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Financial Networks and Contagion †

By Matthew Elliott, Benjamin Golub, and Matthew O. Jackson *

We study cascades of failures in a network of interdependent finan-
cial organizations: how discontinuous changes in asset values 
(e.g., defaults and shutdowns) trigger further failures, and how this 
depends on network structure. Integration (greater dependence on 
counterparties) and diversification (more counterparties per orga-
nization) have different, nonmonotonic effects on the extent of cas-
cades. Diversification connects the network initially, permitting 
cascades to travel; but as it increases further, organizations are 
better insured against one another’s failures. Integration also faces 
trade-offs: increased dependence on other organizations versus less 
sensitivity to own investments. Finally, we illustrate the model with 
data on European debt cross-holdings. (JEL D85, F15, F34, F36, 
F65, G15, G32, G33, G38)

Globalization brings with it increased financial interdependencies among many 
kinds of organizations—governments, central banks, investment banks, firms, etc.—
that hold each other’s shares, debts, and other obligations. Such interdependencies 
can lead to cascading defaults and failures, which are often avoided through massive 
bailouts of institutions deemed “too big to fail.” Recent examples include the US 
government’s interventions in AIG, Fannie Mae, Freddie Mac, and General Motors; 
and the European Commission’s interventions in Greece and Spain. Although such 
bailouts circumvent the widespread failures that were more prevalent in the nine-
teenth and early twentieth centuries, they emphasize the need to study the risks 
created by a network of interdependencies. Understanding these risks is crucial to 
designing incentives and regulatory responses which defuse cascades before they 
are imminent.

In this paper we develop a general model that produces new insights regard-
ing financial contagions and cascades of failures among organizations linked 
through a network of financial interdependencies. Organizations’ values depend on 
each other—e.g., through cross-holdings of shares, debt, or other liabilities. If an 

* Elliott: Division of Humanities and Social Sciences, California Institute of Technology, 1200 E. California 
Blvd., Pasadena, CA 91125 (e-mail: melliott@caltech.edu); Golub: Department of Economics, Harvard University, 
Littauer Center, 1805 Cambridge St., Cambridge, MA 02138 (e-mail: ben.golub@gmail.com); Jackson: Department 
of Economics, Stanford University, 579 Serra Mall, Stanford, CA 94305, the Santa Fe Institute, and CIFAR (e-mail: 
jacksonm@stanford.edu). Jackson gratefully acknowledges financial support from NSF grant SES-0961481 and 
grant FA9550-12-01-0411 from AFOSR and DARPA, and ARO MURI award No. W911NF-12-1-0509. All authors 
thank Microsoft Research New England Lab for research support. We thank Jean-Cyprien Héam, Scott Page, 
Gustavo Peralta, Ployplearn Ravivanpong, Alp Simsek, Alireza Tahbaz-Salehi, and Yves Zenou, as well as three 
referees and many seminar participants for helpful comments. The authors declare that they have no relevant or 
material financial interests that relate to the research described in this paper.

† Go to http://dx.doi.org/10.1257/aer.104.10.3115 to visit the article page for additional materials and author  
disclosure statement(s).

mailto:melliott@caltech.edu
mailto:ben.golub@gmail.com
mailto:jacksonm@stanford.edu
http://dx.doi.org/10.1257/aer.104.10.3115


3116 THE AMERICAN ECONOMIC REVIEW OCTObER 2014

 organization’s value becomes sufficiently low, it hits a failure threshold at which 
it discontinuously loses further value; this imposes losses on its counterparties, 
and these losses then propagate to others, even those who did not interact directly 
with the organization initially failing. At each stage, other organizations may hit 
failure thresholds and also lose value discontinuously. Relatively small, and even 
 organization-specific, shocks can be greatly amplified in this way.1

In our model, organizations hold primitive assets (any factors of production or 
other investments) as well as shares in each other.2 The basic network we start with 
describes which organizations directly hold which others. Cross-holdings lead to a 
well-known problem of inflating book values,3 and so we begin our analysis by deriv-
ing a formula for a noninflated “market value” that any organization delivers to final 
investors outside the system of cross-holdings. This formula shows how each organi-
zation’s market value depends on the values of the primitive assets and on any failure 
costs that have hit the economy. We can therefore track how asset values and failure 
costs propagate through the network of interdependencies. An implication of failures 
being complementary is that cascades occur in “waves” of dependencies. Although in 
practice these might occur all at once, it can be useful to distinguish the sequence of 
dependencies in order to figure out how they might be avoided. Some initial failures 
are enough to cause a second wave of organizations to fail. Once these organizations 
fail, a third wave of failures may occur, and so on. A variation on a standard algo-
rithm4 then allows us to compute the extent of these cascades by using the formula 
discussed above to propagate the failure costs at each stage and determine which 
organizations fail in the next wave. Policymakers can use this algorithm in conjunc-
tion with the market value formula to run counterfactual scenarios and identify which 
organizations might be involved in a cascade under various initial scenarios.

With this methodology in hand, our main results show how the probability of 
cascades and their extent depend on two key aspects of cross-holdings: integration 
and diversification. Integration refers to the level of exposure of organizations to 
each other: how much of an organization is privately held by final investors, and how 
much is cross-held by other organizations. Diversification refers to how spread out 
cross-holdings are: is a typical organization held by many others, or by just a few? 
Integration and diversification have different, nonmonotonic effects on the extent of 
cascades.

If there is no integration, then clearly there cannot be any contagion. As integration 
increases, the exposure of organizations to each other increases and so contagions 
become possible. Thus, on a basic level, increasing integration leads to increased 
exposure, which tends to increase the probability and extent of contagions. The 
countervailing effect here is that an organization’s dependence on its own primitive 

1 The discontinuities incurred when an organization fails can include the cost of liquidating assets, the (tempo-
rary) misallocation of productive resources, as well as direct legal and administrative costs. Given that efficient 
investment or production can involve a variety of synergies and complementarities, any interruption in the ability to 
invest or pay for and acquire some factors of production can lead to discontinuously inefficient uses of other factors, 
or of investments. See Section IC for more details.

2 We model cross-holdings as direct (linear) claims on values of organizations for simplicity, but the model 
extends to all sorts of debt and other contracts as discussed in Section 2 in the online Appendix.

3 See Brioschi, Buzzacchi, and Colombo (1989) and Fedenia, Hodder, and Triantis (1994).
4 This sort of algorithm is the obvious one for finding extreme points of a lattice, and so is standard in a variety 

of equilibrium settings. Ours is a variation on one from Eisenberg and Noe (2001).
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assets decreases as it becomes integrated. Thus, although integration can increase 
the likelihood of a cascade once an initial failure occurs, it can also decrease the 
likelihood of that first failure.

With regard to diversification, there are also trade-offs, but on different dimen-
sions. Here the overall exposure of organizations is held fixed but the number of 
organizations cross-held is varied. With low levels of diversification, organizations 
can be very sensitive to particular others, but the network of interdependencies is 
disconnected and overall cascades are limited in extent. As diversification increases, 
a “sweet spot” is hit where organizations have enough of their  cross-holdings 
concentrated in particular other organizations so that a cascade can occur, and 
yet the network of cross-holdings is connected enough for the contagion to be 
 far-reaching. Finally, as diversification is further increased, organizations’ port-
folios are sufficiently diversified so that they become insensitive to any particular 
organization’s failure.

Putting these results together, an economy is most susceptible to widespread finan-
cial cascades when two conditions hold. The first is that integration is intermediate: 
each organization holds enough of its own assets that the idiosyncratic devaluation 
of those assets can spark a first failure, and holds enough of other organizations for 
failures to propagate. The second condition is that organizations are partly diversi-
fied: the network is connected enough for cascades to spread widely, but nodes don’t 
have so many connections that they are well-insured against the failure of any coun-
terparty. Our analysis of these trade-offs includes both analytical results on a class 
of networks for which the dynamics of cascades are tractable, as well as simulation 
results on other random cross-holding networks.

In the simulations, we examine several important specific network structures. One 
is a network with a clique of large “core” organizations surrounded by many smaller 
“peripheral” organizations, each of which is linked to a core organization. This emu-
lates the network of interbank loans. There we see a further nonmonotonicity in 
integration: if core organizations have low levels of integration, then the failure of 
some peripheral organization is contained, with only one core organization failing; 
if core organizations have middle levels of integration, then widespread contagions 
occur; if core organizations are highly integrated, then they become less exposed to 
any particular peripheral organization and more resistant to peripheral failures. A 
second model is one with concentrations of cross-holdings within sectors or other 
groups. As cross-holdings become more sector-specific, particular sectors become 
more susceptible to cascades, but widespread cascades become less likely. The level 
of segregation at which this change happens depends on diversification. With lower 
diversification, cascades disappear at lower rates of segregation—it takes less segre-
gation to fragment the network and prevent cascades.

We also consider what a regulator or government might do to mitigate the possi-
bility of cascades of failures. Preventing a first failure prevents the potential ensuing 
cascade of failures, and it might be hoped that a clever reallocation of cross-holdings 
could achieve this. Unfortunately, we show that any fair exchange of cross-holdings 
or assets involving the organization most at risk of failing makes that organization 
more likely to fail at some asset prices close to the current asset prices. Making the 
system unambiguously less susceptible to a first failure necessitates bailing out the 
organization most at risk of failing.
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Finally, we illustrate the model in the context of cross-holdings of European debt.
While there is a growing literature on networks of interdependencies in financial 

markets,5 our methodology and results are different from any that we are aware 
of, especially the results on nonmonotonicities in cascades due to integration and 
diversification.

An independent study by Acemoglu, Ozdaglar, and Tahbaz-Salehi (2012)—as 
well as related earlier studies of Gouriéroux, Héam, and Monfort (2012) and Gai 
and Kapadia (2010)—are the closest to ours.6 They each examine how shocks prop-
agate through a network based on debt holdings or interbank lending, where shocks 
lead an organization to pay only a portion of its debts. They are also interested in 
how shocks propagate as a function of network architecture. However, beyond the 
basic motivation and focus on the network propagation of shocks, the studies are 
quite different and complementary. The main results of Acemoglu, Ozdaglar, and 
Tahbaz-Salehi (2012) characterize the best and worst networks from a social plan-
ner’s perspective. For moderate shocks a perfectly diversified pattern of holdings 
is optimal, while for very large shocks perfectly diversified holdings become the 
worst possible.7 Our focus is on the complementary question of what happens for 
intermediate shocks and for a variety of networks. To this end, we consider a class of 
random networks and ask how the consequences of a given moderate shock depend 
on diversification and integration. The results highlight that intermediate levels of 
diversification and integration can be the most problematic.

Gai and Kapadia (2010) made two observations. First: rare, large shocks may have 
extreme consequences when they occur—a point elaborated upon in the subsequent 
literature discussed above. Second, a shock of a given magnitude may have very 
different consequences depending on where in the network it hits and on the aver-
age connectivity of the network. Gai and Kapadia develop these points in a standard 
model of epidemics in which the network is characterized by its degree distribution. 
An innovation of our model is to go beyond the degree distribution of a network and 
calculate equilibrium (fixed-point) values and interdependencies for organizations. 
Doing so allows us to distinguish an important dimension of financial networks: 
integration, which can be varied independently of diversification. Building on that, 
we show how diversification and integration each affect the ingredients of financial 
cascades—and the final outcomes—in different and nonmonotonic ways. In doing 
so, we recover, as a special case, Gai and Kapadia’s observation that cascades can 

5 For example, see Rochet and Tirole (1996); Kiyotaki and Moore (1997); Allen and Gale (2000); Eisenberg 
and Noe (2001); Upper and Worms (2004); Cifuentes, Ferrucci, and Shin (2005); Leitner (2005); Allen and Babus 
(2009); Lorenz, Battiston, and Schweitzer (2009); Gai and Kapadia (2010); Wagner (2010); Billio et al. (2012); 
Demange (2012); Diebold and Yilmaz (2011); Dette, Pauls, and Rockmore (2011); Gai, Haldane, and Kapadia 
(2011); Greenwood, Landier, and Thesmar (2012); Ibragimov, Jaffee, and Walden (2011); Upper (2011); Acemoglu 
et al. (2012); Allen, Babus, and Carletti (2012); Cohen-Cole, Patacchini, and Zenou (2012); Gouriéroux, Héam, and 
Monfort (2012); Alvarez and Barlevy (2013); Glasserman and Young (2013); and Gofman (2013).

6 Cabrales, Gottardi, and Vega-Redondo (2013) study the trade-off between the risk-sharing enabled by greater 
interconnection and the greater exposure to cascades resulting from larger components in the financial network. 
Their focus is also on some benchmark networks (minimally connected and complete ones) and they examine 
which ones are best for different distributions of shocks. Again, our work is complementary not only in terms of 
distinguishing diversification and integration but also analyzing comparative statics for intermediate network struc-
tures and finding nonmonotonicities there.

7 Shaffer (1994) also identifies a trade-off between risk sharing and systemic failures. While diversified portfo-
lios reduce risk, they also result in organizations holding similar portfolios and a system susceptible to simultaneous 
failures. See also Ibragimov, Jaffee, and Walden (2011) and Allen, Babus, and Carletti (2012).
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be nonmonotonic in connectivity.8 But we also gain key new results on when and 
how the “danger zone” of intermediate diversification can be blunted by changing 
the level of integration in the system. Finally, we study how the integration of a 
financial network interacts with a core-periphery structure and with segregation, and 
other correlation structures.

I. The Model and Determining Organizations’ Values with Cross-Holdings

A. Primitive Assets, Organizations, and Cross-Holdings

There are n organizations (e.g., countries, banks, or firms) making up a set  
N = {1, … , n}.

The values of organizations are ultimately based on the values of primitive assets 
or factors of production—from now on simply assets—M = {1, … , m}. For con-
creteness, a primitive asset may be thought of as a project that generates a net flow 
of cash over time.9 The present value (or market price) of asset k is denoted  p k . Let  
D ik  ≥ 0 be the share of the value of asset k held by (i.e., flowing directly into) orga-
nization i and let D denote the matrix whose (i, k)th entry is equal to  D ik  . (Analogous 
notation is used for all matrices.)

An organization can also hold shares of other organizations. For any i, j ∈ N the 
number  C ij  ≥ 0 is the fraction of organization j owned by organization i, where  
C ii  = 0 for each i.10 The matrix C can be thought of as a network in which there is a 
directed link from i to j if i owns a positive share of j, so that  C ij  > 0.11 Paths in this 
network are called ownership paths. We also sometimes work with a graphical rep-
resentation of C where directed links point in the opposite direction, the direction in 
which value (and loss of value) flows. We call the paths in that network cascade paths.

After all these cross-holding shares are accounted for, there remains a 
share     C  ii  := 1 −  ∑  j∈N  

 
    C ji  of organization i not owned by any organization in the 

system—a share assumed to be positive.12 This is the part that is owned by outside 
shareholders of i, external to the system of cross-holdings. The off-diagonal entries 
of the matrix    C  are defined to be 0.

Cross-holdings are modeled as linear dependencies in this paper, and we now 
briefly discuss the interpretation of this. We view the functional form as an approxi-
mation of debt contracts around and below organizations’ failure thresholds—the 

8 In different settings, Cifuentes, Ferrucci, and Shin (2005) and Gofman (2013) also find that cascades can be 
nonmonotonic in connectivity.

9 The primitive assets could be more general factors: prices of inputs, values of outputs, the quality of organi-
zational know-how, investments in human capital, etc. To keep the exposition simple, we model these as abstract 
investments and assume that net positions are nonnegative in all assets.

10 It is possible to instead allow  C ii  > 0, which leads to some straightforward adjustments in the derivations 
that follow; but one needs to be careful in interpreting what it means for an organization to have cross-holdings in 
itself—which effectively translates into a form of private ownership.

11 Some definitions: a path from  i 1  to  i ℓ  in a matrix M is a sequence of distinct nodes  i 1 ,  i 1 , … ,  i ℓ  such that 
 M  i r+1  i r   > 0 for each r ∈ {1, 2, … , ℓ − 1}. A cycle is a sequence of (not necessarily distinct) nodes  i 1 ,  i 1 , … ,  i ℓ  
such that  M  i r+1  i r   > 0 for each r ∈ {1, 2, … , ℓ − 1} and  M  i 1  i r   > 0.

12 This assumption ensures that organizations’ market values (discussed below) are well defined. It is slightly 
stronger than necessary. It would suffice to assume that, for every organization i, there is some j such that     C  jj  > 0 
and there is an ownership path from j to i. An organization with     C  ii  = 0 would essentially be a holding company, 
and the important aspect is to have an economy where there are at least some organizations that are not holding 
companies and some outside shareholders that no organizations have claims on.
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region of organizations’ values that are important whenever one’s failure causes 
another to fail. In this region, under most bankruptcy procedures13 there is linear 
rationing in how much of the debt is paid back. Some organizations may be far 
from their failure thresholds, and for those, others’ changes in value have a smaller 
effect on the risk of failure. The linear model can incorporate both of these effects 
through the slope parameters in the cross-holdings matrix; this is discussed in detail 
in Section IE, as well as Section 2 of the online Appendix. Of course, this is a crude 
approximation, but allows a tractable analysis of cross-dependencies, and provides 
basic insights that should still be useful when nonlinearities are addressed in detail. 
More generally, cross-holdings can involve all sorts of contracts; any liability in 
the form of some payment that is due could be included.14 Directly modeling other 
sorts of contracting between organizations would complicate the analysis, and so 
we focus on this formulation for now to illustrate the basic issues. Section 2 in the 
online Appendix discusses extending the model to more general liabilities.

B. Values of Organizations: Accounting and Adjusting for Cross-Holdings

In a setting with cross-holdings, there are subtleties in determining the “fair mar-
ket” value of an organization, and the real economic costs of organizations’ fail-
ures. Doing the accounting correctly is essential to analyzing cascades of failure. 
The basic framework for the accounting was developed by Brioschi, Buzzacchi, 
and Colombo (1989) and Fedenia, Hodder, and Triantis (1994). In this section, we 
briefly review the accounting and the key valuation equations in the absence of fail-
ure costs. In ensuing sections, we incorporate failures and associated discontinuities.

The equity or book value  V i  of an organization i is the total value of its shares—
those held by other organizations as well as those held by outside shareholders. This 
is equal to the value of organization i’s primitive assets plus the value of its claims 
on other organizations:

(1)  V i  =  ∑  
k
   

 

    D ik   p k  +  ∑  
j
   
 

   C ij   V j  .

Equation (1) can be written in matrix notation as

  V = Dp + CV,

and solved to yield15

(2)  V = (I − C ) −1 Dp.

13 A richer model would include priority classes, but the basic issues that we address in the simplified model 
should still appear in such a richer model.

14 In essence, our modeling is a reduced form that aggregates all effects into a linear dependence of each organi-
zation on others, allowing for a discontinuous loss at a critical organization value. In cases where organizations can 
short-sell other organizations, or hold options or other derivatives that appreciate in value when another organiza-
tion falls in value, some of our lattice results (discussed in Sections IF and IIB) would no longer hold. That is an 
interesting topic for further research.

15 Under the assumption that each column of C sums to less than 1 (which holds by our assumption of nonzero 
outside holdings in each organization), the inverse (I − C )  −1  is well-defined and nonnegative (Meyer 2000, sec-
tion 7.10).
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Adding up equation (1) across organizations (and recalling that each column of D 
adds up to 1) shows that the sum of the  V i  exceeds the total value of primitive assets 
held by the organizations. Essentially, each dollar of net primitive assets directly 
held by organization i contributes one dollar to the equity value of organization i, 
but then is also counted partially on the books of all the organizations that have an 
equity stake in i.16

As argued by both Brioschi, Buzzacchi, and Colombo (1989) and Fedenia, 
Hodder, and Triantis (1994), the ultimate (noninflated) value of an organization 
to the economy—what we call the “market” value—is well-captured by the equity 
value of that organization that is held by its outside investors. This value captures the 
flow of real assets which accrues to final investors of that organization. The market 
value, which we denote by  v i , is equal to     C  ii  V i , and therefore:17

(3)  v =    C V =    C (I − C ) −1 Dp = ADp.

We refer to A =    C (I − C ) −1  as the dependency matrix. It is reminiscent of 
Leontief’s (1951) input-output analysis. Equation (3) shows that the value of 
an organization can be represented as a sum of the values of its ultimate claims 
on primitive assets, with organization i owning a share  A ij  of j’s direct holdings 
of primitive assets. This is the portfolio of underlying assets an outside investor 
would hold to replicate the returns generated by holding organization i. To see this,  
suppose each organization fully owns exactly one proprietary asset, so that m = n 
and D = I. In this case,  A ij  describes the dependence of i’s value on j’s proprietary 
asset. It is reassuring that A is column-stochastic, so that indeed the total values of 
all organizations add up to the total values of all underlying assets—for all j ∈ N, 
we have18

   ∑  
i∈N

   
 

     A ij  = 1.

16 This initially counterintuitive feature is discussed in detail by French and Poterba (1991) and Fedenia, Hodder, 
and Triantis (1994).

17 A way to double-check this equation is to derive the market value of an organization from the book value of its 
underlying assets and cross-holdings less the part of its book value promised to other organizations in cross-holdings:

    v i  =  ∑  
j
   

 
    C ij  V j  −  ∑  

j
   

 
    C ji  V i  +  ∑  

k
   

 
     D ik   p k ,

or

  v = CV − (I −    C )V + Dp = (C − (I −    C ))V + Dp.

Substituting for the book value V from (2), this becomes

 v = (C − I +    C )(I − C ) −1 Dp + Dp = (C − I +    C  + (I − C))(I − C ) −1 Dp = ADp.

18 This can be seen by defining an augmented system in which there is a node corresponding to each organiza-
tion’s external investors and noting that, under our assumptions, the added nodes are the only absorbing states of the 
Markov chain corresponding to the system of asset flows. Column j of A describes how the proprietary assets enter-
ing at node j are shared out among the external absorbing nodes. Since all the flow must end up at some external 
absorbing node, A must be column-stochastic.
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C. Discontinuities in Values and Failure Costs

An important part of our model is that organizations can lose productive value 
in discontinuous ways if their values fall below certain critical thresholds. These 
discontinuities can lead to cascading failures and also the presence of multiple 
equilibria.

There are many sources of such discontinuities. For example, if an airline can no 
longer pay for fuel, then its planes may be forced to sit idle (as happened with Spanair 
in February of 2012), which leads to a discontinuous drop in revenue in response to 
lost bookings, and so forth. If a country or firm’s debt rating is downgraded, it often 
experiences a discontinuous jump in its cost of capital. Dropping below a critical 
value might also involve bankruptcy proceedings and legal costs. Broadly, many of 
these discontinuities stem from an illiquidity which then leads to an inefficient use of 
assets. Indeed, given that efficient production can involve a variety of synergies and 
complementarities, any interruption in the ability to pay for and acquire some fac-
tors of production can lead to discontinuously inefficient uses of other factors, or of 
investments. One detailed and simple microfoundation is laid out in Section IE below.

If the value  v i  of an organization i falls below some threshold level   v _   i , then i is said 
to fail and incurs failure costs  β i (p).19 These failure costs are subtracted from a fail-
ing organization’s cash flow. They can represent the diversion of cash flow towards 
dealing with the failure or a reduction in the returns generated by proprietary assets. 
Either way, this introduces critical nonlinearities—indeed, discontinuities—into the 
system.

We base failure costs on the (market) value of an organization  v i , and not the book 
or equity value,  V i . This captures the idea that failure occurs when an organization 
has difficulties or disruptions in operating, and the artificial inflation in book val-
ues that accompanies cross-holdings is irrelevant in avoiding a failure threshold.20 
Nonetheless, the model could instead make failures dependent upon the book val-
ues  V i , in cases where cash flows relate to book values. Nothing qualitative would 
change in what follows, as the critical ingredients of thresholds of discontinuities 
and cascades that depend on cross-holdings would still all be present, just with dif-
ferent trigger points.

Let us say a few words about the relative sizes of these discontinuities. Recent 
work has estimated the cost of default to average 21.7 percent of the market value 
of an organization’s assets (with substantial variation—see Davydenko, Strebulaev, 
and Zhao 2012, as well as James 1991).21 It might be hoped that organizations 
will reduce the scope for cascades of failures by minimizing their failure costs and 
reducing the threshold values at which they fail. In fact, as we show in the online 
Appendix (Section 3), financial networks can create moral hazard and favor the 
opposite outcome. As discussed in Leitner (2005) and Rogers and Veraart (2013), 

19 The argument p reflects that these costs can depend on the values of underlying assets, as would be the case 
when these are liquidated for a fraction of their former value. See Section IE for more detail.

20 For example, if the failure threshold were based on book values, then two organizations about to fail would be 
able to avoid failure by exchanging cross-holdings and inflating their book values.

21 Capping the failure costs is not important for our model, but they could easily be capped at   v _   i  or (Dp ) i  or some 
other natural level.
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counterparties have incentives to bail out a failing organization22 to avoid (indi-
rectly) incurring failure costs. To improve its bargaining position in negotiating for 
such aid, an organization may then want to increase its failure costs and make its 
failure more likely. Nevertheless, although default costs can be large both absolutely 
and relative to the value of an organization’s assets (e.g., the size of the recent Greek 
write-down in debt, or the fire sale of Lehman Brothers’ assets), it can also be that 
smaller effects snowball. Given that a major recession in an economy is only a mat-
ter of a change of a few percentage points in its growth rate, when contagions are 
far-reaching, the particular drops in value of any single organization need not be 
very large in order to have a large effect on the economy. We develop this observa-
tion further in Section IIA.

D. Including Failure Costs in Market Values

The valuations in (2) and (3) have analogs when we include discontinuities in 
value due to failures. The discontinuous drop imposes a cost directly on an organiza-
tion’s balance sheet, and so the book value of organization i becomes:

   V i  =  ∑  
j≠i

   
 

     C ij  V j  +  ∑  
k
   

 

    D ik   p k  −  β i   I  v i  <   v _   i   ,

where  I  v i  <   v _   i   is an indicator variable taking value 1 if  v i  <   v _   i  and value 0 otherwise.
This leads to a new version of (2):

(4)  V = (I − C ) −1  ( Dp − b(v, p) ) ,

where  b i (v, p) =  β i (p) I  v i  <   v _   i   .
23 Correspondingly, (3) is re-expressed as

(5)  v =    C (I − C ) −1  ( Dp − b(v) )  = A ( Dp − b(v, p) ) .

An entry  A ij  of the dependency matrix describes the proportion of j’s failure costs 
that i bears when j fails as well as i’s claims on the primitive assets that j directly 
holds. If organization j fails, thereby incurring failure costs of  β j  , then i’s value will 
decrease by  A ij   β j .

E. A Simple Microfoundation

To help fix ideas, we discuss one simple microfoundation—among many—of the 
model and the value equations provided above.

Organizations are owner-operated firms. For simplicity, let each firm have a sin-
gle proprietary asset: an investment project that generates a return. Our model is 
then simplified to the case m = n and D = I. Firms have obligations to each other: 
for instance, promised payments for inputs or other intermediate goods. These 

22 For example, in the form of a debt write-down.
23 The number  b i (v, p) reflects realized failure costs, and is zero when failure does not occur. It always depends 

on the asset values through the indicator  I  v i  <  v _   , but the bankruptcy costs  β i  may depend on underlying asset values, 
p. See Section IE for an example. We suppress the argument p when it is not essential.
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 obligations comprise the cross-holdings. Once a firm’s value no longer covers the 
full promised value of its payments, all creditor organizations—who are of equal 
seniority—are rationed in proportion to  V i , with organization j claiming  C ij  V i  of 
i’s value. Thus, even though the obligations might initially be in the form of debt, 
the relevant scenario for our cascades—and the one the model focuses on—is one 
in which the full promised amounts cannot be met by the organizations. This is a 
regime of “orderly write-downs” in which creditors are willing to take a fraction of 
the face value they are owed. Thus, the values of cross-holdings are simply linear in  
V i , as in our equations. (Section 2 in the online Appendix illustrates this in detail.)

The value left to the owner-operators is  v i  =     C  ii  V i . While the firm continues to 
operate, this amount must cover return on capital, wages, benefits, and pension obli-
gations for the owner-operators.24 The share     C  ii  can be thought of as all of the stock 
or equity held in the firm, while the  C ij ’s are payment obligations from the firm 
to other firms. The     C  ii  residual shares correspond to the control rights of the firm, 
while the  C ij ’s simply represent obligations to other creditors. If the value left to the 
owner-operators/shareholders is sufficiently low (below some outside option value 
of their time or effort), they may choose to cease operations.25 Indeed, we posit that 
there is a critical threshold   v _   i  such that if the value available to the owner-operator 
falls below it, he or she chooses to cease operations and to liquidate the asset. In 
other words, once  v i  <   v _   i  the asset is liquidated.

Liquidation is irreversible and total: a firm cannot partially liquidate its propri-
etary asset. Liquidation is also costly: if i liquidates its proprietary asset, it incurs a 
loss of  λ i  cents on the dollar.26 In terms of our model,  β i (p) =  λ i   p i  . Recalling that 
 b i (v, p) =  β i (p) I  v i  <   v _   i   , it follows that

  v = A ( p − b(v, p) ) .

F. Equilibrium Existence and Multiplicity

A solution for organization values in equation (5) is an equilibrium set of values, 
and encapsulates the network of cross-holdings in a clean and powerful form, build-
ing on the dependency matrix A.

There always exists a solution—and there can exist multiple solutions—to the 
valuation equation (multiple vectors v satisfying (5)) in the presence of the discon-
tinuities. In fact, the set of solutions forms a complete lattice.27

There are two distinct sources of equilibrium multiplicity. First, taking other orga-
nizations’ values and the values of underlying assets as fixed and given, there can be 
multiple possible consistent values of organization i that solve equation (5). There 
may be a value of  v i  satisfying equation (5) such that  1  v i  <   v _   i   = 0 and another value of  
v i  satisfying equation (5) such that  1  v i  <   v _   i   = 1, even when all other prices and values 

24 Indirectly, the value  v i  includes the cross-holdings that firm i has in others: that is, accounts receivable that can 
be used to meet payroll and other obligations.

25 This can happen for various reasons. For example, in the case of Spanair, there was too little money to cover 
wages, fuel, and other basic maintenance costs, and the airline was forced to cease operations. It could also be that 
the owners no longer view it worthwhile to continue to devote efforts to this investment project.

26 These losses involve time that the asset is left idle, costs of assessing values and holding sales of assets, costs 
of moving assets to another production venue, and loss of firm-specific capital and knowledge.

27 This holds by a standard application of Tarski’s fixed point theorem, as failures are complements.
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are held fixed. This source of multiple equilibria corresponds to the standard story 
of self-fulfilling bank runs (see classic models such as Diamond and Dybvig 1983). 
The second source of multiple equilibria is the interdependence of the values of the 
organizations: the value of i depends on the value of organization j, while the value 
of organization j depends on the value of organization i. There might then be two 
consistent valuation vectors for i and j: one in which both i and j fail, and another in 
which both i and j remain solvent. This second source of multiple equilibria is differ-
ent from the individual bank-run concept, as here organizations fail because people 
expect other organizations to fail, which then becomes self-fulfilling.

In what follows, we typically focus on the best-case equilibrium, in which as few 
organizations as possible fail.28 This allows us to isolate sources of necessary cas-
cades, distinct from self-fulfilling sorts of failure, which have already been studied 
in the sunspot and bank-run literatures. When we do discuss multiple equilibria, 
we will consider only the second novel source of multiplicity—multiplicity due 
to interdependencies between organizations—rather than the well-known phenom-
enon of a bank run on a single organization. With suitable regularity conditions 
(so that other equilibria are appropriately stable in some range of parameters), the 
results presented below should have analogs applying to other equilibria, including 
the worst-case equilibrium.

G. Measuring Dependencies

The dependency matrix A takes into account all indirect holdings as well as direct 
holdings. The central insights of the paper are derived using this matrix. In this sec-
tion we identify some useful properties of the dependency matrix A and explore its 
relation to direct cross-holdings C.

An Example.—To see how the dependency matrix A and direct cross-holdings 
matrix C might differ, consider the following example. Suppose there are two orga-
nizations, i = 1, 2, each of which has a 50 percent stake in the other organization. 
The associated cross-holdings matrix C and the dependency matrix A are as follows. 
(Recall that     C  ii  is equal to 1 minus the sum of the entries in column i of C.)

C = 
⎛
⎜
⎝

0 0.5 ⎞
⎟
⎠

   C  = 
⎛
⎜
⎝

0.5 0 ⎞
⎟
⎠

A =    C (I − C ) −1  = 
⎛
⎜
⎝

  2 _ 3    1 _ 3  ⎞
⎟
⎠

.
0.5 0 0 0.5   1 _ 3    2 _ 3  

In this simple example, we can already see that direct claims—as captured by 
C and    C —can differ quite substantially from the ultimate value dependencies 
described by A. First, even though organization 1’s shareholders have a direct claim 
on 50 percent of its value, they are ultimately entitled to more than this—as they also 
have some claims on the value of organization 2, which includes part of the value of 

28 As discussed in Section IIB, in this best-case equilibrium no organization fails that does not also fail in all 
other equilibria.
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organization 1. Second, the ultimate dependence of each organization on the other is 
smaller than what is apparent from C, by the fact that value is conserved.29

Although A can differ substantially from the direct holdings captured by C +    C , 
some general statements can be made about the differences.

LEMMA 1:      C  ii  is a lower bound on  A ii , and  A ii  can be much larger than     C  ii .

 (i )   
 A ii  _ 
    C  ii 

   ≥ 1 for each i, with equality if and only if there are no cycles of cross-

holdings (i.e., directed ownership cycles in C) that include i.

 (ii ) For any n ≥ 2, there exists a sequence of n  -by-  n matrices ( C (ℓ) ) such 

that   
 A  ii  

(ℓ) 
 _ 

    C   ii  
(ℓ) 
   → ∞ for all i.

The magnitudes of the terms on the main diagonal of A turn out to be critical for 
determining whether and to what extent failures cascade (Section IIA) and the size 
of a moral hazard problem we discuss in the online Appendix (Section 3). Lemma 1 
demonstrates that the lead diagonal of A can be larger than the lead diagonal of    C ,  
but can never be smaller. The potential for a large divergence comes from the fact 
that sequences of cross-holdings can involve cycles (i holds j, who holds k, who 
holds ℓ, … , who holds i), so that i can end up with a higher dependency on its own 
assets than indicated by looking only at its outside investors’ direct holdings (    C  ii ).

H. Avoiding a First Failure

Before moving on to our main results regarding diversification and integration, we 
provide a result which uses our model to show that there are necessarily  trade-offs 
in preventing the spark that ignites a cascade. Any fair trades of cross-holdings and 
assets that help an organization avoid failure in some circumstances must make it 
vulnerable to failure in some new circumstances. This is a sort of “no-free-lunch” 
result for avoiding first failures.

To state this result, it is helpful to introduce some notation. We write organization 
i’s value assuming no failures at asset prices p, cross-holdings C, and direct hold-
ings D as  v i (p, C, D). An organization i is closest to failing at positive asset prices p, 
cross-holdings C, and direct holdings D if there exists a (necessarily unique) λ > 0 
such that at asset prices λp, organization i is about to fail,  v i (λp, C, D) =   v _   i  , while all 
other organizations are solvent,  v j (λp, C, D) >   v _   j   for j ≠ i. Define q(p, C, D) := λp.

Before stating the result we also introduce the concept of fair trades.30 Fair trades 
are exchanges of cross-holdings or underlying assets which leave the (market) val-
ues of the organizations unchanged at current asset prices.31 More precisely, the 
matrices (C, D) and (C′, D′ ) are said to be related by a fair trade at p if v = v′, where 

29 A further (starker) illustration of how A and C can differ is available in the online Appendix (Section 1).
30 This definition takes prices of assets (p) as given, but not the prices of organizations, valuing them based on 

their holdings. It does not incorporate the potential impact of failures of organizations on their values. Thus it is a 
benchmark that abstracts away from the failure costs, which is the right benchmark for the exercise of seeing the 
impact of trades on first failures.

31 So, absent failure, the values of organizations are the same before and after fair trades.
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v = Ap and v′ = A′p; the matrix A′ is computed as in (5), with C′ and D′ playing 
the roles of C and D.32

PROPOSITION 1: Suppose an organization i is closest to failing at asset prices 
p > 0, cross-holdings C, and direct holdings D. Consider new cross-holdings and 
direct holdings C′ and D′ resulting from a fair trade at p such that row i of A′ is dif-
ferent from that of A. Then, for any ε > 0, there is a p′ within an ε-neighborhood 
of q(p, C, D) > 0,33 such that i fails at prices p′ after the fair trade but not before:  
 v i (p′, C′, D′ ) <   v _   i   <  v i ( p′, C, D).

It is conceivable that if an organization is at risk of eventual failure but not immi-
nent failure, there could exist some fair trades that would unambiguously make that 
organization safer: prone to failure at a smaller set of prices. An organization might 
hedge a particular risk. Proposition 1 shows that, at least when it comes to saving the 
most vulnerable organization, there are always trade-offs: new holdings that avoid 
failure at one set of prices make failure more likely at another set of nearby prices. 
So, to fully avoid a failure (at nearby prices) once it is imminent requires some 
unfair trades or external infusion of capital.

II. Cascades of Failures: Definitions and Preliminaries

In order to present our main results, we need to first provide some background 
results and definitions regarding how the model captures cascades, which we pres-
ent in this section. These preliminaries outline how failures cascade and become 
amplified, a simple algorithm for identifying the waves of failures in a cascade, and 
our distinction between diversification and integration.

A. Amplification through Cascades of Failures

A relatively small shock to even a small organization can have large effects by trig-
gering a cascade of failures. The following example illustrates this. For simplicity, 
suppose that organization 1 has complete ownership of a single asset with value  p 1 .  
Suppose that p′ differs from p only in the price of asset 1, and such that  p  1  ′   <  p 1 . 
Finally, suppose  v 1 (p) >   v _   1  >  v 1 (p′ ), so that 1 fails after the shock changing asset 
values from p to p′. Beyond the loss in value due to the decrease in the value of asset 1, 
organization 2’s value also decreases by a term arising from 1’s failure cost,  A 21   β 1  
(recall (5)). If organization 2 also fails, organization 3 absorbs part of both failure costs: 
 A 31   β 1  +  A 32   β  2 , and so organization 3 may fail too, and so forth. With each failure, 
the combined shock to the value of each remaining solvent organization increases and 
organizations that were further and further from failure before the initial shock can get 
drawn into the cascade. If, for example, the first K organizations end up failing in the 
cascade, the cumulative failure costs to the economy are  β 1  + ⋯ +  β K , which can 
greatly exceed the drop in asset value that precipitated the cascade.

32 We show in Section 3.1 of the online Appendix that there are circumstances under which organizations may 
have incentives to undertake “unfair” trades because of the failure costs.

33 That is,  p ′  such that ||  p ′  − q(p, C, D)  || ∞  < ε, where || ⋅  || ∞  denotes the sup-norm.
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B. Who Fails in a Cascade?

A first step towards understanding how susceptible a system is to a cascade of fail-
ures, and how extensive such a cascade might be, is to identify which organizations 
fail following a shock. Again, we focus on the best-case equilibrium.34 Studying the 
best-case equilibrium following a shock identifies the minimal possible set of orga-
nizations that could fail. (Results for the worst-case equilibrium are easy analogs, 
identifying the maximal possible set of organizations that fail.)

Identifying Who Fails When.—To understand how and when failures cascade we 
need to better understand when a fall in asset prices will cause an initial failure and 
whether the first failure will result in other failures. Utilizing the dependency matrix 
A, for each organization i we can identify the boundary in the space of underlying 
asset prices below which organization i must fail, assuming no other organization 
has failed yet. We can also identify how the failure of one organization affects the 
failure boundaries of other organizations and so determine when cascades will occur 
and who will fail in those cascades. We begin with an example that illustrates these 
ideas very simply, and then develop the more general analysis.

Example Continued.—Let us return to the example introduced in Section IG, tak-
ing D = I, so each organization owns one proprietary asset. We suppose that organi-
zation i fails when its value falls below 50 and upon failing incurs failure costs of 50. 
Organization i therefore fails when   2 _ 3    p i  +   1 _ 3    p j  < 50. Panel A of Figure 1 shows the 
failure frontiers for the two organizations. When asset prices are above both failure 
frontiers, neither organization fails in the best-case equilibrium outcome. One object 
that we study is the boundary between this region and the region in which at least 
one organization fails in all equilibria. We call this boundary the first failure frontier 
and it is shown in panel B.

The failure boundaries shown in panel A of Figure 1 are not the end of the story. 
If organization j fails, then organization i’s value falls discontinuously. In effect, 
through i’s cross-holding in j and the reduction in j’s value, i bears one-third of j’s 
failure costs of 50. Organization i then fails if   2 _ 3    p i  +   1 _ 3   (  p j  − 50) < 50. We refer to 
this new failure threshold as i’s failure frontier conditional on j failing and label it  
F F  i  ′ . These conditional failure frontiers are shown in panel C.

The conditional failure frontiers identify a region of multiple equilibria due to 
interdependencies in the values of the organizations. As discussed earlier, this is a 
different source of multiple equilibria from the familiar bank-run story. The mul-
tiple equilibria arise because i’s value decreases discontinuously when j fails and j’s 
value decreases discontinuously when i fails. It is then consistent for both i and j to 
survive, in which case the relevant failure frontiers are the unconditional ones, and 
consistent for both i and j to fail, in which case the relevant failure frontiers are the 
conditional ones.

34 This is the best-case equilibrium across all possible equilibria; this statement remains true even when we 
consider multiplicity not arising from interdependencies among organizations.
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Panel D of Figure 1 identifies the regions where cascades occur in the best-case 
equilibrium.35 When asset prices move from being outside the first failure frontier 
to being inside this region, the failure of one organization precipitates the failure 
of the other organization. One organization crosses its unconditional (best-case) 
failure frontier and the corresponding asset prices are also inside the other organiza-
tion’s  conditional failure frontier (which includes the costs arising from the other 
organization’s failure).36

A Simple Algorithm for Identifying Cascade Hierarchies.—In simple examples, 
all the relevant information about exactly who will fail at which asset prices can be 
represented in diagrams such as those in the previous section. However, the number 
of conditional failure frontiers grows exponentially with the number of organiza-
tions, while adding assets increases the dimensions, making geometric depiction 
infeasible for larger environments. Thus, while the diagrams provide a useful device 

35 Compare with Figure 3 in Gouriéroux, Héam, and Monfort (2012), which makes some of the same points.
36 As hinted at above, the full set of multiple equilibria is more complex than pictured in Figure 1 and this is 

discussed in the online Appendix (Sections 7 and 8). For example, the worst-case equilibrium has frontiers further 
out than those in panel C, as those are based on including failure costs arising from the other organization failing. 
The worst-case equilibrium is obtained by examining frontiers based on failure costs presuming that both fail, and 
then finding values consistent with those frontiers. There are also additional equilibria which differ from both the 
best- and worst-case equilibria—ones that presume one organization’s failure but not the other organization’s, and 
find the highest prices consistent with these presumptions.

Figure 1. With Positive Cross-Holdings the Discontinuities in Values Generated 
by the Failure Costs Can Result in Multiple Equilibria and Cascades of Failure
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for introducing ideas, they are of less use practically. In this section, we provide an 
algorithm which traces the propagation of a specific shock that causes one organiza-
tion to fail.37 As before, we focus on the best-case equilibrium in terms of having the 
fewest failures and the maximum possible values  v i .

At step t of the algorithm, let   t  be the set of failed organizations. Initialize  
 0  = 0/. At step t ≥ 1:

 (i) Let   ̃ b   t−1  be a vector with element    ̃  b  i  =  β i  if i ∈   t−1  and 0 otherwise.

 (ii) Let   t  be the set of all k such that entry k of the following vector is negative:

  A [ Dp −   ̃ b   t−1  ]  −  v _ .

 (iii) Terminate if   t  =   t−1 . Otherwise return to step 1.

When this algorithm terminates at step T (which it will, given the finite number 
of organizations), the set   T  corresponds to the set of organizations that fail in the 
best-case equilibrium.38

This algorithm provides us with hierarchies of failures. That is, the various organi-
zations added at each step (the new entries in   t  compared to   t−1 ) are organizations 
whose failures were triggered by the cumulative list of prior failures; they would 
not have failed if not for that accumulation and, in particular, if not for the failures 
of those added at the previous step. Thus,   1  are the first organizations to fail, then  
  2  \   1  are those whose failures are triggered by the first to fail, and so forth.

Note that the sets depend on p (and C and D), and so each configuration of these 
can result in a different structure of failures. It is possible to have some C and D such 
that there are some organizations that are never the first to fail, and others who are 
sometimes the first to fail and sometimes not.

The hierarchical structure of failures has immediate and strong policy implica-
tions. If any level of the hierarchy can be made empty, then the cascade stops and 
no further organization will fail. This suggests that one cost-effective policy for 
limiting the effect of failures should be to target high levels of the hierarchy that 
consist of relatively few organizations.39 However, such policies may involve more 
intervention than is necessary. For example, within a wave there could be a single 
critical organization, the saving of which would prevent any further failure regard-
less of whether other organizations in the same level failed. Saving an entire level 
from failure is sufficient for stopping a cascade, but not necessary.

37 This sort of algorithm is the obvious one for finding extreme points of a lattice, and so is standard (for instance, 
see Theorem 5.1 in Vives 1990). Variations on it appear in the literature on contagions, as in Eisenberg and Noe 
(2001), Blume et al. (2011), and Rogers and Veraart (2013).

38 The same algorithm can be used to find the set of organizations that fail in the worst-case equilibrium by 
instead initializing the set   0  to contain all organizations and looking for organizations that will not fail, and so 
forth.

39 As considered in Section IH.
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C. Defining Integration and Diversification

One of our contributions is a distinction between the roles of diversification and 
integration in cascades. Before presenting those results (in the next section), we 
define the essential distinction between the two network properties.

We say that a financial system becomes more diversified when the number of 
cross-holders in each organization i weakly increases and the cross-holdings of all 
original cross-holders of i weakly decrease.

Formally, cross-holdings C′ are more diversified than cross-holdings C if and only 
if
	 •	 		C  ij  ′   ≤  C ij  for all i, j such that  C ij  > 0, with strict inequality for some ordered 

pair (i, j), and
	 •	 	C  ij  ′   >  C ij  = 0 for some i, j.

Thus, diversification captures the spread in organizations’ cross-holdings.
A financial system becomes more integrated if the external shareholders of each 

organization i have lower holdings, so that the total cross-holdings of each organiza-
tion by other organizations weakly increase.

Formally, cross-holdings C′ are more integrated than cross-holdings C if and only 
if     C   ii  ′   ≤     C  ii  for all i, with strict inequality for some i. This is equivalent to the condi-
tion that

   ∑  
j : j≠i

  
 

    C  ji  ′   ≥  ∑  
j : j≠i

  
 

    C ji  

for all i, with strict inequality for some i.40

Thus, integration captures the depth or extent of organizations’ cross-holdings. 
This can be viewed as an intensive margin. In contrast, diversification pertains to the 
number of organizations interacting directly with one another, and so is an extensive 
margin.

It is possible for a change in cross-holdings to increase both diversification and 
integration. There are changes in cross-holdings that increase diversification but not 
integration and other changes that increase integration but not diversification.

D. Essential Ingredients of a Cascade

To best understand the impact of diversification and integration on cascades, it 
is useful to identify three ingredients that are necessary for a widespread cascade:

 I. A First Failure: Some organization must be susceptible enough to shocks in 
some assets that it fails.

40 This definition is simple and well suited to our simulations, as in these we will have symmetric values of 
underlying assets. However, when underlying asset values are asymmetric, there may be changes in cross-holdings 
consistent with either increasing or decreasing integration that result in substantial changes in the relative values of 
organizations, and so a more complicated definition is needed. Thus, in our formal results we work with a definition 
that also holds organizations’ market values constant.
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 II. Contagion: It must be that some other organizations are sufficiently sensitive 
to the first organization’s failure that they also fail.41

 III. Interconnection: It must be that the network of cross-holdings is sufficiently 
connected so that the failures can continue to propagate and are not limited to 
some small component.

Keeping these different ingredients of cascades in mind will help us disentangle 
the different effects of changes in cross-holdings.

Let us preview some of the ideas, which we soon make precise by imposing some 
additional structure on the model. As we increase integration (without changing 
each organization’s counterparties), an organization becomes less sensitive to its 
own investments but more sensitive to other organizations’ values, and so first fail-
ures can become less likely while contagion can become more likely conditional 
on a failure. This decreases the circumstances which lead to first failures, making 
things better with respect to I, while it increases the circumstances where there can 
be contagion, making things worse with respect to II. Interconnection (III) is not 
impacted one way or the other, as the network pattern does not change (by assump-
tion). As we increase diversification, organizations become less dependent on any 
particular neighbor, so contagions can be harder to start, but the network becomes 
more connected, and so the extent of a contagion broadens (at least up to a point 
where the network is fully connected). This decreases the circumstances where 
there can be contagion, making things better with respect to II, while increasing the 
potential reach of a contagion conditional upon one occurring, making things worse 
with respect to III.

Understanding this structure makes some things clear. First, integration and 
diversification affect different ingredients of cascades. Integration affects an organi-
zation’s exposure to others compared to its exposure to its own assets, while diversi-
fication affects how many others one is (directly and indirectly) exposed to. Second, 
both integration and diversification improve matters with respect to at least one of 
the cascade ingredients above while causing problems along a different dimension. 
These trade-offs result in nonmonotonic effects of diversification and integration on 
cascades, as we now examine in detail.

III. How Do Cascades Depend on the Diversification 
and Integration of Cross-Holdings?

We now turn to our main results.
We begin with some analytic results and then provide additional results via simu-

lations for some random network structures.

41 Note that it need not be an immediate cross-holder that is the sensitive one. Drops in values propagate through 
the network (as captured by the matrix A), and so the second organization to fail need not be an immediate cross-
holder, although that would typically be the case.
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A. The Consequences of Diversification and Integration: Analytic Results

A General Result on Integration.—To begin, we prove a general result about how 
integration affects the extent of cascades. The result permits any initial  cross-holdings 
C, an arbitrary vector of failure costs β, an arbitrary vector of threshold values  v _ , any 
direct holdings of assets D, and any underlying asset values p.

Recall that the matrices (C, D) and (C′, D′ ) are said to be related by a fair trade at 
p if v = v′, where v = Ap and v′ = A′ p; the matrix A′ is computed as in (5) with 
C′ and D′ playing the roles of C and D.42

PROPOSITION 2: Consider (C, D) and (C′, D′ ) that are related by a fair trade at 
p,43 and such that integration increases:  A  ij  ′   ≥  A ij  whenever i ≠ j. There is then the 
same set of first failures at (p, C, D) as at (p, C′, D′), and every organization that 
fails in a cascade at (p, C, D) also fails at (p, C′, D′).

Proposition 2 states that if we integrate cross-holdings via fair trades, so that 
organizations end up holding more of each other’s investments, then we face more 
failures in any given cascade that begins. Thus, benefits of integration come only 
via avoiding first failures. There is a trade-off: integrating can eliminate some first 
failures. However, given that a first failure occurs, integration only exacerbates the 
resulting cascade.

The reasoning behind the proposition is as follows. As can be seen immediately 
from equation (5), when organization i fails and incurs failure costs  β i , it is the ith 
column of A which determines who (indirectly) pays these costs. Increasing  A ij  
for all i and j ≠ i increases the share of i’s failure costs paid by each of the other 
organizations. This increases the negative externality i imposes on each organiza-
tion following its own failure. These other organizations are then more likely to also 
fail once i fails, and so the number of organizations that fail in the cascade weakly 
increases.

A Result on Diversification and Integration.—In order to bring diversification into 
the picture, we specialize the model a bit. Fixing any given level of diversification 
and integration, a network can typically be rewired to make it more or much less 
susceptible to cascades of failures. This is an obstruction to obtaining analytical 
comparative statics with respect to diversification that hold for every network. By 
working with a random graph model that imposes some structure on the distribu-
tion of possible cross-holdings matrices, we can overcome this challenge and make 
statements that hold with high probability.44 The random graph model is tractable 
yet flexible with respect to degree distributions, making it well suited to the study 
of diversification. Our analysis of it illustrates some basic intuitions. We then come 

42 We show in the online Appendix (Section 3.1) that there are circumstances under which organizations may 
have incentives to undertake “unfair” trades because of the failure costs.

43 The definition of a fair trade ignores any failure costs—i.e., the values before and after a trade are calculated 
as if failures do not occur. This offers a clear benchmark.

44 When one allows the number of nodes to become arbitrarily large, then various techniques related to laws of 
large numbers can be applied to deduce connectedness properties of a random network. Thus, one can make state-
ments that hold with high probability when the number of nodes is large. For surveys of techniques relevant to our 
analysis, see Jackson (2008, chapter 4) and Newman (2010).
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back to verify, via simulations, that these intuitions generalize to random networks 
that are less analytically tractable.

Before introducing any randomness, suppose G is a fixed matrix with all entries 
in {0, 1}; we call this an adjacency matrix of an unweighted, directed graph. The 
interpretation is that  G ij  = 1 if organization i has a claim on organization j. To make 
it into a cross-holdings matrix, we posit that a fraction c of each organization is held 
by other organizations, spread evenly among the  d i  =  ∑  j  

   G ji  organizations that hold 
it. We call  d i  the out-degree of i and analogously define in-degree by  d  i  in  =  ∑  i  

    G ij  to 
be the number of organizations that i holds.45

Thus, for i ≠ j

   C ij  =  {    c G ij 
 _  d j 

  
   

0
    

if  d j  > 0
    

otherwise.
  
 
 

The remaining 1 − c of the organization is held by its external shareholders, so 
that     C  j j  = 1 − c, if  d j  > 0, and 1 otherwise.

Holding c fixed, as the out-degree  d j  increases, the number of organizations 
having cross-holdings in j increases, but each of those organizations has lower 
 cross-holdings in j. Thus, in this model, increasing  d j  increases diversification but 
not integration (assuming that the degree  d j  starts out being nonzero).

Holding the underlying graph G fixed, as c increases each organization has lower 
self-holdings but higher cross-holdings in the other organizations it already holds. 
Thus, increasing c increases integration but not diversification. This is made precise 
in the following lemma, which shows how increased integration weakly increases  
A ij  for all i and all j ≠ i and strictly increases at least one off-diagonal entry of A in 
each column.

LEMMA 2: Suppose that  C ij  = c G ij / d j  for some adjacency matrix G, with 0 < c < 
  1 _ 2   and each  d i  ≥ 1.46 Then  A ii  is decreasing in c and  A ij  is increasing in c:

 (i )   ∂ A ii  _ ∂c
   < 0 for each i;

 (ii )   ∂ A ij 
 _ ∂c
   ≥ 0 for all i ≠ j;

 (iii )   ∂ A ij 
 _ ∂c
   > 0 for all i ≠ j such that there is an ownership path47 from i to j in G.

45 Note that these terms are intuitive when viewed from the perspective of value flow: out-degree corresponds 
to how many organizations receive the value that flows out from i by directly holding it. In-degree describes the 
number of organizations that i holds, and which therefore send value to i. In other words, these definitions are made 
with respect to the network of cascade paths (recall Section IA).

46 Note that Lemma 2 does not impose any assumptions on the underlying graph G other than each organization 
being cross-held by at least one other. Interestingly, the monotonicity identified in Lemma 2 does not always hold 
for c > 1/2. For such c, there are graph structures where further increases in c result in the immediate neighbors 
of i depending less on i. The increase in  A ij  for nonneighbors of i can come at the expense of both  A ii  and  A ij  for j 
such that  C ij  > 0.

47 Recall footnote 11 and the discussion there.
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Next we introduce the random network model. Fix a degree distribution π = ( π k,ℓ ), 
where  π kℓ  is the fraction of nodes that have in-degree k and out-degree ℓ and the inte-
ger indices satisfy 0 ≤ k, ℓ ≤ n − 1. Let (π, n) be the set of all directed graphs on 
n nodes that have degree distribution π. We say π is feasible for n when (π, n) is 
nonempty.48 A random network with degree distribution π is a draw from (π, n)  
uniformly at random.

For a given π, we denote by  
_
 d   = max{k :  π kℓ  > 0 or  π ℓ k  > 0 for some ℓ } the max-

imum degree of the network and by  d _  = min{k :  π kℓ  > 0 or  π ℓ k  > 0 for some ℓ } the 
minimum degree. Finally, we define the average directed degree d to be the expected 
out-degree of the vertex at the end of a link chosen uniformly at random from 
(π, n).49 This is a basic measure of average diversification in the graph that over-
weights organizations held by many others, and turns out to be the right one for our 
purposes. Together, the three parameters  d _ ,  

_
 d  , and d operationalize the notion of 

diversification in this random network model; we take the average degree d to be 
positive.

Each organization has a single asset of value 1 (so D = I and p = (1, … , 1)). 
We set all organizations’ thresholds   v _   i  to a common  v _  ∈ (0, 1), and set  β i  =  p i , so 
that a failing organization has its proprietary asset completely devalued.

Define    ̃  v  min   =   1 − c _ 
1 − c d _ / 

_
 d  
   and    ̃  v  max   =   1 − c __  

1 − c  
_
 d  /max{ d _ , 1}

   .50

How does the degree distribution, π, affect the extent of cascades? Let G be a 
random draw of a network with n nodes and degree distribution π. Let f (π, n)  be 
the expected fraction of organizations that fail if the network is given by G and one 
proprietary asset value  p i  is devalued to 0, with i selected uniformly at random.

PROPOSITION 3: If one proprietary asset fails (uniformly at random), a 
 non vanishing fraction of organizations fail if and only if there are intermediate lev-
els of both integration and diversification.

In particular, consider a degree distribution π with associated average directed 
degree d, maximum degree  

_
 d  , and minimum degree  d _  ; and let ( n k ) be an infinite 

sequence of natural numbers such that π is feasible for each  n k .

 3A. The fraction of failures tends to 0  (  f  ( π,  n k  )  → 0 )  if either of the following 
conditions holds:

  (i ) d < 1 (diversification is too low), or

  (ii )  d _  >   
c ( 1−c ) 

 _   ̃ v   min − v _    (diversification is too high, or integration is too high or low).

48 For (π, n) to be a nonempty set, some basic relations have to be satisfied by π: (i) n π ij  is always a (nonnega-
tive) integer, since it must be a number of nodes; (ii)  ∑  kℓ  

 
   k π kℓ  =  ∑  kℓ  

 
   ℓ  π kℓ , since each is equal to the number of 

directed edges in the graph divided by n.
49 This depends only on π. To see this, let  ϕ ℓ  be the probability that a node of out-degree ℓ is found by following 

a randomly chosen edge; we can see that  ϕ ℓ  =  ∑  k  
 
   k π kℓ /  ∑  ℓ,k  

 
   k π kℓ . Now note that d =  ∑     

   ℓ ϕ ℓ .
50 These serve as lower and upper bounds, respectively, on organization values, as verified in the proof of 

Proposition 3; we take c < max{ d _ , 1}/ 
_
 d  , so that these are well defined.
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 3B. The fraction of failures is nonvanishing (lim in f k  f  ( π,  n k  )  > 0) if both of the 
following conditions hold:

  (i) d > 1 (diversification is not too low), and

  (ii )  
_
 d   <   

c ( 1−c ) 
 _   ̃ v   max − v _    (diversification is not too high and integration is 

intermediate).

Proposition 3 documents a nonmonotonicity of failures in diversification and inte-
gration. Proposition 3A shows that if either integration or diversification is extreme 
(low or high), then there can be no substantial contagion: 3A(i) is satisfied if diversi-
fication is too low, and 3A(ii) is satisfied when diversification is high51 or when inte-
gration is high or low (c is close to 0 or 1). In other words, contagion can occur only 
if both integration and diversification are intermediate. Proposition 3B then gives a 
sufficient condition: upper and lower bounds on the diversification parameters  

_
 d   and 

d, respectively,52 specifying the intermediate range in which contagion occurs.53

The intuition for Proposition 3 is as follows. If c is very low, then no firm holds 
enough of its counterparties for contagion to propagate. If c is very high, then no 
firm is sufficiently exposed to its own asset for a first failure to happen. So consider 
the range where c is intermediate. For random graphs of the type we study here, 
once the average directed degree d crosses the threshold 1, the graph  structure 
changes from many isolated components of vanishing size to a giant  component 
of nonvanishing size. It starts out small, but increases in size as d grows. Thus, if 
d < 1, contagion to a positive fraction of organizations following the failure of a 

single proprietary asset is impossible. At the other extreme, once  d _  >   
c(1 − c)
 _   ̃ v   min  −  v _    , a 

single organization’s failure will not cause a sufficient decrease in the value of any 
other organization to induce a second failure. When integration and diversification 
are intermediate, so that none of these obstructions to contagion occur, part B of 
the proposition states that a (nonvanishing) fraction of organizations fail.

The reasoning above makes use of properties of large networks. Regardless of the 
parameter values, when there are only a small number of organizations, networks 
with intermediate connectedness are realized with nontrivial probability. Thus, in 
settings with very few critical organizations, one has to rely on direct calculations 
(e.g., see the core-periphery analysis in Section IVA).

B. The Different Roles of Diversification and Integration: 
Simulations on Random Networks

We now show that the analytic results of the previous section hold in other classes 
of simulated random networks. We also derive some richer insights into comparative 
statics in various levels of diversification and integration.

51 Note that as c(1 − c) ≤ 1/4 for all c ∈ (0, 1), 3A(ii) is always satisfied for all  d _  > 1/ ( 4(  ̃ v   min   −  v _ ) ) .
52 Fixing a ratio  

_
 d  / d _  < 1/c, the right-hand side of 3B(ii) is constant in   

_
 d  ; in this sense 3B(ii) is a true upper 

bound on  
_
 d  .

53 Observe that when the graph is regular, so that  
_
 d   = d =  d _ , then   ̃ v   max   and   ̃ v   min   become identical and the result 

becomes fully tight, with no distance between the necessary and the sufficient condition for contagion.
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Simulated Random Networks.—To illustrate how increased diversification and 
increased integration affect the number of organizations that fail in a cascade fol-
lowing the failure of a single organization’s assets, we specialize the model.

Each organization has exactly one proprietary asset, so that m = n and D = I. 
This keeps the analysis uncluttered, and allows us to focus on the network of 
cross-holdings.

For simplicity, we also start with asset values of  p i  = 1 for all organizations, and 
have common failure thresholds   v _   i  = θ v i , for a parameter θ ∈ (0, 1), where  v i  is the 
starting value of organization i when all assets are at value 1. In case an organization 
fails, it loses its full value, so that  β i  =   v _   i .

The cross-holdings are derived from an adjacency matrix G with entries in {0, 1}, 
where  G ij  = 1 indicates that i has cross-holdings in j and we set  G ii  = 0.

Again, a fraction c of each organization is held by other organizations, spread evenly 
among the  d i  =  ∑  j  

    G ji  organizations that hold it as in Section IIIA. The remaining 
1 − c of the organization is held by its external shareholders, so that     C  ii  = 1 − c. 
The same adjustments are made for degree-0 nodes as before.

To illustrate the effects of increasing diversification and increasing integration on 
cascades we examine a setting where connections between organizations are formed 
at random, with each organization having cross-holdings in a random set of other 
organizations.

In particular, we form a directed random graph, with each directed link having 
probability d/(n − 1), so that the expected in-degree and out-degree of any node is 
d. More precisely, the adjacency matrix of the graph is a matrix G (usually not sym-
metric), where  G ij  for i ≠ j are i.i.d. Bernoulli random variables each taking value 1 
with probability d/(n − 1) and 0 otherwise.

To examine the effects of increasing diversification (increasing d ) and increasing 
integration (increasing c), we simulate an organization’s proprietary asset failing 
and record the number of organizations that fail in the resulting cascade.

We follow a simple algorithm:

Step 1:  Generate a directed random network G with parameter d as described 
above.

Step 2: Calculate the matrix C from G as described in Section IIIA.

Step 3:  All organizations start with asset values of  p i  = 1. Calculate organiza-
tions’ initial values  v i  and set   v _    i  = θ  v i  for some θ ∈ (0, 1).

Step 4:  Pick an organization i uniformly at random and drop the value (  p i ) of i’s 
proprietary asset to 0.54

Step 5:  Assuming all other asset values (  p j  for j ≠ i) stay at 1, calculate the 
 best-case equilibrium using the algorithm from Section IIB.

54 Thus, we are focusing on a case where an organization’s proprietary project is shut down upon failure. While 
clearly not the only case of interest, it is a common outcome in practice.
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The main outcome variable we track is the number of failures in the best-case 
equilibrium.

The Consequences of Diversification: It Gets Worse before It Gets Better.—For 
our simulations, we consider n = 100 nodes and work with a grid on expected 
degree d between 1 and 20 (varying in increments of 1/3). We work with values of 
θ ∈ [0.8, 1].

Our first exercise is to vary the level of diversification (the expected degree d in 
the network) while holding other variables fixed and to see how the number of orga-
nizations (out of 100) which fail varies with the diversification.

Panels A and B of Figure 2 illustrate how the proportion of organizations which 
fail changes as the level of diversification (d ) is varied (fixing integration at c = 0.5).

Panel A shows the result for a level of the failure threshold (θ = 0.93) for which 
the curves display their typical nonmonotonicities clearly. When d is sufficiently 
low (1.5 or below), then we see the percentage of organizations that fail is less than 
20. At that level, the network is not connected; a typical organization has direct or 
indirect connections through cross-holdings to only a small fraction of others, and 
any contagion is typically limited to a small component. As d increases (in the range 
of two to six other organizations) then we see substantial cascades affecting large 
percentages of the organizations. In this middle range, the network of cross-holdings 
has two crucial properties: it is usually connected,55 and organizations still have 
large enough cross-holdings in individual other organizations so that contagion can 
occur. This is the “sweet spot” where ingredients II (contagion) and III (intercon-
nection) are present and strong— contagion is possible and there is enough inter-
connection for a cascade to spread. As we continue to increase diversification, the 

55 That is, there is an ownership path in C from any node to any other.

Figure 2. How Diversification (the Average Number of Other Organizations that an Organization 
Cross-Holds) Affects the Percentage of Organizations Failing (Averaged over 1,000 simulations)

Note: The x-axis corresponds to diversification in terms of the expected degree in the random network of 
cross-holdings.
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extent of cascades falls, as diversification is now lowering the chance that contagion 
occurs. In summary, there is constantly a trade-off between II and III, but initially III 
dominates as diversification leads to dramatic changes in the connectedness of the 
network. Then II dominates: once the network is connected, the main limiting force 
is the extent to which the failure of one organization sparks failures in others, which 
is decreasing with diversification. These three regimes are illustrated in Figure 3.

Panel B of Figure 2 shows how these effects vary with θ. Higher values of θ cor-
respond to higher failure thresholds, and so it becomes easier to trigger contagions. 
This leads to increases in the curves for all levels of diversification. Essentially, 
increasing θ leads to a more fragile economy across the board.

The main results in Section IIIA provide analytical support for the nonmono-
tonicity due to diversification identified in the simulations and help identify the 
forces behind the nonmonotonicity. With low levels of diversification, contagions 
are difficult to start and will frequently die out before affecting many organizations. 
Ingredient III is not present, as the network of cross-holdings is not connected. Even 
if all organizations directly or indirectly dependent on the failing organization i 
(those j such that  A ij  > 0) also fail in the cascade, there are sufficiently few such 
organizations that the cascade dies out quickly and is small. As we increase diversi-
fication into intermediate levels, we see an increase in the number of organizations 
that fail in a cascade. Since network components are larger, the failure of any one 
organization infects more other organizations, and more organizations are drawn 
into the cascade. However, as we continue to diversify cross-holdings, eventually 
the increased diversification leads to a decrease in exposure of any one organiza-
tion to any other, and so ingredient II is not present as no organization depends very 
much on any other.

Cascades Are Larger but Less Frequent in More Integrated Systems.—Next, we 
consider the implications of increased integration in our simple model on the depth 
of cascades, as illustrated in Figure 4.

Panels A and B of Figure 4 illustrate how the proportion of organizations which 
fail changes as the level of integration is varied from c = 0.1 to 0.5, for two differ-
ent values of θ (the fraction of initial value that must be retained for an organization 
to avoid failure). As integration is increased, the curves all shift upward and we see 
increased cascades.

Figure 3. Example Random Networks (Plotted here with undirected edges) 
for Different Levels of Diversification

Note: The diagrams demonstrate the transition from panel A (many disconnected components) to panel B (a large com-
ponent where each node has few neighbors) to panel C (a large component in which each node has many neighbors).

Panel A. Low diversi�cation Panel B. Medium diversi�cation Panel C. High diversi�cation
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Although the effects in panels A and B show unambiguous increases in cascades 
as integration increases, they work with levels of c ≤ 0.5, for which there is not 
much of a trade-off. In particular, for c ≤ 0.5 the initial organization whose asset 
price is dropped to 0 always fails (in the range of θ ≥ 0.8 considered in the simula-
tions). As c is increased beyond 0.5, eventually the integration level begins to help 
avoid first failures, because each organization is less exposed to the failure of its 
own proprietary asset. Then we see the trade-off between ingredients I (first failure) 
and II (contagion) that is present as integration is varied (holding diversification 
constant, so III—having to do with the global connectedness of the network—is not 
affected). We can see this in Figure 5.

Figure 5 shows that as integration increases to very high levels, the percentage 
of first failures declines: organizations are so integrated that the drop in the value  
of an organization’s own investments is less consequential to it, and so there is no 
first failure.

To summarize, increasing integration (as long as it is not already very high) 
makes shocks more likely to propagate to neighbors in the financial network and 
increases contagion via the mechanism of II. For very high levels of integration, 
each  organization begins to carry something close to the market portfolio, and  
so any first failure caused by the devaluation of a single proprietary asset becomes 
less likely.

IV. Alternative Network Structures

Additional insights emerge from examining some other random graph models of 
financial interdependencies.

Figure 4. How Integration (the Fraction c of a Typical Portfolio Held by Other Organizations) 
Affects the Percentage of Organizations Failing (Averaged over 1,000 simulations)

Notes: The x-axis corresponds to the diversification level (the expected degree in the random network of cross-hold-
ings). The two figures work with different failure thresholds and depict how the size of cascades varies with the level 
of integration c ranging from 0.1 to 0.5.
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A. A Core-Periphery Model

As a stylized representation of the interbank lending market, we examine a 
 core-periphery model where 10 large organizations are completely connected among 
themselves, and each of 90 smaller organizations has one connection to a random 
core organization.56 Each of the 10 large core organizations has proprietary assets 
with an initial value of 8. Each of the 90 peripheral organizations has proprietary 
assets with an initial value of 1.

We then vary different facets of integration:57 the level  C CC  of cross-holdings of 
each core organization by other core organizations, the level  C PC  of  cross-holdings 
of each core organization by peripheral organizations, and the level  C CP  of 
 cross-holdings of each peripheral organization by core organizations. The remaining 
private holdings,     C  ii , are as follows:     C  ii  = 1 −  C CC  −  C PC  for a core organization, 
and     C  ii  = 1 −  C CP  for a peripheral one.

We first explore what happens when a core organization fails. As we see in the 
left-hand part of panel A of Figure 6, the fraction of peripheral organizations which 

56 Soramäki et al. (2007) map the US interbank network based on the Fedpayments system. They identify a 
clique of 25 completely connected banks (including the very largest ones), and thousands of less connected periph-
eral regional and local banks.

57 Note that in this model the diversification (degree) structure is essentially fixed given the structure of ten 
completely interconnected organizations and the peripheral ones each having one connection; the only randomness 
comes from the random attachment of each peripheral organization to a single core organization.
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fail along with the core organization is increasing in  C PC . Once the core organiza-
tions become sufficiently integrated among themselves, starting around  C CC  = 0.29, 
the core organization’s failure begins to cascade to other core organizations, and 
then wider contagion occurs. How far this ultimately spreads is governed by the 
combination of integration levels.

The more subtle effects are seen in panel B. The curves are layered in terms of 
integration between the core and periphery  C CP , with increased  integration lead-
ing to higher failure rates due to an initial failure of a peripheral organization. 
However, the magnitude of the failure rates is initially increasing in core integration 
( C CC  < 0.25) and then decreasing in core integration ( C CC  > 0.25). Initial increases 
in core integration enable contagion from one core organization to another, which 
leads to widespread cascades. Once core integration becomes high enough, how-
ever, core organizations become less exposed to their own peripheral organizations, 
and so then are less prone to fail because of the failure of a peripheral organization.

B. A Model with Segregation among Sectors

Second, we consider a model which admits segregation (homophily) among dif-
ferent segments of an economy—for instance among different countries, industries, 
or sectors. In this model, there are ten different groups of ten nodes each. The key 
feature being varied is the relative intensity of nodes’ connections with others in 
their own group compared to other groups. This captures the difference between 
integration across industries and integration within industries. Varying this differ-
ence leads to the results captured in Figure 7. An obvious effect is that increas-
ing homophily can eventually sever connections between groups of organizations 
and lead to lower contagion. However, as we see in Figure 7, the curves associated 
with different levels of diversification (expected degrees d) cross each other. With 
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medium  diversification (e.g., d = 3 or d = 5) there is initially a higher level of 
contagion than with higher diversification (e.g., d = 7 or d = 9). This is because 
organizations are more susceptible to each other with medium degrees than with 
high degrees and the network is still connected enough to permit widespread conta-
gion. However, lower-degree networks fragment at lower levels of homophily than 
 high-degree networks. So at high levels of homophily, lower-degree networks are 
actually more robust. For example, once at least 95 percent of relationships are 
within an organization’s own group (in expectation), then we see lower contagion 
rates with a diversification level d = 5 than with d = 7.

C. Power Law Distributions

We also examined networks with more extreme degree distributions, such as a 
power-law distribution. Those results are described in detail in Section 4.1 in the 
online Appendix and are in line with the original regular networks. More extreme 
exponents in the power law actually lead to smaller contagions on average, but also 
lead to larger contagions conditional on some high-degree organization’s failure.

D. Correlated and Common Assets

An important concern that emerged from the recent financial crisis is that many 
organizations may have investments with correlated payoffs, which could  potentially 

Figure 7. Ten Groups of Ten Organizations Each

Notes: The y-axis is the fraction of organizations that fail as a function of the homophily. The  
x-axis is the fraction of expected cross-holdings in same-type organizations. Curves corre-
spond to different diversification levels (expected degrees d ). The failure threshold is θ = 0.96.
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exacerbate contagions, as many organizations’ values may be low at the same time. 
In Sections 4.2 and 4.3 of the online Appendix we examine two variations with cor-
related values. As one might expect, increasing correlation increases the failure rate. 
The more interesting part is that the increase occurs abruptly at a particular level of 
correlation.

We also examine a model in which organizations have some holdings of both an 
idiosyncratic and a common asset, with the possibility of leverage in holdings of 
the common asset. Some organizations are long the asset and others can be short. 
This results in some interesting patterns in cascades: even low leverage levels can 
lead to increased cascades by increasing organizations’ exposures. However, orga-
nizations that are short the common asset might escape a cascade triggered by a 
shock to that asset.

V. Illustration with European Debt Cross-Holdings

We close the paper with an illustration of the model with data on the cross-
holdings of debt among six European countries (France, Germany, Greece, Italy, 
Portugal, and Spain). We include this as a proof of concept, and emphasize that the 
crude estimates which we use for cross-holdings make this noisy enough that we do 
not see the conclusions as robust, but merely as illustrative of the methodology.58

We take the fundamental asset owned by each country to be its fiscal stream; by 
exchanging cross-holdings, countries acquire holdings whose value depends on the 
value of others’ fiscal streams as well as on their own. We model failure as being 
triggered by a certain percentage loss in the value of a country’s aggregate holdings. 
In the simulations, when a country “fails,” it defaults on 50 percent of its obligations 
to foreign countries—an arbitrary choice, but not unfounded, as we see from the 
write-down of Greek debt. Such losses may arise for various reasons: discontinuous 
changes in government policies of how to make use of fiscal streams; government 
decisions not to honor obligations (at which point it makes sense to do so discon-
tinuously); discontinuities in the fiscal streams themselves (due to strikes, discon-
tinuous changes in foreign investments, bank runs, and so forth). Indeed, all of these 
phenomena were observed in the recent Greek crisis. Finally, for the purpose of this 
illustrative exercise, we treat these countries as a closed system with no holdings by 
other countries outside of these six.

A. The Data

Data on the cross-holdings are for the end of December 2011 from the BIS (Bank 
for International Settlements) Quarterly Review (Table 9B). The data used for this 
exercise are the consolidated foreign claims of banks from one country on debt obli-
gations of another country. The data looks at the immediate borrower rather than the 

58 See Upper (2011) for a nice review of the empirical literature simulating the effects of shocks to financial 
systems. Explicit losses due to bankruptcy are not usually considered in this literature, but an important excep-
tion is Elsinger, Lehar, and Summer (2006), who find that these costs can make a large difference to the extent of 
contagion in simulation analysis. Our approach is well-suited to developing a deeper analysis of the propagation of 
discontinuities, as we examine the various levels of a cascade—which failures cause which others. This is illustrated 
in this section.
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final borrower59 when a bank from a country different from the final borrower serves 
as an intermediary.60

This gives the following raw cross-holdings matrix, where the column represents 
the country whose debt is being held and the row is the country which holds that 
debt. So, for example, through their banking sectors Italy owes France $329,550M, 
while France owes Italy only $40,311M.

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(France) (Germany) (Greece) (Italy) (Portugal) (Spain) ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(France) 0 198,304 39,458 329,550 21,817 115,162

(Germany) 174,862 0 32,977 133,954 30,208 146,096

(Greece) 1,960 2,663 0 444 51 292

(Italy) 40,311 227,813 2,302 0 3,188 26,939

(Portugal) 6,679 2,271 8,077 2,108 0 21,620

(Spain) 27,015 54,178 1,001 29,938 78,005 0

To convert the above matrix into our fractional cross-holdings matrix, C, we then 
estimate the total amount of debt issued by each country. To do this, we estimate 
the ratio of total debt held outside the issuing country by 1/3, in line with estimates 
by Reinhart and Rogoff (2011). Then, the formula A =    C (I − C ) −1  implies that 
A is:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(France) (Germany) (Greece) (Italy) (Portugal) (Spain) ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(France) 0.71 0.13 0.13 0.17 0.07 0.11

(Germany) 0.18 0.72 0.12 0.11 0.09 0.14

(Greece) 0.00 0.00 0.67 0.00 0.00 0.00

(Italy) 0.07 0.12 0.03 0.70 0.03 0.05

(Portugal) 0.01 0.00 0.02 0.00 0.67 0.02

(Spain) 0.03 0.03 0.02 0.02 0.14 0.68

The matrix A can be pictured as a weighted directed graph, as in Figure 8. The 
arrows show the way in which decreases in value flow from country to country. For 
example, the arrow from Greece to France represents the value of France’s claims 
on Greek assets, and thus how much France is harmed when Greek debt loses value. 
(Thus, in the terminology of Section IA, paths in this network correspond to cascade 
paths.) The areas of the ovals represent the value of each country’s direct holdings 

59 Which basis is appropriate is discussed in Section 10 of the online Appendix.
60 For illustrative purposes, we examine holdings at a country level, so that all holdings of Italian debt by banks 

or other investors in France are treated as being held by the entity “France,” and we suppose that substantial losses 
by banks and investors in France would lead to a French default on national debt. It would be more accurate to 
disaggregate and build a network of all organizations and investors, if such data were available.
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of primitive assets. All dependencies of less than 5 percent have been excluded from 
Figure 8 (but appear in the table above).

We treat the investments in primitive assets as if each country holds its own fiscal 
stream, which is used to pay for the debt, and presume that the values of these fiscal 
streams are proportional to GDP (gross domestic product). Thus, D = I and p is 
proportional to the vector of countries’ GDPs.61 Normalizing Portugal’s 2011 GDP 
to 1, the initial values in 2011 are  v 0  = Ap,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.71 0.13 0.13 0.17 0.07 0.11 ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

 · 

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

11.6 ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

 = 

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

12.7 (France) ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

 .

0.18 0.72 0.12 0.11 0.09 0.14 14.9 14.9 (Germany)
0.00 0.00 0.67 0.00 0.00 0.00 1.3 0.8 (Greece)
0.07 0.12 0.03 0.70 0.03 0.05 9.2 9.4 (Italy)
0.01 0.00 0.02 0.00 0.67 0.02 1.0 0.9 (Portugal)
0.03 0.03 0.02 0.02 0.14 0.68 6.3 5.4 (Spain)

61 We work in the scale of GDPs—that is, we do not carry around an explicit constant of proportionality relating 
the value of the fiscal streams p to the value of GDP; we simply take the entries of the vector p to be the GDP values.
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Figure 8. Interdependencies in Europe

Notes: The matrix A, describing how much each country ultimately depends on the value of 
others’ debt. The widths of the arrows are proportional to the sizes of the dependencies, with 
dependencies less than 5 percent excluded; the area of the oval for each country is proportional 
to its underlying asset values.
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B. Cascades

To illustrate the methodology, we consider a simple scenario. The failure thresh-
olds   v _   i  are set to θ multiplied by 2008 values.62 If a country fails, then the loss in 
value is   v _   i /2, so that half the value of its debt is lost.

We examine the best equilibrium values for various levels of θ. Greece’s value has 
already fallen by well more than 10 percent, and so it has hit its failure point for all 
of the values of θ that we look at. We vary θ and see which cascades occur. Table 1 
records the results of these simulations.

We see that Portugal is the first failure to be triggered by a contagion. Although it 
is not particularly exposed to Greek debt directly, the fact that its GDP has dropped 
substantially means that it is triggered once we get to θ = 0.935. Once Portugal 
fails, then Spain fails due to its poor initial value and its exposure to Portugal. Then 
the large size of Spain, and the exposure of France and Germany to Spain, cause 
them to fail. Pushing θ up to 0.94 leads to a similar sequence. (Increasing θ further 
would not change the ordering; it would just cause some countries to fail at earlier 
waves.) Interestingly, Italy is in the last wave of failures in each case; this is due 
to its low exposure to others’ debts. Its GDP is not particularly strong, but it does 
not hold much of the debt of the other countries, with the exceptions of France and 
Germany.

Clearly the above exercise is based on rough numbers, ad hoc estimates for the 
default thresholds, and a closed (six-country) world. Nonetheless, it illustrates the 
simplicity of the approach and makes it clear that much more accurate simula-
tions could be run with access to precise cross-holdings data, default costs, and 
thresholds.63

We reemphasize that the cascades are (hopefully) off the equilibrium path, but 
that understanding the dependency matrix and the hierarchical structure of potential 
cascades can improve policy interventions.

VI. Concluding Remarks

Based on a simple model of cross-holdings among organizations that allows dis-
continuities in values, we have examined cascades in financial networks. We have 
highlighted several important features. First, diversification and integration are use-
fully distinguished as they have different effects on financial contagions. Second, 
both diversification and integration entail trade-offs in how they affect contagion. 
These trade-offs result in nonmonotonic effects where middle ranges are the most 
dangerous with respect to cascades of failures. The trade-offs can also be related to 
important realistic aspects of a network, such as its core-periphery and segregation 
structure.

62 Those values are calculated in the same way as the values above, with the p vector coming from 2008 GDP 
values instead of 2011 and again normalized by setting Portugal’s 2011 GDP to 1.

63 Of course, a linear cross-holdings structure is also an important simplification. A further refinement would 
involve modeling the holdings in greater detail, and solving for the ultimate dependencies of organizations on assets 
(analogous to computing the A matrix) in that more complicated world.
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A fully endogenous study of the network of cross-holdings and of asset hold-
ings is a natural next step.64 We illustrate some moral hazard issues in online 
Appendix Section 3: organizations can have incentives to affect both bankruptcy 
costs and thresholds in socially inefficient ways. These considerations suggest that 
endogenizing the basic structures of our model will be delicate and that a simple 
general equilibrium approach will not suffice. This presents interesting challenges 
for future research.

The approach we have outlined could be used to inform policy. For example, 
counterfactual scenarios can be run using the algorithm. To determine the marginal 
effect of saving a set of organizations, the failure costs of those organizations can be 
set to zero and the algorithm run with and without their failure costs. Such a simula-
tion identifies a new set of organizations to fail in a cascade conditional on the inter-
vention. This set of organizations can be compared to the set of organizations that 
fail under other interventions, including doing nothing. It is important to note that 
the aforementioned exercise must be repeated for any set of underlying asset prices 
that are of interest. As underlying asset prices change, the differences between orga-
nizations’ values and their failure thresholds change. These changes may be highly 
correlated depending on the underlying asset holdings. When many organizations 
have similar exposures to underlying assets, they will be relatively close to their 
failure frontiers at the same time, and so the first (and subsequent) waves of failures 
may change drastically for fairly small changes in asset prices.

Appendix: Proofs

PROOF OF LEMMA 1:
One representation of A is as the following infinite sum, known as the Neumann 

series:

(A1)  A =    C   ∑   
p=0

   
∞

   C p  =    C  +    C   ∑   
p=1

   
∞

   C p .

It follows that  A ii  ≥     C  ii  and that there is equality if and only if there are no cycles 
involving i. Part (ii) can be proved by considering    C  and C such that     C  ii  = ϵ for all i 

64 For some analyses of network formation in other financial settings, see Babus (2013); Ibragimov, Jaffee, and 
Walden (2011); Cohen-Cole, Patacchini, and Zenou (2012); and Baral (2012). Incentives can cut in either direction, 
as firms have some incentives to protect themselves (e.g., Babus 2013), but might also wish to take excessively risky 
investments since they do not internalize the costs of others’ exposures.

Table 1—Hierarchies of Cascades in the Best-Case Equilibrium Algorithm, 
as a Function of the Failure Threshold θ

Value of θ 0.9 0.93 0.935 0.94 

First failure Greece Greece Greece Greece
Second failure Portugal Portugal, Spain
Third failure Spain France, Germany
Fourth failure France Italy
Fifth failure Germany, Italy

Source: Authors’ calculations
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and  C ij  = (1 − ϵ)/(n − 1) for all i and all j. Taking ϵ → 0, we have     C  ii  → 0, while 
A tends to the matrix with all entries equal to 1/n.

PROOF OF PROPOSITION 1:
As by hypothesis row i of A′ differs from the same row of A, after any trade 

there must exist a price vector p′′ within an ϵ neighborhood of λp such that  
 v i (p′′, C′, D′ |   =  0/)  ≠   v i (p′′, C, D |   =  0/)  =    v _   i . For the proposition to be 
false, it must then be that, for all such choices of p″,  v i (p′′, C′, D′ |  = 0/) >  
v i (p′′, C, D |  = 0/). Define price p′ such that   1 _ 2   p″ +   1 _ 2   p′ = λp. As ||p′ − λp| | ∞   
= ||p′′ − λp| | ∞  and p′′ is within an ϵ neighborhood of λp, p′ is also within an ϵ 
neighborhood of λp.

By the linearity of organizations’ values, absent any failure, and as the trade  
was fair,

    1 _ 
2
    v i (p′′, C′, D′ |  = 0/) +   1 _ 

2
    v i (p′, C′, D′ |  = 0/) =  v i (λp, C′, D′ |  = 0/) =   v _   i  , 

and

   v _   i  =  v i (λp, C, D| = 0/) =   1 _ 
2
    v i (p′′, C, D| = 0/) +   1 _ 

2
    v i (p′, C, D| = 0/).

Thus as  v i (p′′, C′, D′| = 0/) >  v i (p′′, C, D| = 0/),

   v i (p′, C′, D′| = 0/) <   v _   i  <  v i (p′, C, D| = 0/).

PROOF OF PROPOSITION 2:
Recall that   k  is the set of organizations that fail in or before hierarchy (or wave) 

k of a cascade and let   0  = 0/. The value of organization i then evolves with the cas-
cade hierarchies so that

  v i (  k−1 ) =  ∑  
j∉  k−1 

  
n

   A ij   D jk   p k  +  ∑  
j∈  k−1 

  
n

   A ij ( D jk   p k  −  β j ) =  v i (0/) −  ∑  
j∈  k−1 

  
n

   A ij   β j .

As fair trades hold constant  v i (0/), the same set of organizations must initially fail 
for (p, C, D) and (p, C′, D′  ). The above equation shows that the value of organiza-
tion i given failures   k−1  is weakly decreasing in  A ij  for all j ≠ i and for all cascade 
hierarchies k. This implies that holding fixed the hierarchies in which all other orga-
nizations fail, after a weak increase in  A ij  for all i and all j ≠ i, if organization i failed 
in hierarchy k it will now fail (weakly) sooner in hierarchy  k′  ≤ k; and if organiza-
tion i did not fail in any hierarchy it might now fail in some hierarchy.

Moreover, failures are complementary. If organization i fails strictly sooner in 
hierarchy  k′ , weakly more organizations will be included in all subsequent failure 
sets    k  ″  , for all k″ >  k′ . This is because more failure costs are summed over in the 
above equation when calculating an organization’s value in each failure hierarchy.

PROOF OF LEMMA 2:
Let  

_
 C   = G d  −1  and note that by the Neumann series we may write
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 A  = (1 − c) ∑  
t=0

   
∞

    c  t    
_
 C   t 

   ∂A _ 
∂c

    = (1 − c) ∑  
t=1

   
∞

   t c  t−1    
_
 C   t  −  ∑  

t=0
   

∞

    c  t    
_
 C   t  =  − I +  ∑  

t=1
   

∞

   (t(1 − c) − c) c  t−1    
_
 C   t .

Since c <   1 _ 2  , every term in the summation over t is nonnegative. Moreover,  c  t−1    
_
 C   t  

has a strictly positive (i, j)th entry whenever there is an ownership path of length 
t from i to j in  

_
 C  , or equivalently in G. This shows (ii) and (iii). To verify (i), note 

that every column of A sums to 1. Claim (iii) along with the assumption that every 
node in G has at least one neighbor shows that every column has an off-diagonal 
entry that strictly increases in c; and no off-diagonal entry decreases by (ii). So the 
diagonal entries strictly decrease in c.

PROOF OF PROPOSITION 3:
We begin with a simple lemma, whose proof can be found in Section 11 of the 

online Appendix.

LEMMA 3: The values   ̃ v   max   and   ̃ v   min   are upper and lower bounds, respectively, for 
the value of any organization.

We also introduce some terminology. If  C ji  > 0 there is an edge from i to j in the 
cascade network—corresponding to value flowing from i to j. We adopt the same 
convention for G: we say there is an edge from i to j if  G ji  = 1, and define paths 
analogously—recall footnote 11. That is, in this proof, we work in the network of 
cascade paths, rather than of ownership paths. Fixing a graph G and a node i, the 
fan-out of i, denoted   + (i), is the set of nodes j such that there is a directed path 
from i to j in G. These are the j’s that have direct or indirect cross-holdings in i. 
Throughout, G is drawn uniformly at random from  (π,  n k ), with  n k  left implicit.

If 3A(i) in Proposition 3’s statement holds (d < 1), then by Theorem 1 of Cooper 
and Frieze (2004), for any ε > 0 and large enough k, with probability at least 1 − ε 
there are no nodes having a fan-out larger than ε n k . Since only nodes in   + (i )  
can fail following the failure of i, this proves that for large enough k, we have  
f (π,  n k ) ≤ ε.

Suppose 3A(ii) in the proposition’s statement holds. Fix ε > 0. Suppose that pro-
prietary asset i (belonging to organization i) is the one that is randomly selected to 
fail. Take any j such that  G ji  > 0. The amount by which the value of organization j 
falls is  A ji . By the Neumann series (equation (A1)),  A ji  ≤ (1 − c)c/ d _  +  R ji , where  

R ji  = (1 − c)  (  ∑  p=2  
∞
   C  p  )  ji  accounts for the value flowing along paths from i to j in C 

other than the edge from i to j with weight  C ji  —i.e., paths of length 2 or longer. The 
following is proved in Section 11 of the online Appendix:

LEMMA 4: For any ε, if k is large enough, then with probability at least 1 − ε, 
simultaneously for all j such that  G ji  = 1, we have  R ji  = (1 − c)  (  ∑  p=2  

∞
   C  p  )  ji  ≤ ε.

By 3A(ii) in the proposition’s statement, and Lemma 3, (1 − c)c/ d _  <   ̃ v   min  −  
v _  ≤  v j  −  v _ . So, for small enough ε, a failure of i, which reduces j’s value by at most 
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(1 − c)c/ d _  + ε, is not enough to cause the failure of any counterparty j, and so 
there is no contagion.

Now suppose 3B(i) and 3B(ii) hold, and again fix ε > 0. Let i be the index of the 
first asset to fail. By Theorems 2 and 3 of Cooper and Frieze (2004), because d > 1, 
with probability at least ε the node i has fan-out of size at least ε n k , for small enough 
ε and large enough k. Suppose that organization j has holdings in  organization i 
(i.e.,  G ji  > 0), and recall that if organization i fails (resulting in the devaluation of 
i ’s proprietary asset from 1 to 0), organization j’s value will decrease by  A ji . By the 

Neumann series ( equation (A1))  A ji  ≥   c(1 − c)
 _ 

 
_
 d  
  , deterministically.65 Organization j 

will therefore fail, following the failure of organization i if:

   v i  −   
c(1 − c)
 _ 

 
_
 d  
   <  v _  ,

which is guaranteed by  
_
 d   <   c(1 − c)

 _   ̃ v    max   −  v _   . This argument applies again to all the neigh-

bors of j once it fails; iterating this argument, we find that the whole set   + (i) fails. 
Thus, in the event (probability ≥ ε) that node i has fan-out of size at least ε n k , at 
least ε n k  nodes fail, which establishes that f (π,  n k ) ≥  ε  2  for large enough k.

This completes the proof of the proposition.
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