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Abstract. We develop a prediction theory for a class of processes
with stationary increments. In particular, we prove a prediction for-
mula for these processes from a finite segment of the past. Using the
formula, we prove an explicit representation of the innovation pro-
cesses associated with the stationary increments processes. We apply
the representation to obtain a closed-form solution to the problem of
expected logarithmic utility maximization for the financial markets
with memory introduced by the first and second authors.

1. Introduction

We first recall the price process of a stock introduced in [1]. Let T be a
positive constant. We consider a stock with price S(t) at time t ∈ [0, T ].
We suppose that S(0) is a positive constant and that S(·) satisfies the
stochastic differential equation

dS(t) = S(t) {m(t)dt+ σ(t)dY (t)} ,(1.1)

where the process m(·) of mean rate of return and the volatility process
σ(·) may be random, though we are especially interested in the case in
which m(·) is deterministic and σ(·) is a positive constant. In the standard
model [12, Chapter 1], the process Y (·) is a one-dimensional Brownian
motion. However here we assume that Y (·) is a continuous process defined
on a complete probability space (Ω,F , P ) with stationary increments such
that Y (0) = 0, and satisfies the continuous-time AR(∞)-type equation

dY

dt
(t) +

∫ t

−∞
a(t− s)

dY

dt
(s)ds =

dW

dt
(t)(1.2)

(see (3.1) below for its precise formulation), where (W (t))t∈R is a one-
dimensional Brownian motion such that W (0) = 0, and dY/dt and dW/dt
are the derivatives of Y (·) and W (·) respectively in the random distribu-
tion sense. The kernel a(·) is a finite, integrable, completely monotone

Key words and phrases. Prediction, Processes with stationary increments, Innova-
tion processes, Financial markets with memory.

This work is partially supported by the Australian Research Council grant
A10024117.

1



function on (0,∞). In the simplest case a(·) ≡ 0, Y (·) is reduced to the
Brownian motion, i.e., Y (·) = W (·).

For the filtration {F(t)}0≤t≤T of the financial market, we take the aug-
mentation of the filtration generated by Y (·). It follows that Y (·) is a
(Gaussian) {F(t)}-semimartingale of the form

Y (t) = B(t) −
∫ t

0

α(s)ds (0 ≤ t ≤ T ),(1.3)

where α(·) is an {F(t)}-adapted process and B(·) is an {F(t)}-Brownian
motion called the innovation process (see Section 5). Notice that B(·)
and W (·) are different. The stochastic differential (1.1) may now be inter-
preted in the usual sense, and the solution S(·) is given by, for 0 ≤ t ≤ T ,

S(t) = S(0) exp

[∫ t

0

σ(s)dY (s) +

∫ t

0

{
m(s) − 1

2
σ(s)2

}
ds

]
.(1.4)

The integral on the left-hand side of (1.2) has the effect of incorporating
memory into the dynamics of Y (·), whence that of S(·). The financial
market with stock price S(·) is complete under suitable conditions. More-
over, if σ(·) as well as the risk-free interest rate process r(·) are constant,
then the Black–Scholes formula for option pricing holds in this market
(see Section 6).

The simplest nontrivial example of a(·) above is a(t) = pe−qt for t > 0
with p, q ∈ (0,∞). In this case, we have

Y (t) = W (t) −
∫ t

0

(∫ s

−∞
pe−(q+p)(s−u)dW (u)

)
ds (t ∈ R)(1.5)

(Example 5.3). It should be noted that this (as well as (3.3) with (3.4)
below) is not a semimartingale representation of Y (·) since W (·) is not
{F(t)}-adapted. If we further assume that σ(·) ≡ σ and m(·) ≡ m with
σ and m being constants, then S(·) is given by, for 0 ≤ t ≤ T ,

S(t) = S(0) exp

{
σW (t) +

(
m− 1

2
σ2

)
t

−σ
∫ t

0

(∫ s

−∞
pe−(q+p)(s−u)dW (u)

)
ds

}
.

(1.6)

This stock price S(·) is worth special attention. Compared with the stock
price in the Black–Scholes model, S(·) has two additional parameters p
and q which describe the memory. As stated above, the financial market
with S(·) is complete and the Black–Scholes formula holds in it. The
difference between the market with S(·) and the Black–Scholes market is
illustrated by the historical volatility HV(·) defined by

HV(t− s) :=

√
Var {log(S(t)/S(s))}

t− s
(t > s ≥ 0),
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where the variance is defined with respect to the physical probability mea-
sure P . While HV(·) is constant in the Black–Scholes model, we have
HV(t) = f(t) for S(·) in (1.6), where f(t) = f(t;σ, p, q) is a decreasing
function on (0,∞) defined by

f(t) = σ

√
q2

(p+ q)2
+
p(2q + p)

(p+ q)3
· (1 − e−(p+q)t)

t
(t > 0),

which satisfies limt→∞ f(t) = qσ/(p + q) and limt→0+ f(t) = σ. In [2],
an empirical study on the model (1.6) was carried out. There, the values
HV(t) (t = 1, 2, 3, . . . ) are estimated from real market data, such as closing
values of S&P 500 index. It is found that HV(t) is not constant unlike
in the Black–Scholes model, and very often reveals features in agreement
with those of f(·). The function f(t) is fitted by nonlinear least squares,
and the parameters σ, p and q are estimated in this way. It is found
that the fitted f(·) approximates the estimated HV(·) quite well when the
market is stable.

In this paper, as a typical financial problem for the market with stock
price (1.4), we consider expected logarithmic utility maximization from
terminal wealth. We are especially interested in the case (1.6) explained
above. In principle, we can reduce such a problem to that for the stan-
dard financial markets, as described in [12], by using the semimartingale
representation (1.3) of Y (·). From the financial viewpoint, however, re-
sults thus obtained would not be of much value unless we have sufficient
knowledge about α(·) in (1.3). We thus need to resolve the problem of
obtaining a good representation of α(·). One of the main results of this
paper is the following representation (Theorem 5.2):

α(t) =

∫ t

0

k(t, s)dY (s) (0 ≤ t ≤ T ),(1.7)

where k(t, s) is a deterministic function represented explicitly in terms
of the AR(∞)-coefficient a(·) and the corresponding MA(∞)-coefficient
c(·) (cf. Section 3). In particular, for Y (·) in (1.5), k(t, s) has a very
simple form (Example 5.3). We can regard (1.3) with (1.7) as an explicit
representation of the innovation process B(·) in terms of Y (·).

To prove the representation of the form (1.7), we construct a prediction
theory for Y (·). In particular, we prove an explicit prediction formula
from a finite segment of the past for Y (·). We remark that, in general, it
is not an easy task to obtain such an explicit finite-past prediction formula
for continuous-time processes with stationary increments. In fact, known
results are obtained only for special processes such as fractional Brownian
motion by using their special properties (cf. [5]). In this paper, we use
a general method for processes with stationary increments, as we now
explain. Let t ∈ (0,∞). We writeM(Y ) for the real Hilbert space spanned
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by {Y (s) : s ∈ R} in L2(Ω,F , P ) and ‖ · ‖ for its norm defined by ‖Z‖ =
E[Z2]1/2 for Z ∈ M(Y ). Let I be a closed interval of R such as [0, t],
(−∞, t], and [0,∞). Let MI(Y ) be the closed subspace of M(Y ) spanned
by {Y (s) : s ∈ I}. We write PI for the orthogonal projection from M(Y )
onto MI(Y ), and P⊥

I for its orthogonal complement: P⊥
I Z = Z − PIZ

for Z ∈M(Y ). Then since Y (·) is Gaussian, we have E[Z|F(t)] = P[0,t]Z
for Z ∈M(Y ), where throughout the paper E[·|·] denotes the conditional
expectation with respect to the original probability measure P . In this
method, we first prove the equality

P[0,t] = s-lim
n→∞

{P[0,∞)P(−∞,t]}n(1.8)

and then use it to obtain the representations of quantities related to P[0,t]

in terms of AR(∞) and MA(∞) coefficients. It should be noticed that
(1.8) is equivalent to

M[0,t](Y ) = M(−∞,t](Y ) ∩M[0,∞)(Y )(1.9)

(see the proof of Theorem 4.6 below). What is interesting in this method
is that we consider not only the past M(−∞,t](Y ) but also the future
M[0,∞)(Y ) in the prediction from a finite segment of the past.

The above type of method was used in [8] in a simpler framework, i.e.,
that of discrete-time stationary processes, to obtain a representation of
mean-squared prediction error. See [9] and [10] for subsequent results in
the same framework. Now, unlike in these references, we develop a simi-
lar method to prove the prediction formula itself, rather than a represen-
tation of prediction error, for continuous-time processes with stationary
increments. This setting is more difficult and requires new techniques.
One of the key ingredients in the arguments is the proof of (1.8) or (1.9).
Equalities of the type (1.9) are studied by [13], [3], and [16] for continuous-
time stationary processes. A discrete-time analogue is proved in [8] by a
method similar to that of [13]. In the present setting, however, we need a
quite different approach.

In Section 2, we state some necessary facts about processes with station-
ary increments. In Section 3, we prove an infinite-past prediction formula
which we need in Section 4, where we prove a finite-past prediction for-
mula in which P[0,t]

∫
f(s)dY (s) is represented explicitly. In Section 5,

we prove the representation (1.3) of α(·) in (1.7) using the prediction for-
mula. Finally, in Section 6, we describe the implication of (1.7) in the
financial markets with stock prices (1.4) via expected logarithmic utility
maximization.

2. Processes with stationary increments

In this section, we prove some facts about stationary increments pro-
cesses which we need in later sections.
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We denote by M the Hilbert space of R-valued random variables, de-
fined on a probability space (Ω,F , P ), with expectation zero and finite
variance:

M := {Z ∈ L2(Ω,F , P ) : E[Z] = 0}
with inner product (Z1, Z2) := E [Z1Z2] and norm ‖Z1‖ := (Z1, Z1)

1/2.
By D(R), we denote the space of all φ ∈ C∞(R) with compact support,
endowed with the usual topology. A random distribution (with expecta-
tion zero) is a linear continuous map from D(R) to M . We write D′(M)
for the class of random distributions on (Ω,F , P ). For X ∈ D′(M),
the derivative DX ∈ D′(M) is defined by DX(φ) := −X(dφ/dx). For
X ∈ D′(M) and an interval I of R, we write MI(X) for the closed linear
hull of {X(φ) : φ ∈ D(R), supp φ ⊂ I} in M . In particular, we write
M(X) for MI(X) with I = R. A random distribution X is stationary if
(X(τhφ), X(τhψ)) = (X(φ), X(ψ)) for φ, ψ ∈ D(R) and h ∈ R, where τh
is the shift operator defined by τhφ(t) := φ(t+h). We write S for the class
of stationary random distributions on (Ω,F , P ). For X ∈ S, we write µX

for the spectral measure of X:

(X(φ), X(ψ)) =

∫ ∞

−∞
φ̂(ξ)ψ̂(ξ)µX(dξ) (φ, ψ ∈ D(R)),

where φ̂ is the Fourier transform of φ: φ̂(ξ) :=
∫ ∞
−∞ e−itξφ(ξ)dξ. See [11]

for details.
In this section, we assume that (Y (t))t∈R is a real, zero-mean, mean-

square continuous process, defined on (Ω,F , P ), with stationary incre-
ments such that Y (0) = 0. Thus, for each a ∈ R, the process (∆Ya(t) :
t ∈ R) defined by ∆Ya(t) := Y (a+t)−Y (t) is a zero-mean, weakly station-
ary process. As usual, we regard Y (·) ∈ D′(M) by Y (φ) =

∫ ∞
−∞ Y (t)φ(t)dt

for φ ∈ D(R). Then it holds that DY ∈ S. We now assume that

DY is purely nondeterministic,(2.1)

that is,
⋂

t∈RM(−∞,t](DY ) = {0} or, equivalently, there exists a positive,
even and measurable function ∆DY (·) on R, called the spectral density of
DY , satisfying µDY (dξ) = ∆DY (ξ)dξ and∫ ∞

−∞

∆DY (ξ)

1 + ξ2
dξ <∞,

∫ ∞

−∞

| log ∆DY (ξ)|
1 + ξ2

dξ <∞

(see [15]). Let DY (φ) =
∫ ∞
−∞ φ̂(ξ)ZDY (dξ) with φ ∈ D(R) be the spectral

decomposition of DY as a stationary random distribution, where ZDY is
the associated complex-valued random measure such that

E[ZDY (A)ZDY (B)] = µDY (A ∩B).
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Since µDY {0} = 0, we have the following spectral representation of Y (·)
(cf. [11, Theorem 6.1]):

Y (t) =

∫ ∞

−∞

1 − e−itξ

iξ
ZDY (dξ) (t ∈ R).(2.2)

For a closed interval I of R, we see that MI(Y ) defined above is equal to
the closed real linear hull of {Y (t) : t ∈ I} in L2(Ω,F , P ). In particular,
M(Y ) is equal to the closed real linear hull of {Y (t) : t ∈ R}. Thus the
definitions of MI(Y ) and M(Y ) in this section are consistent with those
in Section 1.

For t, s ∈ R, we have (Y (t), Y (s)) = (Y (−t), Y (−s)); to see this, we
use, e.g., (2.2). Hence, we may have the next definition.

Definition 2.1. We write θ for the Hilbert space isomorphism of M(Y )
characterized by θ(Y (t)) = Y (−t) for t ∈ R.

Clearly, θ−1 = θ. Recall from Section 1 that, for a closed interval I
of R, PI is the orthogonal projection of M(Y ) onto MI(Y ). We define
−I := {−s : s ∈ I}. Then, since θPIθ

−1 is a projection of M(Y ) and
θPIθ

−1(M(Y )) = M−I(Y ), it holds that θPIθ
−1 = P−I .

Since we have assumed (2.1), we have a canonical Brownian motion
W = (W (t))t∈R for DY ; W is a Brownian motion satisfying W (0) = 0
and

M(−∞,t](DW ) = M(−∞,t](DY ) (t ∈ R).(2.3)

By Proposition 2.3 (4) below, it holds thatM(Y ) = M(DY ) = M(DW ) =
M(W ). Therefore, we have the next definition.

Definition 2.2. We define the process (W ∗(t))t∈R by

W ∗(t) := θ(W (−t)) (t ∈ R).

Since we have, for t, s ∈ R,

(W ∗(t),W ∗(s)) = (θ(W (−t)), θ(W (−s))) = (W (−t),W (−s))
= (W (t),W (s)),

W ∗(·) is also a Brownian motion such that W ∗(0) = 0.

Proposition 2.3. Let t ∈ R and −t0 ≤ 0 ≤ t1. Let I be a closed interval
of R. Then

(1) M[−t0,t1](Y ) = M[−t0,t1](DY );
(2) M(−∞,t1](Y ) = M(−∞,t1](DY );
(3) M[−t0,∞)(Y ) = M[−t0,∞)(DY );
(4) M(Y ) = M(DY );
(5) θ

(
M(−∞,t](DW )

)
= M[−t,∞)(DW

∗);
(6) M(−∞,t1](Y ) = M(−∞,t1](DW );
(7) M[−t0,∞)(Y ) = M[−t0,∞)(DW

∗);
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(8) θ(
∫

I
f(s)dW (s)) = − ∫

−I
f(−s)dW ∗(s) for f ∈ L2(I, ds).

Proof. For φ ∈ D(R) with supp φ ⊂ [−t0, t1], we have DY (φ) = −Y (φ′) ∈
M[−t0,t1](Y ), so that M[−t0,t1](DY ) ⊂ M[−t0,t1](Y ). For (1), we prove the
converse inclusion

M[−t0,t1](Y ) ⊂M[−t0,t1](DY ).(2.4)

Let s ∈ [−t0, 0). Let ρ be an element of D(R) satisfying supp ρ ⊂ [−1, 1]
and

∫ ∞
−∞ ρ(u)du = 1. We define, for u ∈ R and large enough n ∈ N,

ρn(u) := nρ(nu) and φn(u) := ρn ∗ I[s+(1/n),−1/n](u). Then φn ∈ D(R) and

supp φn ⊂ [s, 0]. From (1− e−isξ)/(iξ) = − ∫ 0

s
e−iuξdu for ξ 
= 0, we have,

for ξ 
= 0,∣∣∣∣1 − e−isξ

iξ
+ φ̂n(ξ)

∣∣∣∣ ≤
∫ 0

s

|1 − φn(u)|du→ 0 (n→ ∞).

On the other hand, |(1 − e−isξ) + iξφ̂n(ξ)| is at most

|ρ̂ (ξ/n)| · ∣∣(1 − eiξ/n) − (
e−iξs − e−iξ(s+(1/n))

)∣∣ +
∣∣(1 − ρ̂(ξ/n))(1 − e−isξ)

∣∣
≤ 2 |(ξ/n)ρ̂ (ξ/n)| + 2 |1 − ρ̂(ξ/n)| ,
and the right-hand side is bounded and tends to 0 as n→ ∞. Combining,
(1 − iξ){(1 − e−isξ)/(iξ) + φ̂n(ξ)} is bounded and tends to 0, as n → ∞,
for ξ 
= 0. Hence, by the dominated convergence theorem,

lim
n→∞

‖Y (s) +DY (φn)‖2

= lim
n→∞

∫ ∞

−∞

∣∣∣∣(1 − iξ)

{
1 − e−isξ

iξ
+ φ̂n(ξ)

}∣∣∣∣
2

∆DY (ξ)

1 + ξ2
dξ = 0.

Thus Y (s) ∈M[−t0,0](DY ) ⊂M[−t1,t0](DY ). In the same way, we see that
Y (s) ∈ M[0,t1](DY ) ⊂ M[−t0,t1](DY ) for s ∈ (0, t1]. Moreover, Y (0) = 0 ∈
M[−t0,t1](DY ). Hence (2.4) holds. (2)–(4) follow immediately from (1).

Let φ ∈ D(R) with supp φ ⊂ (−∞, t]. Then θ(DW (φ)) is equal to

−
∫ ∞

−∞
W ∗(−s)φ′(s)ds =

∫ ∞

−∞
W ∗(s)

d

ds
(φ(−s))ds = −DW ∗(φ(−·)),

so that θ(DW (φ)) ∈M[−t,∞)(DW
∗). Thus

θ(M(−∞,t](DW )) ⊂M[−t,∞)(DW
∗).

In the same way, we have θ(M[−t,∞)(DW
∗)) ⊂M(−∞,t](DW ), whence

M[−t,∞)(DW
∗) = θ2

(
M[−t,∞)(DW

∗)
) ⊂ θ(M(−∞,t](DW )).

Thus (5) follows. The assertion (6) follows from (2) and (2.3), while we
obtain (7) from (5), (6) and θ(M(−∞,t0](Y )) = M[−t0,∞)(Y ).

To prove (8), we may assume that f is of the form f(s) = I(a,b](s)
with (a, b] ⊂ I. Then θ(

∫
I
f(s)dW (s)) is equal to θ (W (b) −W (a)) =

W ∗(−b) −W ∗(−a) or − ∫
−I
f(−s)dW ∗(s). Thus (8) follows.
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3. Prediction from an infinite segment of the past

Let (W (t))t∈R be a one-dimensional standard Brownian motion such
that W (0) = 0, defined on a complete probability space (Ω,F , P ). Let
(Y (t))t∈R be a zero-mean, mean-square continuous process with stationary
increments, defined on (Ω,F , P ), satisfying Y (0) = 0 and

DY + a ∗DY = DW,(3.1)

where DY and DW are the derivatives of the stationary increment pro-
cesses Y (·) and W (·), respectively, whence stationary random distribu-
tions, and a ∗DY is the convolution of a deterministic function a(·) and
DY (see [11] and [1, Section 2]). We assume that a(·) is of the form

a(t) = I(0,∞)(t)

∫ ∞

0

e−tsν(ds) (t ∈ R),(3.2)

where ν is a finite Borel measure on (0,∞) such that
∫ ∞
0
s−1ν(ds) < ∞.

Thus a(·) is a bounded nonnegative function on R, vanishing on (−∞, 0],
that is completely monotone on (0,∞). Formally (3.1) can be written as
(1.2).

By [1, Theorem 2.13], Y (·) has the following MA(∞)-type representa-
tion

Y (t) = W (t) −
∫ t

0

U(s)ds,(3.3)

where (U(t))t∈R is a purely nondeterministic stationary Gaussian process
of the form

U(t) =

∫ t

−∞
c(t− s)dW (s) (t ∈ R)(3.4)

with canonical representation kernel c(·) such that

c(t) = I(0,∞)(t)

∫ ∞

0

e−tsµ(ds) (t ∈ R).(3.5)

Here µ is a finite Borel measure on (0,∞) satisfying
∫ ∞
0
s−1µ(ds) < 1.

Notice that c(·) satisfies
∫ ∞
0
c(t)dt < 1, whence∫ ∞

0

c(t)2 ≤ c(0+)

∫ ∞

0

c(t)dt <∞.

The kernel c(·) is determined from a(·) through the relation{
1 +

∫ ∞

0

eizta(t)dt

} {
1 −

∫ ∞

0

eiztc(t)dt

}
= 1 (�z > 0).(3.6)

Moreover, by [1, Theorem 2.13], Y satisfies (2.1).
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Let I be a closed interval of R. We define

HI(Y ) =

{
f :

f is a real-valued measurable function on I satisfying∫
I
f(s)2ds <∞,

∫ ∞
−∞

{∫
I
|f(u)|c(u− s)du

}2
ds <∞

}
.

This is the class of f(·) for which we define
∫

I
f(s)dY (s). We write H0

I

for the subset of HI(Y ) defined by

H0
I =

{∑m

k=1
akI(tk−1,tk](s) :

m ∈ N, −∞ < t0 < t1 < · · · < tm <∞
with (t0, tm] ⊂ I, ak ∈ R (k = 1, . . . ,m)

}
.

We call f ∈ H0
I a simple function on I. For f =

∑m
k=1 akI(tk−1,tk] ∈ H0

I ,
we define the stochastic integral

∫
I
f(s)dY (s) by

∫
I

f(s)dY (s) :=
m∑

k=1

ak(Y (tk) − Y (tk−1)).

For a real-valued function f on I, we write f(x) = f+(x) − f−(x), where

f+(x) := max(f(x), 0), f−(x) := max(−f(x), 0) (x ∈ I).

Definition 3.1. For f ∈ HI(Y ), we define∫
I

f(s)dY (s) := lim
n→∞

∫
I

f+
n (s)dY (s) − lim

n→∞

∫
I

f−
n (s)dY (s) in M(Y ),

where {f+
n } and {f−

n } are arbitrary sequences of non-negative simple func-
tions on I such that f+

n ↑ f+, f−
n ↑ f−, as n→ ∞, a.e.

Proposition 3.2. For f ∈ HI(Y ), we have∫
I

f(s)dY (s)

= −
∫ ∞

−∞

(∫
I

f(u)c(u− s)du

)
dW (s) +

∫
I

f(s)dW (s).

(3.7)

Proof. For −∞ < a < b <∞ with (a, b] ⊂ I, we have

Y (b) − Y (a) = −
∫ b

a

(∫ ∞

−∞
c(u− s)dW (s)

)
du+W (b) −W (a)

= −
∫ ∞

−∞

(∫
I

I(a,b](u)c(u− s)du

)
dW (s) +

∫
I

I(a,b](s)dW (s),

which implies (3.7) for f = I(a,b], whence for f ∈ H0
I . Let f ∈ HI(Y ) such

that f ≥ 0, and let fn (n = 1, 2, . . . ) be a sequence of simple functions on
I such that 0 ≤ fn ↑ f a.e. Then, by the monotone convergence theorem,
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we have∥∥∥∥
∫

I

fn(s)dY (s) +

∫ ∞

−∞

(∫
I

f(u)c(u− s)du

)
dW (s) −

∫
I

f(s)dW (s)

∥∥∥∥
≤

{∫
I

(f(s) − fn(s))2ds

}1/2

+

[∫ ∞

−∞

{∫
I

(f(u) − fn(u))c(u− s)du

}2

ds

]1/2

↓ 0 (n→ ∞).

Thus the proposition follows.

Recall M(Y ), ‖ · ‖, and MI(Y ) from Section 1. From the definition
above, we see that

∫
I
f(s)dY (s) ∈MI(Y ) for f ∈ HI(Y ).

We define

b(t, s) := −a(t+ s) +

∫ s

0

c(u)a(t+ s− u)du (t, s > 0).(3.8)

We will see from (3.10) below that b(t, s) ≤ 0 for t, s > 0.

Lemma 3.3. We have

a(t) − c(t) −
∫ t

0

c(u)a(t− u)du = 0 (t > 0),(3.9)

b(t, s) = −c(t+ s) −
∫ t

0

a(u)c(t+ s− u)du (t, s > 0),(3.10)

c(t+ s) = −b(t, s) +

∫ t

0

c(t− u)b(u, s)du (t, s > 0).(3.11)

Proof. Since(∫ ∞

0

eizta(t)dt

) (∫ ∞

0

eiztc(t)dt

)
=

∫ ∞

0

eizt

(∫ t

0

c(u)a(t− u)du

)
dt,

it follows from (3.6) that
∫ ∞

0
eizt

(
a(t) − c(t) − ∫ t

0
c(u)a(t− u)du

)
dt = 0

for �z > 0. Thus, by the uniqueness of the Laplace transform, we obtain
(3.9). We obtain (3.10) from (3.9) with t replaced by t+ s. By (3.6) and
(3.10), we see that, for s > 0,

∫ ∞
0
eiztc(t+ s)dt is equal to(

1 −
∫ ∞

0

eiztc(t)dt

) (
1 +

∫ ∞

0

eizta(t)dt

) (∫ ∞

0

eiztc(t+ s)dt

)

=

(∫ ∞

0

eiztc(t)dt− 1

) (∫ ∞

0

eiztb(t, s)dt

)

=

∫ ∞

0

eizt

(∫ t

0

c(t− u)b(u, s)du− b(t, s)

)
dt.

Again, by the uniqueness of the Laplace transform, we obtain (3.11).
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Here is the prediction formula for Y (·) from an infinite segment of the
past.

Theorem 3.4. Let t ∈ [0,∞) and f ∈ H[t,∞)(Y ). Then
∫ ∞
0
b(t−·, τ)f(t+

τ)dτ ∈ H(−∞,t](Y ) and

P(−∞,t]

∫ ∞

t

f(s)dY (s) =

∫ t

−∞

(∫ ∞

0

b(t− s, τ)f(t+ τ)dτ

)
dY (s).(3.12)

In particular, for t ≤ T , we have
∫ T−t

0
b(t− ·, τ)dτ ∈ H(−∞,t](Y ) and

P(−∞,t]Y (T ) = Y (t) +

∫ t

−∞

(∫ T−t

0

b(t− s, τ)dτ

)
dY (s).

Proof. Since f ∈ H[t,∞)(Y ) if and only if |f | ∈ H[t,∞)(Y ), we may assume
f ≥ 0. We have 0 ≤ −b(t, s) = a(t+ s)− ∫ s

0
c(u)a(t+ s− u)du ≤ a(t+ s)

for t, s > 0, so that∫ t

−∞

{∫ ∞

0

b(t− s, τ)f(t+ τ)dτ

}2

ds

≤
∫ ∞

0

{∫ ∞

0

a(s+ τ)f(t+ τ)dτ

}2

ds

≤
(∫ ∞

0

a(s)ds

)2 (∫ ∞

t

f(s)2ds

)
<∞

(3.13)

(cf. [7, Theorem 274]). It follows from (3.11) that

−b(t− s, τ) = c(t− s+ τ) −
∫ t−s

0

c(t− s− u)b(u, τ)du (t > s, τ > 0),

whence, by the Fubini-Tonelli theorem, for s < t,

−
∫ ∞

0

b(t− s, τ)f(t+ τ)dτ

=

∫ ∞

0

c(t− s+ τ)f(t+ τ)dτ

−
∫ ∞

0

dτf(t+ τ)

∫ t−s

0

c(t− s− u)b(u, τ)du

=

∫ ∞

t

c(u− s)f(u)du

−
∫ t

−∞

(∫ ∞

0

b(t− u, τ)f(t + τ)dτ

)
c(u− s)du.

(3.14)

Therefore, from (3.13) and
∫ ∞
−∞

(∫ ∞
t
f(u)c(u− s)du

)2
ds <∞, we see that∫ ∞

−∞

{∫ t

−∞

(∫ ∞

0

b(t− u, τ)f(t+ τ)dτ

)
c(u− s)du

}2

ds <∞.
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Thus
∫ ∞
0
b(t− ·, τ)f(t+ τ)dτ ∈ H(−∞,t](Y ).

By Proposition 2.3 (6), we have H(−∞,t](Y ) = H(−∞,t](DW ). By this as
well as Proposition 3.2 and (3.14),

P(−∞,t]

∫ ∞

t

f(s)dY (s)

= −
∫ t

−∞

(∫ ∞

t

f(u)c(u− s)du

)
dW (s)

= −
∫ t

−∞

{∫ ∞

0

(∫ ∞

0

b(t− u, τ)f(t+ τ)dτ

)
c(u− s)du

}
dW (s)

+

∫ t

−∞

(∫ ∞

0

b(t− s, τ)f(t+ τ)dτ

)
dW (s)

=

∫ t

−∞

(∫ ∞

0

b(t− s, τ)f(t+ τ)dτ

)
dY (s).

Thus (3.12) follows. By putting f(s) = I(t,T ](s) in (3.12), we obtain the
remaining assertions.

For later use, we also consider the projection operator P[−t,∞) with t ≥ 0.

Proposition 3.5. Let I be a closed interval of R and let f ∈ HI(Y ).
Let W ∗(·) be as in Definition 2.2. Then
(1) f(−·) ∈ H−I(Y ) and θ

(∫
I
f(s)dY (s)

)
= − ∫

−I
f(−s)dY (s);

(2)
∫

I
f(s)dY (s) = − ∫ ∞

−∞
(∫

I
f(u)c(s− u)du

)
dW ∗(s) +

∫
I
f(s)dW ∗(s).

Proof. By simple calculation, we have

∫ ∞

−∞

{∫
−I

|f(−u)|c(u− s)du

}2

ds =

∫ ∞

−∞

{∫
I

|f(u)|c(u− s)du

}2

ds,

whence f(−·) ∈ H−I(Y ). To prove the second assertion of (1), we may
assume that f(s) = I(a,b](s) with (a, b] ⊂ I. However, since II(−s) =
I−I(s), we have the following as desired:

∫
−I

f(−s)dY (s) = Y (−a) − Y (−b) = −θ
(∫

I

f(s)dY (s)

)
.

By (1) and Proposition 3.2,
∫
−I
f(−s)dY (s) is equal to

−
∫ ∞

−∞

(∫
−I

f(−u)c(u− s)du

)
dW (s) +

∫
−I

f(−s)dW (s).

12



Hence, by (1) and Proposition 2.3 (8),∫
I

f(s)dY (s) = −θ
(∫

−I

f(−s)dY (s)

)

= −
∫ ∞

−∞

(∫
−I

f(−u)c(u+ s)du

)
dW ∗(s) +

∫
I

f(s)dW ∗(s)

= −
∫ ∞

−∞

(∫
I

f(u)c(s− u)du

)
dW ∗(s) +

∫
I

f(s)dW ∗(s).

Thus (2) follows.

Theorem 3.6. Let t ∈ [0,∞) and f ∈ H[t,∞)(Y ). Then
∫ ∞

0
b(t+·, τ)f(t+

τ)dτ ∈ H[−t,∞)(Y ) and

P[−t,∞)

∫ −t

−∞
f(−s)dY (s) =

∫ ∞

−t

(∫ ∞

0

b(t+ s, τ)f(t+ τ)dτ

)
dY (s).

(3.15)

Proof. The first assertion follows from Theorem 3.4 and Proposition 3.5.
Now, by Proposition 3.5, θ

(
P(−∞,t]

∫ ∞
t
f(s)dY (s)

)
is equal to

θP(−∞,t]θ
−1θ

(∫ ∞

t

f(s)dY (s)

)
= −P[−t,∞)

∫ −t

−∞
f(−s)dY (s),

and θ(
∫ t

−∞(
∫ ∞
0
b(t− s, τ)f(t+ τ)dτ)dY (s)) is equal to

−
∫ ∞

−t

(∫ ∞

0

b(t+ s, τ)f(t + τ)dτ

)
dY (s).

Thus (3.15) follows from Theorem 3.4.

4. Prediction from a finite segment of the past

As in Section 3, let Y (·) be the unique solution to (3.1) with Y (0) = 0.
This section is the technical key part of this paper. We prove a finite-past
prediction formula for Y (·). Let a(·), c(·) and b(t, s) be as in Section 3.
We assume that the measure ν is nontrivial, that is, ν 
= 0.

We define positive constants K1 ∈ (0, 1) and K2 ∈ (0,∞) by K1 :=∫ ∞
0
c(u)du and K2 :=

∫ ∞
0
a(u)du, respectively.

Proposition 4.1. (1) We have − ∫ ∞
0
b(s, τ)dτ = K1−(1 −K1)

∫ s

0
a(u)du

for s > 0. In particular, sups>0

∫ ∞
0
{−b(s, τ)}dτ ≤ K1.

(2) We have − ∫ ∞
0
b(s, τ)ds = K2 − (1 +K2)

∫ τ

0
c(u)du for τ > 0. In

particular, supτ>0

∫ ∞
0
{−b(s, τ)}ds ≤ K2.

Proof. We put C(s) :=
∫ ∞

s
c(u)du for 0 < s < ∞. Integration by parts

yields
∫ ∞

0
e−τyc(τ)dτ = K1−y

∫ ∞
0
e−τyC(τ)dτ . Since

∫ τ

0
a(u)du ≤ a(0+)τ

13



for τ > 0, it holds that limτ→∞ e−τy
∫ τ

0
a(u)du = 0. Hence, by integra-

tion by parts, we get
∫ ∞
0
e−τya(τ)dτ = y

∫ ∞
0
dτe−τy

∫ τ

0
a(u)du. Therefore,

using (3.6) as well as 1 = y
∫ ∞
0
e−τydτ and(∫ ∞

0

e−τyC(τ)dτ

) (∫ ∞

0

e−τya(τ)dτ

)

=

∫ ∞

0

e−τy

(∫ τ

0

a(u)C(τ − u)du

)
dτ,

we find that

0 =

(
1 −

∫ ∞

0

e−τyc(τ)dτ

) (
1 +

∫ ∞

0

e−τya(τ)dτ

)
− 1

= −K1 + y

∫ ∞

0

e−τyC(τ)dτ + (1 −K1)y

∫ ∞

0

e−τy

(∫ τ

0

a(u)du

)
dτ

+ y

∫ ∞

0

e−τy

(∫ τ

0

a(u)C(τ − u)du

)
dτ

= y

∫ ∞

0

e−τy

{
−K1 + C(τ) + (1 −K1)

∫ τ

0

a(u)du

+

∫ τ

0

a(u)C(τ − u)du

}
dτ

or

−K1 + C(s) + (1 −K1)

∫ s

0

a(u)du+

∫ s

0

a(u)C(s− u)du = 0 (s > 0).

Thus it follows from (3.10) that, for s > 0, − ∫ ∞
0
b(s, τ)dτ is equal to

C(s) +

∫ s

0

a(u)C(s− u)du = K1 − (1 −K1)

∫ s

0

a(u)du,

whence (1) follows. The proof of (2) is similar to that of (1); we may
exchange the roles of a(·) and c(·).

For s, τ, t ∈ (0,∞) and n ∈ N, we define bn(s, τ ; t) by

b1(s, τ ; t) := b(s, τ),

bn(s, τ ; t) :=

∫ ∞

0

b(s, u)bn−1(t+ u, τ ; t)du (n = 2, 3, . . . ).

We see that (−1)nbn(s, τ ; t) ≥ 0.

Proposition 4.2. Let t > 0 and n = 1, 2, . . . . Then

(1) sup0<s<∞
∫ ∞
0

|bn(s, τ ; t)| dτ ≤ (K1)
n;

(2) sup0<τ<∞
∫ ∞
0

|bn(s, τ ; t)| ds ≤ (K2)
n.
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Proof. We use mathematical induction on n. By Proposition 4.1 (1), (1)
holds for n = 1. Assume that (1) holds for n ∈ N. Then, by the Fubini–
Tonelli theorem and Proposition 4.1 (1), we have, for s > 0,∫ ∞

0

|bn+1(s, τ ; t)| dτ =

∫ ∞

0

du(−b(s, u))
∫ ∞

0

|bn(t+ u, τ ; t)|dτ

≤
(
−

∫ ∞

0

b(s, u)du

)
(K1)

n ≤ (K1)
n+1.

Thus (1) with n replaced by n + 1 holds. The proof of (2) is similar; we
use Proposition 4.1 (2) instead of Proposition 4.1 (1).

We suppose that

−∞ < −t0 ≤ 0 ≤ t1 <∞, −t0 < t1(4.1)

and define a positive constant t2 by

t2 := t0 + t1.(4.2)

For simplicity, we often suppress t2 and write

bn(s, τ) := bn(s, τ ; t2) (s, τ > 0, n = 1, 2, . . . ).

Proposition 4.3. Let f ∈ H[t1,∞)(Y ). Then∫ ∞

0

bn(t1 − ·, τ)f(t1 + τ)dτ ∈ H(−∞,t1](Y ) (n = 1, 3, 5, . . . ),(4.3) ∫ ∞

0

bn(t0 + ·, τ)f(t1 + τ)dτ ∈ H[−t0,∞)(Y ) (n = 2, 4, 6, . . . ).(4.4)

Proof. Without loss of generality, we may assume that f ≥ 0. By Theorem
3.4, (4.3) holds for n = 1. This and Proposition 3.5 (1) imply∫ ∞

0

b1(t1 + ·, τ)f(t1 + τ)dτ ∈ H[−t1,∞)(Y ).

It follows from the definition of HI(Y ) that if g ∈ HI(Y ) and J ⊂ I, then
the restriction of g on J is in HJ(Y ). Hence we have∫ ∞

0

b1(t1 + ·, τ)f(t1 + τ)dτ ∈ H[t0,∞)(Y ).

However, by the Fubini-Tonelli theorem, we have, for s > −t0,∫ ∞

0

dub(t0 + s, u)

∫ ∞

0

b1(t1 + t0 + u, τ)f(t1 + τ)dτ

=

∫ ∞

0

b2(t0 + s, τ)f(t1 + τ)dτ.

Thus, by Theorem 3.6, we get (4.4) with n = 2. Repeating this procedure,
we obtain the proposition.

15



Let f ∈ H[t1,∞)(Y ). By Proposition 4.3, we may define the random
variables Gn(f) (n = 1, 2, . . . ) by

Gn(f) :=




∫ t1

−t0

(∫ ∞

0

bn(t1 − s, τ)f(t1 + τ)dτ

)
dY (s) (n = 1, 3, . . . ),∫ t1

−t0

(∫ ∞

0

bn(t0 + s, τ)f(t1 + τ)dτ

)
dY (s) (n = 2, 4, . . . ).

We may also define the random variables εn (f) by

εn (f) :=




∫ ∞

t1

f(s)dY (s) (n = 0),∫ −t0

−∞

(∫ ∞

0

bn(t1 − s, τ)f(t1 + τ)dτ

)
dY (s) (n = 1, 3, . . . ),∫ ∞

t1

(∫ ∞

0

bn(t0 + s, τ)f(t1 + τ)dτ

)
dY (s) (n = 2, 4, . . . ).

We set

Pn :=

{
P(−∞,t1] (n = 1, 3, 5, . . . ),

P[−t0,∞) (n = 2, 4, 6, . . . ).

Recall that M[−t0,t1](Y ) is the closed subspace of M(Y ) spanned by
{Y (s) : −t0 ≤ s ≤ t1}. We have the following inclusion:

M[−t0,t1](Y ) ⊂M(−∞,t1](Y ) ∩M[−t0,∞)(Y ).(4.5)

Proposition 4.4. Let f ∈ H[t1,∞)(Y ) and n ∈ N. Then

PnPn−1 · · ·P1

∫ ∞

t1

f(s)dY (s) = εn (f) +
n∑

k=1

Gk(f).(4.6)

Proof. We use mathematical induction. By Theorem 3.4, (4.6) holds for
n = 1. Suppose that (4.6) holds for n = m ∈ N. Then, from (4.5) and

Gk(f) ∈M[−t0,t1](Y ) (k = 1, 2, . . . ),(4.7)

we have Pm+1Gk(f) = Gk(f) for k = 1, 2, . . . . Thus

Pm+1Pm · · ·P1

∫ ∞

t1

f(s)dY (s) = Pm+1εm (f) +
∑m

k=1
Gk(f).

If m is odd, then, by Theorem 3.6, Pm+1εm (f) is equal to∫ ∞

−t0

{∫ ∞

0

dub(t0 + s, u)

∫ ∞

0

bm(t2 + u, τ)f(t1 + τ)dτ

}
dY (s)

=

∫ ∞

−t0

{∫ ∞

0

bm+1(t0 + s, τ)f(t1 + τ)dτ

}
dY (s)

= εm+1 (f) +Gm+1 (f) ,
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whence (4.6) with n = m+1. If m is even, then, by Theorem 3.4, we have
(4.6) with n = m+ 1 in the same way. Thus the proposition follows.

Here is the key lemma.

Lemma 4.5. Let f ∈ H[t1,∞)(Y ). Then ‖εn(f)‖ → 0 as n→ ∞.

The proof of Lemma 4.5 is long. Therefore we first show its conse-
quences.

Recall that P[−t0,t1] is the orthogonal projection operator from M(Y )
onto M[−t0,t1](Y ). We write Q for the orthogonal projection operator from
M(Y ) onto the closed subspace M(−∞,t1](Y )∩M[−t0,∞)(Y ). Then we have

Q = s-lim
n→∞

PnPn−1 · · ·P1(4.8)

(cf. [6, Problem 122]).

Theorem 4.6. We have
(1) M[−t0,t1](Y ) = M(−∞,t1](Y ) ∩M[−t0,∞)(Y ),
(2) P[−t0,t1] = s-limn→∞PnPn−1 · · ·P1,
(3) ‖P⊥

[−t0,t1]
Z‖2 = ‖P⊥

1 Z‖2 +
∑∞

n=1 ‖(Pn+1)
⊥Pn · · ·P1Z‖2 for Z ∈M(Y ).

Proof. We claim that, for every t ∈ R,

P[−t0,t1]Y (t) = QY (t).(4.9)

This claim implies that P[−t0,t1]Z = QZ for Z ∈ M(Y ). So if Z ∈
M(−∞,t1](Y ) ∩M[−t0,∞)(Y ), then Z = QZ = P[−t0,t1]Z ∈ M[−t0,t1], which
implies M(−∞,t1](Y ) ∩ M[−t0,∞)(Y ) ⊂ M[−t0,t1](Y ). This, together with
(4.5), implies (1). The assertion (2) follows immediately from (1) and
(4.8).

We derive (3) from (2). Let Z ∈ M(Y ). From the orthogonal decom-
positions

P⊥
[−t0,t1]

= P⊥
(−∞,t0]

+ P⊥
[−t0,t1]

P(−∞,t0] = P⊥
[−t0,∞) + P⊥

[−t0,t1]P[−t0,∞)

of the operator P⊥
[−t0,t1]

, we obtain∥∥P⊥
[−t0,t1]

Z
∥∥2

=
∥∥P⊥

(−∞,t0]
Z

∥∥2
+

∥∥P⊥
[−t0,t1]

P(−∞,t0]Z
∥∥2

=
∥∥P⊥

(−∞,t0]
Z

∥∥2
+

∥∥P⊥
[−t0,∞)P(−∞,t1]Z

∥∥2
+

∥∥P⊥
[−t0,t1]

P[−t0,∞)P(−∞,t1]Z
∥∥2
.

Repeating this procedure, we see that, for m ∈ N, ‖P⊥
[−t0,t1]

Z‖2 is equal
to ∥∥P⊥

1 Z
∥∥2

+
m−1∑
n=1

∥∥(Pn+1)
⊥Pn · · ·P1Z

∥∥2
+

∥∥P⊥
[−t0,t1]

Pm · · ·P1Z
∥∥2
.

However, by (2),
∥∥∥P⊥

[−t0,t1]Pm · · ·P1Z
∥∥∥ tends to

∥∥∥P⊥
[−t0,t1]P[−t0,t1]Z

∥∥∥ = 0 as

m→ ∞, whence (3).
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We complete the proof by proving (4.9). If t ∈ [−t0, t1], then Y (t) is
in both M[−t0,t1] and M(−∞,t1](Y ) ∩ M[−t0,∞)(Y ), and so P[−t0,t1]Y (t) =
Y (t) = QY (t). Thus we may prove (4.9) for t ∈ R \ [−t0, t1]. How-
ever, by symmetry, it is enough to prove (4.9) only for t ∈ (t1,∞). For
such t, we put f0(s) := I(t1,t](s). Then

∫ ∞
t1
f0(s)dY (s) = Y (t) − Y (t1).

Now (4.5) implies P[−t0,t1] = P[−t0,t1]PnPn−1 · · ·P1, whence PnPn−1 · · ·P1−
P[−t0,t1] = P⊥

[−t0,t1]
PnPn−1 · · ·P1. On the other hand, it follows from (4.7)

that P⊥
[−t0,t1]

Gk(f) = 0 for k ∈ N and f ∈ H[t1,∞)(Y ). Therefore, using
Proposition 4.4 and Lemma 4.5, we see that∥∥PnPn−1 · · ·P1Y (t) − P[−t0,t1]Y (t)

∥∥
=

∥∥∥∥P⊥
[−t0,t1]

PnPn−1 · · ·P1

∫ ∞

t1

f0(s)dY (s)

∥∥∥∥
=

∥∥∥P⊥
[−t0,t1]

(
εn (f0) +

∑n

1
Gk(f0)

)∥∥∥
=

∥∥P⊥
[−t0,t1]

εn (f0)
∥∥ ≤ ‖εn (f0)‖ → 0 (n→ ∞).

This and (4.8) imply (4.9).

We may define, for s ∈ (−t0, t1) and τ > 0,

g(s, τ ; t0, t1) :=
∞∑

k=1

{b2k−1(t1 − s, τ ; t2) + b2k(t0 + s, τ ; t2)}(4.10)

since Proposition 4.2 (1) implies sup−t0<s<t1

∫ ∞
0

|g(s, τ ; t0, t1)|dτ <∞.
Here is the finite-past prediction formula for Y (·).

Theorem 4.7. Let f ∈ H[t1,∞)(Y ). Then

P[−t0,t1]

∫ ∞

t1

f(s)dY (s) =
∞∑

k=1

Gk(f),(4.11)

the sum on the right-hand side converging in M(Y ). Furthermore, if
ess supt1≤t<∞|f(t)| <∞, then

P[−t0,t1]

∫ ∞

t1

f(s)dY (s) =

∫ t1

−t0

(∫ ∞

0

g(s, τ ; t0, t1)f(t1 + τ)dτ

)
dY (s).

(4.12)

In particular, for t1 ≤ t, we have

P[−t0,t1]Y (t) = Y (t1) +

∫ t1

−t0

(∫ t−t1

0

g(s, τ ; t0, t1)dτ

)
dY (s).

Proof. By Theorem 4.6 (2), we have, in M(Y ),

lim
n→∞

PnPn−1 · · ·P1

∫ ∞

t1

f(s)dY (s) = P[−t0,t1]

∫ ∞

t1

f(s)dY (s).
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Hence, letting n → ∞ in (4.6) and using Lemma 4.5, we obtain (4.11).
Suppose that f is essentially bounded on [t1,∞). Then, by Proposition
4.2 (1), we have

sup
s>0

∫ ∞

0

|bn(s, τ ; t2)f(t1 + τ)|dτ ≤ (K1)
ness sup

t≥t1

|f(t)|.

Since
∑

n(K1)
n <∞, (4.12) follows easily from (4.11). The last assertion

follows if we put f(s) = I(t1,t](s).

It remains to prove Lemma 4.5. For this purpose, we consider the
mean-squared prediction error. For f ∈ H[t1,∞)(Y ) and n ∈ N, we define
Dn(s, f) = Dn(s, f ; t0, t1) by

Dn(s, f) := −
∫ ∞

0

c(u)

(∫ ∞

0

bn(t2 + u+ s, τ)f(t1 + τ)dτ

)
du

+

∫ ∞

0

bn(t2 + s, τ)f(t1 + τ)dτ (s > 0).

We also define D0(s, f) = D0(s, f ; t1) by

D0(s, f) := −
∫ ∞

0

c(u)f(t1 + s+ u)du+ f(t1 + s) (s > 0).

From the proof of the next proposition, these integrals converge absolutely.

Proposition 4.8. Let f ∈ H[t1,∞)(Y ). Then

P⊥
n+1εn (f) =




∫ ∞

t1

Dn(s− t1, f)dW (s) (n = 0, 2, 4, . . . ),

∫ −t0

−∞
Dn(−t0 − s, f)dW ∗(s) (n = 1, 3, 5, . . . ).

(4.13)

Proof. By Propositions 3.2 and 2.3 (6), P⊥
1 ε0(f) is equal to∫ ∞

t1

(
−

∫ ∞

s

f(u)c(u− s)du+ f(s)

)
dW (s) =

∫ ∞

t

D0(s− t1, f)dW (s).

Thus (4.13) holds for n = 0. Suppose that n = 1, 3, . . . . Then, by
Proposition 3.5 (2),

εn (f) =

∫ −t0

−∞

(∫ ∞

0

bn(t1 − s, τ)f(t1 + τ)dτ

)
dW ∗(s)

−
∫ ∞

−∞

(∫ −t0

−∞
duc(s− u)

∫ ∞

0

bn(t1 − u, τ)f(t1 + τ)dτ

)
dW ∗(s).

(4.14)
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Hence, by Proposition 2.3 (7), P⊥
n+1εn(f) = P⊥

[−t0,∞)εn(f) is given by

−
∫ −t0

−∞

(∫ s

−∞
duc(s− u)

∫ ∞

0

bn(t1 − u, τ)f(t1 + τ)dτ

)
dW ∗(s)

+

∫ −t0

−∞

(∫ ∞

0

bn(t1 − s, τ)f(t1 + τ)dτ

)
dW ∗(s)

= −
∫ −t0

−∞

(∫ ∞

0

duc(u)

∫ ∞

0

bn(t2 + u− s− t0, τ)f(t1 + τ)dτ

)
dW ∗(s)

+

∫ −t0

−∞

(∫ ∞

0

bn(t2 − s− t0, τ)f(t1 + τ)dτ

)
dW ∗(s),

which is equal to
∫ −t0
−∞ Dn(−t0 − s)dW ∗(s). Thus we obtain (4.13) for

n = 1, 3, . . . . The proof of (4.13) for n = 2, 4, . . . is similar, and so we
omit it.

Proposition 4.9. Let f ∈ H[t1,∞)(Y ). Then
(1) ‖P⊥

1

∫ ∞
t1
f(s)dY (s)‖2 =

∫ ∞
0
D0(s, f)2ds;

(2) ‖P⊥
n+1PnPn−1 · · ·P1

∫ ∞
t1
f(s)dY (s)‖2 =

∫ ∞
0
Dn(s, f)2ds (n = 1, 2, . . . );

(3) limn→∞
∫ ∞
0
Dn(s, f)2ds = 0.

Proof. The assertion (1) follows immediately from (4.13) with n = 0.
Suppose that n ≥ 1. From (4.5) and (4.7), we have P⊥

n+1Gk(f) = 0 for
k ∈ N. Therefore, by Propositions 4.4 and 4.8,∥∥∥∥P⊥

n+1PnPn−1 · · ·P1

∫ ∞

t1

f(s)dY (s)

∥∥∥∥
2

=
∥∥P⊥

n+1εn (f)
∥∥2

=

∫ ∞

0

Dn(s, f)2ds,

whence (2).
We write Q for the orthogonal projection operator from M(Y ) onto

M(−∞,t1](Y ) ∩M[−t0,∞)(Y ) as in the above. Then, by (2) and (4.8), we
have

lim
n→∞

∫ ∞

0

D2n(s, f)2ds = lim
n→∞

∥∥∥∥P⊥
(−∞,t1]

P2nP2n−1 · · ·P1

∫ ∞

t1

f(s)dY (s)

∥∥∥∥
2

=

∥∥∥∥P⊥
(−∞,t1]

Q

∫ ∞

t1

f(s)dY (s)

∥∥∥∥
2

= 0.

Similarly, we have limn

∫ ∞
0
D2n+1(s, f)2ds = 0. Thus (3) follows.

Proposition 4.10. Let f ∈ H[t1,∞)(Y ). Then, for t > 0 and n = 0, 1, . . . ,
we have ∫ ∞

0

bn+1(t, τ)f(t1 + τ)dτ = −
∫ ∞

0

a(t+ u)Dn(u, f)du.(4.15)
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Proof. We may assume that f ≥ 0. Since a(·) ∈ L1((0,∞), ds), a(·) ≥ 0,
and c(·) ≥ 0, using the Fubini–Tonelli theorem, we see that, for t > 0,∫ ∞

0

b1(t, τ)f(t1 + τ)dτ

=

∫ ∞

0

(∫ τ

0

c(τ − u)a(t+ u)du− a(t+ τ)

)
f(t1 + τ)dτ

=

∫ ∞

0

dua(t+ u)

∫ ∞

0

c(τ)f(t1 + u+ τ)dτ −
∫ ∞

0

a(t+ u)f(t1 + u)du,

which is equal to − ∫ ∞
0
a(t + u)D0(u, f)du. Thus (4.15) holds for n = 0.

Now we assume that n ≥ 1. Then, by Proposition 4.2 (2) and the Fubini–
Tonelli theorem, we have, for t, τ > 0,

bn+1(t, τ) =

∫ ∞

0

b(t, s)bn(t2 + s, τ)ds

=

∫ ∞

0

(∫ s

0

c(s− u)a(t+ u)du

)
bn(t2 + s, τ)ds

−
∫ ∞

0

a(t+ u)bn(t2 + u, τ)du

=

∫ ∞

0

a(t+ u)

(∫ ∞

0

c(s)bn(t2 + s+ u, τ)ds− bn(t2 + u, τ)

)
du.

Therefore it follows from Proposition 4.3 and the Fubini–Tonelli theorem
that the integral

∫ ∞
0
bn+1(t, τ)f(t1 + τ)dτ is given by∫ ∞

0

a(t+ u)

(∫ ∞

0

dsc(s)

∫ ∞

0

bn(t2 + s+ u, τ)f(t1 + τ)dτ

−
∫ ∞

0

bn(t2 + u, τ)f(t1 + τ)dτ

)
du,

which is equal to − ∫ ∞
0
a(t+ u)Dn(u, f)du. Thus (4.15) holds.

For t, s > 0, we define λ(t, s) = λ(t, s; t2) by

λ(t, s) :=

∫ ∞

0

c(t+ u)a(t2 + u+ s)du.

Notice that λ(t, s) < ∞ since 0 ≤ λ(t, s) ≤ c(t)
∫ ∞

t2+s
a(u)du < ∞. We

define an integral operator Λ on L2((0,∞), ds) by

Λf(t) :=

∫ ∞

0

λ(t, s)f(s)ds.

Since sup0<t<∞
∫ ∞
0
λ(t, s)ds ≤ M and sup0<s<∞

∫ ∞
0
λ(t, s)dt ≤ M , it

follows from [7, Theorem 274] that Λ is a bounded linear operator on
L2((0,∞), ds) such that ‖Λ‖ ≤ M , where ‖Λ‖ is the operator norm of Λ

and M =
(∫ ∞

0
c(u)du

) (∫ ∞
t2
a(u)du

)
.
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Proposition 4.11. Let f ∈ H[t1,∞)(Y ). Then Pn+1εn (f) is equal to


∫ t1

−∞

(∫ ∞

0

λ(t1 − s, u)Dn−1(u, f)du

)
dW (s) (n = 0, 2, 4, . . . ),∫ ∞

−t0

(∫ ∞

0

λ(t0 + s, u)Dn−1(u, f)du

)
dW ∗(s) (n = 1, 3, 5, . . . ).

Proof. We prove the proposition only when n is odd; the proof of the
case n = 2, 4, . . . is similar. By (4.14) and Propositions 2.3 (7) and 4.10,
Pn+1εn(f) = P[−t0,∞)εn(f) is equal to

−
∫ ∞

−t0

(∫ −t0

−∞
duc(s− u)

∫ ∞

0

bn(t1 − u, τ)f(t1 + τ)dτ

)
dW ∗(s)

= −
∫ ∞

−t0

(∫ ∞

0

dvc(t0 + s+ v)

∫ ∞

0

bn(t2 + v, τ)f(t1 + τ)dτ

)
dW ∗(s)

=

∫ ∞

−t0

(∫ ∞

0

dvc(t0 + s+ v)

∫ ∞

0

a(t2 + v + u)Dn−1(u, f)du

)
dW ∗(s)

or
∫ ∞
−t0

(∫ ∞
0
λ(t0 + s, u)Dn−1(u, f)du

)
dW ∗(s). Thus the proposition fol-

lows.

We are now ready to prove Lemma 4.5.

Proof of Lemma 4.5. By Propositions 4.8, 4.11 and 4.9 (3), we have

‖εn (f)‖2 =

∫ ∞

0

Dn(s, f)2ds+

∫ ∞

0

(∫ ∞

0

λ(s, u)Dn−1(u, f)du

)2

ds

≤
∫ ∞

0

Dn(s, f)2ds+ ‖Λ‖2

∫ ∞

0

Dn−1(s, f)2ds→ 0 (n→ ∞).

Thus the lemma follows.

From Proposition 4.9 (1), (2) and Theorem 4.6 (3), we immediately
obtain the next representation of the mean-squared prediction error.

Theorem 4.12. Let f ∈ H[t1,∞)(Y ). Then∥∥∥∥P⊥
[−t0,t1]

∫ ∞

t1

f(s)dY (s)

∥∥∥∥
2

=
∞∑

n=0

∫ ∞

0

Dn(s, f)2ds.

5. Representation of the innovation processes

In this section, we obtain an explicit form of the kernel k(t, s) in (1.7)
using Theorem 4.7. Let Y (·), U(·), a(·) and c(·) be as in Section 3. As
stated in Section 1, we consider the filtration {F(t)}0≤t≤T that is the
augmentation, by the null sets in FY (T ), of the filtration {FY (t)}0≤t≤T
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generated by Y (·), i.e., FY (t) := σ(Y (u) : 0 ≤ u ≤ t) for 0 ≤ t ≤ T . Let
B(·) be the Kailath–Shiryaev innovation process defined by

B(t) = Y (t) +

∫ t

0

α(s)ds (0 ≤ t ≤ T ),(5.1)

where α(·) is a Gaussian process defined by

α(t) = E[U(t)|F(t)] (0 ≤ t ≤ T ).(5.2)

By [14, Theorem 7.16], under P , B(·) is a Brownian motion such that
{F(t)}0≤t≤T is equal to the augmentation, by the null sets in FB(T ), of
the filtration {FB(t)}0≤t≤T generated by B(·). In particular, (Y (t))0≤t≤T

is a Gaussian semimartingale with respect to {F(t)}0≤t≤T , and (5.1) or
(1.3) gives the semimartingale representation of Y (·).
Proposition 5.1. Let t ∈ R. Then the function a(t−·) is in H(−∞,t](Y ).

Furthermore, we have
∫ t

−∞ a(t− s)dY (s) =
∫ t

−∞ c(t− s)dW (s).

Proof. First we have
∫ ∞

0
a2(u)du ≤ a(0)

∫ ∞
0
a(u)du < ∞. Next, since

a(·) is in L1(R, du) and c(·) is in L2(R, du), a ∗ c belongs to L2(R, du).

Therefore
∫ ∞
−∞(

∫ t

−∞ a(t− u)c(u− s)du)2ds is equal to∫ ∞

−∞

(∫ t−s

−∞
a(t− s− v)c(v)dv

)2

ds = ‖(a ∗ c)‖2 <∞,

where ‖ · ‖ is the norm of L2(R, du). Thus the first assertion follows.
Notice that a(t) = c(t) = 0 for t ≤ 0. By Proposition 3.2 and (3.9),∫ t

−∞
a(t− s)dY (s)

= −
∫ ∞

−∞

(∫ t

−∞
a(t− u)c(u− s)du

)
dW (s) +

∫ t

−∞
a(t− s)dW (s)

=

∫ t

−∞

(
−

∫ t−s

0

a(t− s− u)c(u)du+ a(t− s)

)
dW (s)

=

∫ t

−∞
c(t− s)dW (s).

Thus the second assertion follows.

Recall g(s, τ : t0, t1) from (4.10). For t, τ > 0 and s ∈ (0, t), we write
h(t, s, τ) for g(−s, τ ; t, 0), that is,

h(t, s, τ) =
∞∑

k=1

{b2k−1(s, τ ; t) + b2k(t− s, τ ; t)} (t, τ > 0, 0 < s < t).

Here is the representation of α(·).
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Theorem 5.2. We have (1.7) with

k(t, s) = a(t− s) +

∫ ∞

0

h(t, s, τ)a(t + τ)dτ (0 < s < t <∞).(5.3)

Proof. Recall θ from Section 2. Let t > 0. From Propositions 3.5 (1) and
5.1 and Theorem 4.7 with t0 = t, t1 = 0, P[0,t]U(t) is equal to

P[0,t]

{∫ t

0

a(t− s)dY (s) +

∫ 0

−∞
a(t− s)dY (s)

}

=

∫ t

0

a(t− s)dY (s) − θP[−t,0]

∫ ∞

0

a(t+ s)dY (s)

=

∫ t

0

a(t− s)dY (s) − θ

∫ 0

−t

(∫ ∞

0

g(s, τ ; t, 0)a(t + τ)dτ

)
dY (s)

=

∫ t

0

a(t− s)dY (s) +

∫ t

0

(∫ ∞

0

g(−s, τ ; t, 0)a(t + τ)dτ

)
dY (s).

Thus the theorem follows.

Example 5.3. Let p, q ∈ (0,∞). Then the kernel a(t) = pe−qtI(0,∞)(t)

satisfies (3.2) with ν(ds) = pδq(ds), and we have c(t) = pe−(p+q)tI(0,∞)(t)
from (3.6) (cf. [1, Example 2.14]). It follows from (3.3) with (3.4) that
Y (·) is given by (1.5). Then, for s, τ, t > 0,

b(s, τ) = −pe−q(s+τ) + p2e−q(s+τ)

∫ τ

0

e−pudu = −pe−qse−(q+p)τ ,

and so b2(s, τ ; t) =
∫ ∞
0
b(s, u)b(t + u, τ)du = −b(s, τ)pe−qt/(2q + p). Re-

peating this procedure, we obtain bn(s, τ ; t) = φ(t)n−1b(s, τ) for n =
1, 2, . . . , where

φ(t) := − pe−qt

2q + p
(t > 0).

Hence, for t0, t1, t2 as in (4.1) and (4.2), s ∈ (−t0, t1) and τ > 0, we have

g(s, τ ; t0, t1) = b(t1 − s, τ)
∞∑

k=1

φ(t2)
2k−2 + b(t0 + s, τ)

∞∑
k=1

φ(t2)
2k−1

= b(t1 − s, τ)
1

1 − φ(t2)2
+ b(t0 + s, τ)

φ(t2)

1 − φ(t2)2
.

By Theorem 5.2 and elementary calculation, we see that (1.7) holds with

k(t, s) = p(2q + p)
(2q + p)eqs − pe−qs

(2q + p)2eqt − p2e−qt
(0 < s < t).(5.4)
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6. Expected utility maximization for financial markets

with memory

In this section, we explain the implication of Theorem 5.2, in particular,
(5.4), in the financial markets with memory of [1] via expected logarithmic
utility maximization.

Let T be a positive constant. Let Y (·) be as in Section 3 and let
{F(t)}0≤t≤T be as in Section 5. We consider the financial market M
consisting of a stock with price S(t) at time t ∈ [0, T ] and a share of the
money market with price S0(t) at time t ∈ [0, T ]. The price of the money
market is governed by

S0(0) = 1, dS0(t) = r(t)S0(t)dt (t ∈ [0, T ]),

and the price of the stock satisfies (1.1) with S(0) being a positive con-
stant. We assume the following:

(1) the risk-free rate process r(·) is progressively measurable and satis-

fies
∫ T

0
|r(t)|dt <∞ a.s.;

(2) the mean rate of return process m(·) is progressively measurable

and satisfies
∫ T

0
|m(t)|dt <∞ a.s.;

(3) the volatility process σ(·) is a progressively measurable process that

satisfies
∫ T

0
σ(t)2dt <∞ a.s. and σ(t) > 0 a.e. t ∈ [0, T ] a.s.;

(4)
∫ T

0
θ0(t)

2dt <∞ a.s., where

θ0(t) :=
m(t) − r(t)

σ(t)
(0 ≤ t ≤ T );

(5) the following positive local martingale (Z0(t))0≤t≤T is in fact a mar-
tingale:

Z0(t) = exp

{
−

∫ t

0

[θ0(s) − α(s)] dB(s) − 1

2

∫ t

0

[θ0(s) − α(s)]2 ds

}

= exp

{
−

∫ t

0

[θ0(s) − α(s)]dY (s) − 1

2

∫ t

0

[θ0(s)
2 − α(s)2]ds

}
.

A sufficient condition for (4) and (5) is that there exists a positive con-
stant c1 such that P (|θ0(t)| ≤ c1, a.e. t ∈ [0, T ]) = 1 (see [1, Propo-
sition 3.2]). Under the above assumptions, S0(·) is given by S0(t) =

exp{∫ t

0
r(u)du} for t ∈ [0, T ] and S(·) by (1.4) or, for 0 ≤ t ≤ T ,

S(t) = S(0) exp

[∫ t

0

σ(s)dB(s) +

∫ t

0

{
m(s) − σ(s)α(s) − 1

2
σ2(s)

}
ds

]
.

The market M is complete, and if σ(·) and r(·) are constants, then the
Black–Scholes formula for option pricing holds in it (see [12, Theorem
1.6.6 and Section 2.4]).
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We define the discounted price process S̃(·) by S̃(t) = S(t)/S0(t) for
0 ≤ t ≤ T . We consider the following expected logarithmic utility maxi-
mization from terminal wealth: for given x > 0, solve

V (x) = sup
π∈A(x)

E[log (Xx,π(T ))],

where

A(x) =

{
(π(t))0≤t≤T :

π(·) is real-valued, progressively measurable,∫ T

0
π2(t)dt <∞, Xx,π(t) ≥ 0 (0 ≤ t ≤ T ) a.s.

}
,

and

Xx,π(t) = S0(t)

{
x+

∫ t

0

π(u)

S(u)
dS̃(u)

}
.

The value π(t) is the dollar amount invested in the stock at time t, whence
π(t)/S(t) is the number of units of stock held at time t. The process
Xx,π(·) is the wealth process associated with the self-financing portfolio
determined uniquely from π(·). By [12, Chapter 3, Example 7.9], there
exists an optimal portfolio π0(·) ∈ A(x) for the problem and the optimal
wealth process Xx,π0(·) is given by Xx,π0(t) = x/H0(t) with H0(t) :=
Z0(t)/S0(t) for 0 ≤ t ≤ T . Moreover, if S0(·) is deterministic, then the
optimal portfolio proportion π0(t)/X

x,π0(t) is given explicitly by [{m(t)−
r(t)}/σ(t)2] − {α(t)/σ(t)}, that is,

π0(t)

Xx,π0(t)
=
m(t) − r(t)

σ(t)2
− 1

σ(t)

∫ t

0

k(t, s)dY (s) (0 ≤ t ≤ T ).(6.1)

If the market does not have memory, that is, Y (·) = W (·) or a(·) =
c(·) = 0, then the integral on the right-hand side of (6.1) does not appear.
On the other hand, in the presence of memory, the equality (6.1) implies
that the optimal portfolio proportion at time t depends on the history of
stock price from 0 through t and that the integral

∫ t

0
k(t, s)dY (s) precisely

describes the memory effect. It should be noticed that if σ(·) ≡ σ and
m(·) ≡ m with σ and m being constants, then the values of S(t) and Y (t)
are directly related with each other through

S(t) = S(0) exp

{
σY (t) +mt− 1

2
σ2t

}
.

It also should be noticed that in the simplest case a(t) = pe−qt which is
empirically studied in [2], k(t, s) is given by the elementary function (5.4)
and that the parameters σ, p and q can be statistically estimated by the
method of [2] which is briefly described in Section 1. Thus, if σ(·) ≡ σ,
m(·) ≡ m and a(t) = pe−qt, then it is possible to calculate the right-hand
side of (6.1) numerically from the data of stock prices.
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