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FINANCIAL MARKETS WITH MEMORY I:
DYNAMIC MODELS

V. ANH AND A. INOUE

Abstract. This is the first of two papers in which we consider a stock
with price process defined by a stochastic differential equation driven
by a process Y (·) different from Brownian motion. The adoption of
such a colored noise input is motivated by an analysis of real market
data. The process Y (·) is defined by a continuous-time AR(∞)-type
equation and may have either short or long memory. We show that the
process Y (·) has a good MA(∞)-type representation. The existence of
such simultaneous good AR(∞) and MA(∞) representations enables
us to apply a new method for the calculation of relevant conditional
expectations, whence to obtain various explicit results for problems
such as portfolio optimization. The financial market defined by the
above stock price process is complete, and if the coefficients are con-
stant, then the prices of European calls and puts are given by the
Black-Scholes formulas as in the Black-Scholes model. Unlike the lat-
ter, however, the model allows for differences between the historical
and implied volatilities. The model includes a special case in which
only two additional parameters are introduced to describe the mem-
ory of the market, compared with the Black-Scholes model. Analysis
based on real market data shows that this simple model with two
additional parameters is more realistic in capturing the memory ef-
fect of the market, while retaining the simplicity and usefulness of the
Black-Scholes model.

1. Introduction

We consider a stock with price S(t) at time t ∈ [0, T ]. We suppose that
S(0) is a positive constant and that S(·) satisfies the stochastic differential
equation

dS(t) = S(t) [m(t)dt + σ(t)dY (t)] ,(1.1)

where the process m(·) of mean rate of return and the volatility process
σ(·) are progressively measurable and satisfy suitable integrability condi-
tions. We also assume that σ(t) > 0 for almost every t ∈ [0, T ] almost
surely. For the filtration {F(t)}0≤t≤T , we take the augmentation of the
filtration generated by the process (Y (t))0≤t≤T .
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In the standard model of financial markets (cf. [13, Chapter 1]), the
process Y (·) is assumed to be a one-dimensional Brownian motion. In
this paper, however, we assume that the process Y (·) is a continuous
process with stationary increments such that Y (0) = 0, and satisfies one
of the following continuous-time AR(∞)-type equations:

dY

dt
(t) +

∫ t

−∞
a(t − s)

dY

dt
(s)ds =

dW

dt
(t),(1.2)

or

dY

dt
(t) −

∫ t

−∞
a(t − s)

dY

dt
(s)ds =

dW

dt
(t)(1.3)

(see (2.17) and (2.10) below for their precise formulation), where (W (t))t∈R

is a one-dimensional standard Brownian motion such that W (0) = 0, and
dY/dt and dW/dt are the derivatives of Y (·) and W (·) respectively in the
random distribution sense. The kernel a(·) is a nonnegative decreasing
function with some adequate conditions to be specified below. The sim-
plest case a(·) = 0 yields the usual white noise, i.e., Y (·) = W (·), as the
driving noise.

We need Y (t) to be defined for t ∈ R to construct the process Y (·)
but once it is constructed, we may regard Y (t) as being defined for t ∈
[0, T ]. The integral on the left-hand side of (1.2) or (1.3) has the effect
of incorporating memory into the dynamics of the process Y (·). The
introduction of such process Y (·) as the driving force is motivated by an
analysis based on real market data to be explained below.

In analogy with time series analysis, it is natural to introduce processes
with memory by considering AR-type equations of the form (1.2) or (1.3).
However, because of technical difficulties in continuous time, it is impor-
tant to assume reasonable conditions. We assume that the delay kernel
a(·) is a bounded, integrable, completely monotone function on (0,∞)
satisfying some additional conditions. This assumption is essential and
useful in our arguments. In fact, under the assumption, we develop a
theory comparable to the discrete-time case, and in particular we show
that Y (·) has a good MA(∞)-type representation

Y (t) = W (t) −
∫ t

0

(∫ s

−∞
c(s − u)dW (u)

)
ds(1.4)

for (1.2) or

Y (t) = W (t) +

∫ t

0

(∫ s

−∞
c(s − u)dW (u)

)
ds(1.5)

for (1.3) (Theorems 2.7, 2.11 and 2.13). We find that the kernel c(·) is
also completely monotone, a fact which is helpful in the analysis of Y (·),
whence that of S(·). Using (1.4) or (1.5), we show that Y (·) is a Gaussian
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semimartingale with respect to the filtration {F(t)}0≤t≤T stated above
(Theorem 3.1). In particular, we can define the SDE (1.1). The explicit
form of the semimartingale representation will be derived in [3]. It should
be noticed that (1.4) or (1.5) is not a semimartingale representation of
Y (·) since the Brownian motion W (·) is not {F(t)}-adapted.

We consider a financial market consisting of a stock with the above price
process (S(t))0≤t≤T and a share in the money market with price process
(S0(t))0≤t≤T defined by

S0(0) = 1, dS0(t) = r(t)S0(t)dt (t ∈ [0, T ]),(1.6)

where the interest rate process r(·) is progressively measurable and satis-
fies suitable integrability conditions. The process Y (·) may have short or
long memory according to the choice of a(·). In either case, we show that
the financial market is complete. Moreover, if σ(·) in (1.1) and r(·) are con-
stant, then the behavior of the discounted price process S̃(t) = S(t)/S0(t)
under the equivalent martingale measure is equal to that in the Black–
Scholes (BS) environment, whence the prices of European calls and puts
in the market are given by the BS formulas as in the BS model (Theorem
3.3). However, unlike the BS model, the above model allows for differ-
ences between the historical volatility HV(·) and the volatility implied by
the BS formulas (Theorems 4.2, 4.4 and 4.6). Here we define HV(·) by

HV(t − s) :=

√
Var {log(S(t)/S(s))}

t − s
(t > s ≥ 0).(1.7)

In order to allow for long memory (Beran [4], Anh and Heyde [1]) in
the dynamics of a stock price process S(·), attempts have been made to
replace Brownian motion by fractional Brownian motion BH(·) with Hurst
index 1/2 < H < 1 (Lin [14], Cutland et al. [6], Comte and Renault [7, 8],
Willinger et al. [18]). However this approach is not entirely satisfactory
since fractional Brownian motion is not a semimartingale (Liptser and
Shiryaev [15], Lin [14], Rogers [17]), and as a result, the market is not
arbitrage free (Cutland et al. [6], Rogers [17]). Our process S(·) has
the advantage that the corresponding market is complete and, if σ(·) is
constant, then the same option pricing formulas as in the BS model hold.

As stated above, the stationary increment process Y (·) possesses si-
multaneously good AR(∞)- and MA(∞)- type representations (1.2) and
(1.4), or (1.3) and (1.5). This fact turns out to be a great advantage of
the model, as will be illustrated in our second paper [3] in which meth-
ods of calculating conditional expectations relevant to Y (·) are developed.
This is done by applying a new method for prediction, in which both
AR(∞)- and MA(∞)- type representations play an important role. In [3],
the semimartingale representation of Y (·) is derived in explicit form by
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the method, and, by applying the representation, the expected log-utility
maximization problem for the financial market model is solved completely.

The simplest case of our model is the one in which the coefficients σ(·)
and m(·) are constant and the kernel a(·) in (1.2) or (1.3) is given by
a(t) = pe−qt for t > 0, where p and q are positive constants (Examples 4.3
and 4.5). For (1.3), we also assume p < q. This simplest model is worth
special attention. This is a parametric model which has only two addi-
tional parameters p and q describing the memory of the market, compared
with the BS model. Clearly, this simplicity is a significant advantage in
parameter estimation. In [2], we estimated HV(t) (t = 1, 2, 3, . . . ) from
real market data, such as the closing values of S&P 500 from November
2001 through May 2002. It is found that, unlike in the BS model, the esti-
mated HV(·) is not constant, and very often reveals features in agreement
with those described by the model with two additional parameters. We
also fitted HV(·) of this simple model by using nonlinear least squares,
and found that it approximates the estimated graph of HV(·) very well
for the S&P 500 data. The introduction of the process Y (·) as the driving
noise in (1.1) has been strongly motivated by this observation. The BS
model is still dominant among many market models used by practitioners.
This would be due to the simplicity of the BS model. The model with two
additional parameters is realistic in capturing a new aspect which may be
regarded as memory effect, while keeping the simplicity and usefulness of
the BS model.

In Section 2, we define and study the process Y (·). In Sections 3 and
4, we apply the results in Section 2 to study the financial market model.
In Section 5, we prove two theorems which we need in Section 2.

2. The driving noise

In this section, we consider the process Y (·) which drives the SDE
(1.1). The dynamics of Y (·) is given by the continuous-time AR(∞)-type
equation (1.2) or (1.3).

We start from the correspondences between two measures µ and ν on
(0,∞) through the relation{

1 +

∫ ∞

0

1

s − iz
ν(ds)

}{
1 −

∫ ∞

0

1

s − iz
µ(ds)

}
= 1 (�z > 0).(2.1)

We need such results to study correspondences between the kernels a(·)
and c(·) in (1.2) and (1.4) or (1.3) and (1.5). We define

M0 =

{
µ :

µ is a (possibly zero) Borel measure on (0,∞)

such that
∫∞

0
s−1µ(ds) < 1

}
,
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N0 =

{
ν :

ν is a (possibly zero) Borel measure on (0,∞)

such that
∫∞

0
s−1ν(ds) < ∞

}
.

Theorem 2.1. For µ ∈ M0, there exists a unique ν ∈ N0 satisfying
(2.1). Conversely, for ν ∈ N0, there exists a unique µ ∈ M0 satisfying
(2.1).

We can prove Theorem 2.1, as well as Theorem 2.3 below, by the stan-
dard arguments involving approximation by discrete measures and the
Helly selection principle. We give their proofs in Section 5.

Example 2.2. Let µ = pδq with 0 < p < q. Then
∫∞

0
s−1µ(ds) < 1, and

so µ ∈ M0. The measure ν that corresponds to µ by Theorem 2.1 is given
by pδq−p since {

1 −
∫ ∞

0

1

s − iz
µ(ds)

}−1

− 1 =
p

q − p − iz
.

We next define

M1 =

{
µ :

µ is a Borel measure on (0,∞) such that∫∞
0

s−1µ(ds) = 1,
∫∞

0
s−2µ(ds) = ∞

}
,

N1 =

{
ν :

ν is a Borel measure on (0,∞) such that∫∞
0

(s + 1)−1ν(ds) < ∞,
∫∞

0
s−1ν(ds) = ∞

}
.

Theorem 2.3. For µ ∈ M1, there exists a unique ν ∈ N1 satisfying
(2.1). Conversely, for ν ∈ N1, there exists a unique µ ∈ M1 satisfying
(2.1).

Definition 2.4. We define the one-to-one and onto maps M0 � µ �→
θ0(µ) = ν ∈ N0 and M1 � µ �→ θ1(µ) = ν ∈ N1 by (2.1).

Lemma 2.5. For µ ∈ M0 (resp. µ ∈ M1), we set ν := θ0(µ) ∈ N0

(resp. ν := θ1(µ) ∈ N1). Then µ(0,∞) = ν(0,∞). In particular,
µ(0,∞) < ∞ if and only if ν(0,∞) < ∞.

Proof. We have

ν(0,∞) = lim
y↑∞

∫ ∞

0

y

y + s
ν(ds) = lim

y↑∞

∫∞
0

y/(y + s)µ(ds)

1 − ∫∞
0

1/(y + s)µ(ds)
= µ(0,∞),

which yields the lemma.

We write H for the complex Hilbert space

H = {a ∈ L2(Ω,F , P ) : E[a] = 0}
with inner product (a, b)H = E[ab] and norm ‖a‖H = (a, a)

1/2
H . Let D(R)

be the space of all φ ∈ C∞(R) with compact support, endowed with the
usual topology. A random distribution X (with expectation zero) is a
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linear continuous map from D(R) to H. We write DX for its derivative.
For t ∈ R, we write M(X) (resp. Mt(X)) for the closed linear hull of
{X(φ) : φ ∈ D(R)} (resp. {X(φ) : φ ∈ D(R), supp φ ⊂ (−∞, t]}) in H.
For k ∈ L1(R, dt) and a stationary random distribution X, we define the
convolution k ∗ X, which is also a stationary random distribution, by

(k ∗ X)(φ) :=

∫ ∞

−∞
k(u)X(τuφ)du (φ ∈ D(R)),

where τuφ(t) := φ(t + u) and the integral on the right-hand side is an
H-valued Bochner integral. We refer to [10, Section 2] for details.

For a Borel measure ν on (0,∞) such that
∫∞

0
(s + 1)−1ν(ds) < ∞, we

write

kν(t) := I(0,∞)(t)

∫ ∞

0

e−tsν(ds) (t ∈ R).(2.2)

Let (W (t))t∈R be a one-dimensional standard Brownian motion such that
W (0) = 0, defined on a probability space (Ω,F , P ). Since W (·) is a
process with stationary increments, the derivative DW is a stationary
random distribution (see [11]).

First we consider the following equation which corresponds to (1.3) in
the long-memory case:

X − a ∗ X = DW,(2.3)

where a(·) is a function satisfying the following condition:{
a(t) = kµ(t) for t ∈ R, where µ is a finite Borel measure on

(0,∞) satisfying
∫∞

0
s−1µ(ds) = 1,

∫∞
0

s−2µ(ds) = ∞, and (L1)
(L)

with the condition (L1) being given below. Note that (2.3) can be written
formally as

X(t) −
∫ t

−∞
a(t − s)X(s)ds =

dW

dt
(t).(2.4)

For a Borel measure ν on (0,∞) satisfying∫ ∞

0

kν(t)
2dt < ∞,(2.5)

we define a real, centered, stationary Gaussian process (U(t))t∈R by

U(t) :=

∫ t

−∞
kν(t − s)dW (s) (t ∈ R).(2.6)

Then U(·) is purely nondeterministic, and (2.6) corresponds to the so-
called canonical representation of U(·); thus, Mt(Uν) = Mt(DW ) for
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t ∈ R. The spectral representation of U(·), as a stationary random dis-
tribution, is given by

U(φ) =

∫ ∞

−∞
Fν(ξ)φ̂(ξ)ZDW (dξ) (φ ∈ D(R)),(2.7)

where ZDW is the random measure associated with DW satisfying

(ZDW (A), ZDW (B))H =
1

2π

∫
A∩B

dξ,

φ̂ is the Fourier transform of φ defined by φ̂(ξ) :=
∫∞
−∞ e−itξφ(ξ)dξ, and

Fν(·) is a function defined by

Fν(z) :=

∫ ∞

0

1

s − iz
ν(ds) (�z ≥ 0).

We refer to [10] for these results. We write γ(·) for the autocovariance
function of U(·):

γ(t) := E[U(t)U(0)] (t ∈ R).

Then we have γ(t) =
∫∞

0
kν(|t| + s)kν(s)ds.

If ν is a finite measure in N1 such that∫ ∞

1

kν(t)
2dt < ∞,(2.8)

then ν satisfies (2.5) since∫ 1

0

kν(t)
2dt ≤ kν(0+)

∫ 1

0

kν(t)dt < ∞.

In this case, from
∫∞

0
kν(t)dt = ∞, we see that the stationary Gaussian

process U(·) defined by (2.6) is long-memory in the sense that
∫∞

0
γ(t)dt =

∞ (cf. [10]). Now we define the condition (L1) above for µ ∈ M1 by

ν = θ1(µ) satisfies (2.8).(L1)

We write M(DW )⊥ for the orthogonal complement to M(DW ) in H.
In the next theorem, we solve the equation (2.3) explicitly. Notice that if
µ satisfies (L), then µ ∈ M1, whence we can consider θ1(µ).

Theorem 2.6. Let a(·) be a function satisfying (L), and let ν := θ1(µ).
Then a stationary random distribution X satisfies (2.3) if and only if
X = X0 + b, where b ∈ M(DW )⊥ and X0 is the stationary random
distribution defined by

X0 = U + DW(2.9)

with U(·) in (2.6). In particular, X0 is the only purely nondeterministic
stationary random distribution that satisfies (2.3).
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Proof. The arguments below are similar to those of the proofs of [10, The-
orems 3.4 and 3.8]. Let X be a stationary random distribution satisfying
(2.3). As in [10, Proposition 2.3], we have

(X − a ∗ X)(φ) =

∫ ∞

−∞
{1 − Fµ(ξ)} φ̂(ξ)ZX(dξ),

where ZX is the random measure associated with the spectral representa-
tion of X. From this, we see that X and DW = X−a∗X are stationarily
correlated (cf. [10, Section 2]). We define a random distribution PDW X by
PDWX(φ) = pDW (X(φ)), where pDW is the orthogonal projection operator
from H onto M(DW ). We set X1 := X −PDWX. Then, by [10, Theorem
2.1], X1 is a stationary random distribution satisfying X1 = a ∗ X1. We
write µX1 for the spectral measure of X1. Then we have

‖(X1 − a ∗ X1)(φ)‖2
H =

∫ ∞

−∞
|φ̂(ξ)|2|1 − Fµ(ξ)|2µX1(dξ).

Since it holds that, for ξ �= 0,

{1 − Fµ(ξ)} = 1 −
∫ ∞

0

s

s2 + ξ2
µ(ds) > 1 −

∫ ∞

0

s−1µ(ds) = 0,

we have

|1 − Fµ(ξ)|2 > 0 (ξ �= 0), = 0 (ξ = 0),

whence X − PDWX = X1 = b for some b ∈ M(DW )⊥.
We set X0 := PDW X. Then, again by [10, Theorem 2.1], there exists

g ∈ L2(R, (1 + x2)−kdξ), for some k ∈ N ∪ {0}, such that

X0(φ) =

∫ ∞

−∞
g(ξ)φ̂(ξ)ZDW (dξ).

The spectral measure νDW of DW is given by µDW (dξ) = (2π)−1dξ. Hence
from

a ∗ X0(φ) =

∫ ∞

−∞
Fµ(ξ)g(ξ)φ̂(ξ)ZDW (dξ),

it follows that, for φ ∈ D(R),

0 = ‖X0(φ) − a ∗ X0(φ) − DW (φ)‖2
H

=
1

2π

∫ ∞

−∞
|φ̂(ξ)|2|{(1 − Fµ(ξ))g(ξ) − 1}|2dξ.

This implies

g(ξ) =
1

1 − Fµ(ξ)
= Fν(ξ) + 1,

hence

X0(φ) =

∫ ∞

−∞
{Fν(ξ) + 1}φ̂(ξ)ZDW (dξ) = U(φ) + DW (φ).
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Thus X0 is given by (2.9). Conversely, we can easily show that X = X0+b
with (2.9) and b ∈ M(DW )⊥ is a stationary random distribution that
satisfies (2.3).

For z = x + iy with y > 0, it holds that

{Fν(z) + 1} = 1 +

∫ ∞

0

s + y

(s + y)2 + x2
ν(ds) > 0.

This implies that f(z) := Fν(z) + 1 is an outer function on the upper
half-plane �z > 0. Thus

f(z) := exp

{
1

πi

∫ ∞

−∞

1 + tz

t − z
· log |f(t)|

1 + t2
dt

}
(�z > 0).

It follows that
Mt(X0) = Mt(DW ) (t ∈ R)

(cf. [9]), so that Mt(X0 + b) = Mt(DW ) + Cb for b ∈ M(DW )⊥ or

⋂
t

Mt(X0 + b) =

{⋂
t

Mt(X0)

}
⊕ Cb =

{⋂
t

Mt(DW )

}
⊕ Cb = Cb.

Therefore X0 + b with b ∈ M(DW )⊥ is purely nondeterministic if and
only if b = 0.

We are now ready to consider the equation (1.3) in the long-memory
case.

Theorem 2.7. Let a(·) and ν be as in Theorem 2.6. Let (Y (t))t∈R be
a zero-mean, mean-square continuous process with stationary increments
such that Y (0) = 0. We assume that DY is purely nondeterministic and
that it satisfies

DY − a ∗ DY = DW.(2.10)

Then the process Y (·) is the Gaussian process given by (1.5) for t ∈ R
with c(·) = kν(·). The kernel c(·) is determined from a(·) through the
relation {

1 −
∫ ∞

0

eizta(t)dt

}{
1 +

∫ ∞

0

eiztc(t)dt

}
= 1 (�z > 0).(2.11)

Theorem 2.7 follows immediately from Theorem 2.6 and [11, Theorem
6.1]. It should be noticed that (2.10) can be written formally as (1.3).

We give a sufficient condition for (L1) in terms of the asymptotic be-
havior of a(t) as t → ∞.

Lemma 2.8. Let 0 < p < 1 and let 
(·) be a slowly varying function
at infinity. Let µ ∈ M1 and define ν ∈ N1 by ν := θ1(µ). We set
a(·) := kµ(·) and c(·) = kν(·). Then

a(t) ∼ t−(p+1)
(t)p (t → ∞)(2.12)
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if and only if

c(t) ∼ t−(1−p)


(t)
· sin(pπ)

π
(t → ∞).(2.13)

Proof. We prove only (2.12) ⇒ (2.13); the converse implication (2.13) ⇒
(2.12) can be proved in the same way. Since

∫∞
0

kµ(t)dt = 1, we have, by
integration by parts,

1 −
∫ ∞

0

e−tykµ(t)dt = y

∫ ∞

0

e−ty

(∫ ∞

t

kµ(s)ds

)
dt (y > 0).

Hence∫ ∞

0

e−tykν(t)dt =

∫∞
0

e−tykµ(t)dt

1 − ∫∞
0

e−tykµ(t)dt
=

∫∞
0

e−tykµ(t)dt

y
∫∞

0
e−ty

(∫∞
t

kµ(s)ds
)
dt

.

Now (2.12) implies
∫∞

t
kµ(s)ds ∼ t−p
(t) as t → ∞, so that

y

∫ ∞

0

e−ty

(∫ ∞

t

kµ(s)ds

)
dt ∼ yp
(1/y)Γ(1 − p) (y ↓ 0)

(cf. [5, Theorem 1.7.6]). On the other hand, limy↓0
∫∞

0
e−tykµ(t)dt = 1.

Thus

y

∫ ∞

0

e−tykν(t)dt ∼ y1−p


(1/y)Γ(1 − p)
(y ↓ 0).

By Karamata’s Tauberian theorem (cf. [5, Theorem 1.7.6]), this implies
(2.13).

Theorem 2.9. Let 0 < p < 1/2 and let 
(·) be a slowly varying function
at infinity. Let µ be a finite measure in M1. We put a(·) := kµ(·) and
assume (2.12). Then µ satisfies (L1), whence a(·) satisfies (L). If we put
ν := θ1(µ) and c(·) = kν(·), then kν(·) satisfies (2.13), and the autoco-

variance function γ(·) of the stationary process U(t) =
∫ t

−∞ c(t− s)dW (s)
satisfies

γ(t) ∼ t−(1−2p)


(t)2

(
sin(pπ)

π

)2

B(1 − 2p, p) (t → ∞).(2.14)

Proof. By Lemma 2.8, kν(·) satisfies (2.13), so that (2.8) holds. Thus µ
satisfies (L1), whence a(·) satisfies (L). By [10, Proposition 4.3] and the
equality γ(t) =

∫∞
0

c(t + s)c(s)ds, (2.3) implies (2.14).

Example 2.10. For 0 < p < 1/2, set µ(ds) := Γ(p)−1spe−sds and a(·) =
kµ(·). Then we have

a(t) =
p

(t + 1)p+1
(t > 0).
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Since a(0+) < ∞,
∫∞

0
a(t)dt = 1,

∫∞
0

dt
∫∞

t
a(s)ds = ∞, and a(t) ∼

pt−(p+1) as t → ∞, we find that a(·) satisfies the condition of Theorem
2.7, that is, (L); take 
(·) = 1 in Theorem 2.9.

Next we consider the equation (1.3) or (2.10) in the short-memory case.
We assume that a(·) satisfies the following condition (S1):{

a(t) = kµ(t) for t ∈ R, where µ is a (possibly zero) finite Borel

measure on (0,∞) such that
∫∞

0
s−1µ(ds) < 1.

(S1)

If ν is a finite measure in N0, then∫ ∞

0

kν(t)
2dt ≤ kν(0+)

∫ ∞

0

kν(t)dt < ∞.

Thus ν satisfies (2.5), whence we may define a stationary process U(·) by
(2.6). In this case, from

∫∞
0

kν(t)dt < ∞, we see that U(·) is short-memory

in the sense that its autocovariance function γ(·) satisfies
∫∞

0
γ(t)dt < ∞.

Theorem 2.11. Let a(·) be a function satisfying (S1), and let (Y (t))t∈R

be a zero-mean, mean-square continuous process with stationary incre-
ments such that Y (0) = 0. We assume that DY satisfies (2.10). Then
the process Y (·) is the Gaussian process given by (1.5) for t ∈ R with
c(·) = kν(·), where ν := θ0(µ). The kernel c(·) is determined from a(·)
through (2.11). The stationary random distribution DY is purely nonde-
terministic.

The proof of Theorem 2.11 is similar to that of Theorem 2.7; and so
we omit it. Notice that, in Theorem 2.11, unlike in Theorem 2.7, we need
not a priori assume that DY is purely nondeterministic.

Example 2.12. Let 0 < p < q and µ = pδq as in Example 2.2. We put
a(·) = kµ(·). Then a(·) satisfies (S1). In this case, we have a(t) = pe−qt

and c(t) = pe−(q−p)t for t > 0. Thus the equation (1.3) may be written as

dY

dt
(t) −

∫ t

−∞
pe−q(t−s)dY

dt
(s)ds =

dW

dt
(t),(2.15)

and the solution Y (·) is given by

Y (t) = W (t) +

∫ t

0

(∫ s

−∞
pe−(q−p)(s−u)dW (u)

)
ds (t ∈ R).(2.16)

Let W (·) be as above. Finally we consider the equation

DY + a ∗ DY = σDW(2.17)
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which can be formally written as (1.2). We assume that the kernel a(·)
satisfies the following condition (S2):{

a(t) = kν(t) for t ∈ R, where ν is a (possibly zero) finite Borel

measure on (0,∞) such that
∫∞

0
s−1ν(ds) < ∞.

(S2)

For µ := θ−1
0 (ν) ∈ M0, it follows from Lemma 2.5 that µ(0,∞) < ∞.

Hence we see that
∫∞

0
kµ(t)2dt < ∞. So, in the same way as above, we

may define a real centered stationary Gaussian process U(·) by

U(t) :=

∫ t

−∞
kµ(t − s)dW (s) (t ∈ R).(2.18)

Theorem 2.13. Let a(·) be a function satisfying (S2), and let (Y (t))t∈R

be a zero-mean, mean-square continuous process with stationary incre-
ments such that Y (0) = 0. We assume that DY satisfies (2.17). Then
the process Y (·) is the Gaussian process given by (1.4) for t ∈ R with
c(·) = kµ(·), where µ := θ−1

0 (ν). The kernel c(·) is determined from a(·)
through the relation{

1 +

∫ ∞

0

eizta(t)dt

}{
1 −

∫ ∞

0

eiztc(t)dt

}
= 1 (�z > 0).(2.19)

The stationary random distribution DY is purely nondeterministic.

The proof of Theorem 2.13 is similar to that of Theorem 2.7; and so we
omit it.

Example 2.14. For p, q ∈ (0,∞), we set ν = pδq and a(·) = kν(·). Then
we have a(t) = pe−qt for t > 0. Since(

1 +
p

q − iz

)(
1 − p

p + q − iz

)
= 1,

the measure µ := θ−1
0 (ν) is given by pδp+q, so that c(t) = pe−(p+q)t for

t > 0. Thus the equation (1.2) may be written as

dY

dt
(t) +

∫ t

−∞
pe−q(t−s)dY

dt
(s)ds =

dW

dt
(t),(2.20)

and the solution Y (·) is given by

Y (t) = W (t) −
∫ t

0

(∫ s

−∞
pe−(q−p)(s−u)dW (u)

)
ds (t ∈ R).(2.21)

12



3. The financial market

In this section, we consider a financial market consisting of a stock with
price S(t) defined by (1.1) as well as a share in the money market.

In this section, we assume that the probability space (Ω,F , P ) is com-
plete. Let W (·), Y (·) and c(·) be as in Theorem 2.7 or 2.11 or 2.13. We
put

ε :=

{
+ 1 for Y (·) with (2.17) whence (1.4),
− 1 for Y (·) with (2.10) whence (1.5).

As in Section 2, we define a continuous stationary Gaussian process U(·)
by

U(t) =

∫ t

−∞
c(t − s)dW (s) (t ∈ R).(3.1)

Let T be a positive constant. We define the filtration {F(t)}0≤t≤T by{
{F(t)}0≤t≤T is the augmentation, by the null sets in FY (T ),

of the filtration {FY (t)}0≤t≤T ,
(3.2)

where {FY (t)}0≤t≤T is the filtration generated by Y (·), i.e.,

FY (t) := σ(Y (u) : 0 ≤ u ≤ t) (0 ≤ t ≤ T ).(3.3)

We define another Gaussian process (α(t))0≤t≤T by

α(t) = E[U(t)|F(t)] (0 ≤ t ≤ T ).(3.4)

Following the Kailath–Shiryaev construction of innovations, we also define
a process (B(t))0≤t≤T by

B(t) = Y (t) + ε

∫ t

0

α(s)ds (0 ≤ t ≤ T ).(3.5)

The next theorem follows directly from [16, Theorem 7.16].

Theorem 3.1. Under P , B(·) is a Brownian motion such that the fil-
tration {F(t)}0≤t≤T is equal to the augmentation, by the null sets in
FB(T ), of the filtration {FB(t)}0≤t≤T generated by B(·). In particular,
(Y (t))0≤t≤T is a Gaussian semimartingale with respect to {F(t)}0≤t≤T ,
and (3.5) gives its semimartingale representation.

We assume the following conditions:

(i) r(·) is a progressively measurable process satisfying
∫ T

0
|r(t)|dt < ∞

a.s.;

(ii) m(·) is a progressively measurable process satisfying
∫ T

0
|m(t)|dt < ∞

a.s.;

(iii) σ(·) is a progressively measurable process satisfying
∫ T

0
σ2(t)dt < ∞

a.s. and σ(t) > 0 Lebesgue-almost-every t ∈ [0, t] a.s.
13



A share of the money market has price S0(t) at time t ∈ [0, T ] with
(1.6), or equivalently,

S0(t) = exp

{∫ t

0

r(u)du

}
(t ∈ [0, T ]).(3.6)

A stock has price S(t) at time t ∈ [0, T ], with S(0) a positive constant,
satisfying the equation (1.1). By Theorem 3.1, (1.1) can be written as

dS(t) = S(t) {[m(t) − εσ(t)α(t)] dt + σ(t)dB(t)} .(3.7)

Thus the solution of (1.1) is given by, for 0 ≤ t ≤ T ,

S(t) = S(0) exp

{∫ t

0

σ(s)dB(s)

+

∫ t

0

[
m(s) − εσ(s)α(s) − 1

2
σ2(s)

]
ds

}

= S(0) exp

{∫ t

0

σ(s)dY (s) +

∫ t

0

[
m(s) − 1

2
σ2(s)

]
ds

}
.

(3.8)

We consider the financial market

M = {(Ω,F , P ), {F(t)}0≤t≤T , (S(t))0≤t≤T , (S0(t))0≤t≤T}.
By Theorem 3.1, we see that M may be regarded as a financial market
in the sense of [13, Definition 1.1.3]. In what follows, we use the defini-
tions of [13] such as completeness of a market. We consider the following
conditions for M: ∫ T

0

θ2(t)dt < ∞ a.s.;(3.9)

the positive local martingale Z0(·) is in fact a martingale,(3.10)

where

θ(t) :=
m(t) − r(t)

σ(t)
− εα(t) (0 ≤ t ≤ T ),(3.11)

Z0(t) := exp

{
−
∫ t

0

θ(s)dB(s) − 1

2

∫ t

0

θ2(s)ds

}
(0 ≤ t ≤ T ).(3.12)

A sufficient condition for (3.9) and (3.10) is given by the next proposi-
tion.

Proposition 3.2. Suppose that there exists a positive constant c1 such
that

P

( |m(t) − r(t)|
σ(t)

≤ c1, Lebesgue-almost-every t ∈ [0, T ]

)
= 1.(3.13)

Then (3.9) and (3.10) hold.
14



Proof. By Jensen’s inequality and the Fubini theorem, we have

E

[∫ T

0

α(t)2dt

]
≤
∫ T

0

E
[
U(t)2

]
dt = Tγ(0) < ∞,

where γ(·) is the autocovariance function of U(·). Thus (3.13) implies
(3.9).

Let δ be a positive constant such that δ < {2γ(0)}−1. By Jensen’s
inequality, we have, for t ∈ [0, T − δ],

exp

{
1

2

∫ t+δ

t

θ2(s)ds

}
≤ exp(δc2

1)

δ

∫ t+δ

t

exp
{
δα2(s)

}
ds

≤ exp(δc2
1)

δ

∫ t+δ

t

E
[
exp

{
δU 2(s)

} |F(t)
]
ds.

Since U(·) is a stationary Gaussian process, we have

E
[
exp

{
δU 2(s)

}]
=

1√
2πγ(0)

∫ ∞

−∞
exp

{
δx2
}

exp

{
− x2

2γ(0)

}
dx < ∞,

whence

E

[
exp

{
1

2

∫ t+δ

t

θ2(s)ds

}]
< ∞ (t ∈ [0, T − δ]).(3.14)

Therefore, by [12, Chapter 3, Corollary 5.14], Z0(·) is a martingale.

Theorem 3.3. We assume (3.9) and (3.10). Then the market M as
defined above is complete. Moreover, if σ(·) and r(·) are constant, then,
in this market, the prices of European calls and puts are given by the
Black–Scholes formulas, and the constant σ with σ(·) ≡ σ serves as the
implied volatility.

Proof. The completeness follows from Theorem 3.1 and [13, Theorem
1.6.6]. If σ(·) is a positive constant σ, then from (3.8) we have

S(t)/S0(t) = S(0) exp

{
σB0(t) − σ2

2
t

}
(0 ≤ t ≤ T ),

where the process B0(·) is defined by

B0(t) = B(t) +

∫ t

0

θ(s)ds (0 ≤ t ≤ T ).

Since B0(·) is a Brownian motion under the standard martingale measure
P0 on F(T ) defined by

P0(A) := E[Z0(T )1A] (A ∈ F(T )),

the behavior of the discounted stock price S(t)/S0(t) under P0 is equal
to that of the Black–Scholes model. Thus the second half of the theorem
follows (cf. [13, Section 2.4]).
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Remark 3.4. In the portfolio optimization problem for standard finan-
cial markets, the martingale Z0(·) defined by (3.12) plays an important
role (cf. [13]). To explicitly solve the same problem for the financial mar-
ket M above, we need to calculate the conditional expectation α(t) =
E[U(t)|F(t)] in (3.4) explicitly. This will be done in [3].

4. Historical volatility

Let S(·), U(·) and γ(·) be as in the previous section. In this section,
we assume that σ(·) ≡ σ with σ a positive constant and that m(·) is
deterministic. Let ε be as in the previous section. We are concerned with
the behavior of the historical volatility HV(·) defined by (1.7).

Lemma 4.1. Let t > s ≥ 0. Then

Var{log(S(t)/S(s))}

=

{
(t − s) − 2ε

∫ t−s

0

du

∫ u

0

c(v)dv + 2

∫ t−s

0

du

∫ u

0

γ(v)dv

}
σ2.

(4.1)

Proof. We have

Var{log(S(t)/S(s))} = E

[{
W (t) − W (s) − ε

∫ t

s

U(u)du

}2
]

σ2

=

{
(t − s) − 2εE

[
(W (t) − W (s))

∫ t

s

U(u)du

]

+

∫ t

s

∫ t

s

γ(u − v)dudv

}
σ2.

By simple calculation, we get
∫ t

s

∫ t

s
γ(u − v)dudv = 2

∫ t−s

0
du
∫ u

0
γ(v)dv.

For s ≤ u ≤ t,

E[(W (t) − W (s))U(u)] = E[(W (u) − W (s))U(u)] =

∫ u

s

c(u − v)dv,

whence

E

[
(W (t) − W (s))

∫ t

s

U(u)du

]
=

∫ t

s

∫ u

s

c(u − v)dudv

=

∫ t−s

0

du

∫ u

0

c(v)dv.

Thus the lemma follows.

By Lemma 4.1, we have

HV(t) = σ
√

f(t) (t > 0),(4.2)
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where

f(t) := 1 − ε
2

t

∫ t

0

du

∫ u

0

c(v)dv +
2

t

∫ t

0

du

∫ u

0

γ(v)dv (t > 0).(4.3)

First we consider the model with (1.2) or (2.17).

Theorem 4.2. We assume that Y (·) is as in Theorem 2.13. We also
assume that a(·) �= 0, i.e., ν �= 0. Then HV(·) is strictly decreasing on
(0,∞), and we have

HV(t) ↑ σ (t → 0+),(4.4)

HV(t) ↓ σ

1 +
∫∞

0
a(u)du

(t ↑ ∞).(4.5)

In particular,

σ

1 +
∫∞

0
a(u)du

< HV(t) < σ (0 < t < ∞).(4.6)

Proof. We have

f ′(t) =
2

t

{
1

t

∫ t

0

du

∫ u

0

(c(v) − γ(v))dv −
∫ t

0

(c(v) − γ(v))dv

}
(t > 0).

Now c(v) − γ(v) > 0 for v > 0 since

γ(v) =

∫ ∞

0

c(v + u)c(u)du < c(v)

∫ ∞

0

c(u)du < c(v).

This implies that
∫ t

0
(c(v) − γ(v))dv is strictly increasing in t, so that

f ′(t) < 0 for t > 0. Thus f(·), hence HV(·), is strictly decreasing on
(0,∞). From (4.2) with (4.3), we see that HV(t) ↑ σ as t ↓ 0. Now we
have

∫∞
0

c(u)du < 1, and∫ ∞

0

γ(t)dt =
1

2

{∫ ∞

0

c(u)du

}2

.

Thus

lim
t→∞

f(t) = 1 − 2

∫ ∞

0

c(u)du +

(∫ ∞

0

c(u)du

)2

=

(
1 −

∫ ∞

0

c(u)du

)2

.

Since

1 −
∫ ∞

0

c(u)du =

(
1 +

∫ ∞

0

a(u)du

)−1

,

we obtain (4.6)
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Example 4.3. Let p, q ∈ (0,∞). Suppose that the stock price S(·) is
described by (1.1) with (2.20). Then c(t) = pe−(p+q)t for t > 0, that is,
S(·) is given by

S(t) = S(0) exp

{∫ t

0

m(s)ds

− σ

∫ t

0

(∫ s

−∞
pe−(p+q)(s−u)dW (u)

)
ds + σW (t)

}
.

(4.7)

Hence

γ(t) =

∫ ∞

0

c(t + u)c(u)du =
p2

2(p + q)
e−(p+q)t (t > 0).

By Lemma 4.1, we have HV(t) =V(t;σ, p, q) for t > 0 with

V(t;σ, p, q) := σ

√
q2

(p + q)2
+

p(2q + p)

(p + q)3
· (1 − e−(p+q)t)

t
(4.8)

and HV(t) ↓ σq/(p + q) as t ↑ ∞. In [2], we estimated HV(t) (t =
1, 2, 3, . . . ) from S&P 500 closing index. We found that the estimated
HV(·) is not constant, whence the BS model may not be suitable. On
the other hand, we fitted the function V(t;σ, p, q) in (4.8) by using non-
linear least squares, and found that it approximates the estimated HV(·)
reasonably well.

Next we consider the model with (1.3) or (2.10) in the short-memory
case.

Theorem 4.4. We assume that Y (·) is as in Theorem 2.11 and that
a(·) �= 0. Then HV(·) is strictly increasing on (0,∞), and we have

HV(t) ↓ σ (t → 0+),(4.9)

HV(t) ↑ σ

1 − ∫∞
0

a(u)du
(t ↑ ∞).(4.10)

In particular,

σ < HV(t) <
σ

1 − ∫∞
0

a(u)du
(0 < t < ∞).(4.11)

The proof of Theorem 4.4 is similar to that of Theorem 4.2; and so we
omit it.

Example 4.5. Let 0 < p < q. Suppose that the stock price process S(·)
is described by (1.1) with (2.15). Then c(t) = pe−(q−p)t for t > 0, that is,
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S(·) is given by

S(t) = S(0) exp

{∫ t

0

m(s)ds

+ σ

∫ t

0

(∫ s

−∞
pe−(q−p)(s−u)dW (u)

)
ds + σW (t)

}
.

(4.12)

Using Lemma 4.1, we have

HV(t) = σ

√
q2

(q − p)2
− p(2q − p)

(q − p)3
· (1 − e−(q−p)t)

t
(4.13)

and HV(t) ↑ σq/(q − p) as t ↑ ∞.

Finally we consider the model with (1.3) or (2.10) in the long-memory
case.

Theorem 4.6. We assume that Y (·) is as in Theorem 2.7. Then HV(·)
is strictly increasing on (0,∞), and we have (4.9) and

HV(t) ↑ ∞ (t ↑ ∞)(4.14)

In particular HV(t) > σ for t > 0. If we further assume (2.12), for
p ∈ (0, 1/2) and 
(·) slowly varying at infinity, then

HV(t) ∼ σ
tp


(t)

sin(pπ)

π

√
B(1 − 2p, p)

p(2p + 1)
(t → ∞).(4.15)

Proof. The first three assertions can be proved in the same way as the
proof of Theorem 4.2. So we prove only the last one. By Theorem 2.9,
(2.12) implies the following:

c(t) ∼ t−(1−p)


(t)
· sin(pπ)

π
(t → ∞),

γ(t) ∼ t−(1−2p)


(t)2

(
sin(pπ)

π

)2

B(1 − 2p, p) (t → ∞).

We then find that, among the three terms on the right-hand side of (4.3),
the first and second terms are negligible relative to the third. Thus we
have

f(t) ∼ 2

t

∫ t

0

du

∫ u

0

γ(v)dv ∼ t2p


(t)2

(
sin(pπ)

π

)2
B(1 − 2p, p)

p(2p + 1)
(t → ∞),

which yields (4.15).
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Example 4.7. Let p ∈ (0, 1/2). Suppose that Y (·) is as in Theorem 2.7
with a(·) as in Example 2.10. Suppose that S(·) is described by (1.1).
Then, by Theorem 4.6, the following holds:

HV(t) ∼ tp · σ sin(pπ)

π

√
B(1 − 2p, p)

p(2p + 1)
(t → ∞).(4.16)

5. Proofs of Theorems 2.1 and 2.3

We start from a correspondence between µ and ν in (2.1) when they
are discrete measures.

Lemma 5.1. Let n ∈ N. Let µ be a Borel measure on (0,∞) of the form

µ =
n∑

k=1

akδrk
,(5.1)

with

ak ∈ (0,∞) (k = 1, 2, . . . , n),(5.2)

0 < r1 < r2 < · · · < rn < ∞,(5.3) ∫ ∞

0

1

s
µ(ds) < 1.(5.4)

Then there exists a Borel measure ν on (0,∞) of the form

ν =
n∑

k=1

bkδpk
(5.5)

bk ∈ (0,∞) (k = 1, 2, . . . , n),(5.6)

0 < p1 < r1 < p2 < r2 < · · · < pn < rn,(5.7)

satisfying (2.1).

Proof. For w = iz, we have{
1 −

∫ ∞

0

1

s − w
µ(ds)

}−1

− 1

=

{∫ ∞

0

1

s − w
µ(ds)

}{
1 −

∫ ∞

0

1

s − w
µ(ds)

}−1

=

{
n∑

k=1

ak

rk − w

}{
1 −

n∑
k=1

ak

rk − w

}−1

= f(w)−1
n∑

k=1

ak

∏
m
=k

(rm − w),

20



where f(w) is a polynomial in w, of degree n, given by

f(w) :=
n∏

k=1

(rk − w) −
n∑

k=1

ak

∏
m
=k

(rm − w).

Now we have

f(0) =
n∏

k=1

rk −
n∑

k=1

ak

∏
m
=k

rm =

(
n∏

k=1

rk

){
1 −

∫ ∞

0

1

s
µ(ds)

}
> 0,

and

sgn f(rk) = (−1)k (k = 1, 2, . . . , n).

Therefore there exist positive numbers pk (k = 1, 2, . . . , n) satisfying (5.7)
and

f(w) =
n∏

k=1

(pk − w).

From f(pl) = 0, it follows that

n∑
k=1

ak

∏
m
=k

(rm − pl) =
n∏

k=1

(rk − pl) (l = 1, 2, . . . , n).

So, in the partial fraction decomposition

f(w)−1

n∑
k=1

ak

∏
m
=k

(rk − w) =
n∑

l=1

bl

pl − w
,

the coefficients bl are given by

bl =

∑n
k=1 ak

∏
m
=k(rm − pl)∏

k 
=l(pk − pl)
=

∏n
k=1(rk − pl)∏
k 
=l(pk − pl)

> 0 (l = 1, 2, . . . , n).

With these pl and bl, the measure ν defined by (5.5) gives the desired
measure.

Conversely, we have the following lemma.

Lemma 5.2. Let n ∈ N. Let ν be a Borel measure on (0,∞) of the form
(5.5) with (5.6) and

0 < p1 < p2 < · · · < pn < ∞.

Then there exists a Borel measure µ on (0,∞) satisfying (2.1), (5.1),
(5.2), (5.4), and (5.7).

The proof of Lemma 5.2 is similar to that of Lemma 5.1; and so we
omit it.
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We call a Borel measure µ on (0,∞) simple if it is of the form (5.1), for
some n ∈ N, with (5.2) and (5.3). We define

Ms =

{
µ :

µ is a (possibly zero) simple measure on (0,∞)

such that
∫∞

0
s−1µ(ds) < 1

}
,

Ns = {ν : ν is a (possibly zero) simple measure on (0,∞)} .

We define the one-to-one and onto map

θs : Ms � µ �→ ν = θs(µ) ∈ Ns

by (2.1).
In the proofs below, we regard Borel measures η on (0,∞) as Borel

measures on [0,∞] by η{0} = η{∞} = 0 if necessary.

Proof of Theorem 2.1. We prove only the first half of the theorem; we
can prove the second half in a similar fashion. Let µ ∈ M0. We define
the finite Borel measure µ̃ on [0,∞] by

µ̃(ds) = s−1I(0,∞)(s)µ(ds).

Take a sequence of simple measures µn (n = 1, 2, . . . ) such that s−1µn(ds)
converges weakly to µ̃ on [0,∞]. Since

µ̃[0,∞] =

∫ ∞

0

s−1µ(ds) < 1,

we may assume that
∫∞

0
s−1µn(ds) < 1 for n = 1, 2, . . . . We put νn :=

θs(µn) and ν̃n(ds) := s−1νn(ds). Then we have, for n = 1, 2, . . . ,{
1 +

∫ ∞

0

s

s − iz
ν̃n(ds)

}{
1 −

∫ ∞

0

s

s − iz
µ̃n(ds)

}
= 1 (�z > 0).

Letting y ↓ 0 in this equality with z = iy, we see that

sup
n

ν̃n[0,∞] = sup
n

µ̃n[0,∞]

1 − µ̃n[0,∞]
< ∞.

Therefore, by the Helly selection principle, we can find a subsequence n′

such that ν̃n′ converges weakly to ν̃, say, on [0,∞]. It follows that{
1 + ν̃{∞} +

∫ ∞

0

1

s − iz
ν(ds)

}{
1 −

∫ ∞

0

1

s − iz
µ(ds)

}
= 1 (�z > 0),

where ν is the measure on (0,∞) defined by

ν(ds) := I(0,∞)(s)sν̃(ds).

Letting y ↑ ∞ in this equality with z = iy, we see that 1 + ν̃{∞} = 1 or
ν̃{∞} = 0. This proves the first half of the theorem.
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Proof of Theorem 2.3. We prove only the first half of the theorem; we
can prove the second half in a similar fashion. Let µ ∈ M1. Set m :=
inf{s : s ∈ supp(µ)}. If m = 0, then∫ ∞

0

s−2µ(ds) ≤ m−1

∫
[m,∞)

s−1µ(ds) < ∞,

contradicting the condition
∫∞

0
s−2µ(ds) = ∞. Thus m = 0. Therefore

there exists an N ∈ N, such that, for µn(ds) := I(1/n,∞)(s)µ(ds),∫ ∞

0

s−1µn(ds) <

∫ ∞

0

s−1µ(ds) = 1 (n ≥ N),

whence µn ∈ M0 for n ≥ N . We define νn := θ0(µn) ∈ N0. Then, as
n → ∞, ∫ ∞

0

1

s + 1
νn(ds) =

∫∞
0

(1 + s)−1µn(ds)

1 − ∫∞
0

(1 + s)−1µn(ds)

→
∫∞

0
(1 + s)−1µ(ds)

1 − ∫∞
0

(1 + s)−1µ(ds)
∈ (0,∞),

so that

sup
n

∫ ∞

0

1

1 + s
νn(ds) < ∞.

Therefore, for ν̃n(ds) := (s + 1)−1I(0,∞)(s)νn(ds), there exists a subse-
quence n′ such that ν̃n′ converges weakly to a finite Borel measure ν̃, say,
on [0,∞]. It follows that, for �z > 0,{

1 − ν̃{0}
iz

+ ν̃{∞} +

∫ ∞

0

1

s − iz
ν(ds)

}{
1 −

∫ ∞

0

1

s − iz
µ(ds)

}
= 1,

where ν is the measure on (0,∞) defined by ν(ds) := (1+s)I(0,∞)(s)ν̃(ds).
Letting y ↑ ∞ in the equality above with z = iy, we have ν̃{∞} = 0.

From
∫∞

0
s−1µ(ds) = 1, it follows that

1 −
∫ ∞

0

1

s + y
µ(ds) = y

∫ ∞

0

1

s(s + y)
µ(ds),

hence{
y + ν̃{0} +

∫ ∞

0

1

(s/y) + 1
ν(ds)

}∫ ∞

0

1

s(s + y)
µ(ds) = 1 (y > 0),

and so

ν̃{0} = lim
y↓0

{∫ ∞

0

1

s(s + y)
µ(ds)

}−1

= 0.
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Finally,∫ ∞

0

1

s
ν(ds) = lim

y↓0

{∫ ∞

0

1

s + y
µ(ds)

}{
1 −

∫ ∞

0

1

s + y
µ(ds)

}−1

= ∞.

Thus ν is the desired element of N1.
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