
 

 

 

 

 

 

 

 

 

 

 

SFB 649 Discussion Paper 2012-053 

Financial Netw ork 

System ic Risk 

Contr ibut ions 

 
Nikolaus Hautsch*  

Julia Schaum burg*  

Melanie Schienle*  

*  Humboldt -Universität  zu Berlin, Germany 

 

This research was supported by the Deutsche 

Forschungsgem einschaft  through the SFB 649 "Econom ic Risk". 
 

ht tp: / / sfb649.wiwi.hu-berlin.de 

I SSN 1860-5664 
 

SFB 649, Hum boldt -Universität  zu Berlin 

Spandauer St raße 1, D-10178 Berlin 

S
F

B
  

  
  
6

 4
 9

  
  

  
  

  
  

  
E

 C
 O

 N
 O

 M
 I

 C
  

  
 R

 I
 S

 K
  

  
  

  
  

  
  

  
 B

 E
 R

 L
 I

 N
 



Financial Network Systemic Risk Contributions ∗

Nikolaus Hautsch Julia Schaumburg Melanie Schienle

August 27, 2012

Abstract

We propose the realized systemic risk beta as a measure for financial companies’
contribution to systemic risk given network interdependence between firms’ tail risk
exposures. Conditional on statistically pre-identified network spillover effects and
market and balance sheet information, we define the realized systemic risk beta as
the total time-varying marginal effect of a firm’s Value-at-risk (VaR) on the system’s
VaR. Suitable statistical inference reveals a multitude of relevant risk spillover chan-
nels and determines companies’ systemic importance in the U.S. financial system.
Our approach can be used to monitor companies’ systemic importance allowing for
a transparent macroprudential regulation.
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The financial crisis 2007-2009 has shown that cross-sectional dependencies between as-

sets and credit exposures can cause even small risks of individual banks to cascade and

build up to a substantial threat for the stability of an entire financial system.1 Under certain

economic conditions, company-specific risk cannot be appropriately assessed in isolation

without accounting for potential risk spillover effects from other firms. In fact, it is not just

its size and idiosyncratic risk but also its interconnectedness with other firms which deter-

mines a company’s systemic relevance i.e., its potential to significantly increase the risk

of failure of the entire system – which we denote as systemic risk.2 While there is a broad

consensus that any prudential regulatory policy should account for the consequences of

network interdependencies in the financial system, in practice, however, any attempt of

a transparent implementation must fail, as long as suitable empirical measures for firms’

individual risk, risk spillovers and systemic relevance are not available. In particular, it

is unclear how to quantify individual risk exposures and systemic risk contributions in an

appropriate but still parsimonious and empirically tractable way for a prevailing underly-

ing network structure. And there is an apparent need for respective empirically feasible

and forward-looking measures which only rely on available data of publicly disclosed

balance sheet and market information but still account for the complexity of the financial

system.

A general empirical assessment of systemic relevance cannot build on the vast theo-

retical literature of financial network models and financial contagion, since these results

typically require detailed information on intra-bank asset and liability exposures (see, e.g.,

Allen and Gale, 2000, Freixas, Parigi, and Rochet, 2000, and Leitner, 2005). Such data

is generally not publicly disclosed and even regulators can only collect partial informa-

tion on some sources of inter-bank linkages. Available empirical studies linked to this

literature can therefore only partially contribute to a full picture of companies’ systemic

relevance as they focus on particular parts of specific markets at a particular time under

particular financial conditions (see, e.g., Upper and Worms, 2004, and Furfine, 2003, for

1For a thorough description of the financial crisis, see, e.g., Brunnermeier (2009).
2Bernanke (2009) and Rajan (2009) stress the danger induced by institutions which are “too intercon-

nected to fail” or ”too systemic to fail” in contrast to the insufficient focus on firms which are simply “too
big too fail”.
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Germany and the U.S., respectively).3 Furthermore, assessing risk interconnections on the

basis of multivariate failure probability distributions has proven to be statistically compli-

cated without using restrictive assumptions driving the results (see, e.g., Boss, Elsinger,

Summer, and Thurner, 2004, or Zhou, 2009, and references therein). Finally, for regu-

lators it is often unclear, how complex structures ultimately translate into dynamic and

predictable measures of systemic relevance.

The objective of this paper is to develop an easily and widely applicable measure of

a firm’s systemic relevance, explicitly accounting for the company’s interconnectedness

within the financial sector. We assess companies’ risk of financial distress on the ba-

sis of share price information which directly incorporates market perceptions of a firm’s

prospects, publicly accessible market data as well as balance sheet data. As for risk inter-

connectedness only dependencies in extreme tails of asset return distributions matter, we

base our measure on extreme conditional quantiles of corresponding return distributions

quantifying the risk of distress of individual companies and the entire system respectively.

In this sense, our setting builds on the concept of conditional Value-at-Risk (VaR), which

is a popular and widely accepted measure for tail risk.4 For each firm, we identify its

so-called relevant (tail) risk drivers as the minimal set of macroeconomic fundamentals,

firm-specific characteristics and risk spillovers from competitors and other companies

driving the company’s VaR. Detecting with whom and how strongly any institution is

connected allows us to construct a tail risk network of the financial system. A company’s

contribution to systemic risk is then defined as the induced total effect of an increase in

its individual tail risk on the VaR of the entire system, conditional on the firm’s position

within the financial network as well as overall market conditions. Furthermore, by assess-

ing a company’s conditional VaR in dependence of respective tail risk drivers, we obtain a

reliable measure of a company’s idiosyncratic risk in the presence of network spillovers.

3See also Cocco, Gomes, and Martins (2009) for parts of the financial sector in Portugal, Elsinger,
Lehar, and Summer (2006) for Austria, and Degryse and Nguyen (2007) for Belgium. A rare exception is
the unique data set for India with full information on the intra-banking market studied in Iyer and Peydrió
(2011).

4Note that the VaR is a coherent risk measure in realistic market settings, i.e., in cases of return distri-
butions with tails decaying faster than those of the Cauchy distribution, see Garcia, Renault, and Tsafack
(2007). In principle, our methodology could also be adapted to other tail risk measures such as, e.g., ex-
pected shortfall. Such a setting, however, would involve additional estimation steps and complications,
probably inducing an overall loss of accuracy in results given the limited amount of available data.
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The underlying statistical setting is a two-stage quantile regression approach: In the

first step, firm-specific VaRs are estimated as functions of firm characteristics, macroeco-

nomic state variables as well as tail risk spillovers of other banks which are captured by

loss exceedances. Hereby, the major challenge is to shrink the high-dimensional set of

possible cross-linkages between all financial firms to a feasible number of relevant risk

connections. We address this issue statistically as a model selection problem in individual

institution’s VaR specifications which we solve in a pre-step. In particular, we make use of

novel Least Absolute Shrinkage and Selection Operator (LASSO) techniques (see Belloni

and Chernozhukov, 2011) which allows us to identify the relevant tail risk drivers for each

company in a fully automatic way. The resulting identified risk interconnections are best

represented in terms of a network graph as illustrated in Figure 1 (and discussed in more

detail in the remainder of the paper) for the system of the 57 largest U.S. financial compa-

nies. In the second step, for measuring a firm’s systemic impact, we individually regress

the VaR of a value-weighted index of the financial sector on the firm’s estimated VaR

while controlling for the pre-identified company-specific risk drivers as well as macroe-

conomic state variables. We derive standard errors which explicitly account for estimation

errors resulting from the pre-estimation of regressors in quantile relations. As the gener-

ally available sample sizes of balance sheet and macroeconomic information make the use

of large-sample inference questionable, we provide (non-standard) bootstrap methods to

construct finite-sample-based parameter tests.

We determine a company’s systemic risk contribution as the marginal effect of its in-

dividual VaR on the VaR of the system. In analogy to an (inverted) asset pricing relation-

ship in quantiles we call the measure systemic risk beta. It corresponds to the system’s

marginal risk exposure due to changes in the tail of a firm’s loss distribution. For com-

paring the systemic relevance of companies across the system, however, it is necessary

to compute the induced total increase in systemic risk. We therefore rank companies ac-

cording to their ”realized” systemic risk beta corresponding to the product of a company’s

systemic risk beta and its VaR. The systemic risk beta - and therefore also its realized ver-

sion - is modeled as a function of firm-specific characteristics, such as leverage, maturity

mismatch and size. Accordingly, a firm’s tail risk effect on the system can vary with

4



Figure 1: Risk network of the U.S. financial system schematically highlighting key companies
in the system in 2000-2008. Details on all other firms in the system only appearing as unlabeled
shaded nodes will be provided later in the paper. Depositories are marked in red, broker dealers
in green, insurance companies in black, others in blue. An arrow pointing from firm j to firm i
reflects an impact of extreme returns of j on the VaR of i (V aRi) which is identified as being
relevant employing statistical selection techniques presented in the remainder of the paper. VaRs
are measured in terms of 5%-quantiles of the return distribution. The effect of j on i is measured
in terms of the impact of an increase of the return Xj on V aRi given Xi is below its 10% quantile,
i.e., i’s so-called loss exceedance. The size of the respective increase in V aRj given a 1% increase
of the loss exceedance of i is reflected by the thickness of the respective arrowhead where we
distinguish between three categories: thin arrowheads display an increase up to 0.4, medium size
of 0.4-0.8, and thick arrowheads of greater than 0.8. The thickness of the line of the arrow is chosen
along the same categories. If arrows point in both directions, the thickness of the line corresponds
to the bigger one of the two effects. The graph is constructed such that the total length of all arrows
in the system is minimized. Accordingly, more interconnected firms are located in the center.

its economic conditions and/or its balance sheet structure changing its marginal systemic

importance even though its individual risk level might be identical at different time points.

Our empirical results reveal a high degree of tail risk interconnectedness among U.S. fi-

nancial institutions. In particular, we find that these network risk interconnection effects

are the dominant risk drivers in individual risk. The detected channels of potential risk

spillovers contain fundamental information for supervision authorities but also for com-

pany risk managers. Based on the topology of the systemic risk network, we can cate-

gorize firms into three broad groups according to their type and extent of connectedness

with other companies: main risk transmitters, risk recipients and companies which both
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Figure 2: Systemic relevance of five exemplary firms in the U.S. financial system at two time
points before and at the height of the financial crisis, 2008. Systemic relevance is measured in
”systemic risk betas” quantifying the marginal increase of the VaR of the system given an increase
in a bank’s VaR while controlling for the bank’s (pre-identified) risk drivers. All VaRs are com-
puted at the 5% level and are by definition positive. We depict respective “realized” versions of
the systemic risk beta corresponding to the product of a risk beta and the corresponding VaR rep-
resenting a company’s total effect on systemic risk. Connecting lines are just added to graphically
highlight changes between the two time points but do not mark real evolutions. The size of the
elements in the graph reflects the size of the VaR of the respective company at each of the two time
points. We use the following scale: the element is k·standard size with k = 1 for V aR ≤ 0.05,
k = 1.5 for V aR ∈ (0.05, 0.1], k = 2 for V aR ∈ (0.1, 0.15], k = 3 for V aR ∈ (0.2, 0.25]
and k = 5.5 for V aR ∈ (0.65, 0.7]. Attached numbers inside the figure mark the position of the
respective company in an overall ranking of the 57 largest U.S. financial companies for each of
the two time points.

receive and transmit tail risk. From a regulatory point of view, the second group of pure

risk recipients has the least systemic impact. Monitoring their condition, however, might

still convey important accumulated information on potentially hidden problems in those

companies which act as their risk drivers. In any case, the internal risk management

of these companies should account for the possible threat induced by the large degree

of dependence on others. In particular, assessing their full risk exposure requires net-

work augmented risk measures such as, e.g., our proposed VaR specifications depending

on (pre-selected) network risk drivers. The highest attention of supervision authorities

should be attracted by firms which mainly act as risk drivers or are highly interconnected

risk transmitters in the system. These are particularly firms in the center of the network

which appear as “too interconnected to fail”, but also large risk producers at the boundary
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which are linked to only a few but heavily connected risk transmitters. While the sys-

temic risk network yields qualitative information on risk channels and roles of companies

within the financial system, estimates of systemic risk betas allow to quantify the resulting

individual systemic relevance and thus complement the full picture. Ranking companies

based on (realized) systemic risk betas shows that large depositories are particularly risky.

After controlling for all relevant network effects, they have the overall strongest impact

on systemic risk and should be regulated accordingly. Confirming general intuition, time

evolutions of (realized) systemic risk betas indicate that most companies’ systemic risk

contribution sharply increases during the 2007/08 financial crisis. These effects are partic-

ularly pronounced for firms, which indeed got into financial distress during the crisis and

are (ex post) identified as being clearly systemically risky by our approach. Figure 2 ex-

emplarily illustrates the evolutions of their marginal systemic contributions – as reflected

by systemic risk betas – as well as their exposure to idiosyncratic tail risk – as quantified

by their VaR. A detailed pre-crisis case study confirms the validity of our methodology

since firms such as, e.g., Lehman Brothers are ex-ante identified as being highly systemi-

cally relevant. It is well-known that their subsequent failure has indeed had a huge impact

on the stability of the entire financial system. Likewise, the extensive bail-outs of Ameri-

can International Group (AIG), Freddie Mac and Fannie Mae can be justified given their

high systemic risk betas and high interconnectedness by the end of 2007.

Our paper relates to several strands of recent empirical literature on systemic risk con-

tributions. Closest to our work is White, Kim, and Manganelli (2010) who propose a

bivariate vector-autoregressive system of each company’s VaR and the system VaR. They

capture time variations in tail risk in a pure time series setting which however does not

account for mutual dependencies and network effects. In contrast, our set-up models tail

risk in dependence of economic state variables and network spillovers which automati-

cally account for periods of turbulence when predicting the systemic relevance. Building

on VaR, Adrian and Brunnermeier (2011) were the first to construct a systemic risk mea-

sure, called CoV aR, with balance sheet characteristics driving individual risk exposures.

Note that CoVaR is conceptionally different two our two-step quantile approach and can

by definition only vary through the channel of individual risk of the considered com-

pany. Moreover, network interconnections are not addressed which we identify as crucial
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for the performance of the model. Our work also complements papers which measure a

company’s systemic relevance by focusing on the size of potential bail-out costs, such as

Acharya, Pedersen, Philippon, and Richardson (2010) and Brownlees and Engle (2011).

Such approaches cannot detect spillover effects driven by the topology of the risk network

and might under-estimate the systemic importance of small but very interconnected com-

panies. Moreover, while Brownlees and Engle (2011) study the situation of an individual

firm given that the system is under distress, we investigate the reverse relation and measure

the effect on the system given an individual firm is in financial trouble. Both approaches

are justified as they take complementary perspectives and measure different dimensions of

systemic risk. In the same way, we also complement macroeconomic approaches taking

a more aggregated view as, e.g., the literature on systemic risk indicators (e.g., Segoviano

and Goodhart, 2009, Giesecke and Kim, 2011) or papers on early warning signals (e.g.,

Schwaab, Koopman, and Lucas, 2011, and Koopman, Lucas, and Schwaab, 2011).

The remainder of the paper is structured as follows. In Section 1, we briefly explain

the modeling idea and describe the underlying data. Section 2 presents the model and

estimation procedure for individual companies’ VaRs, before discussing results on the

financial network structure. Section 3 gives the second stage, the system VaR model,

including estimation procedure, inference method and empirical results. In Section 4,

we robustify and validate our results by presenting a case study of five large financial

institutions that were affected by the financial crisis, and try to predict their distress and

systemic relevance using only pre-crisis data. Section 5 concludes.

1 Measuring Systemic Relevance in a Network

1.1 Framework

Assessing and predicting dependence between systemic risk and firm-specific risk re-

quires modeling regression relations in the (left) tails of respective asset return distribu-

tions, rather than in the center. This is in sharp contrast to a standard correlation analysis

in (conditional) means which cannot quantify spillovers in tail situations of financial dis-
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tress, and also goes beyond simple descriptive correlations between tails. Tail correlations

do not allow detecting causal dependencies between tails and do not permit forecasting

systemic risk contributions. We consider a stress-test-type scenario for assessing how

changes in individual company-specific risk affect the risk of failure of the entire system

given underlying network dependencies between institutions and market externalities at

the respective point in time. Therefore, our model does not feature a general equilib-

rium framework, but is exclusively designed to provide a practically feasible and reliable

measure of a company’s marginal contribution to systemic risk in the presence of risk

spillovers from other companies. These underlying network linkages between tail risks of

firms in the system must be identified in a first step.

Defining the company-specific asset return as X i
t , we measure the tail risk of a com-

pany as its conditional Value-at-Risk (VaR), V aRi
p,t, given a set of company-specific tail

risk drivers W
(i)
t containing network influences from other institutions in the system, i.e.,

Pr(−X i
t ≥ V aRi

p,t|W
(i)
t ) = Pr(X i

t ≤ Qi
p,t|W

(i)
t ) = p (1)

with V aRi
p,t = V aRi

p,t(W
(i)
t ) = −Qi

p,t denoting the (negative) conditional p-quantile

of X i
t .

5 Likewise, system risk, V aRs
p,t, is measured as the conditional VaR of the sys-

tem return Xs
t obtained as the value-weighted average return of the set of all major fi-

nancial companies.6 To measure the systemic impact of company i, the system VaR is

modeled in dependence of V aRi
p,t and additional control variables Vt, i.e., V aRs

p,t =

V aRs
p,t(V aRi

p,t,Vt) = −Qs
p,t. Then, we define the systemic risk beta as the marginal

effect of firm i’s tail risk on the system tail risk given by

∂V aRs
p,t(Vt, V aRi

q,t)

∂V aRi
q,t

= βs|i
p,q. (2)

We classify the systemic relevance of institutions according to the statistical significance

of βs|i
p,q and the size of their total effect βs|i

p,qV aRi
q,t. We define the latter as a firm’s realized

systemic risk contribution raising with the system’s marginal exposure to the company’s

5Defining VaR as the negative p-quantile ensures that the Value-at-Risk is positive and is interpreted as
a loss position.

6For details, see Section 1.2.
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tail risk (measured by β
s|i
p,q) and the firm’s V aRi

q,t. Changes in systemic relevance over

time, however, cannot only occur through V aRi
q,t but also through the systemic risk beta

β
s|i
p,q which we allow to vary in firm-specific characteristics (see Section 3).7 Note that this

is conceptionally different to CoVaR of Adrian and Brunnermeier (2011).

As the VaR is not observable and has to be estimated, a major challenge is to select ap-

propriate significant conditioning variables W(i)
t yielding a flexible but still parsimonious

model specification. We determine the relevant i-specific tail risk drivers out of a large set

of potential regressors Wt containing lagged macroeconomic state variables Mt−1, lagged

firm-specific characteristics Ci
t−1, the i-specific lagged return X i

t−1, and influences of all

other companies apart from i, E−i
t = (Ej

t )j 6=i, by a statistical selection technique as dis-

cussed in the remainder of the paper. We find that these intra-system influences are best

captured via contemporaneous loss exceedances, where the loss exceedance of a firm j is

defined as Ej
t = X

j
t 1(X

j
t ≤ Q̂

j
0.1) and Q̂0.1 is the unconditional 10% sample quantile of

Xj . Hence, company j only affects the VaR of company i if the former is under pressure.

Since E−i
t are return realizations and V aRi

t is a future predicted quantity, this specification

furthermore circumvents simultaneity issues. A model for V aRi
t based on economic state

variables as well as loss exceedances by construction automatically adjusts and prevails

in distress scenarios under shocks in externalities. This is a clear advantage compared to

pure time series approaches (cp. e.g. White, Kim, and Manganelli, 2010, and Brownlees

and Engle, 2010).

The selection step allows identifying which (and how strongly) loss exceedances of

other companies influence V aRi
p,t and is crucial for accounting for network dependencies

between companies. As demonstrated in the sequel of the paper, the latter are crucial

for appropriately explaining individual tail risks. Moreover, identifying cross-firm depen-

dencies for each company i is not only essential for appropriately capturing firm-specific

VaRs in a first step but is also crucial for selecting necessary control variables in the es-

timation of βs|i
p,q in the second step. In particular, for an unbiased estimate of βs|i

p,q, it is

necessary to control for any tail risk drivers influencing both V aRs
p,t and V aRi

q. Accord-

ingly, Vt must contain macroeconomic state variables as well as the tail risks (represented

7For ease of illustration, here we skip the time index in β
s|i
p,q .
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by the VaRs) of all companies which are identified to influence company i. Ignoring these

spillover effects would lead to a biased measure of systemic risk contribution.

The identified risk connections between all firms constitute a systemic risk network.

The latter is not only a prerequisite for the quantification of marginal systemic risk contri-

butions but contains additional valuable regulatory information on potential risk channels

and specific roles of companies as risk transmitters and/or recipients. Accordingly, the

following analysis consists of two steps where in the first step firm-specific VaRs and net-

work effects are quantified (Section 2) before in the second step, systemic risk betas are

estimated while controlling for the (pre-)identified cross-company dependencies (Section

3).

1.2 Data

Our analysis focuses on publicly traded U.S. financial institutions. The list of included

companies in Table 1 (see Appendix B) comprises depositories, broker dealers, insurance

companies and Others.8 To assess a firm’s systemic relevance, we use publicly available

market and balance sheet data. Such data constitutes a solid basis for transparent regula-

tion since timely access on detailed information of connections between firms’ assets and

obligations, is very difficult and expensive to obtain – even for central banks.

Daily equity prices are obtained from Datastream and are converted to weekly log

returns. To account for the general state of the economy, we use weekly observations

of seven lagged macroeconomic variables M t−1 as suggested and used by Adrian and

Brunnermeier (2011) (abbreviations as used in the remainder of the paper are given in

brackets): the implied volatility index, VIX, as computed by the Chicago Board Options

Exchange (vix), a short term ”liquidity spread”, computed as the difference of the 3-

month collateral repo rate (available on Bloomberg) and the 3-month Treasury bill rate

from the Federal Reserve Bank of New York (repo), the change in the 3-month Treasury

bill rate (yield3m) and the change in the slope of the yield curve, corresponding to the

spread between the 10-year and 3-month Treasury bill rate (term). Moreover, we utilize

8Companies are distinguished according to their two-digit SIC codes, following the categorization in
Acharya, Pedersen, Philippon, and Richardson (2010).
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the change in the credit spread between BAA rated bonds and the Treasury bill rate (both

at 10 year maturity) (credit), the weekly equity market return from CRSP (marketret) and

the one-year cumulative real estate sector return, computed as the value-weighted average

of real estate companies available in the CRSP data base (housing).

Moreover, to capture characteristics of individual institutions predicting a bank’s propen-

sity to become financially distressed, Ci
t−1, we follow Adrian and Brunnermeier (2011)

and use (i) leverage, calculated as the value of total assets divided by total equity (in book

values) (LEV), (ii) maturity mismatch, measuring short-term refinancing risk, calculated

as short term debt net of cash divided by the total liabilities (MMM), (iii) the market-to-

book value, defined as the ratio of the market value to the book value of total equity (BM),

(iv) market capitalization, defined by the logarithm of market valued total assets (SIZE)

and (v) the equity return volatility, computed from daily equity return data (VOL). The

system return is chosen as the return on the financial sector index provided by Datastream.

It is computed as the value-weighted average of prices of 190 U.S. financial institutions.

As balance sheets are available only on a quarterly basis, we interpolate the quarterly

data to a daily level using cubic splines, and then aggregate them back to calendar weeks.

We focus on 57 financial institutions existing through the period from beginning of 2000

to end of 2008, resulting into 467 weekly observations on individual returns. This re-

striction has the drawback of excluding companies which defaulted during the financial

crisis. Therefore, to address this issue and to validate and robustify our approach, we

re-estimate the model over a sub-period ending before the financial crisis and including,

among others, the investment banks Lehman Brothers and Merrill Lynch that were mas-

sively affected by the crisis.
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2 A Tail Risk Network

2.1 Measuring Firm-Specific Tail Risks

2.1.1 Identification of Tail Risk Drivers

Specifying the VaR of firm i at time point t = 1, . . . , T as a linear function of the i-specific

tail risk drivers W
(i)
t ,

V aRi
q = W(i)′ξiq , (3)

yields a linear function in return quantiles

X i
t = −W

(i)
t

′
ξiq + εit, with Qq(ε

i
t|W

(i)
t ) = 0. (4)

If we knew the i-relevant risk drivers W(i) selected out of W, then, estimates ξ̂iq of ξiq

could be obtained according to standard linear quantile regression (Koenker and Bassett,

1978) by minimizing

1

T

T∑

t=1

ρq

(
X i

t + W
(i)
t

′
ξiq

)
(5)

with loss function ρq(u) = u(q − I(u < 0)), where the indicator I(·) is 1 for u < 0 and

zero otherwise, and

V̂ aR
i

q,t = W
(i)
t

′
ξ̂
i

q . (6)

However, the relevant risk drivers W(i) for firm i are unknown and must be determined

from W in advance. Model selection is not straightforward in the given setting as tests

on the individual significance of single variables do not account for the (possibly high)

collinearity between the covariates. Moreover, sequences of joint significance tests have

too many possible variations to be easily checked in case of more than 60 variables. Since

alternative model selection criteria, like the Bayes Information Criterion (BIC) or the

Akaike Information Criterion (AIC), are not available in a quantile setting, we choose

the relevant covariates in a data-driven way by employing a statistical shrinkage tech-

nique known as the least absolute shrinkage and selection operator (LASSO). LASSO
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methods are standard for high-dimensional conditional mean regression problems (see

Tibshirani, 1996), and have recently been adapted to quantile regression by Belloni and

Chernozhukov (2011). Accordingly, we run an l1-penalized quantile regression and cal-

culate for a fixed individual penalty parameter λi,

ξ̃
i

q = argminξi
1

T

T∑

t=1

ρq
(
X i

t + W′
tξ

i
)
+ λi

√
q(1− q)

T

K∑

k=1

σ̂k|ξ
i
k| , (7)

with the set of potentially relevant regressors Wt = (Wt,k)
K
k=1, componentwise variation

σ̂2
k = 1

T

∑T

t=1(Wt,k)
2 and the loss function ρq as in (5). The key idea is to select relevant

regressors according to the absolute value of their respective estimated marginal effects

(scaled by the regressor’s variation) in the penalized VaR regression (7). Regressors are

eliminated if their shrunken coefficients are sufficiently close to zero. Here, all firms

in W with absolute marginal effects |ξ̃
i
| below a threshold τ = 0.0001 are excluded

keeping only the K(i) remaining relevant regressors W(i). Hence, LASSO de-selects

those regressors contributing only little variation. Due to the additional penalty term

in (7), all coefficients ξ̃
i

q are generally downward biased in finite samples. Therefore,

we re-estimate the unrestricted model (5) only with the selected relevant regressors W(i)

yielding the final estimates ξ̂iq. This post-LASSO step produces finite sample estimates

of coefficients ξiq which are superior to the original LASSO estimates or plain quantile

regression results without penalization suffering from overidentification problems (see the

original paper by Belloni and Chernozhukov (2011) for consistency of the post LASSO

step).

The selection of relevant risk drivers via LASSO crucially depends on the choice of the

company-specific penalty parameter λi. The larger λi, the more regressors are eliminated.

Conversely, in case of λi = 0, we are back in the standard quantile regression setting (5)

without any de-selection. For each institution, we determine the appropriate penalty level

λi in a completely data-driven way such that it dominates a relevant measure of noise

in the sample criterion function. In particular, we use the supremum norm of a suitably

rescaled gradient of the sample criterion function evaluated at the true parameter value

as in Belloni and Chernozhukov (2011). In this sense, number and elements of the set
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of relevant risk drivers are determined only from the data without any restrictive pre-

assumptions. For details on the empirical procedure we refer to Appendix A.2.

Evaluating the goodness of fit of conditional VaR model specifications should take into

account how well the model captures the specific percentile of the return distribution but

also how well the model predicts size and frequency of losses. The latter issue cannot

be captured, e.g., by quantile-based modifications of the conventional R2. We therefore

consider a VaR specification as inadequate if it either fails producing the correct empirical

level of VaR exceedances but also if the sequence of exceedances is not independently and

identically distributed over the considered time period. This proceeding ensures that VaR

violations today do not contain information about VaR violations in the future and both

occur according to the same distribution. This is formally tested using a likelihood ratio

(LR) version of the dynamic quantile (DQ) test developed in Engle and Manganelli (2004)

and described in detail in Appendix A.3. Berkowitz, Christoffersen, and Pelletier (2009)

show that this likelihood ratio (LR) test has superior size and power properties compared

to competing conditional VaR backtesting methods which dominate plain unconditional

level tests (as e.g. Kupiec (1995)).

2.1.2 Empirical Evidence

We estimate VaR specifications with q=0.05 for all companies employing the LASSO se-

lection procedure described in Section 2.1.1.9 Exemplary V aRi (post-)LASSO regression

results for firms in the four industrial sectors depositories, insurances, brokers and others

are provided in Table 2.

The main drivers of company-specific VaRs are loss exceedances of other firms. In

their presence, macroeconomic variables and firm-specific characteristics often do not

have any statistically significant influence and are not selected by the LASSO procedure.

In Table 2, only for Torchmark (TMK) and Regions Financial (RF) regressors other than

cross-firm links are selected. In contrast, VaR specifications of Goldman Sachs (GS),

Morgan Stanley (MS), JP Morgan (JPM) and AIG exclusively contain loss exceedances

9Due to the limited number of observations, we refrain from considering more extreme probabilities.
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Figure 3: Boxplots of backtesting p-values indicating the in-sample model fit of VaR spec-
ifications including macroeconomic regressors only (left) and VaR specifications resulting
from the LASSO selection procedure (7) (right).

from other firms. Particularly the connections between close competitors, such as Gold-

man Sachs and Morgan Stanley and the influence of mortgage company Freddie Mac

(FRE) on AIG correspond are highly plausible and are confirmed by market evidence.

The relevance of cross-firm effects is additionally robustified by testing for the joint sig-

nificance of the individually selected loss exceedances E−i
t . This is performed based on a

quantile regression version of the F -test of linear hypothesis developed by Koenker and

Bassett (1982). We find that the selected tail risk spillovers are highly significant in all

but very few cases. See Table 3 for an overview of all cross-effects.

The importance of including other companies’ loss exceedances as potential risk drivers

for a company i is also illustrated by a simple comparison of the forecast performance of

our LASSO-selected specifications to a model of V aRi only using macroeconomic vari-

ables as in Adrian and Brunnermeier (2011). According to the employed backtests, spec-

ifications allowing for cross-firm dependencies reveal a strong predictive ability and are

significantly superior to simplistic models including macroeconomic regressors only. Fig-

ure 3 shows the distributions of the backtesting p-values implied by both models. Hence,

inter-company linkages do not only add crucial explanatory power in VaR specifications

but in fact contain the main information for explaining individual tail risk.

Our results show that the major information about cross-company dependencies in tail

risks is primarily contained in contemporaneous loss exceedances E−i
t . In contrast, alter-

native VaR specifications utilizing corresponding returns X−j
t or lagged loss exceedances
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E−i
t−1 imply significantly inferior backtest performances with the regressors being mostly

not significant in joint F-tests.10 Moreover, linking VaR forecasts and thus predictions

of hypothetical losses to already realized loss exceedances allows measuring mutual de-

pendencies between companies without requiring a simultaneous system of equations in

conditional quantiles. In particular, observed bi-directional relationships between condi-

tional quantiles and realized loss exceedances of different firms (e.g., between Goldman

Sachs and Morgan Stanley) do not reflect simultaneities as feedbacks are not contem-

poraneous: For instance, a highly negative (realized) return of company j increases the

conditional loss quantile and therefore increases the VaR of firm i. However, a higher

conditional VaR of i does not necessarily directly increase the absolute realized loss re-

turn of i but just makes it more likely. Avoiding an explicit treatment of simultaneities

in quantiles while still addressing network dependencies is an important advantage of our

approach.11

2.2 Network Model and Structure

We constitute a tail risk network of the system from individually selected loss exceedances

reflecting cross-firm dependencies. Taking all firms as nodes in such a network, there

is an influence of firm j on firm i, if Ej is LASSO-selected in (7) as a relevant risk

externality of firm i in V aRi
q. In particular, if Ej is part of W(i) as its k-th component,

then the corresponding coefficient ξiq,k in ξiq marks the risk impact of firm j on firm i in

the network. If Ej is not selected as relevant risk driver of firm i, there is no arrow from

firm j to firm i.

For each company in the system, the network builds on only directly influencing and

influenced firms and all other companies directly influencing the influenced firms. In the

Bayesian network literature, these constitute a so-called Markov blanket assumed to con-

tain all relevant information for predicting the node’s role in the network (see Friedman,

10All F-test results are available upon request and omitted here for sake of brevity.
11Econometrically it is open how to handle such a system in conditional quantiles in general. In contrast

to relations in (conditional) means, it is unclear how marginal q-quantiles constitute the respective quantile
in the joint distribution under appropriate independence assumptions. Only in lags, restricted to very small
dimensions and under strong assumptions, solutions have been obtained via CaViAR type recursions (see
White, Kim, and Manganelli (2010)).
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Geiger, and Goldszmidt, 1997). An overview of the identified tail risk connections be-

tween all companies is provided in Table 3 reporting which company’s loss exceedance

affects which others’ VaR and vice versa. We observe that the number of risk connections

substantially varies over the cross-section of companies. While some firms such as, e.g. ,

Morgan Stanley, Bank of America (BAC), American Express (AXP) as well as Bank of

New York Mellon (BK), are strongly inter-connected with many other companies, there

are institutions, such as Fannie Mae (FNM), AIG (AIG) and a couple of further insur-

ances revealing significantly less cross-firm dependencies. In order to effectively illustrate

identified risk connections and directions, we graphically depict the resulting network of

companies in Figure 5. The layout and allocation of the network is chosen such that the

sum of cross-firm distances are minimized. Consequently, the most connected firms are

located in the center of the network while the less involved companies are placed at its

boundary.

The resulting network topology reveals different roles of companies within the finan-

cial network. We distinguish between three major categories: The first group contains

companies with only few incoming arrows but numerous outgoing ones and thus mainly

act as risk drivers within the system. These are institutions whose potential failure might

affect many others but, conversely, which are themselves relatively unaffected by the dis-

tress of other firms. Risk management of such firms can therefore be based mostly on

idiosyncratic criteria without accounting too much for influences of the system. For regu-

latory authorities, however, a close monitoring is important as a failure of such a company

can induce substantial systemic risks through multiple channels into the financial network.

Our results show that only few firms belong to this category. Examples are State Street

Corporation (STT), one of the top ten U.S. banks, Leucadia National Corporation (LUK),

a holding company which is, among others, engaged in banking, lending and real estate,

and SEI Investments Company (SEIC), a financial services firm providing products and

service in asset and investment management. Financial distress of these banks obviously

has wide-spread consequences. For instance, State Street reveals spillovers to the finan-

cial services companies American Express and Northern Trust (NTRS), the Bank of New

York Mellon and Morgan Stanley. Leucadia affects Citigroup (C), one of the biggest

banks in the U.S., and Freddie Mac, one of the two largest U.S. mortgage companies.
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Finally, SEI Investments has links to various big institutions, such as Bank of America,

American Express, Morgan Stanley and the online broker TD Ameritrade (AMTD).

The second group contains companies which mainly are risk takers within the system.

These companies are not necessarily systemically risky but might severely suffer from

distress of others and should account for such spillovers in their internal risk manage-

ment. According to Table 3 and Figure 5 these firms are primarily insurance companies.

Examples are Cincinnati Financial Corporation (CINF), a company for property and casu-

alty insurance, Humana Incorporation (HUM) managing health insurances or Progressive

Corporation Ohio (PGR) providing automobile insurance and other property-casualty in-

surances.

The third group is the largest category within the network. It consists of companies

which serve as both risk recipients and risk transmitters which amplify tail risk spillovers

by further disseminating risk into new channels. Due to their role as risk distributors such

companies are key systemic players and should be supervised accordingly. We further

distinguish between strongly and less connected firms. The first subgroup is the most

difficult but most important to regulate tightly. Examples are Goldman Sachs, Citigroup,

Morgan Stanley, AON Corporation (AON), Bank of America, American Express, Fred-

die Mac as well as the insurance company MBIA (MBI), among many others. Bank of

America and Citigroup are among the five largest banks in the U.S. and reveal strong

connections to various other big institutions, such as Morgan Stanley, JP Morgan, Gold-

man Sachs, American Express, Regions Financial and AIG. Details on the specific role

of Citigroup and Morgan Stanley within the system are highlighted in Figure 6. Morgan

Stanley, with strong links to many companies, such as Goldman Sachs, Bank of America

and the savings bank Hudson City Bancorporation (HCBK), and the insurance company

AON are examples for deeply connected firms located in the center of the network. Like-

wise, Freddie Mac is strongly involved and was particularly affected by the 2008 credit

crunch in the mortgage sector. Accordingly, also MBIA realized severe losses during the

financial crisis due to investments in mortgage backed securities.

The second subgroup might be technically easier to monitor with companies revealing

risk connections with only very few other firms. Still, supervision is not less important
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than for the first subgroup. Examples are Fannie Mae and AIG. Fannie Mae reveals signif-

icant bilateral risk connections to its main competitor Freddie Mac. AIG holds significant

positions in mortgage backed securities and as a consequence is closely connected to both

Fannie Mae and Freddie Mac. Probably due to the same reason, we also observe bilateral

tail risk dependencies between AIG and MBIA. Even though their number of relevant

risk connections within the network is limited, such firms can still have a crucial over-

all impact on the system. In case of the 2008 financial crisis, the dependence between

Freddie Mac and Fannie Mae as well as their interaction with AIG had severe systemic

consequences.

Figure 7 reveals that it is not sufficient to focus on sector-specific subnetworks only.

Indeed interconnectedness of institutions occurs to a large proportion between industrial

sectors. In these circle layout network graphs, companies are grouped according to in-

dustries with risk outflows for each group being highlighted. We observe that tail risks

of depositories, insurances and others are relatively equally distributed among all other

industry groups. Depositories are most strongly connected and also reveal the strongest

tail risk links among each other. This is in contrast to the other industries where cross-firm

connections within a group are less strong. Moreover, in contrast to other industry cate-

gories, the risk outflow of broker dealers is clearly more concentrated. They particularly

affect big banks such as Bank of America and Citigroup as well as financial service com-

panies such as American Express or SEI. Only very few direct connections to insurance

companies are revealed.

Besides graphical illustration and inflow-outflow categorizations, standard network

characteristics can provide a more comprehensive picture of the interconnectedness and

the role of each node in the system. In Figure 4 we depict firms’ pagerank coefficient (see

Brin and Page (1998)) which does not plainly count links but empirically weights their

importance in an iterative scheme.12 Confirming the visual impression based on Figure

5, the most connected firms are Lincoln National Corporation, AON, Bank of America,

12The key idea is to assign a weight to each node (i.e., a company in our context) which is increasing with
the number of connections to others and the relative importance thereof. The more connected a firm is, the
higher its importance and thus the higher the importance of its neighbor. The computation of the pagerank
coefficient can be understood as an eigenvalue problem which can solved iteratively. For more details, see
Berkhin (2005).
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TD Ameritrade and Morgan Stanley. The graph confirms our finding above that depos-

itories tend to be slightly stronger involved than the other industry groups. Particularly

insurances reflect a separation into a group of highly connected firms, such as Lincoln

National Corp., AON and MBI, and a group of companies being less connected, such as

AIG, Humana Incorp. , Unum Group (UNM) and Cincinnati Financial Corp.
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Figure 4: The left figure displays pagerank coefficients based on the estimated tail risk network
computed as in Berkhin (2005) with ordering of institutions according to sectors. On the right,
pagerank coefficients are plotted versus realized systemic risk contributions for all companies
which are classified as systemically relevant for the years 2000-2008 as in Subsection 3.3. The
solid regression line shows only a small correlation between the pagerank coefficent and the real-
ized beta, supported by the respective R2 of 0.0265 of the regression. Colors and acronyms are as
in Figure 7 above.

Note that pagerank coefficients such as other network metrics can only assess the local

impact and centrality of firms in the network containing relevant but not all information

for judging overall systemic relevance. Therefore, a risk network does not allow to fully

quantitatively assess the systemic relevance of a financial institution. Nevertheless, the

degree of firms’ interconnectedness and the specific topology of the network or corre-

sponding sub-networks allows to identify possible risk channels in the system. These

interlinkages are central but not comprehensive for macroprudential regulation reflecting

the particular role of a firm as risk recipient, transmitter or distributor of tail risk. To ex-

plicitly quantify a firm’s marginal systemic relevance, we propose the concept of systemic

risk betas presented in the following section.
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3 Quantifying Systemic Risk Contributions

3.1 Measuring Systemic Risk Betas

Besides valuable information on financial network structures, the focus of supervision

authorities is on an accurate but parsimonious measure of an institutions’ systemic impact.

We quantify the latter as the effect of a marginal change in the tail risk of firm i on the

tail risk of the system given the underlying network structure of the financial system. In

order to obtain unbiased estimates of this specific marginal effect in the VaR regression

of the system, however, it is sufficient to additionally only control for firms which are

relevant i-specific risk drivers in the network. Conversely, variables unrelated to V aRi

do not affect firm i’s systemic risk contribution.13 Thus, a fully-fledged structural general

equilibrium model is not necessary. Even if correctly specified, an equilibrium setting

would be practically infeasible failing to deliver sufficiently precise estimates given the

high-dimensionality and interconnectedness of the financial system on the one hand and

the limited data availability on the other.

For this reason, we propose estimating systemic risk contributions based on models

which are specific for each firm i as they only control for the i-specific risk drivers. Cor-

respondingly, we estimate the firm-i-specific systemic risk beta β
s|i
q,p based on a linear

model for the system VaR of the form

V aRs
p,t = V

(i)
t

′
γs
p + βs|i

p,qV aRi
q,t, (8)

where the vector of regressors V
(i)
t = (1,Mt−1,VaR

(−i)
q,t ) includes a constant effect,

lagged macroeconomic state variables and the VaRs of all companies which are identi-

fied as risk drivers for firm i via LASSO in Section 2.

The systemic risk beta β
s|i
p,q = βs|i of company i captures the effect of a marginal

change in V aRi
t on V aRs

t . It can be interpreted in analogy to an inverse asset pricing

relationship in quantiles, where bank i’s q-th return quantile drives the p-th quantile of the

13See Angrist, Chernozhukov, and Fernández-Val (2006) for a simple Frisch-Waugh-type argument in
quantile regressions.
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system given network-specific effects and firm-specific and macroeconomic state vari-

ables.14 Accordingly,

β̄s|i
p,q := βs|i

p,qV aRi
t (9)

measures the full partial effect of a tail risk increase of bank i on V aRs
t . We refer to β̄

s|i
p,q

as the realized systemic risk contribution as it is is computed based on market realizations

and is useful for real-time crisis monitoring. Moreover, scaling systemic risk betas by the

corresponding VaR allows to cross-sectionally compare systemic risk contributions and

to rank banks according to their systemic relevance.

During periods of turbulence, not only banks’ risk exposures change but also their

marginal importance for the system might vary. We therefore allow βs|i being time-

varying. In particular, time-variation occurs through observable factors Zi characterizing

a bank’s propensity to get in financial distress. Accordingly, βs|i
t should be interpreted as a

conditional systemic risk beta. Basing βs|i on lagged characteristics, makes betas and thus

corresponding systemic risk rankings predictable which is important for forward-looking

regulation. To limit complexity and computational burden of the model, we assume lin-

earity of βs|i
p,q,t in firm-specific distress indicators Zi

t−1,

β
s|i
p,q,t = β

s|i
0,p,q + Zi

t−1

′
ηs|i
p,q, (10)

where η
s|i
p,q are the parameters driving the time-varying effects. The case of a constant

systemic risk beta is obviously contained as a special case if ηs|i
p,q = 0 and thus β

s|i
0,p,q =

β
s|i
p,q,t = β

s|i
p,q.

We choose Zi
t = C i

t as the firm-specific tail risk drivers since size, leverage, maturity

mismatch, book-to-market ratio and volatility might not only affect a bank’s VaR, but

also directly drive its marginal systemic relevance. As a consequence, systemic risk con-

tributions of two companies with the same exposure to macroeconomic risk factors and

financial network spillovers may be still different as they depend on their balance sheet

14Note that our stress test scenario only studies the immediate effect of an exogenous risk shock in
company i for the system. We do not infer anything about further steps which should then also account for
converse effects of increases of system risk causing firm specific risk to raise.
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structures. The significance of time variation in these quantities can then be statistically

tested for (see Subsection 3.3 below).

Due to the linearity of (10) we can thus write the quantile model (8) for V aRs
p with

time-varying β
s|i
p,q,t in the following form

V aRs
p,t = V

(i)
t

′
γs
p + β

s|i
0,p,qV aRi

q,t + (V aRi
q,t · Zi

t−1)
′
ηs|i
p,q . (11)

3.2 Estimation and Inference

If firm specific VaRs were directly observable, the magnitude and significance of i-specific

systemic risk betas could be directly inferred from the linear quantile regression (11) in

analogy to (5) with the VaR defined by (1). However, note that the regressors V aRi
t and

VaR
(−i)
q,t in V(i) are pre-estimated as they arise from the first-step quantile regressions as

shown in Section 2. Hence, operationalizing (11) with V̂ aR
i

t and V̂aR
(−i)

q,t as generated

regressors, yields the (second step) quantile regression,

Xs
t = −V̂(i)

′

tγ
s
p − β

s|i
0,p,qV̂ aR

i

q,t − (V̂ aR
i

q,t · Zi
t−1)

′

ηs|i
p,q + εst , (12)

with Qp(ε
s
t |V̂ aR

i

q,t, V̂
(i)

t ,Zi
t−1) = 0 .

With the notation V̂
(i)

, we stress that some components of V(i) are pre-estimated as

V̂aR
(−i)

q . Then, analogously to the first-step regressions in Section 2, parameter estimates

are obtained via quantile regression minimizing

1

T

T∑

t=1

ρp

(
Xs

t + V̂(i)
′

tγ
s
p + β

s|i
0,p,qV̂ aR

i

q,t + (V̂ aR
i

q,t · Zi
t−1)

′

ηs|i
p,q

)
(13)

in the unknown parameters. Consequently, the resulting estimate of the full time-varying

marginal effect β̂s|i
p,q in (10) is obtained as

β̂
s|i
p,q,t = β̂

s|i
0,p,q + Zi

t−1

′
η̂p,q

s|i (14)

for given values Zi
t−1.
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Since V aRi
q,t is a function of W(i), conditional quantile independence in (12) is equiv-

alent to Qp(ε
s
t |W

(i)
t ,W

(−i)
t ,Zi

t−1) = 0 where W
(−i)
t stacks W

(j)
t for all firms relevant for

company i appearing in V̂aR
(−i)

q,t . Hence, with both quantile regression steps being linear,

inserting (3) into (11) yields a full model for the system’s tail risk in observable character-

istics. However, direct one-step estimation is only feasible if the choice of W(i) and thus

VaR
(−i)
q,t is still determined in a pre-step from individual VaR regressions. Model selec-

tion based on the full model of V aRs in observables is infeasible since correlation effects

among the huge number of regressors would produce unreliable results. Furthermore, in-

dividual parameters βs|i
0,p,q and η

s|i
p,q could not be identified without additional identification

condition Qq(ε
i
t|W

(i)
t ) = 0, implicitly bringing back the first-step estimation. Therefore

we use two-step estimation even if exact asymptotic confidence intervals are larger than

for an (infeasible) single step procedure. In contrast to mean regressions, such results are

non-standard in a quantile setting and are therefore provided in detail in Appendix A.1.

In finite samples, however, asymptotic distributions often only provide a poor approxi-

mation to the true distribution of the (scaled) difference between the estimator and the

true value if sample sizes are not sufficiently large. In case of quantile regressions, this

effect is even more pronounced, since valid estimates for the asymptotic variance have

poor non-parametric rates and thus require even larger sample sizes to obtain the same

precision.

Therefore, we suggest a procedure for testing significance and potential time-variation

of β̂s|i
p,q,t which is valid in finite samples. For a given hypothesis H0, we use the test statistic

ST = min
ξs∈Ω0

T∑

t=1

ρp(X
s
t − B′

tξ
s)− min

ξs∈RKB

T∑

t=1

ρp(X
s
t − B′

tξ
s), (15)

with the compound vector of all regressors in V aRs, Bt ≡ (V aRi
t, V aRi

t · Zi
t−1,V

(i)
t ),

corresponding KB-parameter vector ξs, and Ω0 referring to the constrained set of param-

eters under H0. This test is an adaptation to the quantile setting of a method proposed

by Chen, Ying, Zhang, and Zhao (2008) for median regressions. Direct operationaliza-

tion of the test is complicated by the fact that the asymptotic distribution of 15 involves

unknown terms, and, secondly, by the nonsmooth objective function of the quantile re-

gression, which causes inconsistency of conventional resampling techniques. Therefore,
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following Chen, Ying, Zhang, and Zhao (2008) we apply an adjusted bootstrap method,

which is described in detail in Appendix A.4.

3.3 Empirical Evidence on Systemic Risk Betas and Risk Rankings

We estimate systemic risk betas according to (12) with time variation in firm-specific

characteristics (i.e. Zi
t = C i

t). As in the first-step estimations, we choose q = 0.05, i.e.,

we model the loss which will not be exceeded with 95% probability. For notational con-

venience, we suppress the quantile index as we set p = q. Obtained realized systemic

risk betas indeed contain information on systemic relevance beyond a company’s net-

work interconnectedness. This is illustrated in Figure 4 revealing only slightly positive

dependencies between pagerank coefficients and realized systemic risk betas. Thus, more

connected firms tend to be systemically more risky, see e.g. , Bank of America and Amer-

ican Express. With an R2 of 2% in the regression, the relationship, however, is not very

strong indicating that the quantification of a firm’s interconnectedness is not sufficient

to assess its systemic relevance which directly depends on firm-specific and macroeco-

nomic conditions. The latter is captured by realized systemic risk contributions but not

necessarily by pagerank coefficients.

We statistically assess if a company’s risk has a relevant direct impact on the system

by testing for the significance of the respective systemic risk beta. Evaluating whether

β
s|i
t = 0 requires testing for the joint significance of all variables driving a firm’s marginal

impact. Thus, we test the hypothesis

H1 : β
s|i
0 = η

s|i
MMM = η

s|i
SIZE = η

s|i
LEV = η

s|i
BM = η

s|i
V OL = 0.

Whether marginal effects on the system are indeed time-varying in firm-specific charac-

teristics can be tested by the joint hypothesis

H2 : η
s|i
MMM = η

s|i
SIZE = η

s|i
LEV = η

s|i
BM = η

s|i
V OL = 0.
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If this hypothesis is not rejected, we re-specify the systemic risk beta as being constant,

i.e., βs|i
t = βs|i, re-estimate the model without interaction variables and test the hypothesis

H3 : βs|i = 0 .

We find the majority of firms having a significant systemic risk beta which is classified

as being time-varying in approximately 50% of all cases. In contrast, for approximately

25% of all firms we do not find systemic risk betas which are significantly different from

zero. Table 4 reports the p-values of the respective underlying tests which are performed

using the wild bootstrap procedure illustrated in Appendix A.4 based on 2, 000 resamples

of the test statistic.15 We consider effects as being significant if p-values are below 10%.

Then, a company is defined as systemically relevant if an increase in its possible loss posi-

tion, given all economic state variables and i-specific risk inflows from other companies,

induces a significantly higher potential systemic loss. This requires its systemic risk beta

to be significant and nonnegative.16

Table 5 lists all systemically relevant companies for the period from 2000 to 2008,

ranked according to their average realized systemic risk contributions ˆ̄βs|i. JP Morgan,

American Express, Bank of America and Citigroup are identified as the (on average) most

systemically risky companies. According to our network analysis above, these firms are

categorized into the group of risk amplifiers which are strongly interconnected and should

be closely supervised. To judge the validity and quality of our assessment based on market

data, we compare our results with the outcomes of the Supervisory Capital Assessment

Program (SCAP) conducted by the Federal Reserve in spring 2009, right after the end of

our sample period. In this analysis, the Fed could draw on detailed non-public confidential

balance sheet information to classify the 19 largest bank holding companies according to

15Because of multi-collinearity of time variation effects in firm characteristics for systemic risk betas,
the interpretation of individual coefficients η might be misleading. Therefore, we refrain from reporting
respective estimates.

16Since we do not impose a priori non-negativity restrictions, systemic risk betas can become negative
at certain points in time. In a few cases we can directly attribute these effects to sudden time variations
in one of the (interpolated) company-specific characteristics Zi

t−1
driving systemic risk betas temporarily

into the negative region. These effects might be reduced by linking βs|i in (10) to (local) time averages of
Zi
t−1

. Such a proceeding would stabilize systemic risk betas but at the cost of a potentially high loss of
information.
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estimates of potential lack in capital buffer for covering risks under an adverse macro

scenario. For details, see Federal Reserve System (2009). The financial institution with

the biggest potential lack of capital buffer according to the SCAP, Bank of America,

ranks among our highest systemically relevant companies leading the ranking in June

2008 (Table 6 b). In addition, with Citigroup, FifthThird Bancorp, Morgan Stanley, PNC,

Regions Financial and Wells Fargo we identify six out of eight banks contained in our

database17 which, according to the SCAP results, were threatened by financial distress

under more adverse market conditions. As we could in advance detect systemic riskiness

of the majority of companies that were later found to face capital shortages in the stress

test scenario of the SCAP, this confirms the quality of our method which is entirely based

on only publicly available data.

Average systemic risk betas, however, only provide a rough picture of systemic im-

portance as they aggregate companies’ marginal systemic risk contributions and VaRs

over time ignoring potential changes in the structure of the financial sector. In contrast,

monitoring the evolution of systemic risk beta’s over time provides a more informative

picture on companies’ specific systemic importance and yields valuable feedback from

the market for forward-looking regulation. To illustrate the potential of our approach, we

show the rankings at two specific time points: Table 6a gives the systemic risk ranking for

the last week in March 2007, which was a relatively ”calm” time before the start of the

financial crisis. Table 6b, on the other hand, shows the ranking at the end of June 2008,

shortly before the collapse of Lehman Brothers. Comparing the pre-crisis and post-crisis

rankings, we observe clear changes. In most cases, systemic risk betas – and thus the

magnitude of systemic risk contributions – significantly increased during the crisis. This

is particularly observed for American Express, Bank of America, JP Morgan, Regions Fi-

nancial and State Street, among others. Nevertheless, in some cases, as, e.g., for Citigroup

and Morgan Stanley systemic risk contributions even declined.

During the crisis, we detect Bank of America as systemically most relevant. Our esti-

mates indicate that its multiple risk channels in the center of the network, particularly to

Morgan Stanley, American Express, Citigroup, Wells Fargo are systemically critical. Fig-

17Due to a lack of data, we cannot include KeyCorp and GMAC in our analysis which also have been
found to be financially distressed in a critical macroeconomic environment.
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ure 8 shows that Bank of America’s systemic risk beta has been relatively stable before the

financial crisis but significantly dropped after the issuance of the Federal Reserve’s rescue

packages. Nevertheless, its VaR and thus its realized systemic risk contribution strongly

increased during the crisis. Our results also identify AIG as highly systemically relevant.

Before the crisis, AIG was among the largest issuers and holders of credit default swaps

(CDS) and other credit securitization derivatives. Its obviously strong exposure to mort-

gage default risks is reflected by a strong dependence to Freddie Mac and Fannie Mae,

among others, as depicted in the network graph in Figure 5. The high systemic relevance

of AIG is illustrated in the upper part of Figure 8 depicting β
s|i
t , V aRi

t and the product

thereof, β̄s|i
t . In 2008, AIG faced tremendous write-downs which caused strong increases

of the firm’s VaR and the realized systemic risk contribution β̄
s|i
t . The rescue packages

from the Federal Reserve amounting to USD 150 billion (see Schich, 2009) in Septem-

ber 2008, however, significantly reduced the risk of both AIG’s and the entire system’s

failure. This is indicated by the strong decline of the companies’ systemic risk beta in

Figure 8). Due to the forward-looking character of systemic risk betas, the (anticipated)

bailout has already been incorporated in the systemic risk ranking of end of June 2009

where AIG drops out of the list of systemically relevant companies. This is induced by

strong changes in the companies’ book-to-market ratio driving the systemic risk beta of

AIG into the negative region.

By construction, realized systemic risk contributions β̄s|i
t might vary over time through

two channels: a time-varying beta, βs|i
t and a time-varying Value-at-Risk, V aRi

t. For se-

lected companies, these effects are illustrated by Figure 2 in the introduction. In many

cases we observe increases of realized systemic risk contributions which are mainly due to

rising individual VaRs with systemic risk betas which even slightly decline from 2007 to

2008. Hence, companies’ marginal contribution to the system VaR is widely unchanged

while their exposure to idiosyncratic risk resulting from worse firm-specific and macroe-

conomic conditions has been dramatically increased. See, for instance, the first two com-

panies in the 2008 ranking, Bank of America and American Express which, however,

realize quite different combinations of marginal systemic contributions and idiosyncratic

tail risk levels apparently facing different sources for systemic relevance. In both cases,

the strong increase in VaR can be attributed to tail risk spillovers in the network, with,
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e.g., Bank of America being particularly affected by Citigroup and Morgan Stanley.

In several cases, increasing individual VaRs coincide with rising systemic risk betas. For

instance, Wells Fargo is an example of a company which was not even identified as be-

ing systemically relevant in 2007 but faces a dramatic increase of both its systemic risk

beta and its idiosyncratic tail risk making it highly systemically risky in 2008. Likewise,

State Street, Progressive Ohio and Marshall & Isle (MI) face an increase of both β
s|i
t and

V aRi
t. Also here, sources for increasing effects can be found in the network structure.

An exception is State Street which does not face significant risk spillovers from other

companies and thus primarily depends on micro- and macroeconomic externalities. As a

result, the company’s high systemic relevance in 2008 is due to the combination of a mod-

erately high systemic risk beta and severe idiosyncratic risk which in turn affect balance

sheets and obligations of other firms. For two central nodes in the network, Citigroup and

Morgan Stanley, however, declining systemic risk betas overcompensate increasing VaRs

resulting in declining systemic relevance.

The results illustrate that realized systemic risk contributions conveniently condense

information on banks’ systemic importance. Though, the underlying driving forces of a

bank’s changed systemic relevance can be quite different. Therefore, only simultaneously

analyzing and monitoring (i) network effects, (ii) sensitivity to micro- and macroeco-

nomic conditions and (iii) time-variations in systemic risk betas provide the full picture

of companies’ specific role in the network and thus build a solid basis for regulatory mea-

sures.

4 Validity: Pre-Crisis Period

In the course of the financial crisis 2007-2009, a number of large institutions defaulted,

were overtaken by others or supported by the government. As for our general empirical

study, we required data for all considered institutions to be available over the entire period

from beginning of 2000 to end of 2008, some of these companies could not be included.

Nevertheless, to validate and robustify our findings, we perform an additional analysis

30



by re-estimating the model for the time period of January 1, 2000, to June 30, 2007 and

including the investment banks Lehman Brothers and Merrill Lynch.

Because of the shorter estimation period, differences between estimated systemic risk

contributions are not as pronounced as in the analysis covering the full time period. There-

fore, as a sharp ranking of companies might not be very meaningful and hard to interpret

in this context, Table 7 rather categorizes firms into groups according to quartiles of the

distribution of realized systemic risk betas. Accordingly, we can distinguish between four

broad classes: Firstly, there are 9 companies with VaRs that significantly influence the

system VaR and are among the 25% largest average realized betas. The most prominent

members of this group are AIG, Lehman Brothers, Morgan Stanley, JP Morgan and Gold-

man Sachs. The second group comprises systemically risky companies with significant

systemic impact, whose average realized betas lie in the third quartile of the distribution.

According to the estimates reported in Table 7, these magnitudes reflect a comparably

high systemic relevance.18 Group 2 group contains mainly large depositories and invest-

ment banks including Bank of America, Merrill Lynch, Citigroup and Regions Financial,

but also the mortage company Freddie Mac. Group 3 includes all companies with small

but significant average systemic risk betas, in particular those below the median. Finally,

the ones which, according to the significance test, are not considered as being systemically

risky during the analyzed time period, are collected in Group 4.

In detail, we focus on four companies which were massively affected by the crisis:

Lehman Brothers became insolvent on September 15, 2008, and was liquidated after-

wards. Merrill Lynch announced a merger with Bank of America in September 2008,

which was executed on January 1, 2009. Furthermore, excluding the crisis period itself

may reveal the systemic relevance of the mortgage firm Freddie Mac, which is closely

connected to the second largest real estate financing company Fannie Mae. Both were

placed under conservatorship by the U.S. government during the course of the financial

crisis. Finally, it is interesting to investigate the systemic riskiness of AIG, which faced

major distress during the crisis and whose bailout was very expensive for the tax payers.

As shown by Table 7 (with the specific companies marked in bold), all of these firms be-

18For a better exposition, we multiply all values of realized systemic risk betas with 100.
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long to the group of systemically relevant firms with high or mid-sized average systemic

risk betas.

Table 8 summarizes the results of our empirical analysis for the four case study can-

didates using only the pre-crisis data. Our network analysis reveals that almost all of the

companies are subject to loss spillovers from direct competitors: Freddie Mac is influ-

enced by risk transmissions of Fannie Mae, and vice versa. Despite Fannie Mae’s low

average realized systemic risk beta, this direct bi-directional risk dependence reveals the

company’s systemic relevance. Merrill Lynch influences Citigroup (C). TD Ameritrade

Holding (AMTD) and E Trade Financial (ETFC) are large online brokers which operate

on the same market as Lehman and Merrill Lynch and are identified as significant tail risk

producer and receiver, respectively. Likewise, we identify tail risk dependencies between

Lehman and both Morgan Stanley and Goldman Sachs, being Lehman’s main competi-

tors and the two largest investment banks in the U.S. during the estimation period. AIG

is clearly the most interconnected firm in this case study. Its VaR is affected by the tail

risks of eight competing insurers: Allstate (ALL), Chubb (CB), Hartford Financial (HIG),

Lincoln National Corp. (LNC), MBIA, Marsh & McLennan Inc. (MMC), and Torchmark

(TMK) as well as by Lehman Brothers (LEH). There are mutual spillovers with Citigroup,

ETFC, CNA, HIG, and MMC. Additionally, AIG’s losses have an effect on the VaRs of

another three insurance companies, Aflac (AFL), Humana (HUM) and Unum (UNM).

All four companies of interest have a significant impact on the system. Focussing

particularly on Lehman Brothers and Merrill Lynch, we show the time evolution of their

realized risk betas and VaRs in Figures 9 and 10, respectively. It turns out that the realized

systemic risk beta of Lehman steadily increases from 2005 to 2007. Interestingly, its VaR

only increases in the second half of 2005 but remains widely on the same level afterwards.

Hence, its growing systemic relevance is mainly due to rising marginal effects on the

system and is not reflected in Lehman’s idiosyncratic risk exposure. The jumps in the VaR

(and thus also in the realized risk beta) are induced by relevant loss exceedances which

only occur whenever one of Lehman’s tail risk drivers (e.g., Morgan Stanley) exceeds

his (unconditional 10%) loss quantile. This discreteness reflects the company’s tail risk

sensitivity to loss exceedances of competitors.
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In case of Merrill Lynch, we observe high fluctuations of the realized systemic risk beta

over the analyzed time period. As for Lehman Brothers, we observe clear differences in

the paths of our systemic risk measure and VaR. For example, while its VaR, apart from

some fluctuations keeps returning to the same level, its realized risk beta increases by

more than 100% from mid of 2006 to mid of 2007. Hence, also here, the (realized) sys-

temic risk beta reveals information on the company’s systemic importance which cannot

be detected by an analysis of the VaR solely. This finding strongly backs the usefulness

of our proposed measure.

From these results, which are produced only from pre-crisis data, we can infer that

in June 2007, each of the five financial institutions of interest was classified as being

relevant for the stability of the U.S. financial system. Our findings indicate, firstly, that

bailouts during the crisis were justified for Fannie Mae, Freddie Mac and AIG. Also a

failure of Merrill Lynch would have led to harsh systemic consequences which could be

prevented by its merger with Bank of America in 2008. Secondly, the increasing sys-

temic importance of Lehman Brothers could have been monitored and thus the impact of

its bankruptcy could have been anticipated to a certain extent. The direct bi-directional

linkage to JP Morgan, as well as the connections to Morgan Stanley and Goldman Sachs,

which in turn are deeply interconnected, indicate a high risk for contagion as a result of

Lehman’s failure. Furthermore, our estimates show that Lehman’s systemic risk contri-

bution is only slightly lower than that of AIG, while it is substantially higher than that

of, e.g., Freddie Mac. Given these results, bailing out the latter but not the former is not

necessarily justifiable from a systemic risk management point of view. If these results had

existed in advance, more effective regulatory measures could have been performed which

could have helped reducing the extent of the financial crisis.

5 Conclusion

The worldwide financial crisis 2007-2009 has revealed that there is a need for a better

understanding of systemic risk. Particularly in situations of distress, it is the intercon-
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nectedness of financial companies which plays a major role but challenges quantitative

analysis and the construction of appropriate risk measures.

In this paper, we propose a measure of firms’ systemic relevance which accounts for

dependence structures within the financial network given market externalities. Our anal-

ysis allows to statistically identify relevant channels of potential tail risk spillovers be-

tween firms constituting the topology of the financial network. Based on these relevant

company-specific risk drivers, we measure a firm’s idiosyncratic tail risk by explicitly ac-

counting for its interconnectedness with other institutions. Our measure for a company’s

systemic risk contribution quantifies the impact on the risk of distress of the system in-

duced by an increase in the risk of the specific company in a network setting. Both mea-

sures exclusively rely on publicly observable balance sheet and market characteristics and

can thus be used for predictions in a stress test scenario.

Our empirical results show the interconnectedness of the U.S. financial system and

clearly mark channels of relevant potential risk spillovers. In particular, we can clas-

sify companies into major risk producers, transmitters or recipients within the system.

Moreover, at any specific point in time, firms can be ranked according to their estimated

contribution to systemic risk given their role and position in the network. Monitoring

companies’ systemic relevance over time, thus allows to detect those firms which are

most central for the stability of the system. In a case study, we highlight that our ap-

proach could have served as a solid basis for sensible forward-looking regulation before

the start of the financial crisis in 2007.

Our approach is readily extendable in several directions. In particular, although the

financial system is dominated by the U.S, it truly is a global business with many firms

operating internationally. Detecting inter- and intra-country risk connections and mea-

suring firms’ global systemic relevance, should be straightforward with our proposed

methodology. Moreover, whenever additional (firm-specific or market-wide) informa-

tion is available as, e.g., reported to central banks, it can be directly incorporated into

our measurement procedure. The data-driven selection step of relevant risk drivers then

determines if and how it increases the precision of results.
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Appendix A Econometric Methodology

A.1 Asymptotic Results for Two-Step Quantile Estimation

Under the adaptive choice of penalty parameter as described in the text, the LASSO selection

method is consistent with rate OP (

√
K(i)
T

log(max(K,T )), and with high probability the coeffi-

cients selected of W, contain the the true coefficients also in finite samples. These results follow

directly from Belloni and Chernozhukov (2011). Furthermore, V aRi is consistently estimated

by the post-LASSO method described in the text which re-estimates the unrestricted model with

W(i). In particular, for all q ∈ I with I ∈ (0, 1) being compact,

ξ̂
i

q − ξiq ≤ OP (

√
K(i)

T
log(max(K,T ))), (A1)

since in our setting it is safe to assume that the number of wrongly selected components of W is

stochastically bounded by the number K(i) of components of W contained in the true model for

V aRi (see equation (2.16) in Belloni and Chernozhukov (2011)). We write in a slight abuse of

notation YT ≤ OP (rT ), with YT being either OP (rT ) or even oP (rT ) for any random sequence

YT and deterministic rT → 0. Note that in general for T → ∞, both K and K(i) might grow

only extremely slowly in T , such that they can be treated close to being constants implying the

standard oracle bound OP (

√
log(T )

T
) in (A1).

If the true model is selected, we find for the asymptotic distribution of the individual VaR

estimates for any q ∈ [0, 1],19

√
1

T

(
ξ̂
i

q − ξiq

)′
→ N

(
0,

q(1− q)

g2(G−1(q))
E[W(i)W(i)′]−1

)
, (A2)

where g(G−1(q)) denotes the density of the corresponding error εi distribution at the qth quantile.

This result is standard (see Koenker and Bassett, 1978). For the second step estimates, we derive

the asymptotic distribution analogously to the two-step median results in Powell (1983)

√
K(i)

T

(
(β̂

s|i
0,p,q, η̂

s|i
p,q, γ̂

s
p)

′
− (β

s|i
0,p,q,η

s|i
p,q,γ

s
p)

′)
(A3)

→ N

(
0, Q−1E

[
p(1− p)

f2(F−1(p))
ρp(ε

s
t )−

p(1− p)

g2(G−1(p))
βs|i
p,q

′ (
ρp(ε

i
t), ρ

v
p(Zt−1ε

i
t)
)])

, (A4)

19Required assumptions of Belloni and Chernozhukov (2011) and quantile analogies to Powell (1983)
are fulfilled in our setting.
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where in the scalar factor, f(F−1(p)) is the density of the corresponding error εs at the pth quan-

tile, the function ρvp of a vector applies ρp to each of its components, and β
s|i
p,q = (β

s|i
0,p,q,η

s|i
p,q). The

remaining main part Q in the variance is given by Q = H ′E[AA′]H with A = (W(i), vec(Zt−1 ·

W(i)′),VaR(−i)). Denote by I and 0 identity and null matrices, respectively, and by 1 a vector of

ones of appropriate dimension. Then,

H ′ =




diag(ξiq,2) 0 · · ·0 · · · · · ·0 · · ·

0 diag(ξiq,1) · · ·0 · · · · · ·0 · · ·

0 0 diag(vec(1dz · ξ
i
q

′
)) · · ·0 · · ·

I 0 · · ·0 · · · · · ·0 · · ·

0 0 · · ·0 · · · Id(−i)×d(−i)




where dZ is the dimension of Z which is 3 in our application, d(−i) is the dimension of VaR
(−i)
t ,

and coefficients ξiq,2 are those components of ξiq for regressors which appear both in the first and

the second step. Correspondingly, ξiq,1 are coefficients of regressors which just appear in the first

step of the individual VaR regression. Note that in the variance matrix there is a distinction in γ

for parts of V which are also controls in V aRi and VaR
(−i)
t , which just appear in V aRs.

A.2 Choice of the Company-specific LASSO penalty parameter λi

We determine λi in a data-driven way following a bootstrap type procedure as suggested by Belloni

and Chernozhukov (2011):

Step 1 Take T iid draws from U [0, 1] independent of W1, . . . ,WT denoted as U1, . . . , UT . Con-

ditional on observations of W, calculate the corresponding value of the random variable,

Λi = T max
1≤k≤K

1

T

∣∣∣∣∣
T∑

t=1

Wt,k(q − I(Ut ≤ q))

σ̂k
√

q(1− q)

∣∣∣∣∣ .

Step 2 Repeat step 1 for B=500 times generating the empirical distribution of Λi conditional on

W through Λi
1, . . . ,Λ

i
B . For a confidence level α ≤ 1/K in the selection, set

λi = c ·Q(Λi, 1− α|Wt),

where Q(Λi, 1−α|Wt) denotes the (1−α)-quantile of Λi given Wt and c ≤ 2 is a constant.

36



The choice of α is a trade-off between a high confidence level and a corresponding high regulariza-

tion bias from high penalty levels in (7). As in the simulation results in Belloni and Chernozhukov

(2011), we choose α = 0.1, which suffices to get optimal rates of the post-penalization estimators

below. Finally, the parameter c is selected in a data-dependent way such that the in-sample pre-

dictive ability of the resulting VaR specification is maximized. (Belloni and Chernozhukov (2011)

proceed in a similar way). The latter is evaluated in terms of its best backtesting performance

according to the procedure described below.

A.3 Backtest for the Model Fit for V aRi

As suggested by Berkowitz, Christoffersen, and Pelletier (2009), for each institution i, we measure

VaR exceedances as Iit ≡ I(Xi
t < −V aRi

q,t). If the chosen model is correct, then,

E[Iit |Ωt] = q , (A5)

where Ωt is the information set up to t. The VaR is estimated correctly, if independently for

each day of the covered period, the probability of exceeding the VaR equals q. Similar to Engle

and Manganelli (2004), Kuester, Mittnik, and Paolella (2006) and Taylor (2008), we include a

constant, three lagged values of It and the current VaR estimate in the information set Ωt. Then,

condition (A5) can be checked by estimating a logistic regression model

Iit = α+ A′
tθ + Ut,

with covariates At = (Iit−1, I
i
t−2, I

i
t−3, V̂ aR

i

t−1)
′. Denote by Īi the sample mean of the binary

response Iit and define Flog(·) as the cumulative distribution function of the logistic distribution.

Then, under the joint hypothesis

H0 : α = q and θ1 = · · ·θ4 = 0,

the asymptotic distribution of the corresponding likelihood ratio test statistic is

LR = −2(lnLr − lnLu)
a
∼ χ2

5 . (A6)
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Here, lnLu =
∑n

t=1

[
Iit lnFlog(α+ A′

tθ) + (1− Iit) ln
(
1− Flog(α+ A′

tθ)
)]

is the unrestricted

log likelihood function which under H0 simplifies to lnLr = nĪi ln(q) + n(1− Īi) ln(1− q).

A.4 Bootstrap Procedure for the Joint Significance Test

The asymptotic distribution of the test statistic introduced in Section 3.2,

ST = min
ξs∈Ω0

T∑

t=1

ρp(X
s
t − B′

tξ
s)− min

ξs∈RKB

T∑

t=1

ρp(X
s
t − B′

tξ
s), (A7)

involves the probability density function of the underlying error terms and is not feasible. Further-

more, bootstrapping ST directly would yield inconsistent results. Therefore, we re-sample from

the adjusted statistic

S∗
T = min

ξs∈Ω0

T∑

t=1

wtρp(X
s
t − B′

tξ
s)− min

ξs∈RKB

T∑

t=1

wtρp(X
s
t − B′

tξ
s)

−

(
T∑

t=1

wtρp(X
s
t − B′

tξ̂
s

c)−
T∑

t=1

wtρp(X
s
t − B′

tξ̂
s
)

)
, (A8)

where ξ̂
s

c denotes the constrained estimate of ξs, and {wt} is a sequence of standard exponentially

distributed random variables, having both mean and variance equal to one. According to Chen,

Ying, Zhang, and Zhao (2008), the empirical distribution of S∗
T provides a good approximation of

the distribution of ST . Thus, if the test statistic ST exceeds some large quantile of the re-sampling

distribution of S∗
T , the null hypothesis is rejected.

The proposed testing method does not require re-sampling of observations but is entirely based

on the original sample. This provides significant gains in accuracy in the two-step regression set-

ting as opposed to standard pairwise bootstrap techniques as a further alternative. A pre-analysis

shows that this wild bootstrap type procedure is valid in the presented form as any serial de-

pendence in the data is sufficiently captured by the regressors in the reduced-form relation not

requiring block-bootstrap techniques.20

20Pairwise block-bootstrap yields block lengths of one according to the standard procedure of Lahiri
(2001). Results are available upon request.
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Appendix B Tables and Figures

Table 1: Included financial institutions in alphabetical order within sectors.

Depositories (21) Others (11) Insurance Comp. (20)

BB T Corp (BBT) American Express Co (AXP) AFLAC Inc (AFL)

Bank of New York Mellon (BK) Eaton Vance Corp (EV) Allstate Corp (ALL)

Bank of America Corp (BAC) Fed. Home Loan Mortg. Corp (FRE) American International Group (AIG)

Citigroup Inc (C) Fed. National Mortgage Assn (FNM) AON Corp (AON)

Comerica Inc (CMA) Fifth Third Bancorp (FITB) Berkley WR Corp (WRB)

Hudson City Bancorp Inc. (HCBK) Franklin Resources Inc (BEN) CIGNA Corp (CI)

Huntington Bancshares Inc. (HBAN) Legg Mason Inc (LM) C N A Financial Corp. (CNA)

JP Morgan Chase & Co (JPM) Leucadia National Corp (LUK) Chubb Corp (CB)

M & T Bank Corp. (MTB) SEI Investments Company (SEIC) Cincinnati Financial Corp (CINF)

Marshall & Ilsley Corp (MI) TD Ameritrade Holding Corp (AMTD) Coventry Health Care Inc (CVH)

NY Community Bankcorp (NYB) Union Pacific Corp (UNP) Hartford Financial (HIG)

Northern Trust Corp (NTRS) HEALTH NET INC (HNT)

Peoples United Financial Inc. (PBCT) Broker-Dealers (7) Humana Inc (HUM)

PNC Financial Services Group (PNC) E Trade Financial Corp (ETFC) Lincoln National Corp. (LNC)

Financial Corp New (RF) Goldman Sachs Group Inc (GS) Loews Corp (L)

S L M Corp. Lehman Brothers (LEH)∗ Marsh & McLennan Inc. (MMC)

State Street Corp (STT) Merrill Lynch (ML)∗ MBIA Inc (MBI)

Suntrust Banks Inc (STI) Morgan Stanley Dean Witter & Co (MS) Progressive Corp Ohio (PGR)

Synovus Financial Corp (SNV) Schwab Charles Corp New (SCHW) Torchmark Corp (TMK)

Wells Fargo & Co (WFC) T Rowe Price Group Inc. (TROW) Unum Group (UNM)

Zions Bancorp (ZION)

∗ included only in the case study
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Table 3: Tail risk cross dependencies: For each company, we list loss exceedances selected by LASSO

as regressors for the V aRi-model (q=0.05) (’Influencing companies’) and companies for which the

respective loss exceedance has been selected (’Influenced companies’).

Name Influencing companies Influenced companies
Broker Dealers

ETFC AMTD,GS,MS AMTD,C
GS C,JPM,LM,MS,SCHW BEN,C,ETFC,JPM,LM,MS,SCHW
MS AIG,AON,BAC,EV,GS,HBAN,HCBK,MTB,SCHW,SEIC,STT AMTD,BAC,EV,GS,HUM,LNC,ETFC,SEIC
SCHW AMTD,GS,JPM,NTRS,TROW AMTD,MS,GS,JPM
TROW AMTD,BEN,EV,JPM,LUK,NTRS,SEIC,SNV AON,MBI,MMC,AMTD,AXP,BEN,EV,NTRS,SCHW

Depositories
BAC AON,AXP,C,HBAN,LM,MS,MTB,PBCT,PNC,SEIC,STI,WFC AXP,BBT,C,CMA,HCBK,JPM,LM,MBI,MS,MTB,PNC,STI,WFC
BBT BAC,FITB,MTB,NTRS,STI,TMK,UNP,WFC AXP,BEN,CMA,FRE,MTB,RF,TMK,UNP,WFC,ZION
BK AXP,JPM,MTB,NTRS,SNV,STT,WFC CMA,JPM,NTRS,SEIC,SNV
C BAC,ETFC,FITB,GS,JPM,LNC,LUK,MBI,MTB BAC,GS,JPM,LUK
CMA AON,BAC,BBT,BK,HBAN,RF,SNV,WFC AON,PNC,SNV,ZION
HBAN AON,LNC,RF,STI,ZION AON,BAC,CMA,EV,LNC,MS,PBCT,RF,ZION
HCBK AON,BAC,MBI,MTB,NYB MS,MTB
JPM BAC,BK,C,GS,PNC,SCHW BK,C,GS,SCHW,SEIC,TROW
MI MMC,TMK HIG,MMC
MTB BAC,BBT,HCBK,NYB,SNV,ZION AON,BAC,BBT,BK,HCBK,MS,SNV,WFC,ZION,C
NTRS BEN,BK,LUK,MMC,SEIC,STT,TROW AFL,AMTD,BBT,BEN,BK,HIG,MMC,PGR,SCHW,TMK,TROW,LUK,STT
NYB PBCT,WFC MTB,SLM,WFC,HCBK,PBCT
PBCT HBAN,NYB AON,BAC,CB,NYB,RF
PNC BAC,CMA,STT,TMK,WFC,ZION BAC,JPM,ZION
RF AMTD,AON,BBT,FITB,HBAN,PBCT,STI,ZION AIG,AON,CMA,EV,FITB,HBAN,MBI,SNV,STI,ZION
SLM AON,AXP,FRE,MBI,NYB AON,AXP,BEN,EV,FITB,MBI
SNV BK,CMA,FITB,MTB,RF,ZION BEN,BK,CMA,FITB,MTB,TROW
STI AON,BAC,FITB,LNC,RF,WFC,ZION AFL,AON,BAC,BBT,FITB,HBAN,RF,ZION,CINF,HUM,UNM,WFC
STT AXP,NTRS AXP,BK,NTRS,PNC,MS
WFC BAC,BBT,CB,LNC,MTB,NYB,STI FITB,PNC,STI,AFL,BAC,BBT,BK,CMA,NYB
ZION BBT,CMA,HBAN,MTB,PNC,RF,STI AON,RF,FITB,HBAN,LNC,MTB,PNC,SNV,STI

Insurance Companies
AFL ALL,AON,CNA,EV,NTRS,SEIC,STI,TMK,WFC AXP,CB,EV,PGR,TMK,UNM
AIG FRE,MBI,RF,TMK FNM,MBI,MS
ALL CB,CNA,L,LNC,TMK AFL,PGR,TMK,UNM
AON CMA,HBAN,MBI,MTB,PBCT,RF,SLM,STI,TROW,ZION AFL,BAC,BEN,CMA,EV,FITB,HBAN,HCBK,LM,MBI,MS,RF,SLM,STI
CB AFL,L,LNC,PBCT,PGR ALL,CINF,EV,HIG,L,WFC,WRB
CI CNA,HNT,HUM,LNC HNT,HUM,LNC
CINF CB,MBI,STI AXP,LM
CNA EV,L,LNC,MBI AFL,ALL,CI,L,LNC,MBI
CVH HUM SEIC
HIG CB,L,LNC,MI,NTRS,TMK HUM,LNC,TMK
HNT CI,EV,HUM,LM,LNC,PGR CI,HUM,LM
HUM CI,HIG,HNT,MS,STI CI,HNT
L CB,CNA,LNC,TMK,UNP ALL,AXP,CB,CNA,HIG,LNC,UNM,UNP
LNC CI,CNA,EV,HBAN,HIG,L,MS,SEIC,TMK,ZION ALL,C,CB,CNA,HBAN,HIG,HNT,L,SEIC,STI,TMK,UNM,WFC,CI
MBI AIG,AON,BAC,BEN,CNA,FRE,RF,SLM,TROW AIG,AON,BEN,C,CINF,HCBK,SLM,CNA,LM
MMC MI,NTRS,PGR,SEIC,TROW,UNM MI,NTRS,UNM
PGR AFL,ALL,NTRS,WRB MMC,CB,HNT,WRB
TMK AFL,ALL,BBT,HIG,LNC,NTRS,SEIC,UNM,UNP AFL,BBT,EV,L,LNC,MI,PNC,AIG,ALL,HIG
UNM AFL,ALL,L,LNC,MMC,STI TMK,MMC
WRB BEN,CB,PGR PGR

Others
AMTD ETFC,MS,NTRS,SCHW,SEIC,TROW ETFC,RF,SCHW,TROW
AXP AFL,BAC,BBT,BEN,CINF,EV,L,SEIC,SLM,STT,TROW BAC,BEN,BK,EV,SLM,STT
BEN AON,AXP,BBT,EV,GS,LM,MBI,NTRS,SLM,SNV,TROW AXP,EV,LM,MBI,NTRS,TROW,WRB
EV AFL,AON,AXP,BEN,CB,HBAN,MS,RF,SEIC,SLM,TMK,TROW AFL,AXP,BEN,CNA,FRE,HNT,LM,LNC,MS,TROW
FITB AON,LUK,RF,SLM,SNV,STI,WFC,ZION BBT,C,FRE,RF,SNV,STI
FNM AIG,FRE FRE
FRE BBT,EV,FITB,FNM,LUK AIG,MBI,SLM,FNM
LM AON,BAC,BEN,CINF,EV,GS,HNT,MBI BAC,BEN,GS,HNT,LUK
LUK C,LM,NTRS C,FITB,FRE,NTRS,TROW
SEIC BK,CVH,JPM,LNC,MS AFL,AMTD,AXP,BAC,EV,LNC,MMC,MS,NTRS,TMK,TROW
UNP BBT,L BBT,TMK,L
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Table 4: p-values for the test on significance of systemic risk betas (Hypothesis H1) and for the test

on constancy of systemic risk betas (Hypothesis H2). For the second panel, we include in parentheses

the p-values for the test on significance of systemic risk betas in case H1 is rejected but H2 is not

(Hypothesis H3).

Name pvH1 pvH2 (pvH3)
Companies with significant and time-varying β

s|i
t

AMERICAN EXPRESS 0.001 0.006
AMERICAN INTL.GP. 0.002 0.000
BANK OF AMERICA 0.002 0.001
CHARLES SCHWAB 0.019 0.013
CHUBB 0.017 0.015
CIGNA 0.001 0.013
CINCINNATI FINL. 0.010 0.004
CITIGROUP 0.026 0.066
COMERICA 0.016 0.020
FANNIE MAE 0.001 0.000
FIFTH THIRD BANCORP 0.039 0.021
FRANKLIN RESOURCES 0.028 0.030
FREDDIE MAC 0.098 0.092
HARTFORD FINL.SVS.GP. 0.001 0.001
HUDSON CITY BANC. 0.043 0.035
HUNTINGTON BCSH. 0.010 0.011
LEGG MASON 0.026 0.060
LEUCADIA NATIONAL 0.041 0.016
LINCOLN NAT. 0.062 0.026
M & T BK. 0.033 0.021
MARSH & MCLENNAN 0.003 0.002
MARSHALL & ILSLEY 0.020 0.019
MORGAN STANLEY 0.041 0.095
PNC FINANCIAL SVS. GP 0.012 0.012
PROGRESSIVE OHIO 0.007 0.003
REGIONS FINANCIAL 0.034 0.029
STATE STREET 0.054 0.049
T ROWE PRICE GP. 0.090 0.076
TORCHMARK 0.002 0.001
UNION PACIFIC 0.040 0.035
UNUM GROUP 0.079 0.097
W R BERKLEY 0.007 0.037
WELLS FARGO & CO 0.015 0.027
ZIONS BANCORP. 0.095 0.100

Companies with significant but constant βs|i

AON 0.063 0.192 (0.135)
E TRADE FINANCIAL 0.072 0.160 (0.233)
JP MORGAN CHASE & CO. 0.014 0.237 (0.047)
NY.CMTY.BANC. 0.040 0.132 (0.088)
SEI INVESTMENTS 0.014 0.115 (0.025)
TD AMERITRADE HOLDING 0.049 0.131 (0.188)

Companies with insignificant βs|i

AFLAC 0.220 -
ALLSTATE 0.114 -
BANK OF NEW YORK MELLON 0.199 -
BB &T 0.120 -
CNA FINANCIAL 0.410 -
COVENTRY HEALTH CARE 0.257 -
EATON VANCE NV. 0.276 -
GOLDMAN SACHS GP. 0.667 -
HEALTH NET 0.371 -
HUMANA 0.189 -
LOEWS 0.276 -
MBIA 0.235 -
NORTHERN TRUST 0.305 -
PEOPLES UNITED FINANCIAL 0.105 -
SLM 0.391 -
SUNTRUST BANKS 0.213 -
SYNOVUS FINL. 0.289 -
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Table 5: Ranking of average systemic risk contributions based on realized systemic risk betas. The third

column lists loss exceedances that are included in the respective company’s V aRi-regression. Estimation

period 2000-2008 Q3. Systemic risk contributions based on time-varying betas are marked by ∗.

Rank Name ̂̄β
s|i

av · 102 influencing companies
1 JP MORGAN CHASE & CO 1.41 BAC,BK,C,GS,PNC,SCHW
2 AMERICAN EXPRESS 1.22∗ AFL,BAC,BBT,BEN,CINF,EV,L,SEIC,SLM,STT,TROW
3 BANK OF AMERICA 1.01∗ AON,AXP,C,HBAN,LM,MS,MTB,PBCT,PNC,SEIC,STI,WFC
4 CITIGROUP 0.87∗ BAC,ETFC,FITB,GS,JPM,LNC,LUK,MBI,MTB
5 LEGG MASON 0.83∗ AON,BAC,BEN,CINF,EV,GS,HNT,MBI
6 REGIONS FINANCIAL 0.72∗ AMTD,AON,BBT,FITB,HBAN,PBCT,STI,ZION„
7 MARSHALL & ILSLEY 0.65∗ MMC,TMK
8 MARSH & MCLENNAN 0.63∗ MI,NTRS,PGR,SEIC,TROW,UNM
9 MORGAN STANLEY 0.62∗ AIG,AON,BAC,EV,GS,HBAN,HCBK,MTB,SCHW,SEIC,STT

10 AMERICAN INTL.GP. 0.61∗ FRE,MBI,RF,TMK
11 PROGRESSIVE OHIO 0.58∗ AFL,ALL,NTRS,WRB
12 STATE STREET 0.55∗ AXP,NTRS
13 ZIONS BANCORP 0.51∗ BBT,CMA,HBAN,MTB,PNC,RF,STI,
14 FIFTH THIRD BANCORP 0.49∗ AON,LUK,RF,SLM,SNV,STI,WFC,ZION
15 NY.CMTY.BANC. 0.49 PBCT,WFC
16 PNC FINANCIAL SVS. GP 0.47∗ BAC,CMA,STT,TMK,WFC,ZION
17 FANNIE MAE 0.45∗ AIG,FRE
18 FRANKLIN RESOURCES 0.34∗ AON,AXP,BBT,EV,GS,LM,MBI,NTRS,SLM,SNV,TROW
19 CHARLES SCHWAB 0.33∗ AMTD,GS,JPM,NTRS,TROW
20 CHUBB 0.30∗ AFL,L,LNC,PBCT,PGR
21 WELLS FARGO & CO 0.28∗ BAC,BBT,CB,LNC,MTB,NYB,STI
22 FREDDIE MAC 0.19∗ BBT,EV,FITB,FNM,LUK
23 HARTFORD FINL.SVS.GP. 0.19∗ CB,L,LNC,MI,NTRS,TMK
24 CINCINNATI FINL. 0.16∗ CB,MBI,STI
25 TORCHMARK 0.12∗ AFL,ALL,BBT,HIG,LNC,NTRS,SEIC,UNM,UNP,
26 UNUM GROUP 0.04∗ AFL,ALL,L,LNC,MMC,STI
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Table 6: Rankings of relevant systemic risk contributions based on estimated realized

systemic risk betas ̂̄β
s|i

t at the specific point in time. Estimated systemic risk betas and

VaRs are listed in addition illustrating the different sources of variation in ̂̄β
s|i

t . Systemic

risk contributions based on time-varying betas are marked by ∗.

a) End of March 2007 (before the beginning of the financial crisis)

Rank Name ̂̄β
s|i

2007
· 102 β̂

s|i
2007

V̂ aR
i

2007

1 CITIGROUP 1.78∗ 0.263 0.068
2 AMERICAN EXPRESS 1.35∗ 0.387 0.035
3 BANK OF AMERICA 1.16∗ 0.304 0.038
4 JP MORGAN CHASE & CO. 1.05 0.265 0.040
5 MORGAN STANLEY 1.01∗ 0.146 0.069
6 LEGG MASON 0.98∗ 0.205 0.048
7 MARSH & MCLENNAN 0.83∗ 0.222 0.037
8 REGIONS FINANCIAL 0.78∗ 0.202 0.038
9 PNC FINANCIAL SVS. GP 0.77∗ 0.248 0.031

10 CHUBB 0.74∗ 0.240 0.031
11 AMERICAN INTL.GP. 0.61∗ 0.143 0.043
12 FRANKLIN RESOURCES 0.60∗ 0.143 0.042
13 STATE STREET 0.51∗ 0.114 0.045
14 FIFTH THIRD BANCORP 0.50∗ 0.104 0.048
15 PROGRESSIVE OHIO 0.42∗ 0.092 0.046
16 NY.CMTY.BANC. 0.41 0.090 0.045
17 MARSHALL & ILSLEY 0.40∗ 0.088 0.045
18 TORCHMARK 0.39∗ 0.173 0.023
19 HARTFORD FINL.SVS.GP. 0.38∗ 0.099 0.039
20 ZIONS BANCORP. 0.26∗ 0.115 0.054
21 CHARLES SCHWAB 0.25∗ 0.042 0.060
22 FREDDIE MAC 0.23∗ 0.057 0.041
23 LEUCADIA NATIONAL 0.19∗ 0.057 0.033
24 CINCINNATI FINL. 0.13∗ 0.026 0.050
25 FANNIE MAE 0.09∗ 0.019 0.049
26 UNUM GROUP 0.23∗ 0.045 0.051
27 T ROWE PRICE GP. 0.06∗ 0.014 0.043
28 LINCOLN NAT. 0.04∗ 0.010 0.036

b) End of June 2008 (during the financial crisis)

Rank Name ̂̄β
s|i

2008
· 102 β̂

s|i
2008

V̂ aR
i

2008

1 BANK OF AMERICA 2.86∗ 0.186 0.154
2 AMERICAN EXPRESS 2.78∗ 0.278 0.100
3 WELLS FARGO & CO 2.51∗ 0.186 0.135
4 MARSHALL & ILSLEY 2.31∗ 0.516 0.045
5 JP MORGAN CHASE & CO. 2.22 0.265 0.084
6 PROGRESSIVE OHIO 1.97∗ 0.380 0.052
7 LEGG MASON 1.96∗ 0.137 0.143
8 REGIONS FINANCIAL 1.86∗ 0.107 0.173
9 MARSH & MCLENNAN 1.76∗ 0.471 0.037

10 STATE STREET 1.44∗ 0.171 0.084
11 NY.CMTY.BANC. 1.12 0.090 0.125
12 PNC FINANCIAL SVS. GP 1.09∗ 0.153 0.071
13 CHUBB 1.07∗ 0.176 0.061
14 TORCHMARK 1.00∗ 0.177 0.057
15 CHARLES SCHWAB 0.91∗ 0.149 0.060
16 CITIGROUP 0.90∗ 0.072 0.124
17 MORGAN STANLEY 0.61∗ 0.074 0.083
18 ZIONS BANCORP. 0.58∗ 0.058 0.100
19 UNUM GROUP 0.34∗ 0.033 0.104
20 UNION PACIFIC 0.27∗ 0.047 0.056
21 HARTFORD FINL.SVS.GP. 0.24∗ 0.012 0.201
22 FRANKLIN RESOURCES 0.17∗ 0.026 0.064
23 T ROWE PRICE GP. 0.01∗ 0.001 0.102
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Table 7: Group ranking of systemic risk contributions for the pre-crisis period 2000 - mid 2007.

The upper part, group 1 (’high’), contains companies with significant β
s|i
t and the highest quartile

of significant betas: ˆ̄β
s|i
av · 100 ∈ [0.5, 1.3]. Group 2 refers to the third quartile (’medium’) with

ˆ̄β
s|i
av ·100 ∈ [0.03, 0.49] and Group 3 to realized systemic risk betas lower than the median value (’small’),

for which ˆ̄β
s|i
av · 100 < 0.01. Group 4 includes companies not determined to be systemically risky during

the estimation period, i.e., those with insignificant systemic risk betas. Case study companies are marked

in bold.

Systemic risk contributions Companies

Group 1 ’high’ AIG, LEH, MS, JPM, GS,STT, CINF, LM, PBCT

Group 2 ’medium’ FRE, ML, BAC, C, RF, AXP, PNC,CNA, TROW, NTRS

Group 3 ’low’
FNM, WFC, EV, TMK, BBT, AFL, HUM, MI, CMA, BK,

LNC, ALL, HNT, CB, CVH, SLM, ETFC

Group 4

AMTD, AON, BEN, CI, FITB, HBAN, HCBK, HIG, L, LUK,

MBI, MMC, MTB, NYB, PGR, SCHW, SEIC, SNV, STI, UNM,

UNP, WRB, ZION

Table 8: Summary of estimation and test results for the four case study companies: loss exceedances

influencing each company’s VaR, the most important other VaRs influenced, joint significance tests on

β
s|i
t = 0 and estimated average systemic risk contributions and betas. Estimation period: January 2000 -

June 2007.

Name incluenced by main influences overall sign. average ̂̄β
s|i

t · 100 average β̂
s|i
t

FREDDIE AON, BBT, EV, FITB, FNM, HUM, MBI BBT, FNM 0.048 0.38 0.092∗

MERRILL AMTD, CB, CNA, HCBK, L, NYB, WRB C 0.051 0.03 0.030∗

LEHMAN AMTD, AON, BEN, GS, JPM, LM, LUK, MI, MS AIG, AXP, ETFC, JPM 0.041 0.79 0.176∗

AIG ALL, C, CB, CNA, ETFC, HIG, LEH, LNC, MBI, AFL, C, CNA, HIG, 0.026 0.73 0.210∗

MMC, SCHW, STT, TMK HUM, MMC, UNM
∗ time-varying betas
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Figure 6: Full Network graphs of Citigroup (C) and Morgan Stanley (MS) highlighting
risk drivers and risk recipients directly connected to the respective companies with bold
arrows according to the respective size of the effect. Arrows, colors and acronyms are as
in Figure 5. For simplicity, all other links just mark spillover effects without referring to
size. The list of firm acronyms is contained in Table 1.
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AIG: Systemic risk beta
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Figure 8: The upper three panels depict time-varying systemic risk beta’s, time-varying
VaRs and the product of the two, realized systemic risk beta’s, for American International
Group (AIG). The lower three panels show the respective three time series for Bank of
America (BAC).
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Systemic Risk Impact of LEH &ML before the Crisis
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Figure 9: Realized systemic risk betas, i.e., the products of estimated systemic risk betas
and individual VaRs, of Lehman Brothers (LEH, red) and Merrill Lynch (ML, green).
Estimation period is the pre-crisis period, 2000 - mid 2007.
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Figure 10: Estimated company-specific VaRs of Lehman Brothers (upper panel) and Mer-
rill Lynch (lower panel). Estimation period is the pre-crisis period, 2000 - mid 2007.
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