentally

different account of the epistemology of trade. Cursed trade derives from people’s neglect of dis-

agreement. We believe that a substantial amount of trade is due to such neglect of disagreement

rather than people believing that they understand things better than their trading partners. Indeed,

in many cases where people seemingly trade based on private information, it is variously implausible

or incoherent to assume that they do so from any sense that they understand things better than

others. Consider again the example from Section 2. Whereas cursed equilibrium generates trade,

other departures from Bayesian Nash equilibrium do not. Overconfidence cannot explain trade,

because the seller has a dominant strategy and the buyer lacks private information whose precision

to exaggerate. Moreover, since the no-equilibrium-trade prediction does not depend upon the dis-

tribution F , the buyer believing F different than it is cannot explain trade. Agreeing-to-disagree

can only explain trade if, when the asset is worth s, either the buyer or seller believes that it is

not, which makes little sense. Carrillo and Palfrey (2011) present lab evidence on subject behavior

in a variant of the example of Section 2 where the buyer also has private information; alternative

explanations are similarly hard to fathom in their experiment, and the authors conclude that both

10See, e.g., Griffin and Tversky (1992), and references and meta-analyses in Benjamin, Rabin, and Ray-

mond (2013).
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seller and buyer behavior is explained pretty well by cursed equilibrium.11

To compare cursedness to overconfidence in settings where overconfidence is more compelling,

we introduce overconfidence in our model following Odean (1998). We specialize our model to

symmetric traders, as assumed in Odean: traders have common risk preferences and receive private

signals with common precision τηc. Following Odean, we capture overconfidence by assuming that

each trader incorrectly perceives the precision of his own signal to be κ× τηc, for κ ≥ 1 (and κ = 1

embedding REE in our analysis below), but correctly perceives the precision of all other traders’

signals to be τηc. Moreover, this belief system is common knowledge: it is common knowledge

that each trader thinks he is better informed than all other traders think he is. Also, we follow

Odean by allowing traders to err in a second, conceptually distinct way, namely by underestimating

the information content in others’ private signals, which we call contemptuousness. Each trader

incorrectly perceives the precision of all other traders’ signals to be γ×τηc, for γ ∈ [0, 1] (and γ = 1,

together with κ = 1, embedding REE in our analysis below). This too is common knowledge.

Under the parameter values κ = 1 and γ = 0, i.e., no overconfidence and extreme contemptu-

ousness, behavior is the same as under full cursedness (χ = 1). This is because a trader who fails

to infer another’s signal from the price behaves identically to one who fully infers that signal but

erroneously assumes that it has zero precision. In the rest of this section we identify contemptu-

ousness with γ > 0, i.e., traders do not view others’ signals as completely worthless, and show that

11Agreeing-to-disagree may be more plausible and prevalent in financial markets, where it is easy to

imagine that some traders appreciate that others disagree with them but nonetheless bet on themselves.

Indeed, Wall Street may be populated by individuals who believe that they are smarter than others. Other

active traders, however, seem far less likely to think that they can outsmart the market. For example, small

investors presumably know that much of the smart money on Wall Street has better information than their

own. Indeed, we strongly suspect that most of them would hire as experts and advisors the same group of

people they are implicitly trading against! Of course, they might believe that most of those whom they trade

against are “dumb money”—investors similar to, yet less smart than, themselves. We hypothesize that if

small investors paid full attention to the likely identity of those on the other side of their trades, they would

trade far less; that is, they fail to think through the logic of disagreement rather than agree to disagree with

prevalent market opinions.
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overconfident or contemptuous traders behave very differently than cursed ones. This applies both

to full cursedness (χ = 1), as we show in Propositions 14 and 15, and to χ < 1.

Proposition 14 derives the equilibrium of our model of overconfidence. Because of symmetry,

we look for a price of the form

p = d+Ac

N∑
i=1

si +As. (42)

Proposition 14 Suppose that there are no endowment shocks and that each trader observes a

private signal with precision τηc, which he misperceives to be κ×τηc for κ ≥ 1, and also misperceives

every other trader’s signal to have precision γ × τηc for γ ∈ (0, 1]. When all traders have the same

risk-aversion coefficient α, the price (42) is an equilibrium price if and only if

Ac =
1
N [(N − 1)γ + κ]τηc

τϵ + [(N − 1)γ + κ]τηc + τη
, (43)

A =
τη

τϵ + [(N − 1)γ + κ]τηc + τη
. (44)

Compared to the case where all traders are cursed (Proposition 3), the coefficient Ac on the private

signals is larger and the coefficient A on the public signal is smaller.

Fixing the contemptuousness parameter γ, more overconfidence (larger κ) causes traders to

attach larger weight to their own private signals and smaller weight to the public signal when

forming conditional expectations. This causes Ac to increase and A to decrease. Fixing instead the

overconfidence parameter κ, more contemptuousness (smaller γ) causes traders to attach smaller

weight to other traders’ private signals (as revealed by price) and larger weight to the public signal

when forming conditional expectations. This causes Ac to decrease and A to increase. Contemp-

tuousness thus moves Ac and A from their REE values in the same direction as cursedness does,

while overconfidence moves them in the opposite direction. In either case the price depends less

on the public signal and more on the private signals than under full cursedness (χ = 1) since

the latter is observationally equivalent to no overconfidence (κ = 1) and extreme contemptuous-

ness (γ = 0). Proposition 15 shows that overconfidence and contemptuousness yield dramatically

different predictions than cursedness about trading volume.
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Proposition 15 Suppose that there are no endowment shocks and that each trader observes a

private signal with precision τηc, which he misperceives to be κ×τηc for κ ≥ 1, and also misperceives

every other trader’s signal to have precision γ × τηc for γ ∈ (0, 1]. When all traders have the same

risk-aversion coefficient α, the expected volume that each generates is√
2(N − 1)τηc

πN

(κ− γ)τζ
α [τϵ + τζ + [(N − 1)γ + κ]τηc + τη]

. (45)

Volume declines to zero as the number N of traders grows large.

Overconfident or contemptuous traders can trade for two reasons: first, each thinks that the

price overweights all other traders’ signals; second, each thinks that the price underweights her

own signal. Since each trader inverts the price to perfectly infer the average signal of all other

traders, the price would not change if all private signals were made public. If all signals were

public, then each trader’s expectation of the asset payoff d would be a weighted average of her own

signal, the average signal of other traders, and what we call the public signal s. For any κ ≥ 1 and

γ ∈ (0, 1], as N grows large, each trader puts arbitrarily more weight on the average signal of other

traders than on her own signal. Hence, the difference between any two traders’ expectations of d

converges to zero, and so does per-trader volume.12 Comparing Propositions 7 and 15 reveals a key

difference between cursedness and overconfidence or contemptuousness. When traders are cursed,

per-trader volume grows as the market becomes large. When instead traders are overconfident or

contemptuous, per-trader volume vanishes in the limit. Indeed, it declines so quickly that total

volume aggregated across all traders converges not to infinity, as with cursed traders, but to a finite

constant.13

Overconfident per-trader volume disappears in our model because each trader, no matter how

overconfident, believes that the information conveyed by price about all other traders’ signals

trumps her own private signal in a sufficiently large market. This would not happen if traders

12The fact that equilibrium prices do not depend upon whether signals are public or private suggests that

per-trader volume would be negligible in large markets even in complete-information models of overconfidence

(e.g., Sheinkman and Xiong (2003)) if traders are risk averse.

13Formally, N times the expected volume of each trader converges to
√

2τηc

π
(κ−γ)τζ
αγτηc

whenN goes to infinity.
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believed that their private information conveyed something non-negligible beyond the information

conveyed by a large-market price. Odean (1998) implicitly makes this assumption by assuming

that the N traders in the market observe M < N signals in such a way that N
M > 1 observe each

signal. He computes volume when γ = 1 and N → ∞, but holds M fixed. Whatever the value of

M , each signal conveys non-negligible information beyond that conveyed by all other signals.

Propositions 14 and 15 contrast overconfidence and contemptuousness to full cursedness (χ = 1).

We expect, however, that the volume comparison carries through to general χ. Indeed, the price

in a large market virtually reveals ϵ, leading a χ-cursed trader to form conditional expectations

approximately equal to (1−χ)(d+ ϵ)+χE[d|{si, s, zi}]. Thus, differences in beliefs among χ-cursed

traders persist in large markets, and total volume converges to infinity. This suggests that any

χ ∈ (0, 1) would generate more trade than any γ ∈ (0, 1] in a sufficiently large market.

We conclude with the observation that overconfidence does have substantial effects when traders

are cursed. Proposition 16 derives volume when traders are overconfident and cursed. As in the

case where traders are cursed but not overconfident, per-trader volume grows when the market

becomes large and hence total volume converges to infinity. The additional effect of overconfidence

is to increase per-trader volume even in the large-market limit. Overconfidence thus has an effect

only when traders are cursed, and it amplifies the effect of cursedness. In this sense, overconfidence

and cursedness work as complements. Intuitively, when traders fail to infer information from prices,

overconfidence magnifies differences in their beliefs, which produces more trade.

Proposition 16 Suppose that there are no endowment shocks and all traders are cursed. When all

traders have the same risk-aversion coefficient α and observe private signals with the same precision

τηc that they misperceive as κ× τηc for κ ≥ 1, the expected volume that each generates is√
2(N − 1)τηc

πN

κτζ
α(τϵ + τζ + κτηc + τη)

. (46)

Volume increases in the number of traders N and in the overconfidence parameter κ.
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7 Discussion and Conclusion

In this paper, we propose a market equilibrium definition, cursed expectations equilibrium (CEE),

for traders who are cursed and fail to fully infer information from prices. We compare CEE to

REE and find that although each cursed trader puts more weight on his own private signal than

would a rational trader, because traders neglect that the price encodes other traders’ information,

CEE prices depend less on private signals and more on public signals than REE prices. We show

that this creates a predictable pattern in prices: prices are expected to rise following a rise in the

current price. Consequently, rational traders without any private information of their own employ

momentum strategies, buying after price rises and selling after price drops. We show that cursed

traders may be worse off with better private information because they trade too aggressively on

that information. More private information in the market may increase the volume of trade, in

contrast to markets with rational traders. We contrast cursed trade to overconfidence-based trade,

showing that cursed volume per trader grows with the size of the market, whereas overconfidence-

based per-trader volume declines to zero. Cursedness, however, can enhance overconfidence-based

trade.

How can we extend cursed-expectations equilibrium to dynamic settings? In a cursed equilib-

rium, agents understand the relationship between their opponents’ actions across periods. Con-

sequently, if the private signal that agent i receives in period t feeds into both pt and pt+1, then

cursed agents will forecast pt+1 more accurately from pt than befits the motivation behind cursed-

ness. Indeed, a shortcoming of cursed equilibrium emphasized by Eyster and Rabin (2005) in

their conclusion is that it captures failures of contingent thinking about the relationship between

private information and action, but not those about the relationship between action and action.

Extending the logic of CEE to multiple periods probably requires relaxing the assumption that

agents correctly perceive the correlation among actions. One approach might resemble that of

Eyster and Piccione (2013), who model a dynamic market where agents trade based on potentially

incomplete models of the relationship between next period’s price and current, publicly available

economic variables. Each trader uses a theory comprised of some subset of these variables and

forecasts next period’s expected price correctly conditional upon all included variables. One major
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conceptual difference of their approach from CEE is that it offers no guidance as to which theories

traders are likely to employ.14 Nevertheless, it might be marriageable to CEE by having a cursed

trader i forecast the next-period price pt+1 conditional upon the current price pt, his current (ac-

cumulated) private signal, si,t, and the current (accumulated) public signal st, excluding all lagged

prices, as E[pt+1|{si,t, st}]. With only two periods, and p2 = d, this formulation delivers CEE in

our model. With more periods, it preserves the feature of our model that in every period traders

fully appreciate the relationship that next period’s price has to their signals.

A dynamic model may also highlight the role of a second shortcoming in inference from market

prices that might affect traders. Eyster and Rabin (2010) develop the concept of “best response

trailing naive inference”: to the extent that agents do infer some private information from earlier

actions (or prices), they may neglect how others infer information from actions. Models embedding

this joint tendency to underappreciate the information about others’ beliefs contained in market

prices, with the tendency to underappreciate how those beliefs do not reflect independent infor-

mation, may provide ways of understanding the co-existence of under-inference as emphasized in

this paper with unwarranted swings in group beliefs that also appear to be a hallmark of financial

beliefs. In a narrower sense, combining the two errors may help better understand dynamics of

market prices. In a dynamic market, agents in period t + 2 may fail to appreciate how those in

period t+1 infer private information from prices in period t. Suppose that the price is high in both

periods t and t + 1. If some agents in period t + 2 neglect that some of the positive information

contained in the period t + 1 price is in fact information agents gleaned from the high period t

price, then they will overestimate the positive information in the high prices, and push the price

up further. This additional type of error in inference may then produce medium-run over-reaction

to private information to accompany the short-run under-reaction that underlies our current result

on momentum.

14Rabin (2013) advocates the methodological advantages of “portable extensions of existing models” such

as cursed equilibrium. Just as CEE identifies directional departures from REE in the static model of this

paper, a dynamic extension is likely to make directional predictions that are merely accommodated by the

framework of Eyster and Piccione (2013).
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In Section 6, we showed the necessity in some settings of cursedness to “enable” overconfidence

to explain appreciable per-trader volume of trade. We conclude by speculating how cursedness

may similarly enable the study of various other biases in asset markets. Researchers have recently

proposed that a number of statistical errors may be relevant for financial decisions, including over-

inference from small samples (see Rabin (2002) and Rabin and Vayanos (2010)) and non-belief in the

law of large numbers (see Benjamin, Rabin, and Raymond (2013)). Predicting the consequences of

these and other biases for markets where traders extract information from prices requires additional

assumptions about traders’ theories of one another’s errors. Yet relatively little is known about

how people reason about others’ errors. In its extreme, cursedness provides a simple assumption

about what people think of others’ errors: they don’t think about them at all. If models of errors

are instead closed by assuming that people do agree to disagree about the meaning of private

signals, then, much like with overconfidence in Section 6, we suspect that the per-trader volume of

trade will be small in information-rich settings where each trader values the sum total of others’

private information far more heavily than her own private signal. Finally, whereas we have assumed

throughout the paper that private signals convey true information about the value of the risky asset,

it might instead be the case that traders share a common misperception of the meaningfulness of

signals. Indeed, much of “private information”, especially that held by unsophisticated investors,

may in fact be irrelevant. Otherwise rational traders who agree to agree on the information content

of such private signals would, of course, not generate high volume of trade. Asymmetries in beliefs

created by these false private signals would, however, produce cursed trade.
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APPENDIX—Proofs

We first prove the following lemma, which we use for proving Proposition 1.

Lemma A.1 Suppose that the variables (x, {yi}i=1,..,K) are normal, independent, with mean zero

and precisions (τx, {τyi}i=1,..,K). Then, the distribution of x conditional on {x+yi}i=1,..,K is normal

with mean

E (x |{x+ yi}i=1,..,K ) =

K∑
i=1

τyi

τx +
∑K

j=1 τyj
(x+ yi) (A.1)

and precision

τ (x |{x+ yi}i=1,..,K ) = τx +
K∑
i=1

τyi . (A.2)

Proof. The conditional mean and variance can be computed from the regression

x =
K∑
i=1

βi(x+ yi) + e,

where {βi}i=1,..,K are the regression coefficients and e is the error term. Taking covariances of both

sides with x+ yi and noting that (x, {yi}i=1,..,K , e) are independent, we find

Cov(x, x+ yi) =

N∑
j=1

βjCov(x+ yj , x+ yi)

⇒ 1

τx
= βi

(
1

τx
+

1

τyi

)
+
∑
j ̸=i

βj
1

τx

⇒ βi =
τyi
τx

1−
N∑
j=1

βj

 . (A.3)

Summing (A.3) across i and solving for
∑N

j=1 βj , we find

N∑
j=1

βj =

∑N
j=1 τyj

τx +
∑N

j=1 τyj
. (A.4)

Substituting
∑N

j=1 βj from (A.4) into (A.3), we find

βi =
τyi

τx +
∑K

j=1 τyj
. (A.5)
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Since

E (x |{x+ yi}i=1,..,K ) =

K∑
i=1

βi(x+ yi),

(A.5) implies (A.1). Taking variances of both sides and noting that (x, {yi}i=1,..,K , e) are indepen-

dent, we find

Var(x) =

(
N∑
i=1

βi

)2

Var(x) +
N∑
i=1

β2
jVar(yi) + Var(e)

⇒ 1

τe
=

1

τx

1−( ∑N
i=1 τyi

τx +
∑N

i=1 τyi

)2
−

N∑
i=1

1

τyi

(
τyi

τx +
∑K

j=1 τyj

)2

⇒ 1

τe
=

1

τx +
∑N

i=1 τyi
, (A.6)

where the second step follows from (A.4) and (A.5). Since

τ (x |{x+ yi}i=1,..,K ) = τe,

(A.6) implies (A.2).

Proof of Proposition 1. We first determine traders’ demands using (10). Since d = d + ϵ + ζ

and ζ is independent of traders’ information Ii,

E(d|Ii) = d+ E(ϵ|Ii), (A.7)

Var(d|Ii) = Var(ϵ|Ii) + Var(ζ) =
1

τ(ϵ|Ii)
+

1

τζ
. (A.8)

To compute the distribution of ϵ conditional on Ii for a cursed trader i, we use Lemma A.1 with

x = ϵ, K = 2 and {yj}j=1,2 = (ηi, η). Combining with (10), (A.7) and (A.8), we find

xi =
d+

τηi
τϵ+τηi+τη

si +
τη

τϵ+τηi+τη
s− p

αi

(
1

τϵ+τηi+τη
+ 1

τζ

) − zi. (A.9)

To compute the distribution of ϵ conditional on Ii for a rational trader i, we use Lemma A.1 with

x = ϵ, K = 3 and {yj}j=1,2,3 = (ηi, η, θi). Combining with (10), (A.7) and (A.8), we find

xi =
d+

τηi
τϵ+τηi+τη+τθi

si +
τη

τϵ+τηi+τη+τθi
s+

τθi
τϵ+τηi+τη+τθi

(ϵ+ θi)− p

αi

(
1

τϵ+τηi+τη+τθi
+ 1

τζ

) − zi. (A.10)
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We next substitute (A.9) and (A.10) into the market-clearing condition (7), use (8) to write p in

terms of ({si}i=1,..,N , s, {zi}i=1,..,N ), and use (11) to write ϵ+ θi in terms of ({si}j ̸=i, {zi}j ̸=i). This

yields an equation that is linear in ({si}i=1,..,N , s, {zi}i=1,..,N ). Identifying terms in si for i ∈ C and

i ∈ R yields (13) and (15), respectively. Identifying terms of s yields (17). Identifying terms in zi

for i ∈ C and i ∈ R yields

1 = Biτζ

T −
∑
j∈R

τθj
αj(τϵ + τζ + τηi + τη + τθj )

∑
k ̸=j Ak

 , (A.11)

1 = Biτζ

T −
∑

j∈R\{i}

τθj
αj(τϵ + τζ + τηi + τη + τθj )

∑
k ̸=j Ak

 , (A.12)

respectively. Combining (A.11) with (13) yields (14). Combining (A.12) with (15) yields (16).

Proof of Proposition 2. Subtracting

Ai
τθi

αi(τϵ + τζ + τηi + τη + τθi)
∑

j ̸=iAj

from both sides of (15), we find

τηi
αi(τϵ + τζ + τηi + τη + τθi)

−Ai
τθi

αi(τϵ + τζ + τηi + τη + τθi)
∑

j ̸=iAj
= AiZ, (A.13)

where

Z ≡ T −
N∑
j=1

τθj
αj(τϵ + τζ + τηi + τη + τθj )

∑
k ̸=j Ak

. (A.14)

Since σzi = 0 for all i, (12) implies that

τθi =

(∑
j ̸=iAj

)2
∑

j ̸=i

A2
j

τηj

. (A.15)

Substituting τθi from (A.15) into the left-hand side of (A.13), we can write (A.13) as

τηi

αi(τϵ + τζ + τηi + τη + τθi)
∑

j ̸=i

A2
j

τηj

∑
j ̸=i

A2
j

τηj
− Ai

τηi

∑
j ̸=i

Aj

 = AiZ

⇒
N∑
j=1

A2
j

τηj
− Ai

τηi

N∑
j=1

Aj =
αi(τϵ + τζ + τηi + τη + τθi)Ai

∑
j ̸=i

A2
j

τηj

τηi
Z. (A.16)
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Multiplying (A.16) by Ai and summing over i, we find

0 =

N∑
i=1

Ai

N∑
i=1

A2
i

τηi
−

N∑
i=1

Ai

N∑
i=1

A2
i

τηi
=

N∑
i=1

αi(τϵ + τζ + τηi + τη + τθi)A
2
i

∑
j ̸=i

A2
j

τηj

τηi

Z,

which implies that Z = 0. Eq. (A.16) then implies that

N∑
j=1

A2
j

τηj
− Ai

τηi

N∑
j=1

Aj = 0,

which in turn implies that

Ai = λτηi , (A.17)

for a constant λ that does not depend on i. Substituting Ai from (A.17) into (A.15), we find

τθi =
∑
j ̸=i

τηj . (A.18)

Substituting (Ai, τθi) from (A.17) and (A.18) into (A.14), and recalling that Z = 0, we find(
N∑
i=1

1

αi

)
τϵ +

∑N
i=1 τηi + τη

τϵ + τζ +
∑N

i=1 τηi + τη
− 1

λ

(
N∑
i=1

1

αi

)
1

τϵ + τζ +
∑N

i=1 τηi + τη
= 0

⇒ λ =
1

τϵ +
∑N

i=1 τηi + τη
. (A.19)

Eqs. (A.17) and (A.19) imply (19). Eq. (20) follows similarly by substituting τθi from (A.18) into

(17). Substituting (ϵ+ θi, p, {Aj}j=1,..,N , A, τθi) from (11), (18), (19), (20) and (A.18) into (A.10),

we find that the numerator in (A.10) is zero. Since, in addition zi = 0, trader i’s demand is zero

for the equilibrium price. Therefore, there is no trade.

Proof of Proposition 3. Solving for Ai using (13) yields (21). Solving for A using (17) yields

(22).

Proof of Proposition 4. Eqs. (20) and (22) imply that (i) holds if

τϵ +

N∑
i=1

τηi + τη >

∑N
i=1

τϵ+τηi+τη
αi(τϵ+τζ+τηi+τη)∑N

i=1
1

αi(τϵ+τζ+τηi+τη)

=

N∑
i=1

wi(τϵ + τηi + τη), (A.20)
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where

wi ≡
1

αi(τϵ+τζ+τηi+τη)∑N
i=1

1
αi(τϵ+τζ+τηi+τη)

.

Since the weights {wi}i=1,..,N are positive and sum to one, the right-hand side of (A.20) is smaller

than

τϵ + max
i=1,..,N

τηi + τη < τϵ +

N∑
i=1

τηi + τη,

and so (A.20) holds.

Eqs. (19) and (21) imply that the first statement in (ii) holds if

τη +
∑N

i=1 τηi + τη∑N
i=1 τηi

<

∑N
i=1

τϵ+τηi+τη
αi(τϵ+τζ+τηi+τη)∑N

i=1
τηi

αi(τϵ+τζ+τηi+τη)

=

N∑
i=1

wi
τϵ + τηi + τη

τηi
, (A.21)

where

wi ≡
τηi

αi(τϵ+τζ+τηi+τη)∑N
i=1

τηi
αi(τϵ+τζ+τηi+τη)

.

Since the weights {wi}i=1,..,N are positive and sum to one, the right-hand side of (A.20) is larger

than

min
i=1,..,N

τϵ + τηi + τη
τηi

>
τη +

∑N
i=1 τηi + τη∑N
i=1 τηi

,

and so (A.21) holds. When traders are symmetric, the first statement in (ii) implies that Ai is

smaller in the cursed than in the rational case for all i. To show the second statement in (ii), it

suffices to show an example where Ai is larger in the cursed than in the rational case for some i.

Suppose that trader i is much less risk averse than the other traders. Eq. (21) then implies that

Ai ≈
τηi

τϵ + τηi + τη

in the cursed case. This is larger than Ai in the rational case, given by (19).

Eqs. (19), (20), (21) and (22) imply that (iii) holds if

τηi
τη

1
αi(τϵ+τζ+τηi+τη)∑N
i=1

1
αi(τϵ+τζ+τηi+τη)

<
τηi
τη

,
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which obviously holds.

Proof of Proposition 5. The results for the rational case in Propositions 5 and 6 follow because

Proposition 2 implies that

p = E(d |{si}i=1,..,N , s) , (A.22)

which in turn implies that

E(d− p|I) = E [d− E (d |{si}i=1,..,N , s) |I ] = E(d|I)− E(d|I) = 0,

for any information set I consisting of information revealed in Period 1. Since the expectation of

d− p conditional on I is zero, the coefficients (γ1, γ2, γ) in the regressions in Propositions 5 and 6

are also zero.

To show the results for the cursed case, we need to compute (γ1, γ2). Taking covariances of

both sides of (24) with p− d−As and with s, and using (3), (4) and (18), yields respectively(
1−

N∑
i=1

Ai −A

)
N∑
i=1

Aiσ
2
ϵ −

N∑
i=1

A2
iσ

2
ηi = γ1

[(
N∑
i=1

Ai +A

)
N∑
i=1

Aiσ
2
ϵ +

N∑
i=1

A2
iσ

2
ηi

]
+ γ2

N∑
i=1

Aiσ
2
ϵ ,

(A.23)(
1−

N∑
i=1

Ai −A

)
σ2
ϵ −Aσ2

η = γ1

[(
N∑
i=1

Ai +A

)
σ2
ϵ +Aσ2

η

]
+ γ2

(
σ2
ϵ + σ2

η

)
. (A.24)

Eqs. (A.23) and (A.24) form a linear system in (γ1, γ2). Its solution is

γ1 =

∑N
i=1Ai

(
1−

∑N
i=1Ai

)
σ2
ϵσ

2
η −

∑N
i=1A

2
iσ

2
ηi

(
σ2
ϵ + σ2

η

)
(∑N

i=1Ai

)2
σ2
ϵσ

2
η +

∑N
i=1A

2
iσ

2
ηi

(
σ2
ϵ + σ2

η

) , (A.25)

γ2 =

∑N
i=1A

2
iσ

2
ηiσ

2
ϵ −A

∑N
i=1Aiσ

2
ϵσ

2
η(∑N

i=1Ai

)2
σ2
ϵσ

2
η +

∑N
i=1A

2
iσ

2
ηi

(
σ2
ϵ + σ2

η

) . (A.26)

Substituting ({Ai}i=1,..,N , A) from Proposition 2 into (A.25) and (A.26), we can confirm that γ1 =

γ2 = 0 in the rational case. Substituting, ({Ai}i=1,..,N , A) from Proposition 3 into (A.25) and
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(A.26), we find that the denominator is positive and the numerator has the same sign as

N∑
i=1

τηi
αi(τϵ + τζ + τηi + τη)

N∑
i=1

τϵ + τη
αi(τϵ + τζ + τηi + τη)

σ2
ϵσ

2
η −

N∑
i=1

τ2ηiσ
2
ηi

α2
i (τϵ + τζ + τηi + τη)2

(
σ2
ϵ + σ2

η

)
=
(
σ2
ϵ + σ2

η

) [ N∑
i=1

τηi
αi(τϵ + τζ + τηi + τη)

N∑
i=1

1

αi(τϵ + τζ + τηi + τη)
−

N∑
i=1

τηi
α2
i (τϵ + τζ + τηi + τη)2

]
> 0,

in the case of γ1, and

N∑
i=1

τ2ηiσ
2
ηi

α2
i (τϵ + τζ + τηi + τη)2

σ2
ϵ −

N∑
i=1

τη
αi(τϵ + τζ + τηi + τη)

N∑
i=1

τηi
αi(τϵ + τζ + τηi + τη)

σ2
ϵσ

2
η

= σ2
ϵ

[
N∑
i=1

τηi
α2
i (τϵ + τζ + τηi + τη)2

−
N∑
i=1

1

αi(τϵ + τζ + τηi + τη)

N∑
i=1

τηi
αi(τϵ + τζ + τηi + τη)

]
< 0,

in the case of γ2.

Proof of Proposition 6. To show the result for the cursed case for regression (25), we follow

the argument sketched after the proposition. Taking expectations of both sides of (23), and noting

that Var(d|Ii) is a constant, we find

E(p|s) =
∑N

i=1
E[E(d|Ii)|s]
αiVar(d|Ii)∑N

i=1
1

αiVar(d|Ii)
=

∑N
i=1

E(d|s)
αiVar(d|Ii)∑N

i=1
1

αiVar(d|Ii)
= E(d|s), (A.27)

where the second step follows from the law of iterative expectations because Ii includes s. Eq.

(A.27) implies that

E(d− p|s) = E(d|s)− E(p|s) = 0.

Since the expectation of d−p conditional on s is zero, the coefficient γ in the regression (25) is also

zero.

To show the result for the cursed case for regression (26), we note that γ has the same sign as

Cov(d− p, p− d) =

(
1−

N∑
i=1

Ai −A

)(
N∑
i=1

Ai +A

)
σ2
ϵ −

N∑
i=1

A2
iσ

2
ηi −A2σ2

η,

where the equality follows from (3), (4) and (18). Substituting ({Ai}i=1,..,N , A) from Proposition

44



3, we find that Cov(d− p, p− d) has the same sign as

N∑
i=1

τϵ
αi(τϵ + τζ + τηi + τη)

N∑
i=1

τηi + τη
αi(τϵ + τζ + τηi + τη)

σ2
ϵ −

N∑
i=1

τ2ηiσ
2
ηi + τ2ησ

2
η

α2
i (τϵ + τζ + τηi + τη)2

=

N∑
i=1

1

αi(τϵ + τζ + τηi + τη)

N∑
i=1

τηi + τη
αi(τϵ + τζ + τηi + τη)

−
N∑
i=1

τηi + τη
α2
i (τϵ + τζ + τηi + τη)2

,

which is positive.

Proof of Corollary 1. The variance of the return p− d between Periods 0 and 1 is equal to the

variance of p. The comparison between Var(p) in the cursed and in the rational case will follow

from the identities

Var [E (d |{si}i=1,..,N , s)] = Var [E (d |{si}i=1,..,N , s)− p]+2Cov [E (d |{si}i=1,..,N , s)− p, p]+Var(p)

(A.28)

and

Cov [E (d |{si}i=1,..,N , s)− p, p] = E [(E (d |{si}i=1,..,N , s)− p) p]− E [E (d |{si}i=1,..,N , s)− p]E(p)

= E [(E (d |p)− p) p]− [E(d)− E(p)]E(p)

= E
[
γ(p− d)p

]
= γVar(p), (A.29)

where the second step in (A.29) follows from applying the law of iterative expectations, and the

third step follows from (26) and E(d) = E(p) = d. When traders are cursed, (A.29) and Proposition

6 imply that the second term in the right-hand side of (A.28) is positive. Since the first term is

also positive, (A.28) implies that

Var [E (d |{si}i=1,..,N , s)] > Var(p). (A.30)

When traders are rational, (A.30) holds as an equality because of (A.22). Therefore, Var(p) is

smaller when traders are cursed.

The comparison between Var(p) + Var(d− p) in the cursed and in the rational case will follow

similarly from the identities

Var(d) = Var(d− p) + 2Cov(d− p, p) + Var(p) (A.31)
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and

Cov(d− p, p) = E
[
γ(p− d)p

]
= γVar(p), (A.32)

where the first step in (A.32) follows from (26). Eq. (A.32) and Proposition 6 imply that the second

term in the right-hand side of (A.31) is positive when traders are cursed and zero when they are

rational. Since the left-hand side of (A.31) is the same when traders are cursed and when they are

rational, Var(p) + Var(d− p) is smaller when they are cursed.

Proof of Proposition 7. Substituting p from (18) into (A.9) and using zi = 0, we can write the

quantity that trader i trades in equilibrium as

xi =
τζ(τϵ + τηi + τη)

αi(τϵ + τζ + τηi + τη)

 N∑
j=1

aijsj + ais

 , (A.33)

where

aii ≡
τηi

τϵ + τηi + τη
−Ai, (A.34)

aij ≡ −Aj for j ̸= i, (A.35)

ai ≡
τη

τϵ + τηi + τη
−A. (A.36)

Using (3) and (4), we can write (A.33) as

xi =
τζ(τϵ + τηi + τη)

αi(τϵ + τζ + τηi + τη)

 N∑
j=1

aij + ai

 ϵ+

N∑
j=1

aijηj + aiη

 . (A.37)

Since xi is normal,

E (|xi|) =
√

2Var(xi)

π

=

√
2

π

τζ(τϵ + τηi + τη)

αi(τϵ + τζ + τηi + τη)

√√√√√
 N∑

j=1

aij + ai

2

σ2
ϵ +

N∑
j=1

a2ijσ
2
ηj + a2iσ

2
η, (A.38)

where the second step follows from (A.37).
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When αi = α and τηi = τηc for all i, Proposition 3 implies that

Ai =
τηc

N(τϵ + τηc + τη)
for all i,

A =
τη

τϵ + τηc + τη
.

Substituting into (A.34)-(A.36), we find

aii =
(N − 1)τηc

N(τϵ + τηc + τη)
,

aij = − τηc
N(τϵ + τηc + τη)

for j ̸= i,

ai = 0,

N∑
j=1

aij + ai = 0.

Substituting into (A.38), we find (27). The comparative statics follow by differentiating (27) with

respect to N and τηc.

When αi = α for all i and σ2
ζ = 0, Proposition 3 implies that

Ai =
τηi

N(τϵ + τηc + τη)
for all i, (A.39)

A =
τη

τϵ + τηc + τη
. (A.40)

(These values can be derived as a limit when τζ goes to ∞.) Substituting into (A.34)-(A.36), we

find

aii =
[(N − 1)(τϵ + τη) +Nτηc − τηi ] τηi
N(τϵ + τηi + τη)(τϵ + τηc + τη)

, (A.41)

aij = −
τηj

N(τϵ + τηc + τη)
for j ̸= i, (A.42)

ai =
(τηc − τηi)τη

(τϵ + τηi + τη)(τϵ + τηc + τη)
, (A.43)

N∑
j=1

aij + ai =
(τηi − τηc)τϵ

(τϵ + τηi + τη)(τϵ + τηc + τη)
. (A.44)

Substituting into (A.38), and using again αi = α for all i and σ2
ζ = 0, we find

E (|xi|) =
√

2

π

√
(τηi − τηc)2τ2ϵ σ

2
ϵ +

[(N−1)(τϵ+τη)+Nτηc−τηi ]
2
τ2ηi

N2 σ2
ηi +

∑
j ̸=i

(τϵ+τηi+τη)2τ2ηj
N2 σ2

ηj + (τηc − τηi)
2τ2ησ

2
η

α(τϵ + τηc + τη)
.
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(A.45)

Since the variance is the inverse of the precision, we can write (A.45) as

E (|xi|) =
√

2

π

√
(τηi − τηc)2τϵ +

[(N−1)(τϵ+τη)+Nτηc−τηi ]
2
τηi

N2 +
∑

j ̸=i

(τϵ+τηi+τη)2τηj
N2 + (τηc − τηi)

2τη

α(τϵ + τηc + τη)

=

√
2

π

√
(τηi − τηc)2(τϵ + τη) +

[(N−1)(τϵ+τη)+Nτηc−τηi ]
2
τηi

N2 +
(τϵ+τηi+τη)2(Nτηc−τηi )

N2

α(τϵ + τηc + τη)
,

(A.46)

where the second step follows from the definition of τηc. Eq. (28) follows from (A.46) by separating

quadratic, linear and constant terms in τϵ + τη. Trader i generates more volume than trader j if

and only if the difference between the term inside the squared root in (28) and the corresponding

term for j is positive. The difference is[
(N − 2)(τϵ + τη)

2 + (N − 2)(τϵ + τη)(τηi + τηj ) + (Nτηc − τηi − τηj )τηc
]
(τηi − τηj ).

Since

Nτηc − τηi − τηj =

N∑
k=1

τηk − τηi − τηj =
∑
k ̸=i,j

τηk > 0,

the difference is positive if and only if τηi > τηj .

We next prove two lemmas, which we then use to prove Proposition 8.

Lemma A.2 Let x be an n × 1 normal vector with mean zero and covariance matrix Σ, ZA a

scalar, ZB an n × 1 vector, ZC an n × n symmetric matrix, I the n × n identity matrix, v′ the

transpose of a vector v, and |M | the determinant of a matrix M . Then,

Ex exp

{
−α

[
ZA + Z ′

Bx+
1

2
x′ZCx

]}
= exp

{
−α

[
ZA − 1

2
αZ ′

BΣ(I + αZCΣ)
−1ZB

]}
1√

|I + αZCΣ|
.

(A.47)

Proof. When ZC = 0, (A.47) gives the moment-generating function of the normal distribution. We

can always assume ZC = 0 by also assuming that x is a normal vector with mean 0 and covariance

matrix Σ(I + αZCΣ)
−1.
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Lemma A.3 Suppose that the n× n matrix ZC is equal to ZC1Z
′
C2 for n× 1 vectors (ZC1, ZC2),

and the symmetric n× n matrix Σ is positive definite. Then,

|I + αZCΣ| = 1 + αZ ′
C1ΣZC2. (A.48)

Proof. Since Σ is positive definite, it has a positive-definite square root. We denote that matrix

by Σ
1
2 and its inverse by Σ− 1

2 . We can write the determinant in (A.48) as

|I + αZCΣ| =
∣∣∣(Σ− 1

2 + αZCΣ
1
2

)
Σ

1
2

∣∣∣
=
∣∣∣Σ 1

2

(
Σ− 1

2 + αZCΣ
1
2

)∣∣∣
=
∣∣∣I + αΣ

1
2ZCΣ

1
2

∣∣∣ , (A.49)

where the second step follows because the determinant is commutative. We next compute

∆ ≡
∣∣∣Σ 1

2ZCΣ
1
2

(
I + αΣ

1
2ZCΣ

1
2

)∣∣∣
in two different ways. First,

∆ =
∣∣∣Σ 1

2ZCΣ
1
2

∣∣∣ ∣∣∣I + αΣ
1
2ZCΣ

1
2

∣∣∣
=
∣∣∣Σ 1

2ZC1Z
′
C2Σ

1
2

∣∣∣ ∣∣∣I + αΣ
1
2ZCΣ

1
2

∣∣∣
=
∣∣∣Z ′

C2Σ
1
2Σ

1
2ZC1

∣∣∣ ∣∣∣I + αΣ
1
2ZCΣ

1
2

∣∣∣
= Z ′

C2ΣZC1

∣∣∣I + αΣ
1
2ZCΣ

1
2

∣∣∣ , (A.50)

where the first step follows because the determinant of a product is the product of the determinants,

and the third step because the determinant is commutative. Second,

∆ =
∣∣∣Σ 1

2ZC1Z
′
C2Σ

1
2

(
I + αΣ

1
2ZC1Z

′
C2Σ

1
2

)∣∣∣
=
∣∣∣Z ′

C2Σ
1
2

(
I + αΣ

1
2ZC1Z

′
C2Σ

1
2

)
Σ

1
2ZC1

∣∣∣
=
∣∣Z ′

C2ΣZC1

(
1 + αZ ′

C2ΣZC1

)∣∣
= Z ′

C2ΣZC1

(
1 + αZ ′

C2ΣZC1

)
. (A.51)

Comparing (A.50) to (A.51), and using (A.49), we find (A.48).
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Proof of Proposition 8. We first derive a general expression for the expected utility of a cursed

trader who receives no endowment shock. This derivation does not assume that all other traders

are cursed, or that they have the same risk-aversion coefficient, or that σ2
ζ = 0. We can write the

expected utility of trader i in the ex-ante sense as

−Eexp {−αi [xi(d− p) + zid]} . (A.52)

Using the law of iterative expectations, and denoting by I ≡ ({sj}j=1,..,N , s) the information set

consisting of all the signals, we can write (A.52) as

− E [E (exp {−αi [xi(d− p) + zid]} |I)]

− Eexp

{
−αi

[
xi (E(d|I)− p) + ziE(d|I)−

1

2
αi(xi + zi)

2Var(d|I)
]}

− Eexp

{
−αi

[
E(d|Ii)− p

αiVar(d|Ii)

(
E(d|I)− p− 1

2

E(d|Ii)− p

Var(d|Ii)
Var(d|I)

)
+ zip

]}
(A.53)

− Eexp

{
−E(d|Ii)− p

Var(d|Ii)

(
E(d|I)− p− 1

2

E(d|Ii)− p

Var(d|Ii)
Var(d|I)

)}
(A.54)

where the second step follows because of normality, the third from (10), and the fourth because

zi = 0. Using Lemma A.1 with x = ϵ, K = 2 and {yj}j=1,2 = (ηi, η), and combining with (A.7)

and (A.8), we find

E(d|Ii) = d+
τηi

τϵ + τηi + τη
si +

τη
τϵ + τηi + τη

s, (A.55)

Var(d|Ii) =
τϵ + τζ + τηi + τη
(τϵ + τηi + τη)τζ

. (A.56)

Setting x = ϵ, K = N + 1 and {yj}j=1,..,N+1 = ({ηj}j=1,..,N , η), we likewise find

E(d|I) = d+

N∑
j=1

τηj

τϵ +
∑N

k=1 τηk + τη
sj +

τη

τϵ +
∑N

k=1 τηk + τη
s

= d+

N∑
j=1

τηj
τϵ +Nτηc + τη

sj +
τη

τϵ +Nτηc + τη
s, (A.57)

Var(d|I) =
τϵ + τζ +

∑N
j=1 τηj + τη

(τϵ +
∑N

j=1 τηj + τη)τζ

=
τϵ + τζ +Nτηc + τη
(τϵ +Nτηc + τη)τζ

. (A.58)
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Substituting conditional means and variances from (A.55)-(A.58), we can write the expected utility

(A.54) as

−Eexp

−1

2

τζ(τϵ + τηi + τη)

(τϵ + τζ + τηi + τη)

 N∑
j=1

aijsj + ais

 N∑
j=1

bijsj + bis

 , (A.59)

where ({aij}j=1,..,N , ai) are defined in (A.34)-(A.36), and

bij ≡
2τηj

τϵ +Nτηc + τη
− 2Aj −

(τϵ + τζ +Nτηc + τη)(τϵ + τηi + τη)

(τϵ + τζ + τηi + τη)(τϵ +Nτηc + τη)
aij for j = 1, .., N,

(A.60)

bi ≡
2τη

τϵ +Nτηc + τη
− 2A−

(τϵ + τζ +Nτηc + τη)(τϵ + τηi + τη)

(τϵ + τζ + τηi + τη)(τϵ +Nτηc + τη)
ai. (A.61)

Using (3) and (4), we can write (A.59) as

−Eexp

−1

2

τζ(τϵ + τηi + τη)

(τϵ + τζ + τηi + τη)

 N∑
j=1

aij + ai

 ϵ+

N∑
j=1

aijηj + aiη

 N∑
j=1

bij + bi

 ϵ+

N∑
j=1

bijηj + biη

 .

(A.62)

To compute the expectation in (A.62), we use Lemma A.2, and set

ZA ≡ 0,

ZB ≡ 0,

ZC ≡
τζ(τϵ + τηi + τη)

αi(τϵ + τζ + τηi + τη)
vav

′
b,

Si ≡ Diag(σ2
ϵ , {σ2

ηj}j=1,..,N , σ2
η),

va ≡

 N∑
j=1

aij + ai, {aij}j=1,..,N , ai

′

,

vb ≡

 N∑
j=1

bij + bi, {bij}j=1,..,N , bi

′

.

Lemma A.2 implies that (A.62) is equal to

− 1√∣∣∣I + τζ(τϵ+τηi+τη)

(τϵ+τζ+τηi+τη)
vav′bΣ

∣∣∣ = − 1√
1 +

τζ(τϵ+τηi+τη)

(τϵ+τζ+τηi+τη)
v′aΣvb

, (A.63)
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where the second step follows from Lemma A.3.

We next use (A.63) to compute the expected utility of a cursed trader under the assumptions

in the proposition. When αi = α for all i and σ2
ζ = 0, ({aij}j=1,..,N , ai) are given by (A.41)-(A.43).

Moreover, substituting ({Aj}j=1,..,N , A, {aij}j=1,..,N , ai) from (A.39)-(A.43) into (A.60) and (A.61),

and using αi = α for all i and σ2
ζ = 0, we find

bii =
[(N − 1)(τϵ + τη)−Nτηc + τηi ] τηi
N(τϵ + τηc + τη)(τϵ +Nτηc + τη)

, (A.64)

bij =
[(2N − 1)(τϵ + τη) + τηi ] τηj

N(τϵ + τηc + τη)(τϵ +Nτηc + τη)
for j ̸= i, (A.65)

bi =
[−(2N − 1)τηc + τηi ] τη

(τϵ + τηc + τη)(τϵ +Nτηc + τη)
, (A.66)

N∑
j=1

bij + bi =
[(2N − 1)τηc − τηi ] τϵ

(τϵ + τηc + τη)(τϵ +Nτηc + τη)
, (A.67)

Substituting into (A.63), and using again σ2
ζ = 0, we can write the term inside the squared root as

1 +
(τηi − τηc) [(2N − 1)τηc − τηi ] τ

2
ϵ

(τϵ + τηc + τη)2(τϵ +Nτηc + τη)
σ2
ϵ

+
[(N − 1)(τϵ + τη) +Nτηc − τηi ] [(N − 1)(τϵ + τη)−Nτηc + τηi ] τ

2
ηi

N2(τϵ + τηc + τη)2(τϵ +Nτηc + τη)
σ2
ηi

−
∑
j ̸=i

(τϵ + τηi + τη) [(2N − 1)(τϵ + τη) + τηi ] τ
2
ηj

N2(τϵ + τηc + τη)2(τϵ +Nτηc + τη)
σ2
ηj +

(τηc − τηi) [−(2N − 1)τηc + τηi ] τ
2
η

(τϵ + τηc + τη)2(τϵ +Nτηc + τη)
σ2
η.

(A.68)

Eq. (29) can be derived from (A.68) by following the same steps as when deriving (28) from

(A.45). Trader i has higher expected utility than trader j if and only if the difference between

the numerator inside the squared root in (29) and the corresponding term for j is positive. The

difference is Z(τηi − τηj ), where

Z ≡ N(τϵ+ τη)
2+(τϵ+ τη)

[
2N(N + 1)τηc − (N − 2)(τηi + τηj )

]
− (Nτηc− τηi − τηj )τηc. (A.69)

Since Z is linear in τηi+τηj ∈ (0, Nτηc), it is positive if this is the case at the boundaries τηi+τηj = 0

and τηi + τηj = Nτηc. For τηi + τηj = Nτηc,

Z = N(τϵ + τη)
2 +N(N + 4)(τϵ + τη)τηc > 0.
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For τηi + τηj = 0,

Z = N(τϵ + τη)
2 + 2N(N + 1)(τϵ + τη)τηc −Nτ2ηc,

and is positive if (30) holds. Therefore, if (30) holds, trader i has higher expected utility than

trader j if and only if τηi > τηj . If instead (30) does not hold, Z < 0 for τηi + τηj = 0, and there

exist τηi > τηj such that trader i has lower expected utility than trader j.

Proof of Proposition 9. Eq. (13) implies that

Ai = λ
τηi

αi(τϵ + τζ + τηi + τη)
(A.70)

for i ∈ C and a constant λ that does not depend on i. Since σzi = 0 for all i and rational traders

receive no private signals, (12) implies that

τθi =

(∑
j∈C Aj

)2
∑

j∈C
A2

j

τηj

. (A.71)

SubstitutingAi from (A.70) into (A.71), we find that for i ∈ R, τθi is equal to τθ in (34). Substituting

Ai from (A.70) into (13), noting that τηi = 0 for i ∈ R, and solving for λ, we find (32). Solving for

A using (17), we find (33).

Proof of Proposition 10. Eqs. (21) and (32) imply that (i) holds if

1 +

∑
j∈R

τθ
αj(τϵ+τζ+τη+τθ)∑

j∈C

τηj
αj(τϵ+τζ+τηj+τη)∑

j∈C
τϵ+τηj+τη

αj(τϵ+τζ+τηj+τη)
+
∑

j∈R
τϵ+τη+τθ

αj(τϵ+τζ+τη+τθ)

>
1∑

j∈C
τϵ+τηj+τη

αj(τϵ+τζ+τηj+τη)

⇔
∑
j∈C

τϵ + τηj + τη

αj(τϵ + τζ + τηj + τη)

∑
j∈R

τθ
αj(τϵ+τζ+τη+τθ)∑

j∈C
τηj

αj(τϵ+τζ+τηj+τη)

>
∑
j∈R

τϵ + τη + τθ
αj(τϵ + τζ + τη + τθ)

⇔ τθ
∑
j∈C

τϵ + τηj + τη

αj(τϵ + τζ + τηj + τη)
> (τϵ + τη + τθ)

∑
j∈C

τηj
αj(τϵ + τζ + τηj + τη)

⇔ τθ
∑
j∈C

1

αj(τϵ + τζ + τηj + τη)
>
∑
j∈C

τηj
αj(τϵ + τζ + τηj + τη)

. (A.72)

Using (34), we find that (A.72) is equivalent to∑
j∈C

τηj
αj(τϵ + τζ + τηj + τη)

∑
j∈C

1

αj(τϵ + τζ + τηj + τη)
>
∑
j∈C

τηj
α2
j (τϵ + τζ + τηj + τη)2

,
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which holds.

Eqs. (22) and (33) imply that (ii) holds if∑
j∈C

τη
αj(τϵ+τζ+τηj+τη)

+
∑

j∈R
τη

αj(τϵ+τζ+τη+τθ)∑
j∈C

τϵ+τηj+τη

αj(τϵ+τζ+τηj+τη)
+
∑

j∈R
τϵ+τη+τθ

αj(τϵ+τζ+τη+τθ)

<

∑
j∈C

τη
αj(τϵ+τζ+τηj+τη)∑

j∈C
τϵ+τηj+τη

αj(τϵ+τζ+τηj+τη)

⇔
∑
j∈C

τϵ + τηj + τη

αj(τϵ + τζ + τηj + τη)
<

∑
j∈C

τη
αj(τϵ+τζ+τηj+τη)∑

j∈R
τη

αj(τϵ+τζ+τη+τθ)

∑
j∈R

τϵ + τη + τθ
αj(τϵ + τζ + τη + τθ)

⇔
∑
j∈C

τϵ + τηj + τη

αj(τϵ + τζ + τηj + τη)
< (τϵ + τη + τθ)

∑
j∈C

1

αj(τϵ + τζ + τηj + τη)

⇔
∑
j∈C

τηj
αj(τϵ + τζ + τηj + τη)

< τθ
∑
j∈C

1

αj(τϵ + τζ + τηj + τη)
. (A.73)

Eq. (A.73) holds because it is identical to (A.72).

Since σzi = 0 for all i and rational traders receive no private signals, (12), (A.10), and τθi = τθ

imply that the demand of a rational trader i is

xi =
d+

τη
τϵ+τη+τθ

s+ τθ
τϵ+τη+τθ

∑
i∈C Aisi∑
i∈C Ai

− p

αi

(
1

τϵ+τη+τθ
+ 1

τζ

) . (A.74)

Substituting p from (31) into (A.74), we find that the quantity that trader i buys in equilibrium is

xi =

τη
τϵ+τη+τθ

s+ τθ
τϵ+τη+τθ

∑
i∈C Aisi∑
i∈C Ai

−
∑

i∈C Aisi −As

αi

(
1

τϵ+τη+τθ
+ 1

τζ

) . (A.75)

Eq. (A.75) implies that (iii) holds if

τθ
τϵ + τη + τθ

1∑
i∈C Ai

> 1, (A.76)

τη
τϵ + τη + τθ

< A. (A.77)

Substituting ({Aj}j=1,..,N , A) from (32) and (33) into (A.76) and (A.77), respectively, we find that

each of the latter equations is equivalent to (A.72), which holds.

Proof of Proposition 11. The expected utility of a cursed trader i is given by (A.63). The intro-

duction of rational traders changes ({Aj}j=1,..,N , A), and hence ({aj}j=1,..,N , a) and ({bj}j=1,..,N , b).
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When αi = α for all i and σ2
ζ = 0, Proposition 9 implies that

τθ = Ncτηc,

Ai =
(1 +Nr)τηi

Nc(τϵ + τηc + τη) +Nr(τϵ + τη +Ncτηc)
for all i, (A.78)

A =
(Nc +Nr)τη

Nc(τϵ + τηc + τη) +Nr(τϵ + τη +Ncτηc)
. (A.79)

Using (36), we can write (A.78) and (A.79) as

Ai =
τηi

Nc(τϵ + τηc + τη)
(1 + (τϵ + τη)µ) for all i, (A.80)

A =
τη

τϵ + τηc + τη
(1− τηcµ) , (A.81)

respectively. Substituting ({Aj}j=1,..,N , A) from (A.80) and (A.81) into (A.34)-(A.36), we find

aii =
[(Nc − 1)(τϵ + τη) +Ncτηc − τηi ] τηi
Nc(τϵ + τηi + τη)(τϵ + τηc + τη)

− (τϵ + τη)τηiµ

Nc(τϵ + τηc + τη)
, (A.82)

aij = −
τηj

Nc(τϵ + τηc + τη)
−

(τϵ + τη)τηjµ

Nc(τϵ + τηc + τη)
for j ̸= i, (A.83)

ai =
(τηc − τηi)τη

(τϵ + τηi + τη)(τϵ + τηc + τη)
+

τηcτηµ

τϵ + τηc + τη
, (A.84)

Nc∑
j=1

aij + ai =
(τηi − τηc)τϵ

(τϵ + τηi + τη)(τϵ + τηc + τη)
− τϵτηcµ

τϵ + τηc + τη
. (A.85)

Substituting ({Aj}j=1,..,N , A, {aij}j=1,..,N , ai) from (A.80)-(A.84) into (A.60) and (A.61), and using

αi = α for all i and σ2
ζ = 0, we find

bii =
[(Nc − 1)(τϵ + τη)−Ncτηc + τηi ] τηi
Nc(τϵ + τηc + τη)(τϵ +Ncτηc + τη)

− (τϵ + τη + 2Ncτηc − τηi)(τϵ + τη)τηiµ

Nc(τϵ + τηc + τη)(τϵ +Ncτηc + τη)
,

(A.86)

bij =
[(2Nc − 1)(τϵ + τη) + τηi ] τηj

Nc(τϵ + τηc + τη)(τϵ +Ncτηc + τη)
−

(τϵ + τη + 2Ncτηc − τηi)(τϵ + τη)τηjµ

Nc(τϵ + τηc + τη)(τϵ +Ncτηc + τη)
for j ̸= i,

(A.87)

bi =
[−(2Nc − 1)τηc + τηi ] τη

(τϵ + τηc + τη)(τϵ +Ncτηc + τη)
+

(τϵ + τη + 2Ncτηc − τηi)τηcτηµ

(τϵ + τηc + τη)(τϵ +Ncτηc + τη)
, (A.88)

Nc∑
j=1

bij + bi =
[(2Nc − 1)τηc − τηi ] τϵ

(τϵ + τηc + τη)(τϵ +Ncτηc + τη)
− (τϵ + τη + 2Ncτηc − τηi)τϵτηcµ

(τϵ + τηc + τη)(τϵ +Ncτηc + τη)
. (A.89)
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The derivations of ({aj}j=1,..,N , a) and ({bj}j=1,..,N , b) are simplified by noting that for µ = 0 and

Nc = N these quantities are already derived in Propositions 7 and 8, as (A.41)-(A.43) and (A.64)-

(A.66), respectively. Substituting into (A.63), and using again σ2
ζ = 0, we can write the term inside

the squared root as Y0 + Y1µ+ Y2µ
2, where Y0 is given by (A.68) for Nc = N ,

Y1 ≡− (τϵ + τηi + τη)

(τϵ + τηc + τη)2(τϵ +Ncτηc + τη)

{
τηc [(2Nc − 1)τηc − τηi ]

(
τ2ϵ σ

2
ϵ + τ2ησ

2
η

)
+
(τϵ + τη)

[
[(Nc − 1)(τϵ + τη)−Ncτηc + τηi ] τ

2
ηiσ

2
ηi + [(2Nc − 1)(τϵ + τη) + τηi ]

∑
j ̸=i τ

2
ηjσ

2
ηj

]
N2

c


− (τϵ + τη + 2Ncτηc − τηi)

(τϵ + τηc + τη)2(τϵ +Ncτηc + τη)

{
(τηi − τηc)τηc

(
τ2ϵ σ

2
ϵ + τ2ησ

2
η

)
+
(τϵ + τη)

[
[(Nc − 1)(τϵ + τη) +Ncτηc − τηi ] τ

2
ηiσ

2
ηi − (τϵ + τηi + τη)

∑
j ̸=i τ

2
ηjσ

2
ηj

]
N2

c

 ,

(A.90)

Y2 ≡
(τϵ + τηi + τη)(τϵ + τη + 2Ncτηc − τηi)

(τϵ + τηc + τη)2(τϵ +Ncτηc + τη)

τ2ϵ τ2ηcσ2
ϵ +

(τϵ + τη)
2
(
τ2ηiσ

2
ηi +

∑
j ̸=i τ

2
ηjσ

2
ηj

)
N2

c

+ τ2ηcτ
2
ησ

2
η

 .

(A.91)

Noting that the variance is the inverse of the precision and that

∑
j ̸=i

τηj =

N∑
j=1

τηj − τηi = Nτηc − τηi ,

we can simplify (A.90) and (A.91) to

Y1 = −(τϵ + τη) {(τϵ + τηi + τη) [(2Nc − 1)τηc − τηi ] + (τηi − τηc)(τϵ + τη + 2Ncτηc − τηi)}
Nc(τϵ + τηc + τη)2

(A.92)

Y2 =
(τϵ + τη)τηc(τϵ + τηi + τη)(τϵ + τη + 2Ncτηc − τηi)

Nc(τϵ + τηc + τη)2
. (A.93)

Trader i has higher expected utility than trader j if and only if the difference between Y0+Y1µ+Y2µ
2

and the corresponding term for j is positive. The difference is

Z0(τηi − τηj )

Nc(τϵ + τηc + τη)2(τϵ +Ncτηc + τη)
,

56



where

Z0 ≡ Z + (τϵ + τη)(τϵ +Ncτηc + τη)Z1,

Z is given by (A.69), and

Z1 ≡ −(2Ncτηc − τηi − τηj )(2µ− τηcµ
2).

Since Z0 is linear in τηi + τηj ∈ (0, Ncτηc), it is positive if this is the case at the boundaries

τηi + τηj = 0 and τηi + τηj = Ncτηc. For τηi + τηj = Ncτηc,

Z0 = Nc(τϵ + τη)
2 +Nc(Nc + 4)(τϵ + τη)τηc − (τϵ + τη)(τϵ +Ncτηc + τη)Ncτηc(2µ− τηcµ

2)

= Nc(τϵ + τη)
[
4τηc + (τϵ +Ncτηc + τη)(τηcµ− 1)2

]
> 0.

For τηi + τηj = 0,

Z0 = Nc(τϵ+τη)
2+2Nc(Nc+1)(τϵ+τη)τηc−Ncτ

2
ηc−(τϵ+τη)(τϵ+Ncτηc+τη)2Ncτηc(2µ−τηcµ

2),

and is positive if (35) holds. Therefore, if (35) holds, trader i has higher expected utility than

trader j if and only if τηi > τηj . If instead (35) does not hold, Z < 0 for τηi + τηj = 0, and there

exist τηi > τηj such that trader i has lower expected utility than trader j. Eq. (36) implies that

2µ− τηcµ
2 =

Nr(Nc − 1) {2Nr(τϵ + τηc + τη) +Nc [2τϵ + (Nc + 1)τηc + 2τη]}
[Nc(τϵ + τηc + τη) +Nr(τϵ + τη +Ncτηc)]

2 ,

and hence 2µ− τηcµ
2 > 0.

Proof of Proposition 12. When αi = α, τηi = τηc, τzi = τzc, Ai = Ac and Bi = Bc for all i, (12)

implies that

τθi = τθc ≡
(N − 1)τηcτzc

τzc +
B2

c
A2

c
τηc

(A.94)

for all i, (15) and (17) imply that

Ac =
τηc + τθc

N(τϵ + τηc + τη + τθc)
, (A.95)

A =
τη

τϵ + τηc + τη + τθc
, (A.96)
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and (16) implies that

Bc

Ac
= α

τϵ + τζ + τηc + τη + τθc
τζτηc

. (A.97)

Substituting τθc from (A.94) to (A.95)-(A.97), we find (38)-(40), respectively. Eq. (40) is cubic in

Bc
Ac

, and hence has at least one solution. Any of its solutions satisfies

Bc

Ac
τζτηc − α(τη + τζ + τηc + τη) > 0, (A.98)

and hence is positive. The derivative of the left-hand side of (40) with respect to Bc
Ac

is

2
Bc

Ac
τηc

(
Bc

Ac
τζτηc − α(τη + τζ + τηc + τη)

)
+

(
τzc +

B2
c

A2
c

τηc

)
τζτηc,

and is positive at any solution of (40) because of (A.98). Therefore, (40) has a unique solution.

Proof of Proposition 13. When Ai = Ac and Bi = Bc for all i, (11) implies that

ϵ+ θi =

∑
j ̸=i sj −

Bc
Ac

∑
j ̸=i zj

N − 1
. (A.99)

Substituting p from (18) into (A.10), and using (A.99) and αi = α, τηi = τηc, τzi = τzc, Ai = Ac,

Bi = Bc and τθi = τθc for all i, we can write the quantity that trader i trades in equilibrium as

xi =
τζ(τϵ + τηc + τη + τθc)

α(τϵ + τζ + τηc + τη + τθc)

 N∑
j=1

aijsj + ais+
N∑
j=1

bijzj

 , (A.100)

where

aii ≡
τηc

τϵ + τηc + τη + τθc
−Ac, (A.101)

aij ≡
τθc

(N − 1)(τϵ + τηc + τη + τθc)
−Ac for j ̸= i, (A.102)

ai ≡
τη

τϵ + τηc + τη + τθc
−A, (A.103)

bii ≡ Bc −
α(τϵ + τζ + τηc + τη + τθc)

τζ(τϵ + τηc + τη + τθc)
, (A.104)

bij ≡ Bc −
Bc

Ac

τθc
(N − 1)(τϵ + τηc + τη + τθc)

for j ̸= i. (A.105)
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Using (3) and (4), we can write (A.100) as

xi =
τζ(τϵ + τηc + τη + τθc)

α(τϵ + τζ + τηc + τη + τθc)

 N∑
j=1

aij + ai

 ϵ+

N∑
j=1

aijηj + aiη +

N∑
j=1

bijzj

 . (A.106)

Since xi is normal,

E (|xi|) =
√

2Var(xi)

π

=

√
2

π

τζ(τϵ + τηc + τη + τθc)

α(τϵ + τζ + τηc + τη + τθc)

√√√√√
 N∑

j=1

aij + ai

2

σ2
ϵ +

N∑
j=1

a2ijσ
2
ηj + a2iσ

2
η +

N∑
j=1

b2ijσ
2
zj ,

(A.107)

where the second step follows from (A.106). Substituting Ac, A and Bc from (A.95)-(A.97) into

(A.101)-(A.105), we find

aii =
(N − 1)τηc − τθc

N(τϵ + τηc + τη + τθc)
,

aij = − (N − 1)τηc − τθc
N(N − 1)(τϵ + τηc + τη + τθc)

for j ̸= i,

ai = 0,

bii ≡ −
α(τϵ + τζ + τηc + τη + τθc)

τζτηc

(N − 1)τηc − τθc
N(τϵ + τηc + τη + τθc)

,

bij ≡
α(τϵ + τζ + τηc + τη + τθc)

τζτηc

(N − 1)τηc − τθc
N(N − 1)(τϵ + τηc + τη + τθc)

for j ̸= i.

Substituting into (A.107), we find

E (|xi|) =

√√√√2 [(N − 1)τηc − τθc]
2

πN(N − 1)τηc

(
τ2ζ

α2(τϵ + τζ + τηc + τη + τθc)2
+

1

τηcτzc

)

=

√
2 [(N − 1)τηc − τθc]

2

πN(N − 1)τηc

(
A2

c

B2
c τ

2
ηc

+
1

τηcτzc

)

=

√√√√√√√2(N − 1)2τ2ηc

(
1− τzc

τzc+
B2
c

A2
c
τηc

)2

πN(N − 1)τηc

(
A2

c

B2
c τ

2
ηc

+
1

τηcτzc

)
, (A.108)
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where the second step follows from (A.97) and the third from (A.94). Rearranging (A.108) yields

(41).

We next determine how volume depends on N . As shown in the proof of Proposition 12, the

derivative of the left-hand side of (40) with respect to Bc
Ac

is positive at the solution Bc
Ac

. Since the

derivative with respect to N is negative, Bc
Ac

is increasing in N . Therefore, (41) implies that volume

is increasing in N .

We next determine how volume depends on τηc. Setting ω ≡ Bc
Ac

√
τηc, we can write (40) as

(
τzc + w2

) (
ωτζ

√
τηc − α(τη + τζ + τηc + τη)

)
− α(N − 1)τηcτzc = 0 (A.109)

and (41) as√
2(N − 1)ω2

πNτzc (τzc + ω2)
. (A.110)

Eq. (A.110) implies that the effects of τηc on volume and ω have the same sign. The derivative

of the left-hand side of (A.109) with respect to ω is equal to
√
τηc times the same derivative with

respect to Bc
Ac

. Therefore, it is positive at the solution ω. The derivative with respect to τηc is

(
τzc + w2

)( ωτζ
2
√
τηc

− α

)
− α(N − 1)τzc,

and is equal to

1

τηc

[(
τzc + w2

)(1

2
ωτζ

√
τηc − ατηc

)
− α(N − 1)τηcτzc

]
=

1

τηc

[(
τzc + w2

)(1

2
ωτζ

√
τηc − ατηc

)
−
(
τzc + w2

) (
ωτζ

√
τηc − α(τη + τζ + τηc + τη)

)]
at the solution w. It is negative if and only if

ω >
2α(τη + τζ + τη)

τζ
√
τηc

.

This condition is equivalent to the left-hand side of (A.109) being negative for w =
2α(τη+τζ+τη)

τζ
√
τηc

.

We can write the latter condition as

[
τ2ζ τηcτzc + 4α2(τη + τζ + τη)

2
]
(τη + τζ + τη − τηc)− (N − 1)τ2ζ τ

2
ηcτzc < 0. (A.111)
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The left-hand side of (A.111) is a quadratic function of τηc that is positive for τηc = 0 and goes

to −∞ when τηc goes to ∞. Therefore, there exists a unique τ∗ηc > 0 such that (A.111) holds for

τηc > τ∗ηc and the opposite inequality holds for τηc < τ∗ηc. Volume and ω are thus decreasing in τηc

for τηc < τ∗ηc and increasing in τηc for τηc < τ∗ηc, i.e., are inverse hump-shaped in τηc.

Proof of Proposition 14. We first determine traders’ demands assuming that the price takes

the form (42). The information Ii of trader i consists of her private signal si, the public signal s,

and the signal ϵ + θi that is revealed from the price. Since all private signals enter the price with

the same coefficient, (12) implies that θi =
∑

j ̸=i ηj
N−1 . To compute the distribution of ϵ conditional

on Ii, we use Lemma A.1 with x = ϵ, K = 3, and {yj}j=1,2,3 = {ηi, η, θi}. Combining with (10),

(A.7) and (A.8), and using trader i’s assessments of precision, we find

xi =
d+

κτηc
τϵ+κτηc+τη+(N−1)γτηc

si +
τη

τϵ+κτηc+τη+(N−1)γτηc
s+

(N−1)γτηc
τϵ+κτηc+τη+(N−1)γτηc

(ϵ+ θi)− p

α
(

1
τϵ+κτηc+τη+(N−1)γτηc

+ 1
τζ

) .

(A.112)

We next substitute (A.112) into the market-clearing condition (7), substituting also the price p

from (42). This yields an equation that is linear in
(∑N

i=1 si
N , s

)
. Identifying terms in

∑N
i=1 si
N and s

yields (43) and (44), respectively.

Proof of Proposition 15. Substituting p from (42) into (A.112) and using (43), (44), and

ϵ+ θi = ϵ+

∑
j ̸=i ηj

N − 1
=

∑
j ̸=i sj

N − 1
,

we can write the quantity that trader i trades in equilibrium as

xi =
τζ

α [τϵ + τζ + [(N − 1)γ + κ]τηc + τη]

N∑
j=1

aijsj , (A.113)

where

aii ≡
N − 1

N
(κ− γ)τηc, (A.114)

aij ≡ − 1

N
(κ− γ)τηc for j ̸= i. (A.115)
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Since xi is normal,

E (|xi|) =
√

2Var(xi)

π

=

√
2

π

τζ
α [τϵ + τζ + [(N − 1)γ + κ]τηc + τη]

√√√√√
 N∑

j=1

aij

2

σ2
ϵ +

N∑
j=1

a2ijσ
2
ηj . (A.116)

Substituting {aij}j=1,..,N from (A.114) and (A.115) into (A.116), we find (45).

Proof of Proposition 16. The proposition follows by setting γ = 0 in (45) since cursedness is

equivalent to extreme contemptuousness.
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