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Abstract

It is of great importance for those in charge of managing risk to understand how financial asset
returns are distributed. Practitioners often assume for convenience that the distribution is normal.
Since the 1960s, however, empirical evidence has led many to reject this assumption in favor of
various heavy-tailed alternatives. In a heavy-tailed distribution the likelihood that one encounters
significant deviations from the mean is much greater than in the case of the normal distribution.
It is now commonly accepted that financial asset returns are, in fact, heavy-tailed. The goal of this
survey is to examine how these heavy tails affect several aspects of financial portfolio theory and
risk management. We describe some of the methods that one can use to deal with heavy tails and
we illustrate them using the NASDAQ composite index.
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1 Introduction

Financial theory has long recognized the interaction of risk and reward. The seminal work of Markowitz
[Mar52] made explicit the trade-off of risk and reward in the context of a portfolio of financial assets.
Others such as Sharpe [Sha64], Lintner [Lin65], and Ross [Ros76], have used equilibrium arguments to
develop asset pricing models such as the capital asset pricing model (CAPM) and the arbitrage pricing
theory (APT), relating the expected return of an asset to other risk factors. A common theme of these
models is the assumption of normally distributed returns. Even the classic Black and Scholes option
pricing theory [BS73] assumes that the return distribution of the underlying asset is normal. The
problem with these models is that they do not always comport with the empirical evidence. Financial
asset returns often possess distributions with tails heavier than those of the normal distribution.
As early as 1963, Mandelbrot [Man63] recognized the heavy-tailed, highly peaked nature of certain
financial time series. Since that time many models have been proposed to model heavy-tailed returns
of financial assets.

The implication that returns of financial assets have a heavy-tailed distribution may be profound
to a risk manager in a financial institution. For example, 3σ events may occur with a much larger
probability when the return distribution is heavy-tailed than when it is normal. Quantile based
measures of risk, such as value at risk, may also be drastically different if calculated for a heavy-tailed
distribution. This is especially true for the highest quantiles of the distribution associated with very
rare but very damaging adverse market movements.

This paper serves as a review of the literature. In Section 2, we examine financial risk from an
historical perspective. We review risk in the context of the mean-variance portfolio theory, CAPM and
the APT, and briefly discuss the validity of their assumption of normality. Section 3 introduces the
popular risk measure called value at risk (VaR). The computation of VaR often involves estimating a
scale parameter of a distribution. This scale parameter is usually the volatility of the underlying asset.
It is sometimes regarded as constant, but it can also be made to depend on the previous observations
as in the popular class of ARCH/GARCH models.

In Section 4, we discuss the validity of several risk measures by reviewing a proposed set of
properties suggested by Artzner, Delbean, Eber and Heath [ADEH99] that any sensible risk measure
should satisfy. Measures satisfying these properties are said to be coherent. The popular measure VaR
is, in general, not coherent, but the expected shortfall measure is. The expected shortfall, in addition
to being coherent, gives information on the expected size of a large loss. Such information is of great
interest to the risk manager.

In Section 5, we return to risk, portfolios and dependence. Copulas are introduced as a tool
for specifying the dependence structure of a multivariate distribution separately from the univariate
marginal distributions. Different measures of dependence are discussed including rank correlations
and tail dependence. Since the use of linear correlation in finance is ubiquitous, we introduce the class
of elliptical distributions. Linear correlation is shown to be the canonical measure of dependence for
this class of multivariate distributions and the standard tools of risk management and portfolio theory
apply.

Since the risk manager is concerned with extreme market movements we introduce extreme value
theory (EVT) in Section 6. We review the fundamentals of EVT and argue that it shows great promise
in quantifying risk associated with heavy-tailed distributions. Lastly, in Section 7, we examine the
use of stable distributions in finance. We reformulate the mean-variance portfolio theory of Markowitz
and the CAPM in the context of the multivariate stable distribution.

4



2 Historical Perspective

2.1 Risk and Utility

Perhaps the most cherished tenet of modern day financial theory is the trade-off between risk and
return. This, however, was not always the case, as Bernstein’s [Ber96] narrative on risk indicates. In
fact, investment decisions used to be based primarily on expected return. The higher the expected
return, the better the investment. Risk considerations were involved in the investment decision process,
but only in a qualitative way, stocks are more risky than bonds, for example. Thus any investor
considering only the expected payoff EX of a game (investment) would, in practice, be willing to pay
a fee equal to EX for the right to play.

The practice of basing investment decisions solely on expected return is problematic, however.
Consider the game known today as the Saint Petersburg Paradox, introduced in 1728 by Nicholas
Bernoulli. The game involves flipping a fair coin and receiving a payoff of 2n−1 roubles1 if the first
head appears on the nth toss of the coin. The longer tails appears, the larger the payoff. While in this
game the expected payoff is infinite, no one would be willing to wager an infinite sum to play, hence
the paradox. Investment decisions cannot be made on the basis of expected return alone.

Daniel Bernoulli, Nicholas’ cousin, proposed a solution to the paradox ten years later. He believed
that, instead of trying to maximize their expected wealth, investors want to maximize their expected
utility of wealth. The notion of utility is now widespread in economics2. A utility function U : R → R

indicates how desirable is a quantity of wealth W . One generally agrees that the utility function U
should have the following properties:

1. U is continuous and differentiable over some domain D.

2. U ′(W ) > 0 for all W ∈ D, meaning investors prefer more wealth to less.

3. U ′′(W ) < 0 for all W ∈ D, meaning investors are risk averse. Each additional dollar of wealth
adds less to the investors utility when wealth is large than when wealth is small.

In other words, U is smooth and concave over D. An investor can use his utility function to express
his level of risk aversion.

2.2 Markowitz Mean-Variance Portfolio Theory

In 1952, while a graduate student at the University of Chicago, Harry Markowitz [Mar52] produced his
seminal work on portfolio theory connecting risk and reward. He defined the reward of the portfolio as
the expected return and the risk as its standard deviation or variance3. Since the expectation operator
is linear, the portfolio’s expected return is simply given by the weighted sum of the individual assets’
expected returns. The variance operator, however, is not linear. This means that the risk of a portfolio,
as measured by the variance, is not equal to the weighted sum of risks of the individual assets. This
provides a way to quantify the benefits of diversification.

We briefly describe Markowitz’ theory in its classical setting where we assume that the assets
distribution is multivariate normal. We will relax this assumption in the sequel. For example, in

1In fact, it was ducats [Ber96].
2For introductions to utility theory see for example Ingersoll [Ing87] or Huang and Litzenberger [HL88].
3In practice, one minimizes the variance, but it is convenient to view risk as measured by the standard deviation.
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Section 5.3, we will suppose that the distribution is elliptical and, in Section 7.1, that it is an infinite
variance stable distribution.

Consider a universe with n risky assets with random rates of return X = (X1, . . . , Xn), with mean
µ = (µ1, . . . , µn), covariance matrix Σ and portfolio weights w = (w1, . . . , wn). If X is assumed to
have a multivariate normal distribution X ∼ N(µ,Σ), then the return distribution of the portfolio
Xp = wTX is also normally distributed, Xp ∼ N(µp, σ

2
p) where µp = wT µ and σ2

p = wTΣw. The
problem is to find the portfolio of minimum variance that achieves a minimum level a of expected
return:

min
w

wTΣw,

such that wT µ ≥ a, (1)

eTw = 1.

Here e = (1, . . . , 1) and T denotes a transpose. The last condition in (1), eTw =
∑n

i=1 wi = 1,
indicates that the portfolio is fully invested. Additional restrictions are usually added on the weights4

and the problem is generally solved through quadratic programming. By varying the minimum level
a of expected return, a set of portfolios Xp is chosen, each of which is optimal in the sense that an
investor cannot achieve a greater expected return, µp = EXp, without increasing his risk, σp. The
set of optimal portfolios corresponds to a convex curve (σp, EXp) called the efficient frontier. Any
rational investor making decisions based only on the mean and variance of the distribution of returns
of a portfolio would only choose to own portfolios on this efficient frontier. The specific portfolio he
chooses depends on his level of risk aversion5. If the universe of assets also includes a risk-free asset
which the investor may borrow and lend without constraint, then the optimal portfolio is a linear
combination of the risk-free asset r and a certain risky portfolio XR on the efficient frontier. As shown
in Figure 1, this line is tangent to the convex risky asset efficient frontier at the point (σR, EXR). The
risky portfolio therefore maximizes the slope of this linear combination,

max
w

E(XR) − r

σXR

. (2)

Again, the specific weights given to the risk-free and risky assets depend on the individual investors
level of risk aversion.

2.3 CAPM and APT

The mean-variance portfolio theory of Markowitz describes the construction of an optimal portfolio,
in the mean-variance sense, for an individual investor. It requires only estimates for each asset mean

4For example, wi ≥ 0, in other words no short selling. Without the additional constraints, the problem can be solved
by using linear programming.

5One can reconcile maximizing expected utility with the mean-variance portfolio theory of Markowitz, but one has to
assume either a quadratic utility function or that returns are multivariate normal or, more generally, elliptical. (Elliptical
distributions are introduced in Section 5.3). For example, if returns are multivariate normal and if Xp1

and Xp2
are the

returns of two linear portfolios with the same expected return, then for all utility functions U with properties listed in
Section 2.1,

E U(Xp1
) ≥ E U(Xp2

) if and only if σ2
p1

≤ σ2
p2

.

See for example [Ing87].
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Figure 1: The efficient frontier (σp, µp). In the case when only risky assets R are available, the frontier
traces out a convex curve in risk-return space. The inclusion of a risk-free asset r, has a profound
effect on the efficient set. In this case, all efficient portfolios will consist of linear combinations of r
and some risky portfolio R, where (σR, µR) lies on the efficient frontier.

return, and the covariance between assets6. If all investors act in a way consistent with Markowitz’
theory, then under additional assumptions, one will be able to learn something about the trade-off
between risk and return in a market in equilibrium7. This is what the CAPM does.

The capital asset pricing model (CAPM) is an equilibrium pricing model (see Sharpe [Sha64] and
Lintner [Lin65]) which relates the expected return of an asset to the risk-free return, to the market’s
expected return and to the covariance between the market and the asset. In addition to assuming
that market participants use the mean-variance framework, the model makes two additional major
assumptions. First, the market is assumed frictionless. This means that securities are infinitely
divisible, there exist no transaction costs, no taxes, and there are no trading restrictions. Second, the
investors beliefs are homogeneous. This means investors agree on mean returns and covariances for all
assets in the market.

The efficient frontier in Figure 1 depended on the investors’ belief. Under the CAPM assumptions,
since all investors assume the same expected return and covariances for all assets in the market, they
all have the same (risky) efficient frontier. However, the individual investors choice of the optimal risky
portfolio still depends on the investors own level of risk aversion. Additionally, with the inclusion of a
risk-free asset, we saw that the investors portfolios become dramatically more simple. Each investor
can own only two assets: the risk-free asset and an optimal risky portfolio, with the relative weights
depending on the investors appetite for risk. But since each investor holds the same optimal portfolio

6For a universe of n assets it is necessary to compute n(n − 1)/2 + n covariances. This means that if the universe
under consideration consists of n = 1000 assets, it is necessary to estimate over 500 000 covariances.

7By market equilibrium, we mean a market place where security prices are set so that supply equals demand.
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of risky assets, and since the market is assumed to be in equilibrium, this optimal risky portfolio must
be the market portfolio. Thus Figure 1 applies with R = M , where M denotes the market portfolio.
M consists of all risky assets held in proportion to their overall market capitalization. Letting XM

denote the return on the market portfolio, Xi denote the return of asset i, and r denote the risk-free
return, the CAPM establishes the following relationship:

E(Xi − r) = βiE(XM − r) (3)

where

βi =
Cov(Xi, XM )

VarXM
. (4)

The CAPM thus relates in a linear way the expected premium EXi − r of holding the risky asset i
over the risk-free asset to the expected premium EXM − r of holding the market portfolio over the
risk-free asset. The constant of proportionality is the asset’s beta. The coefficient βi is a measure of
asset i’s sensitivity to the market portfolio. The expected premium for asset i is greater than that of
the market if βi > 1 and less if βi < 1. But if βi > 1, then the risk will be greater. Indeed, if we
assume that

Xi − r = βi(XM − r) + ǫi, (5)

where ǫi is such that Eǫi = 0 and Cov(ǫi, XM ) = 0, then we have (3) and

σ2
Xi

= β2
i σ2

XM
+ σ2

ǫi
. (6)

Equation (5) is often known as a single factor model for asset returns. Notice from (6) that the asset’s
risk is the sum of two terms, the systematic or market risk β2

i σ2
XM

and the unsystematic or residual

risk σ2
ǫi
. For a portfolio Xp with weights w = (w1, . . . , wn), one gets similarly σ2

Xp
= β2

pσ2
XM

+ σ2
ǫp

where βp =
∑n

i=1 wiβi. If one additionally assumes that Cov(ǫi, ǫj) = 0 for all i 6= j then the residual
risk is

σ2
ǫp

=
n∑

i=1

w2
i σ

2
ǫi
. (7)

It is bounded by c/n for some constant c, if for example, wi = 1/n, and hence the portfolio’s residual
risk can be greatly reduced by diversification. The investor, for example, is only rewarded for bearing
systematic or market risk, that is, he can expect a higher return than the market only by holding a
portfolio which is riskier (βp > 1) than the market.

In the CAPM, all assets are exposed to a single common source of randomness, namely the market.
The arbitrage pricing theory (APT) model, due to Ross [Ros76], is a generalization of the CAPM in
which assets are exposed to a larger number of common sources of randomness. The APT differs from
the CAPM in that the mean-variance framework that led to (5) is now replaced by the assumption of
a multifactor model

Xi = αi + βi1f1 + · · · + βikfk + ǫi (8)

for generating security returns. All assets are exposed to the k sources of randomness fj , j = 1, . . . , k,
called factors. Additionally, each asset i is exposed to its own specific source of randomness ǫi. The
equilibrium argument used in the CAPM led to the central result (3). In the APT, the equilibrium
assumption takes a slightly different form, namely, one assumes that the market is free of arbitrage.
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Figure 2: Left: Empirical probability density function (pdf) for NASDAQ standardized returns (solid)
versus the normal distribution (dot-dash) over the period Feb 1971 to Feb 2001. Right: Corresponding
quantile-quantile (QQ) plot with quantiles of the normal distribution on the abscissa and empirical
quantiles on the ordinate. Returns are expressed as a %.

The major result of the APT then relates the expected premium of asset i to its exposure βij to factor
j, and to each factor premium λj , j = 1, . . . k. Specifically

EXi = r + βi1λ1 + · · · + βikλk, (9)

where λj , j = 1, . . . , k, is the expected premium investors demand for bearing the risk of factor j.
Notice that the factor premiums λj are the same for each security, and it is the exposure βij to each
factor that depends on the security. Additionally if k = 1 in (8) and if we assume the existence
of a risk-free asset r, f1 = XM and that ǫi are uncorrelated with each other and the market, then
λ1 = E(XM − r) and we get back the CAPM.

2.4 Empirical Evidence

Markowitz’s mean-variance portfolio theory, as well as the CAPM and APT models, rely either explic-
itly or implicitly on the assumption of normally distributed asset returns8. Today, with long histories
of price/return data available for a great many financial assets, it is easy to see that this assumption is
inadequate. Empirical evidence suggests that asset returns have distributions which are heavier-tailed
than the normal distribution. Figure 2 illustrates this for the NASDAQ9. The quantile-quantile (QQ)
plot10 shows clearly that the distribution tails of the NASDAQ are heavier than the tails of the normal
distribution. As early as 1963, Mandelbrot [Man63] and Fama [Fam65] rejected the assumption of

8As noted before, the multivariate normal assumption is consistent with maximizing expected utility.
9The daily NASDAQ time series, the corresponding returns and their maxima and minima are displayed in Figure

16. The time series starts in February 1971 and ends February 2001 (actually from February 08, 1971 to January 26,
2001). The corresponding empirical statistics can be found in Table 1.

10A quantile-quantile (QQ) plot is a graphical check to see if two distributions are of the same type. Two random
variables X and Y are said to be of the same type if their distributions are the same up to a change in location and
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Asset Period Mean Std Dev Skewness Kurtosis11 Min Max

S&P 500 01/51 - 03/2001 .033 .870 -1.61 43.9 -22.9 8.71

USD/GBP 02/1985 - 02/2001 .006 .677 .043 3.40 -4.13 4.59

TB/USD 02/85 - 03/2001 .011 .663 4.22 158 -8.57 17.8

NASDAQ 02/1971 - 02/2001 .044 1.08 -.523 15.5 -12.0 13.3

Table 1: Left: Empirical statistics for daily returns (as %) of several financial assets: the S&P 500
index, the USD/British pound exchange rate, the Thai Baht/USD exchange rate and the NASDAQ
composite index.

normality for other heavier-tailed distributions. In his 1963 paper, Mandelbrot not only confirmed the
poor fit of the normal distribution, but proposed the model which is known today as the stable model
for asset returns.

Recall that if the normal distribution is valid, then about 95% of the observations would lie within
two standard deviations of the mean, and about 99% would lie within three standard deviations of
the mean. In financial time series, large returns (both positive and negative) occur far too often to be
compatible with the normal distribution assumption. The distribution of the financial return series are
characterized not only by heavy tails, but also by a high peakedness at the center. In the Econometric
terminology, they are said to be leptokurtotic.

To the risk manager trying to guard against large losses, the deviation from normality cannot be
neglected. Suppose for example that daily returns are distributed as a Student-t distribution with
4 degrees of freedom (denoted t4) and a variance given by σ2. Since this distribution has a much
heavier tail than a normal distribution with the same variance, as one moves farther out into the tail
of the distribution, rare events occur much more frequently. Figure 3 shows how much more likely
rare events occur under the t4 assumption than under the normal, when rare is defined in terms of
standard deviations.

3 Value at Risk

In the early 1990s, a number of financial institutions (J.P. Morgan, Bankers Trust, . . .) proposed a
new risk measure to quantify by a single number the firms aggregate exposure to market risk. This
measure, commonly known today as value at risk (VaR), is now used to measure not only market risk
but other forms of risk to which the firm is exposed, such as credit, operational, liquidity, and legal
risk. VaR is defined as the loss of a financial position over a time horizon τ that would be exceeded

scale. That is X
d
= aY + b for some a ∈ R

+ , b ∈ R. Since the QQ plot plots quantiles of two distributions, if they are
of the same type, the plot should be linear. In this case we are checking whether the empirical distribution of NASDAQ
standardized returns and the hypothesized normal distribution are of the same type.

11In this paper we use as definition of kurtosis

K(X) =
E(X − µX)4

(VarX)2
− 3,

so that the normal distribution has a kurtosis of zero. Heavy tails, therefore, will lead to positive kurtosis.
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Figure 3: Ratio of tail probabilities P(T > kσ)/P(X > kσ) plotted in units of k. Here T ∼ t4 and X
is normal, both with variance σ2. T is more likely to take large values than X.

with small probability 1 − α, that is,

P(Loss > VaR) ≤ 1 − α. (10)

The confidence level α is typically a large number12 between .95 and 1.
To define VaR precisely, let X be the random variable whose cumulative distribution function FX

describes the negative profit and loss distribution (P&L) of the risky financial position at the specified
horizon time τ . Negative values of X correspond now to profits and positive values of X correspond to
losses. This is a useful convention in risk management since there is then no ambiguity when discussing
large losses (large values of X correspond to large losses).

Formally, value at risk is a quantile of the probability distribution FX , that is roughly, the x
corresponding to a given value of 0 < α = FX(x) < 1.

Definition 3.1 Let X be the random variable whose cumulative distribution function FX describes
the negative profit and loss distribution (P&L) of the risky financial position at the specified horizon
time τ (so that losses are positive). Then, for a confidence level 0 < α < 1,

VaRα(X) = inf{x|FX(x) ≥ α}. (11)

We set, avoiding technicalities
VaRα(X) = F−1

X (α),

where F−1
X denotes the inverse function of FX

13 (see Figure 4). Hence the value VaRα(X) over the
horizon time τ would be exceeded on the average 100(1 − α) times every 100τ time periods.

12In statistics, α and 1 − α are usually interchanged because α, in statistics, denotes typically the Type 1 hypothesis
testing error and is chosen small. The corresponding confidence level is then 1 − α.

13This is strictly correct when FX is strictly increasing and continuous. Otherwise, one needs to use the generalized
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Figure 4: VaRα(X) for different cumulative distributions functions (cdfs) of the loss distribution X.
The cdf on the right corresponds to an asset with discontinuous payoff, for example a binary option.
See Definition 3.1.

Because of its intuitive appeal and simplicity, it is no surprise that VaR has become the de facto
standard risk measure used around the world today. For example, today VaR is frequently used by
regulators to determine minimum capital adequacy requirements. In 1995, the Basle Committee on
Banking Supervision14 suggested that banks be allowed to use their own internal VaR models for
the purpose of determining minimum capital reserves. The internal models approach of the Basle
Committee is a ten day VaR at the α = 99% confidence level multiplied by a safety factor of at least
3. Thus if VaR = 1M , the institution is required to have at least 3M in reserve in a safe account.

The safety factor of three is an effort by regulators to ensure the solvency of their institutions. It
has also been argued, see Stahl [Sta97] or Danielsson, Hartmann and De Vries [DHV98] , that the
safety factor of three comes from the heavy-tailed nature of the return distribution. Since most VaR
calculations are based on the simplifying assumption that the distribution of returns are normal15,
how bad does this assumption effect VaR? Assume that the Profit and Loss (P&L) distribution is
symmetric and has finite variance σ2. Then regardless of the actual distribution, if X represents the
random loss over the specified horizon time with mean zero, Chebyshev’s inequality gives

P[X > cσ] ≤ 1

2c2
.

So if we are interested in VaR bounds for α = 0.99, setting 1/2c2 = 0.01 gives c = 7.071, and

inverse of FX , denoted F←
X , and defined as

F←
X (α) = inf{x |FX(x) ≥ α} , 0 < α < 1.

The definition (11) of VaRα(X) is then VaRα(X) = F←
X (α). Thus, if FX(x) = α for x0 ≤ x ≤ x1, then VaRα(X) =

F←
X (α) = x0.
14See [oBS5a] and [oBS5b]. Basle is a city in Switzerland. In French, Basle is Bâle, in German, it is Basel. Basle is

the old name for the city. The accent in Bâle stands for the s that has been dropped from Basle.
15See for example the RiskMetrics manual [Met96].
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this implies VaRmax
α=.99(X) = 7.071σ. If the VaR calculation were done under the assumption of

normality (Gaussian distribution) then VaRGa
α=.99(X) = 2.326σ, and so if the true distribution is

indeed heavy-tailed with finite variance then the correction for VaRα=.99 of three is reasonable, since
3 × 2.326σ = 6.978σ.

3.1 Computation of VaR

Before we discuss how VaRα(X) is computed, we need to say a few words about X. Typically X
represents the risk of some aggregated position which is influenced by many underlying risk factors
Y1, . . . , Yd,

X = f(Y1, . . . , Yd). (12)

The functional form of the dependence of X on the factors Y1, . . . , Yd is usually never known exactly,
but it may be approximated in several standard ways depending on the nature of the position. For
example, f is linear in the case of a portfolio of straight equity positions. The function f is non-linear,
for example, if the portfolio contains a call option on an equity since the value of the call changes
non-linearly with respect to a change in the underlying asset. The usual procedure is to approximate
the change in the calls value with respect to its underlying by the options delta. For small changes
in the underlying such an approximation is reasonable. However for large changes in the underlying,
the approximation can be quite bad. In an effort to improve the approximation, a second order
term is sometimes added, the options gamma. This second order approximation is referred to as the
delta-gamma approximation.

In practice, the VaR of a risky position X is calculated in one of three ways: through historical
simulation, through a parametric model, or through some sort of Monte Carlo simulation. Each
way involves assumptions and approximations and it is the responsibility of the user to be aware of
them. The risk manager who blindly performs the model calculations does so at his or her peril.
For a full treatment of the commonly used procedures for the calculation of VaR, see Jorion [Jor01],
Dowd [Dow98] or Wilson [Wil98]. See Duffie and Pan [DP97] for a discussion of heavy tails and VaR
calculations. We now describe the three ways of calculating VaR.

3.1.1 Historical Simulation VaR

The historical simulation model uses the historical returns of assets currently held in the portfolio in
order to calculate VaR16. First, returns over the horizon time τ are constructed for each asset in the
portfolio using historical price information. Then portfolio returns are computed using the current
weight distribution of assets as though the portfolio had been held during the whole historical period
which is being sampled. The VaR is then read from the historical sample by using the order statistics.
For example, if 1000 time periods are sampled, then 1000 portfolio returns are calculated, one for each

time period. Let X
(1)
p ≥ X

(2)
p ≥ · · · ≥ X

(1000)
p be the order statistics of these returns, where losses

are positive. Then VaRα=0.95(Xp) = X
(50)
p . The size of the sample is chosen by the user, but may be

constrained by the available data for some of the assets currently held.
The model is simple to implement and has several advantages. Since it is based on historical prices

it allows for a nonlinear dependence between assets in the portfolio and underlying risk factors. Also

16Over a fixed time horizon, VaR may be reported in units of rate of return (%) or of currency (profit and loss) since
these are essentially the same, up to multiplication by the initial wealth/value.
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since it uses historical returns it allows for the presence of heavy tails without making assumptions on
the probability distributions of returns of the assets in the portfolio. There is therefore no model risk.
In addition, there is no need to worry about the dependence structure of assets within the portfolio
since it is already reflected in the price and return data.

The drawbacks are typical of models involving historical data. There may not be enough data
available and there may be no reason to believe that the future will look like the past. For example, if
the user would like to compute VaR for regulatory requirements, then τ = 10 days. With about 260
business days, there are only 26 such observations in each year, four years worth of data are required
to get about 100 historical simulations. This is the absolute minimum necessary to calculate VaR
with α = .99, since with 100 data points, there is but a single observation in the tail. If one or several
of the assets in the portfolio have insufficient histories then adjustments must be made. For example,
some practitioners bootstrap from the shorter return histories in order to take advantage of the longer
histories on other assets.

When working only with historical data it is important to realize that we are assuming that the
future will look like the past. If this assumption is likely to be unrealistic, the VaR estimate may be
dangerously off the mark. For instance, if the sample period or window is devoid of large price changes,
then our historical VaR will be low. But it will be large if there were large price fluctuations during the
sample period. As large price fluctuations leave the sample window, the VaR will change accordingly.
This yields a highly variable estimate and one which does not take into account the current financial
climate. The deficiencies of historical simulation notwithstanding, its ease of use makes it the most
popular method for VaR calculations.

3.1.2 Parametric VaR

The parametric VaR model assumes that the returns possess a specific distribution, usually normal.
The parameters of the distribution are estimated using either historical data or forward looking option
data.

Example 3.1 Assume that over the desired time horizon τ the (negative) return distri-
bution of a portfolio is given by FX ∼ N(µτ , σ

2
τ ). Then the value at risk of portfolio X for

horizon τ and confidence level α > 0.5 is given by

VaRα(X) = inf{x|FX(x) ≥ α}
= F−1

X (α)

= µτ + στΦ
−1(α),

where Φ−1(α) is the α quantile of the standard normal distribution.

More generally, if the (negative) return distribution of X is any FX with finite mean µτ and finite
variance σ2

τ , then
VaRα(X) = µτ + στqα, (13)

where qα is the α quantile of the standardized version of X. In other words, qα = F−1
X̃

(α) where

X̃ = (X − µτ )/στ .
If the VaR is computed under the assumption that returns are light-tailed, say normal, when in

fact they are heavy tailed, say tν (Student-t distribution with ν degrees of freedom), the risk may be
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seriously underestimated for high confidence levels. This is because for large α, F−1
normal(α) ≤ F−1

tν (α),
so that the value of x that achieves Fnormal(x) = α is smaller than the value of x that achieves
Ftν (x) = α. It is thus very important that the return distribution be modelled well. A wide variety of
parametric distributions can be considered.

Within the portfolio context, the most easily implemented parametric model is the so called delta-
normal method, where the joint distribution of the risk factor returns is multivariate normal and the
returns of the portfolio are assumed to be a linear function of the returns of the underlying risk factors.
In this case the portfolio returns are themselves normally distributed.

Example 3.2 Take a portfolio of equities whose (negative) returns are given by Xp =
w1X1 + . . . + wnXn where wi is the weight given to asset i and Xi is the assets (negative)
return over the horizon in question. Assume (X1, . . . , Xn) ∼ N(0,Σ). Then, for α ∈
(0.5, 1),

VaRα(Xp) = Φ−1(α)
√

wTΣw

=

√−−−→
VaRα

T ρ
−−−→
VaRα,

where
−−−→
VaRα = (VaRα(w1X1), . . . ,VaRα(wnXn)) is the vector of the individual weighted

asset VaRs and ρ is the asset return correlation matrix. See Dowd [Dow98] for details.

When the number of assets is large, the central limit theorem is often invoked in defense of the
normal model. Even if the individual asset returns are non-normal, the central limit theorem tells
us that the weighted sum of many assets should be approximately normal. This argument may be
disposed of in various ways. Consider, for example, the empirical distribution of daily returns of a
large diversified index such as the NASDAQ , which is clearly heavy-tailed (see Figure 2). From a
probabilistic point of view it is not at all obvious that the assumptions of the central limit theorem
are satisfied. For example, if the returns do not have finite variance, there may be convergence to the
class of stable distributions.

The class of stable distributions (also known as α-stable or stable Paretian) may be defined in
a variety of ways. More will be said about them in Section 7. We define, at this stage, a stable
distribution as the only possible limiting distribution of appropriately normalized sums of independent
random variables.

Definition 3.2 The random variable X has a stable distribution if there exists a sequences of i.i.d.
random variables {Yi} and constants {an} ∈ R and {bn} ∈ R+ such that

Y1 + · · · + Yn

bn
− an

d−→ X as n → ∞. (14)

The stable distribution of X in (14) is characterized by four parameters (α, σ, β, µ) and we write
X ∼ Sα(β, σ, µ). The parameter α ∈ (0, 2] is called the index of stability or the tail exponent and
controls the decay in the tails of the distribution. The remaining parameters σ, β, µ control scale,
skewness, and location respectively. If the Yi have finite variance (the case in the usual CLT) then
α = 2 and the distribution of X is Gaussian. For all α ∈ (0, 2) the distribution is non-Gaussian stable
and possess heavy tails.
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Example 3.3 Properties of weekly returns of the Nikkei 225 Index over a 12 year period
are examined in Mittnik, Rachev and Paolella [MRP98]. The authors fit the return dis-
tribution using a number of parametric distributions, including the normal, Student-t and
stable. According to various measures of goodness of fit, the partially asymmetric Weibull,
Student-t and the asymmetric stable provide the best fit. The fit by the normal is shown
to be relatively poor. The stable distribution, in addition, fits best the tail quantiles of the
empirical distribution, which is a result most relevant to the calculation of VaR.

The central limit theorem typically assumes independence. Although it has extensions to allow
for mild dependence, this dependence must be sufficiently weak. In fact, for a given number of
assets, the greater the dependence, the worse the normal approximation. This affects the speed of the
convergence. Since a VaR calculation involves the tails of the distribution, it is most important that
the approximation hold in the tails. However, even when the conditions for the central limit theorem
hold, the convergence in the tail is known to be very slow. The normal approximation may then only
be valid in the central part of the distribution. In this case, the return distribution may be better
approximated by a heavier-tailed distribution such as the Student-t or hyperbolic whose use in finance
is becoming more common.

The hyperbolic distribution is a subclass of the class of generalized hyperbolic distributions. The
generalized hyperbolic distributions were introduced in 1977 by Barndorff-Neilsen [BN77] in order to
explain empirical findings in geology. Today these distributions are becoming popular in finance, and
in particular in risk management. Two subclasses, the hyperbolic and the inverse Gaussian, are most
commonly used. Both these subclasses may be shown to be mixtures of Gaussians. As such, they
possess heavier tails than the normal distribution but not as heavy as the stable distribution. For an
introduction to generalized hyperbolic distributions in finance, see for example Eberlein and Keller
[EK95], Eberlein and Prause [EP00] or Shiryaev [Shi99].

3.1.3 Monte Carlo VaR

Monte Carlo procedures are perhaps the most flexible methods for computing VaR. The risk manager
specifies a model for the underlying risk factors, which incorporates somehow their dependence. For
example, the risk factors in (12) may be described by the stochastic differential equation

dY
(i)
t = Y

(i)
t (µ

(i)
t dt + σ

(i)
t dW

(i)
t ), (15)

for i = 1, . . . , d, where Wt = (W
(1)
t , . . . , W

(d)
t ) is a multivariate Wiener process. Once parameters

of the model are estimated, for example by using historical data, or option implied estimates, the
risk factors paths are then computer generated, thousands of paths for each risk factor. Each set of
simulated paths for the risk factors yields a portfolio path and the portfolio is priced accordingly. Each
computed price of the portfolio represents a point on the portfolio’s return distribution. After many
such points are obtained the portfolio’s VaR may then be read off the simulated distribution.

This method has the advantage of being extremely versatile. It allows for heavy tails, non-linear
payoffs and a great many other user specifications. Within the Monte Carlo framework, risk managers
may use their own pricing models to determine non-linear payoffs under many different scenarios for
the underlying risk factors. The method has also the advantage of allowing for time varying parameters
within the risk factor processes. See for example Broadie and Glasserman [BG98].
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There are two major drawbacks to Monte Carlo methods. First, they are computationally very
expensive. Thousands of simulations of the risk factors may have to be carried out for results to be
trusted. For a portfolio with a large number of assets this procedure may quickly become unmanage-
able, since each asset within the portfolio must be valued using these simulations. Second, the method
is prone to model risk. The risk factors and the pricing models of assets with non-linear payoffs may
both be mis-specified. And, as is the case of the parametric VaR, there is the risk of mis-specifying
the model parameters.

3.2 Parameter Estimation

The parametric and Monte Carlo VaR methods require parameters to be estimated. When one is inter-
ested in short time horizons, the primary goal is to estimate the volatility and covariance/correlation17.
We outline some of the common estimation techniques here.

3.2.1 Historical Volatility

There are two different approaches to modelling volatility and covariance using only historical data.
The more common approach gives constant weights to each data point. It assumes that volatility and
covariance are constant over time. The other approach attempts to address the fact that volatility and
covariance are time dependent by giving more weight to the more recent data points in the sample
window.

First assume that variances and covariances do not to change over time. Take a large window of
length n in which historical data on the risk factors is available. Let Yi,tk be the return of factor i at
time period tk. The variance of factor i and covariance of factors i and j are then computed by giving
equal weights to each data point in the past. The n-period estimates at time T for the variance and
covariance

σ̂2
i =

1

n − 1

T−1∑

t=T−n

(Yi,t − µ̂Yi)
2 where µ̂Yi =

1

n

T−1∑

t=T−n

Yi,t (16)

and

σ̂i,j =
1

n − 1

T−1∑

t=T−n

(Yi,t − µ̂Yi)(Yj,t − µ̂Yj ) (17)

respectively18. Since equal weight is given to each data point in the sample, the estimated volatility
and covariance change only slowly. If one keeps the window length fixed, the estimated values will rise
or fall as new large returns enter the sample period and old large returns leave it. This means that
even a single extreme return will affect the estimates in the same way, whether it occurred at time
T − 1 or time T − n. The estimated variance and covariance, therefore, are greatly influenced by the
choice of the window size n.

Another stylized fact of financial time series, however, is that volatility itself is volatile. With this
in mind, another historical estimate of variance and covariance uses a weighting scheme which gives

17For example, over short time horizons, the mean return is usually assumed to be zero.
18The normalization constant n − 1 gives an unbiased estimate. It is sometimes replaced by n in order to correspond

to the maximum likelihood estimate.
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more weight to more recent observations. The corresponding estimates of variance and covariance are

σ̂2
i (T ) =

T−1∑

t=T−n

αt(Yi,t − µ̂Yi)
2,

σ̂i,j(T ) =
T−1∑

t=T−n

αt(Yi,t − µ̂Yi)(Yj,t − µ̂Yj ),

where the weights αt,
∑T−1

t=T−n αt = 1, are chosen to reflect current volatility conditions. In particular,
more weight is given to recent observations: 1 > αT−1 > αT−2 > . . . > αT−n > 0. The model using
exponentially decreasing weights, such as that used by RiskMetrics, is probably the most popular. In
RiskMetrics, the volatility estimator is given by

σ̂i(T ) =

√√√√(1 − λ)
n∑

t=1

λt−1(Yi,T−t − µ̂Yi)
2 (18)

where the decay factor λ is chosen to best match a large group of assets19. The covariance estimate is
similar. RiskMetrics choses λ = 0.94 in the case of daily returns.

The choice (18) allows the forecast of the next periods volatility given the current information,
and hence to make parametric VaR calculations given the current information. To see this, assume
that the time T (negative) return distribution XT is being modelled by

XT
d
= σT ZT (19)

where Zt, t ∈ Z, is an innovation process, that is a sequence of i.i.d. mean zero and unit variance
random variables. Letting Ft denote the filtration20 we have

σ2
T+1|FT

= (1 − λ)
∞∑

t=0

λtX2
i,T−t

= (1 − λ)X2
T + λ(1 − λ)(X2

T−1 + λX2
T−2 + λ2X2

T−3 + · · · )
= (1 − λ)X2

T + λσ2
T |FT−1

.

This allows us to make our VaR calculation depend on the conditional return distribution FXT+1|FT
.

If VaRT+1
α (X) denotes the estimated value at risk for X at confidence level α for the period T + 1 at

time T , then, by (19),
VaRT+1

α (X) = σT+1|FT
qα,

19In this estimate it is assumed that the decay parameter λ and window length n are such that the approximation

n∑

t=1

λt−1 ∼=
1

1 − λ

is valid.
20Conditioning over FT means conditioning over all the observations X1, . . . , XT .
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Figure 5: GARCH(1,1) volatilities σt for NASDAQ.

where qα is the α quantile of the innovation process Zt+1. In RiskMetrics Z is N(0, 1), in which case
the return process Xt is conditionally normal21.

The modelling of the volatility using exponential weights and the assumption of conditional nor-
mality has two major effects. First, the volatility estimator, which is now truly time varying, attempts
to account for the local volatility conditions by giving more weight to the most recent observations. It
also has a second less obvious, but no less profound effect on the calculation of VaR. Even though the
conditional return distribution may be assumed to be normal (thin-tailed) within the VaR calculation,
the unconditional return distribution will typically have heavier tails than the normal. This result
is not surprising since we may think of our time t return as being sampled from a normal distribu-
tion with changing variance. This means that our unconditional distribution is more likely to fit the
empirical returns and thus to provide a better estimate of the true VaR.

3.2.2 ARCH/GARCH Volatilities

The ARCH/GARCH class of conditional volatility models were first proposed by Engle [Eng82] and
Bollerslev [Bol86] respectively. We will again assume that the (negative) return process to be modelled
is of the form (19) where Zt are i.i.d. mean zero, unit variance random variables representing the
innovations of the return process. In the GARCH(p, q) model22, the conditional variance is given by

σ2
t = α0 +

p∑

i=1

αiX
2
t−i +

q∑

j=1

βjσ
2
t−j .

In its most common form, Zt ∼ N(0, 1), so that the returns are conditionally normal. Just as in the
exponentially weighted model for volatility (see Section 3.1.1), the GARCH model with a conditionally
normal return distribution can lead to heavy tails in the unconditional return distribution. In the case
of the GARCH(1, 1) model

Xt = σtZt where Zt ∼ N(0, 1) i.i.d.,

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1,

21RiskMetrics allows the assumption of conditional normality to be relaxed in favor of heavier-tailed conditional
distributions. For example the conditional distribution of returns may be mixture of normals or a generalized error
distribution, that is, a double sided exponential.

22The ARCH(p) model first proposed by Engle is equivalent to the GARCH(p, 0) model later proposed by Bollerslev.
The advantage of the GARCH model over the ARCH model is that it requires fewer parameters to be estimated, because
AR models (ARCH) of high order are often less parsimonious than ARMA models (GARCH) of lower order.
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Figure 6: Quantile-quantile (QQ) plot of the conditionally normal GARCH(1,1) standardized ex post
innovations for NASDAQ with the N(0, 1) distribution.

it is straightforward to show that under certain conditions23 the unconditional centered kurtosis is
given by

K =
EX4

t

(EX2
t )2

− 3 =
6α2

1

1 − β2
1 − 2α1β1 − 3α2

1

,

which for most financial return series will be greater than zero. For example, in the case of a stationary

ARCH(1) model, Xt =
√

α0 + α1X2
t−1Zt, with α0 > 0 and α1 ∈ (0, 2eγ), where γ is Euler’s constant24,

Embrechts, Klüppelberg and Mikosch [EKM97] show that the unconditional distribution is formally
heavy-tailed, that is

P(X > x) ∼ cx−α, x → ∞. (20)

where α/2 > 0 is the unique solution to the equation h(u) = (2α1)u
√

π
Γ

(
u + 1

2

)
= 1.

The ARCH/GARCH models allow for both volatility clustering (periods of large volatility) and
for heavy tails. The GARCH(1,1) estimated volatility process σt for the NASDAQ is displayed in
Figure 5. The assumption of conditional normality can be checked, for example, by examining a
QQ plot of the ex post innovations, that is Ẑt = Xt/σ̂t. Figure 6 displays the QQ plot of Ẑt in the
traditional, conditionally normal GARCH(1,1) model for the NASDAQ . The fit of the GARCH(1,1)
conditionally normal model in the lower tail is poor, showing the lower tail of Ẑt is heavier than the
normal distribution.

If the distribution of the historical innovations Zt−n, . . . , Zt is heavier-tailed than the normal,
one can modify the model to allow a heavy-tailed conditional distribution FXt+1|Ft

25. In Panorska,

23These conditions are α1 + β1 < 1 to guarantee stationarity, and 3α2
1 + 2α1β1 + β2

1 < 1 for K > 0. Both are generally
met in financial time series.

24Euler’s constant γ is given by γ = limn→∞

(∑n
k=1

1

k
− ln n

)
and is approximately γ ≈ 0.577.

25For example the GARCH module in the statistical software package SPlus allows for three different non-Gaussian
conditional distributions. As long as the user can estimate the GARCH parameters, usually through maximum likelihood,
there are virtually no limits to the choice of the conditional distribution.
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Mittnik and Rachev [PMR95] and Mittnik, Paolella and Rachev [MPR97], returns on the Nikkei index
are modelled using an ARMA-GARCH model of the form

Xt = a0 +
r∑

i=1

aiXt−i + ǫt +
s∑

j=1

bjǫt−j (21)

(contrast with (19)), where ǫt = σtZt, with Zt an i.i.d. location zero, unit scale heavy-tailed random
variable. The conditional distribution of the return series FXt|Ft−1

is given by the distribution type
of Zt. The ARMA structure in (21) is used to model the conditional mean E(Xt|Ft−1) of the return
series Xt. The GARCH structure is imposed on the scale parameter26 σt through

σ2
t = α0 +

p∑

i=1

αiǫ
2
t−i +

q∑

j=1

βjσ
2
t−j .

Several choices for the distribution of Zt are tested. In the case where Zt are realizations from a stable
distribution, the GARCH model used is

σt = α0 +

p∑

i=1

αi|ǫt−i| +
q∑

j=1

βjσt−j ,

and the index of stability exponent α for the stable distribution is constrained to be greater than one.
Using several goodness of fit measures, the authors find that it is better to model the conditional

distribution of returns for the Nikkei than the unconditional distribution, since the unconditional
distribution cannot capture the observed temporal dependencies of the return series27. Within the
tested models for Zt, the partially asymmetric Weibull, the Student-t, and the asymmetric stable all
outperform the normal. In order to perform reliable value at risk calculations one must model the tail
of the distribution Zt particularly well. The Anderson-Darling (AD) statistic can be used to measure
goodness of fit in the tails. Letting Femp(x) and Fhyp(x) denote the empirical and hypothesized
parametric distributions respectively, the AD statistic

AD = sup
x∈R

|Femp(x) − Fhyp(x)|√
Fhyp(x)(1 − Fhyp(x))

gives more weight to the tails of the distribution. Using this statistic, as well as others, the authors
propose the asymmetric stable distribution as the best of the tested models for performing VaR
calculations at high quantiles.

The class of ARCH/GARCH models have become increasingly popular for computing VaR. The
modelling of the conditional distribution has two immediate benefits. First, it allows for the predicted
volatility (or scaling) to use local information, i.e. it allows for volatility clustering. Second, since
volatility is allowed to be volatile, the unconditional distribution will typically not be thin-tailed. This
is true, as we have seen, even when the conditional distribution is normal.

There now exist many generalizations of the class of ARCH/GARCH models. Models such as
EGARCH, HGARCH, AGARCH, and others, all attempt to use the local volatility structure to better

26In their model σt is to be interpreted as a scale parameter, not necessarily a volatility, since for some of the
distributional choices for Zt, the variance may not exist.

27The type of the conditional distribution is that of Zt, the unconditional distribution is that of Xt.
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predict future volatility while trying to account for other observed phenomenon. See Bollerslev, Chou
and Kroner [BCK92] for a review. The time series of returns {Xt}t∈Z in (19) is generally assumed
to be stationary. In a recent paper, Mikosch and Stărică [MS00] show that this assumption is not
supported, at least globally, by the S&P 500 from 1953 to 1990 and the DEM/USD foreign exchange
rate from 1975 to 1982. The authors show that when using a GARCH model the parameters must
be updated to account for changes of structure (changes in the unconditional variance) of the time
series. A method for detecting these changes is also proposed. Additionally, they show that the long
range dependence behavior associated with the absolute return series, another of the so called stylized
facts of financial time series, may only be an artifact of structural changes in the series, that is, to
non-stationarity.

Stochastic volatility models are not limited to the class of ARCH/GARCH models and their gen-
eralizations. Other models may involve additional sources of randomness. For example, the model of
Hull and White [HW87]

dYt = µYt + σtYtdW
(1)
t ,

dVt = νVt + ξVtdW
(2)
t ,

where σ2
t = Vt and (W

(1)
t , W

(2)
t ) is a bivariate Wiener process, introduces a second source of randomness

through the volatility. The two sources of randomness W
(1)
t and W

(2)
t need not be uncorrelated. Again,

the introduction of a stochastic scaling generally leads to an unconditional return distribution which
is leptokurtotic. See Shiryaev [Shi99], for an introduction to stochastic volatility models in discrete
and continuous time.

3.2.3 Implied Volatilities

The parametric VaR calculation requires a forecast of the volatility. All of the models examined so far
have used historical data. One may prefer to use a forward looking data set instead of historical data
in the forecast of volatility, for example options data, which provide the market estimate of future
volatility. To do so, one could use the implied volatility derived from the Black-Scholes model. In this
model, European call options prices Ct = C(St, K, r, σ, T−t) are an increasing function of the volatility
σ. The stock price St at time t, the strike price K, the interest rate r and the time to expiration T − t
are known at time t. Since σ is the only unknown parameter/variable, we may then use the observed
market price Ct to solve for σ. This estimate of σ is commonly called the (Black-Scholes) implied
volatility. The Black-Scholes model, however is imperfect. While σ should be constant, one typically
observes that σ depends on the time to expiration T − t and on the strike price K. For fixed T − t, the
implied volatility σ = σ(T − t, K) as a function of the strike price K is often convex, a phenomenon
known as the volatility smile. To obtain volatility estimates it is common to use at-the-money options,
where St = K, since they are the most actively traded and hence are thought to provide the most
accurate estimates.

3.2.4 Extreme Value Theory

Since VaR calculations are only concerned with the tails of a probability distribution, techniques from
Extreme Value Theory (EVT) may be particularly effective. Proponents of EVT have made compelling
arguments for its use in calculating VaR and for risk management in general. We will discuss EVT in
Section 6.
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4 Risk Measures

We have considered two different measures of risk: standard deviation and value at risk. Standard
deviation, used by Markowitz and others, is still commonly used in portfolio theory today. The second
measure,VaR, is the standard measure used today by regulators and investment banks. We detailed
some of the computational issues surrounding these measures but have not discussed their validity.

It is easy to criticize standard deviation and value at risk. Even in Markowitz’s pioneering work on
portfolio theory, the shortcomings of standard deviation as a risk measure were recognized. In [Mar59],
an entire chapter is devoted to semi-variance28 as a potential alternative. In Artzner, Delbaen, Eber
and Heath [ADEH97], for example, measures based on standard deviation are criticized based on their
inability to describe rare events and VaR is criticized because of its inability to aggregate risks in a
logical manner. In two now famous papers [ADEH97] and [ADEH99] on financial risk, the authors
propose a set of properties any reasonable risk measure should satisfy. Any risk measure which satisfies
these properties is called coherent. We shall now introduce these properties and indicate why the risk
measures described above are not coherent.

4.1 Coherent Risk Measures

Suppose that the financial position of an investor will lead at time T to a loss X29, which is a random
variable. Let G be the set of all such X. A risk measure ρ is defined as a mapping from G to R.
Intuitively, for a given potential loss X in the future we may think of ρ(X) as the minimum amount
of cash that we need to invest prudently today (in a reference instrument) to be allowed to take the
position X30. A risk measure ρ may be coherent or not.

Definition 4.1 Given a reference instrument with return r, possibly random, a risk measure ρ satis-
fying the following four axioms is said to be coherent:

Translation Invariance. For all X ∈ G and all α ∈ R, we have ρ(X + αr) = ρ(X) + α. This means
that adding the amount α to the position, and investing it prudently, reduces the overall risk of
the position by α.

Subadditivity. For all X1 and X2 ∈ G, ρ(X1 +X2) ≤ ρ(X1)+ρ(X2). Hence a merger does not create
extra risk. This is the basis for diversification.

Positive Homogeneity. For all λ ≥ 0 and all X ∈ G, ρ(λX) = λρ(X). This requires that the risk
scales with the size of a position. If the size of a position renders it illiquid, then this should be
considered when modelling the future net worth.

Monotonicity. For all X and Y ∈ G with X ≥ Y , we have ρ(X) ≥ ρ(Y ). If the future net loss X is
greater, then X is more risky.

28In order to put the accent on (negative) returns above the mean, semi-variance is defined as

σ̃X = E[(X − EX)1{X>EX}]
2.

29Losses are positive and profits negative. This is at odds with the authors’ original notation.
30The authors refer to X as risk and axiomatically define acceptance sets, which are sets of acceptable risks, and

proceed to define measures of risk as describing the risks proximity to the acceptance set.
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The term coherent measure of risk has found its way into the risk management vernacular. It is
defined, for example, in the second edition of Philippe Jorion’s Value at Risk ([Jor01]).

Note that the axioms of translation invariance and monotonicity rule out standard deviation as
a coherent measure of risk. Indeed, since σX+αr = σX , translation invariance fails, and since σ also
penalizes the investor for large profits as well as large losses, monotonicity fails as well. Consider, for
example, two portfolios X and Y which are identical except for the free lottery ticket held in Y . We
have X ≥ Y , since there is no down-side to the free ticket and therefore the potential losses in Y are
smaller than in X. Nevertheless, the standard deviation measure assigns to Y a higher risk, hence
monotonicity fails. Markowitz’s alternative risk measure semi-variance is not coherent either because
it is not subadditive.

4.2 Expected Shortfall

VaR is not a coherent measure of risk because it fails to be subadditive in general. One can indeed
easily construct scenarios (see Albanese [Alb97]) where for two positions X and Y it is true that

VaRα(X + Y ) > VaRα(X) + VaRα(Y ).

This is contrary to the risk managers feelings, that the overall risk of different trading desks is bounded
by the sum of their individual risks. In short, VaR fails to aggregate risks in a logical manner. In
addition, VaR tells us nothing about the size of the loss that exceeds it. Two distributions may have
the same VaR yet be dramatically different in the tail.

Hence neither the standard deviation nor VaR are coherent. On the other hand, the expected
shortfall, also called tail conditional expectation, is a coherent risk measure. Intuitively, the expected
shortfall addresses the question: given that we will have a bad day, how bad do we expect it to be?
It is a more conservative measure than VaR and looks at the average of all losses that exceed VaR.
Formally, the expected shortfall for risk X and high confidence level α is defined as follows:

Definition 4.2 Let X be the random variable whose distribution function FX describes the negative
profit and loss distribution (P&L) of the risky financial position at the specified horizon time τ (thus
losses are positive). Then the expected shortfall for X is

Sα(X) = E(X|X > VaRα(X)). (22)

Suppose, for example, that a portfolio’s risk is to be calculated through simulation. If 1000
simulations are run, then for α = 0.95, the portfolios VaR would be the smallest of the 50 largest
losses. The corresponding expected shortfall would be estimated by the numerical average of these
50 largest losses. Expected shortfall, therefore, tells us something about the expected size of a loss
exceeding VaR. It is subadditive, coherent and puts fewer restrictions on the distribution of X,
requiring only a finite first moment to be well defined. Additionally, it may be reconciled with the
idea of maximizing expected utility. Levy and Kroll [LK78] show that for all utility functions U with
the properties described in Section 2.1 and all random variables X and Y (representing losses) that

E U(−X) ≥ E U(−Y ) ⇐⇒ Sα(X) ≤ Sα(Y ) for all α ∈ (0, 1).

Expected shortfall can be used in portfolio theory as a replacement of the standard deviation if
the distribution of X is normal, or more generally, elliptical. As we will see in Section 5.3, in this
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case any positive homogeneous translation invariant risk measure will yield the same optimal linear
portfolio for the same level of expected return.

Unlike standard deviation, expected shortfall, as defined in (22), does not measure deviation from
the mean. Bertsimas, Lauprete and Samarov [BLS00] define shortfall31 as

sα(X) = E(X |X > VaRα(X)) − EX. (23)

The subtraction of the mean makes it more similar to the standard deviation σX =
√

E(X − EX)2

and again, as far as portfolio theory is concerned, in the case of elliptical distributions, one obtains the
same optimal portfolio for the same level of expected return if one uses sα to measure risk. In fact, it
can be shown that for a linear portfolio Xp = w1X1 + · · ·+wnXn of multivariate normally distributed
returns X ∼ N(µ,Σ), that

sα(Xp) =
φ(Φ−1(α))

1 − α
σp,

where φ(x) and Φ(x) are respectively, the pdf and cdf of a standard normal random variable evaluated
at x. In other words,

arg min
Aw=b

wTΣw = arg min
Aw=b

sα(wT X),

for all α ∈ (0, 1), where Aw = b is any set of linear constraints, including constraints that do not
require all portfolios to have the same mean. Note, however, that sα is not coherent since it violates
the axioms of translation invariance and monotonicity.

5 Portfolios and Dependence

The measure of dependence most popular in the financial community is linear correlation32. Its popu-
larity may be traced back to Markowitz’ mean variance portfolio theory since, under the assumption of
multivariate normality, the correlation is the canonical measure of dependence. Outside of the world
of multivariate normal distributions, correlation as a measure of dependence may lead to misleading
conclusions (see Section 5.2.1)33. The linear correlation between two random variables X and Y ,
defined by

ρ(X, Y ) =
Cov(X, Y )

σXσY
, (24)

is a measure of linear dependence between X and Y . The word linear is used because when variances
are finite, ρ(X, Y ) = ±1 if and only if Y is an affine transformation of X almost surely, that is
if Y = aX + b a.s. for some constants a ∈ R\{0}, and b ∈ R. When the distribution of returns
X is multivariate normal, the dependence structure of the returns is determined completely by the
covariance matrix Σ or, equivalently, by the correlation matrix ρ. One has Σ = [σ] ρ [σ] where [σ] is
a diagonal matrix with the standard deviations σj on the diagonal.

When returns are not multivariate normal, linear correlation may no longer be a meaningful mea-
sure of dependence. To deal with potential alternatives, we will introduce the concept of copulas,
describe various measures of dependence and focus on elliptical distributions. For additional details

31We still assume losses are positive. This is at odds with the authors notation.
32Also known as Pearson’s correlation.
33Linear correlation is actually the canonical measure of dependence for the class of elliptical distributions. This class

will be introduced shortly and may be thought of as an extension of multivariate normal distributions.
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and proofs, see Embrechts, McNeil and Straumann [EMS01], Lindskog [Lin00b], Nelsen [Nel99], Joe
[Joe97] and Fang, Kotz and Ng [FKN90].

5.1 Copulas

When X = (X1, . . . , Xn) ∼ N(µ,Σ), the distribution of any linear portfolio of the Xj ’s is normal with
known mean and variance. In the non-normal case, the joint distribution of X,

F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

is not fully described by its mean and covariance. One would like, however, to describe the joint distri-
bution by specifying separately the marginal distributions, that is, the distribution of the components
X1, . . . , Xn, and the dependence structure. One can do this with copulas.

Definition 5.1 An n-Copula is any function C : [0, 1]n → [0, 1] satisfying the following properties:

1. For every u = (u1, . . . , un) in [0, 1]n we have that C(u) = 0 if at least one component uj = 0
and C(u) = uj if u = (1, . . . , 1, uj , 1, . . . , 1).

2. For every a, b ∈ [0, 1]n such that a ≤ b

2∑

i1=1

· · ·
2∑

in=1

(−1)i1+···inC(u1i1 , . . . , unin) ≥ 0 (25)

where uj1 = aj and uj2 = bj for j = 1, . . . , n.

Corollary 5.1 below provides a concrete way to construct copulas. It is based on the following theorem
due to Sklar (see [Skl96], [Nel99]), which states that by using copulas one can separate the dependence
structure of the multivariate distribution from the marginal behavior.

Theorem 5.1 (Sklar) Let F be an n-dimensional distribution function with marginals Xj ∼ Fj for
j = 1, . . . , n. Then there exists an n-copula C : [0, 1]n → [0, 1] such that for every x = (x1, . . . , xn) ∈
Rn,

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (26)

Furthermore, if the Fj are continuous then C is unique. Conversely, if C is an n-copula and Fj are
distribution functions, then F in (26) is an n-dimensional distribution function with marginals Fj.

The function C is called the copula of the multivariate distribution of X. Assuming continuity of the
marginals Fj , j = 1, . . . , n, we see that the copula C of F is the joint distribution of the uniform
transformed variables Fj(Xj),

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F

−1
n (un)). (27)

Corollary 5.1 If the Fj are the cdfs of U(0, 1) random variables, then xj = Fj(xj), 0 < xj < 1,
and (26) becomes F (x1, . . . , xn) = C(x1, . . . , xn). Therefore the copula C may be thought of as the
cumulative distribution function (cdf) of a random vector with uniform marginals.
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Copulas allow us to model the joint distribution of X in two natural steps. First, one models the
univariate marginals Xj . Second, one chooses a copula that characterizes the dependence structure of
the joint distribution. Any n-dimensional distribution function can serve as a copula. The following
examples relate familiar multivariate distributions to their associated copulas and marginals.

Example 5.1 Suppose X1, . . . , Xn are independent then

F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

= P(X1 ≤ x1) · · ·P(Xn ≤ xn)

= F1(x1) · · ·Fn(xn).

Hence, in the case of independence, C(u1, . . . , un) = u1 · · ·un for all (u1, . . . , un) ∈ [0, 1]n.

Example 5.2 Suppose (X1, . . . , Xn) is multivariate standard normal with linear correla-
tion matrix ρ. Let Φ(z) = P(Z ≤ z) for Z ∼ N(0, 1). Then

F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

= P(F1(X1) ≤ F1(x1), . . . , Fn(Xn) ≤ Fn(xn))

= CGa
ρ (Φ(x1), . . . ,Φ(xn)),

where

CGa
ρ (u1, . . . , un) =

1√
|ρ|(2π)n

∫ Φ−1(u1)

−∞
· · ·

∫ Φ−1(un)

−∞
e−

1

2
sT ρ−1s ds (28)

is called the multivariate Gaussian copula.

Example 5.3 Suppose (X1, . . . , Xn) is multivariate t with ν degrees of freedom and linear
correlation matrix ρ 34. Let tν(x) = P(T ≤ x) where T ∼ tν . Then

F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

= P(F1(X1) ≤ F1(x1), . . . , Fn(Xn) ≤ Fn(xn))

= Ctν
ρ (tν(x1), . . . , tν(xn))

where

Ctν
ρ (u1, . . . , un) =

Γ(ν+n
2 )

Γ(ν
2 )

√
|ρ|(νπ)n

∫ t−1
ν (u1)

−∞
· · ·

∫ t−1
ν (un)

−∞

(
1 +

sT ρ−1s

ν

)− ν+n
2

ds (29)

is called the multivariate tν copula.

In Examples 5.2 and 5.3, |ρ| denotes the determinant of the matrix ρ. In these examples, the copulas
were introduced through the joint distribution, but it is important to remember that the copula
characterizes the dependence structure of the multivariate distribution through (26). The Gaussian
and tν copulas (28) and (29) exist separately from their associated multivariate distributions.

34Its cdf is given by (29) where the upper limits t−1
ν (u1), . . . , t

−1
ν (un) are replaced by x1, . . . , xn respectively. A

multivariate tν is easy to generate. Generate a multivariate normal with covariance matrix Σ and divide it by
√

χ2
ν/ν

where χ2
ν is an independent chi-squared random variable with ν degrees of freedom.
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Example 5.4 The bivariate Gumbel copula CGu
β is given by

CGu
β (u1, u2) = exp

{
−

[
(− lnu1)

1

β + (− lnu2)
1

β

]β
}

, (30)

where 0 < β ≤ 1 is a parameter controlling the dependence, β → 0+ implies perfect
dependence (see Section 5.2.3), and β = 1 implies independence.

Example 5.5 The bivariate Clayton copula CCl
β is given by

CCl
β (u1, u2) = (u−β

1 + u−β
2 − 1)

− 1

β , (31)

where 0 < β < ∞ is a parameter controlling the dependence, β → 0+ implies independence,
and β → ∞ implies perfect dependence. This copula family is sometimes referred to as
the Kimeldorf and Sampson family.

Both the Gumbel and Clayton copulas are strict Archimedian copulas. Archimedean copulas are
defined as follows. Let φ : [0, 1] → [0,∞) with φ(0) = ∞ and φ(1) = 0 be a continuous, convex, strictly
decreasing function. The transformation φ−1φ maintains the uniform 1-dimensional distribution since
φ−1φ(u) = u, u ∈ [0, 1]. To obtain a 2-dimensional distribution function use instead of φ−1φ(u), u ∈
[0, 1] the function φ−1(φ(u) + φ(v)), u, v ∈ [0, 1].

Definition 5.2 A strict Archimedian copula with generator φ is of the form

C(u, v) = φ−1(φ(u) + φ(v)), u, v ∈ [0, 1]. (32)

Example 5.6 The function φ(t) = (− ln t)1/β , 0 < β ≤ 1 generates the bivariate Gumbel
copula CGu

β (see Example 5.4).

Example 5.7 The function φ(t) = (t−β − 1)/β, β > 0 generates the bivariate Clayton
copula CCl

β (see Example 5.5).

Example 5.8 The function φ(t) = − ln((e−βt − 1)/(e−β − 1)), β ∈ R\{0} generates the
bivariate Frank copula

CFr
β (u, v) = − 1

β
ln

(
1 +

(
e−βu − 1

) (
e−βv − 1

)

e−β − 1

)

(see Frank [Fra79]).

If φ(0) < ∞, then the term strict in Definition 5.2 is dropped and φ−1(s) in (32) is replaced by the
pseudo-inverse φ[−1](s) which equals φ−1(s) if 0 ≤ s ≤ φ(0) and is zero otherwise.

Example 5.9 The function φ(t) = 1 − t, t ∈ [0, 1] satisfies φ(0) = 1 and hence φ[−1](t) =
max(1 − t, 0). It generates the non-strict Archimedean copula

C(u, v) = max(u + v − 1, 0).
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Figure 7: Contours of constant density for different bivariate distributions with standard normal
marginals. All have roughly the same linear correlation, and differ only in their copula. Clockwise
from upper left: Gaussian, t2, Gumbel , Clayton. See Examples 5.2, 5.3, 5.4 and 5.5 for the copula
definitions.

The class of Archimedian copulas has many nice properties, including various simple multivariate
extensions. For more on Archimedian copulas see [Lin00b], [Nel99], [Joe97] and Embrechts, Lindskog
and McNeil [ELM01].

Figure 7 illustrates how the choice of a copula can affect the joint distribution. Each figure shows
contours of constant density of a bivariate distribution (X, Y ) with standard normal marginals and
linear correlations ρ ≈ 0.7. The differences in the distributions is due to the choice of the copula. (For
an introduction on the choice of a copula, see Frees and Valdez [FV98].)

The following theorem provides a bound for the joint cdf.

Theorem 5.2 (Fréchet) Let F be the joint cdf of distribution with univariate marginals F1, . . . , Fn.
Then for all x ∈ Rn.

max{0, F1(x1) + · · · + Fn(xn) − (n − 1)}︸ ︷︷ ︸
CL(F1(x1),...,Fn(xn))

≤ F (x1, . . . , xn)︸ ︷︷ ︸
C(F1(x1),...,Fn(xn))

≤ min{F1(x1), . . . , Fn(xn)}︸ ︷︷ ︸
CU (F1(x1),...,Fn(xn))

.

The function CU (u1 . . . , un) is a copula for all n ≥ 2, but the function CL(u1, . . . , un) is a copula for
n = 2 only. If n = 2, the copulas CL and CU are the bivariate cdf’s of the random vectors (U, 1 − U)
and (U, U) respectively, where U ∼ U(0, 1).

Another important property of copulas is their invariance under an increasing transformation of
the marginals.

Theorem 5.3 Let X1, . . . , Xn be continuous random variables with copula C. Let α1, . . . , αn be
strictly increasing transformations. Then the random vector (α1(X1), . . . , αn(Xn)) has the same copula
C as (X1, . . . , Xn).
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Figure 8: Simulation of 10000 realizations from bivariate distributions both with standard normal
marginals and linear correlation of ρ ≈ 0.7. The distribution on the left has a Gaussian copula, on the
right a Gumbel copula. Compare the shapes with those illustrated in Figure 7, where the population
distribution is used.

5.2 Measures of Dependence

As already mentioned, linear correlation is the only measure of dependence involved in the mean-
variance portfolio theory. This theory assumes, either implicitly or explicitly, that returns are multi-
variate normal. This assumption seems implausible today given the many complex financial products
in the marketplace and the empirical evidence against normality. Without the restrictive assumption
of normality, is linear correlation still an appropriate measure of dependence?

Linear correlation is often used in the financial community to describe any form of dependence.
As illustrated in [EMS01] and Embrechts, McNeil and Straumann [EMS99], linear correlation is often
a very misunderstood measure of dependence. Consider the following example.

Example 5.10 Figure 8 represent 10000 simulations from bivariate distributions (X, Y )L

and (X, Y )R. In both cases X and Y have a standard normal distribution with (approxi-
mately) the same linear correlation ρ ≈ 0.7. Thus, on the basis of the marginal distributions
and linear correlation, the two distributions are indistinguishable. The two distributions
are however clearly different. If positive values represent losses, the distribution on the
right is clearly of greater concern to the risk manager since large losses in X and Y occur
simultaneously. The two distributions differ only in their copula.

In the figure on the left the dependence structure is given by the bivariate Gaussian copula.
Since the marginals are standard normal, this means that distribution is the bivariate
standard normal distribution with the given correlation coefficient. The copula in the
figure on the right the Gumbel copula given in (30) with β = 1/2. Various values of β were
tried until the simulation sample linear correlation was ρ ≈ 0.7.

We now briefly describe several measures of dependence which may be useful to the risk manager.
Again the reader in encouraged to look at the above references, especially [EMS01] for details.
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5.2.1 Linear Correlation

The linear correlation coefficient ρ, defined in (24), is a commonly misused measure of dependence.
To illustrate the confusion involved in interpreting it, consider the following classic example. Let
X ∼ N(µ, σ2) and let Y = X2. Then ρ(X, Y ) = 0, yet clearly X and Y are dependent. Unless we are
willing to make certain assumptions about the multivariate distribution, linear correlation can therefore
be a misleading measure of dependence. Since the copula of a multivariate distribution describes its
dependence structure we would like to use measures of dependence which are copula-based. Linear
correlation is not such a measure.

5.2.2 Rank Correlation

Two well-known rank correlation measures which are copula based and have better properties than
linear correlation are the Kendall’s tau and Spearman’s rho.

Definition 5.3 Let (X1, Y1) and (X2, Y2) be two independent copies of (X, Y ). Then Kendall’s tau,
denoted ρτ , is given by

ρτ (X, Y ) = P [(X1 − X2)(Y1 − Y2) > 0] − P[(X1 − X2)(Y1 − Y2) < 0] .

If the marginal distributions FX and FY of X and Y are continuous and if F is the bivariate distribution
function of (X, Y ) with copula C, then ρτ can be expressed in terms of C as follows (see [EMS01]):

ρτ (X, Y ) = 4

∫ 1

0

∫ 1

0
C(u, v) dC(u, v) − 1.

Definition 5.4 Let X ∼ FX and Y ∼ FY . Spearman’s correlation, denoted ρS, is the linear correla-
tion of FX(X) and FY (Y ), that is,

ρS(X, Y ) = ρ(FX(X), FY (Y )).

Spearman’s correlation can also be expressed in a form similar to Definition 5.3 (see [Lin00b]). Let
(X1, Y1), (X2, Y2) and (X3, Y3) be three independent copies of (X, Y ). Then

ρS(X, Y ) = 3 (P [(X1 − X2)(Y1 − Y3) > 0] − P [(X1 − X2)(Y1 − Y3) < 0]) .

If the marginal distributions are continuous, ρS is related to the copula of the joint distribution as
follows:

ρS(X, Y ) = 12

∫ 1

0

∫ 1

0
C(u, v) du dv − 3.

Whereas linear correlation is a measure of linear dependence, both Kendall’s tau and Spearman’s
rho are measures of monotonic dependence. Since they are copula based, they are invariant under
strictly increasing transformations35. Indeed, if α1, α2 are strictly increasing transformations, then

ρτ (α1(X1), α2(X2)) = ρτ (X1, X2),

ρS(α1(X1), α2(X2)) = ρS(X1, X2),

but ρ(α1(X1), α2(X2)) 6= ρ(X1, X2).

35Recall that invariance under increasing transformations is a property of copulas.
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5.2.3 Comonotonicity

An additional important property of these rank correlations is their handling of perfect dependence.
By perfect dependence we mean intuitively that X and Y are monotone functions of the same source
of randomness. Recall that in the bivariate case, the Fréchet bounds CL and CU in Theorem 5.2 are
themselves copulas. The following theorem shows that if the copula is CL or CU then X and Y are
perfectly dependent.

Theorem 5.4 ([EMS01]). Suppose that the copula C of (X, Y ) is either CL or CU . Then there exist
monotone functions α and β and a random variable Z such that

(X, Y )
d
= (α(Z), β(Z)).

If C = CL then α and β are increasing and decreasing respectively. If C = CU , then both α and β are
increasing.

X and Y are said to be countermonotonic if they have copula CL. If they have copula CU , they
are said to be comonotonic. In fact, when FX and FY are continuous,

C = CL ⇐⇒ Y = T (X) a.s., T = F−1
Y ◦ (1 − FX) ց,

C = CU ⇐⇒ Y = T (X) a.s., T = F−1
Y ◦ FX ր .

Kendall’s tau and Spearman’s rho handle perfect dependence in a reasonable manner. Indeed,

Theorem 5.5 ([EMS01]). Let (X, Y ) ∼ F with continuous marginals and copula C. Then

ρτ (X, Y ) = −1 ⇐⇒ ρS(X, Y ) = −1 ⇐⇒ C = CL ⇐⇒ X and Y are countermonotonic,

ρτ (X, Y ) = 1 ⇐⇒ ρS(X, Y ) = 1 ⇐⇒ C = CU ⇐⇒ X and Y are comonotonic.

The following theorem due to Höffding and Fréchet deals with linear correlation. See [EMS01] for its
proof.

Theorem 5.6 Let (X, Y ) be a random vector with marginals non-degenerate FX and FY and unspec-
ified dependence structure. If X and Y have finite variance, then

1. The set of possible linear correlations is a closed interval [ρmin, ρmax] with ρmin < 0 < ρmax.

2. The extremal linear correlation ρ = ρmin is attained iff X and Y are countermonotonic; ρ = ρmax

is attained iff X and Y are comonotonic.

3. ρmin = −1 ⇐⇒ X and − Y are of the same type36; ρmax = 1 ⇐⇒ X and Y are of the same
type.

The following example shows that linear correlation does not handle perfect dependence in a reasonable
manner.

36Recall that two random variables are the same type if their distributions are the same up to a change in location
and scale.
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Figure 9: Range of maximal and minimal linear correlation in Example 5.11. The x-axis is in units of
σ. As σ increases, both the maximal and minimal linear correlations tend to zero.

Example 5.11 ([EMS01]). Let X ∼ Lognormal(0, 1) and Y ∼ Lognormal(0, σ2) with
σ > 0. By Theorem 5.6, ρ = ρmin and ρ = ρmax when X and Y are countermonotonic and

comonotonic respectively. By Theorem 5.4, (X, Y )
d
= (α(Z), β(Z)), and in fact, (X, Y )

d
=

(eZ , e−σZ) when X and Y are countermonotonic and (X, Y )
d
= (eZ , eσZ) when X and Y

are comonotonic, where Z ∼ N(0, 1). Hence ρmin = ρ(eZ , e−σZ) and ρmax = ρ(eZ , eσZ)
where Z ∼ N(0, 1). Using the properties of the lognormal distribution, these maximal and
minimal correlations can be evaluated explicitly and one gets

ρmin =
e−σ − 1√

(e − 1)(eσ2 − 1)
, ρmax =

eσ − 1√
(e − 1)(eσ2 − 1)

.

As σ increases, the maximal and minimal linear correlation both tend to zero even though
X and Y are monotonic functions of the same source of randomness. This is illustrated in
Figure 9.

5.2.4 Tail Dependence

There is a saying in finance that in times of stress all correlations go to one37. While it shows that the
financial community uses linear correlation to describe any measure of dependence, it can also serve
as motivation for the next measure of dependence, known as tail dependence.

Bivariate tail dependence measures the amount of dependence in the upper and lower quadrant
tail of the distribution. This is of great interest to the risk manager trying to guard against concurrent
bad events in the tails.

37See [CPB00] for example.
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Definition 5.5 Let X ∼ FX and Y ∼ FY and observe that as α → 1−, F−1
X (α) → ∞ and F−1

Y (α) →
∞. The coefficient of upper tail dependence λU is

λU (X, Y ) = lim
α→1−

P(Y > F−1
Y (α)|X > F−1

X (α)) (33)

provided the limit exists. If λU = 0, then X and Y are said to asymptotically independent in the upper
tail. If λU ∈ (0, 1], then X and Y are asymptotically dependent in the upper tail. The coefficient of
lower tail dependence λL is similarly defined:

λL(X, Y ) = lim
α→0+

P(Y < F−1
Y (α)|X < F−1

X (α)).

Since

λU (X, Y ) = lim
α→1−

1 − P(X ≤ F−1
X (α)) − P(Y ≤ F−1

Y (α)) + P(X ≤ F−1
X (α), Y ≤ F−1

Y (α))

1 − P(X ≤ F−1
X (α))

,

λU , as well as λL, can be expressed in terms of copulas. Let (X, Y ) have continuous distribution F
with copula C. It is easily seen that the coefficient of upper tail dependence λU can be expressed as

λU (X, Y ) = lim
α→1−

C(α, α)

1 − α
, (34)

where C(α, α) = 1 − 2α + C(α, α) 38. Similarly,

λL(X, Y ) = lim
α→0+

C(α, α)

α
.

Example 5.12 Recall the simulation Example 5.10. In this example, both distributions
had the same marginal distributions with the same linear correlation. Yet the distributions
were clearly different in the upper tail. This difference came from the choice of copula and
may now be quantified by using the notion of upper tail dependence. In Figure 8 on the
left, F (x, y) = CGa

ρ (Φ(x), Φ(y)), Φ denotes the standard N(0, 1) cdf and CGa
ρ is given by

(28) that is, the distribution is a bivariate standard normal with linear correlation ρ = 0.7.
The coefficient of upper tail dependence can be calculated explicitly39,

λU (X, Y ) = 2 lim
x→∞

Φ̄

(
x
√

1 − ρ√
1 + ρ

)
= 0,

which is a general characteristic of Gaussian copulas. This means that if we go far enough
out into the tail then extreme events occur independently in X and Y . In the figure
of the right, F (x, y) = CGu

β (Φ(x), Φ(y)), with CGu
β given by (30), where the dependence

parameter β was chosen to give (approximately) the same linear correlation40. In the case

38If (U1, U2)
T ∼ C then

C(u1, u2) = P(U1 > u1, U2 > u2) = 1 − u1 − u2 + C(u1, u2).

39Φ̄(x) = 1 − Φ(x), and, below t̄ν(x) = 1 − tν(x).
40The dependence parameter β of the bivariate Gumbel copula is related to Kendall’s tau by ρτ = 1 − β.
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of the Gumbel copula a simple calculation shows that for all 0 < β < 1, the coefficient of
upper tail dependence is

λU (X, Y ) = 2 − 2β.

Hence, for the Gumbel copula, λU 6= 0 for 0 < β < 1.

Suppose the risk manager tries to account for heavy tails of a distribution by simply modelling
the joint distribution as a multivariate tν . He will not get λU = 0 as in the case of the multivariate
normal distribution.

Example 5.13 If (X, Y ) ∼ tν with any linear correlation ρ ∈ (−1, 1) then it can be shown
([EMS01]) that

λU (X, Y ) = 2t̄ν+1

(√
(ν + 1)(1 − ρ)

1 + ρ

)
.

Hence for all ρ ∈ (−1, 1) there is upper tail dependence of the bivariate tν . The stronger
the linear correlation and the lower the degrees of freedom, the stronger the upper tail
dependence.

5.3 Elliptical Distributions

There are distributions other than multivariate normal where linear correlation can be used effectively.
These are the spherical, or more generally, the elliptical distributions. Elliptical distributions extend
in a natural way the class of multivariate normal distributions. Linear correlation (when it exists) will
still be the canonical measure of dependence, yet elliptical distributions can display heavy tails.

We shall define first the spherical distributions. These extend the class of standard multivariate
normal distributions with zero correlations ([FKN90], [EMS01]).

Definition 5.6 The random vector X ∈ Rn is said to be spherically distributed if

ΓX
d
= X ∀ Γ ∈ O(n)

where O(n) is the group of n × n orthogonal matrices.

In other words, the distribution of X is invariant under rotation of the coordinates. Here are further
characterizations.

Theorem 5.7 The random vector X ∈ Rn has a spherical distribution iff its characteristic function
ΨX satisfies one of the following equivalent conditions:

1. ΨX(ΓT t) = ΨX(t) ∀ Γ ∈ O(n);

2. There exists a function φ(·) : R+ → R such that ΨX(t) = φ(tT t), that is, ΨX(t) = φ
(∑n

i=1 t2i
)
,

where t = (t1, . . . , tn). Alternatively, spherical distributions admit a stochastic representation, namely,
X ∈ Rn has a spherical distribution iff there exists a non-negative random variable R and random
vector U independent of R and uniformly distributed over the unit hypersphere Sn = {s ∈ Rn | ||s|| = 1}
such that

X
d
= RU . (35)
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Example 5.14 Let X ∼ N(0, In) then

ΨX(t) = e−
1

2
(tT t) = e−

1

2(
∑n

i=1
t2i ),

and so φ(u) = e−u/2. Additionally, R ∼
√

χ2
n in the stochastic representation (35).

The function φ is called the characteristic generator of the spherical distribution. We write

X ∼ Sn(φ)

to indicate that X ∈ Rn is spherically distributed with generator φ. Note that if X possesses a density,
then Theorem 5.7 requires that it is of the form

f(x) = g(xTx) = g(
n∑

i=1

x2
i )

for some non-negative function g. The curves of constant density are spheroids in Rn.

Example 5.15 If X ∈ Rn has a multivariate tν distribution with zero correlation, then

f(x) =
Γ(ν+n

2 )

Γ(ν
2 )(νπ)

n
2

(
1 +

xTx

ν

)− ν+n
2

.

X is therefore spherically distributed.

Table 2 gives a partial list of the spherical distributions used in finance.

Type pdf f(x) or ch.f. Ψ(t)

Normal f(x) = c exp (−xTx/2)

tν f(x) = c(1 + xTx/ν)−(ν+n)/2

Logistic f(x) = c exp (−xTx)/[1 + exp (−xTx)]2

Scale Mixture f(x) = c
∫ ∞
0 t−n/2 exp (−xTx/2t) dG(t) , G(t) a c.d.f.

Stable Laws Ψ(t) = exp {r(tT t)α/2} , 0 < α ≤ 2 and r > 0

Table 2: Partial list of spherical distributions used in finance.

Recall that if X ∼ N(0, In), then Y = µ + AX has a multivariate normal distribution with mean
µ and covariance matrix Σ = AAT . Elliptical distributions are defined from spherical distributions
in a similar manner. They are affine transformations of spherical distributions.

Definition 5.7 Let X ∈ Rn, µ ∈ Rn, and Σ ∈ Rn×n. Then X has an elliptical distribution with
parameters µ and Σ if

X
d
= µ + AY

where Y ∼ Sk(φ), and A ∈ Rn×k, Σ = AAT , with rank(Σ) = k.
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Since the characteristic function of X may be written

ΨX(t) = eitT µφ(tTΣt),

we use the notation
X ∼ En(µ,Σ, φ).

In this representation only µ is uniquely determined. Since both Σ and φ are determined up to
a positive constant Σ may be chosen to be the covariance matrix if variances are finite (which we
assume here). An elliptically distributed random variable X ∼ En(µ,Σ, φ) is thus described by its
mean, covariance matrix and its characteristic generator. If X possesses a density, then it is of the
form

f(x) = |Σ|−1/2g((x − µ)TΣ−1(x − µ)) (36)

so that contours of constant density are ellipsoids in Rn41.
The following theorem describes some properties of linear combinations, marginal distributions

and conditional distributions of elliptical distributions.

Theorem 5.8 ([FKN90]) Let X ∼ En(µ,Σ, φ).

1. If B ∈ Rm×n and ν ∈ Rm, then

ν + BX ∼ Em(ν + Bµ,BΣBT , φ).

Hence any linear combination of elliptically distributed variates is elliptical with the same char-
acteristic generator.

2. Partition X, µ,and Σ into

X =

(
X(1)

X(2)

)
, µ =

(
µ(1)

µ(2)

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where X(1) ∈ Rm, µ(1) ∈ Rm and Σ11 ∈ Rm×m, 0 < m < n. Then

X(1) ∼ Em(µ(1),Σ11, φ) , X(2) ∼ En−m(µ(2),Σ22, φ).

Hence all marginals of an elliptical distribution are also elliptical with the same generator.

3. Partition X, µ,and Σ as above and assume that Σ is strictly positive definite. Then

X(1)|X(2) = x
(2)
0 ∼ Em(µ1.2,Σ11.2, φ̃),

where
µ1.2 = µ(1) + Σ12Σ

−1
22 (x

(2)
0 − µ(2)) , Σ11.2 = Σ11 − Σ12Σ

−1
22 Σ21.

Hence the conditional distribution distribution of X(1) given X(2) is also elliptical, though with
different generator42.

41For example if rank(Σ) = n and Y has density of the form g(yT y).
42The form of the generator φ̃ can be related to φ through the stochastic representation of an elliptically distributed

random vector in (35). See [FKN90] for details.
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The importance of the class of elliptical distributions to risk management can be seen in the
following theorem. It indicates that the standard approaches to risk management apply to a linear
portfolio with elliptically distributed risk factors.

Theorem 5.9 ([EMS01]) Suppose X ∼ En(µ,Σ, φ) with finite variances for all univariate marginals.
Let

P = {Z =

n∑

i=1

wiXi |wi ∈ R}

be the set of all linear portfolios. Then:

1. (Subadditivity of VaR.) For any two portfolios Z1, Z2 ∈ P and 0.5 ≤ α < 1,

VaRα(Z1 + Z2) ≤ VaRα(Z1) + VaRα(Z2).

2. (Equivalence of variance and any other positive homogeneous risk measure.) Let ρ be any real
valued, positive homogeneous risk measure depending only on the distribution of a random vari-
able X. Then for Z1, Z2 ∈ P,

ρ(Z1 − EZ1) ≤ ρ(Z2 − EZ2) ⇐⇒ σ2
Z1

≤ σ2
Z2

.

3. (Markowitz risk minimizing portfolio.) Let ρ be as in 2., but also translation invariant, and let

E = {Z =

n∑

i=1

wiXi |wi ∈ R,

n∑

i=1

wi = 1, EZ = r}

be the subset of portfolios with the same expected return r. Then

arg min
Z∈E

ρ(Z) = arg min
Z∈E

σ2
Z .

The theorem43 states that:
43Because of the importance of Theorem 5.9 and because its proof is illuminating and straightforward we shall sketch

it. It is based on the observation that (Z1, Z2) is elliptical and so portfolios Z1, Z2 and Z1 + Z2 are all of the same type.
Let qα, 1/2 < α < 1, denote the α quantile of the corresponding standardized distribution. Then

VaRα(Z1) = EZ1 + σZ1
qα

VaRα(Z2) = EZ2 + σZ2
qα

VaRα(Z1 + Z2) = EZ1 + EZ2 + σZ1+Z2
qα

but σZ1+Z2
≤ σZ1

+σZ2
and qα > 0, proving (1.). Next, note that there exists a > 0 such that Z1 −EZ1

d
= a(Z2 −EZ2),

so that a ≤ 1 ⇐⇒ σ2
1 ≤ σ2

2 . Since the risk measure ρ is assumed positive homogeneous and depends only on the
distribution of Z,

ρ(Z1 − EZ1) = ρ(a(Z2 − EZ2)) = aρ(Z2 − EZ2)

and hence
ρ(Z1 − EZ1) ≤ ρ(Z2 − EZ2) ⇐⇒ a ≤ 1 ⇐⇒ σ2

Z1
≤ σ2

Z2
(37)

which proves (2.). Now consider only portfolios in E. Then (37) holds with EZ1 = EZ2 = r. However, using translation
invariance of ρ, ρ(Zj − r) = ρ(Zj) − r for j = 1, 2. This gives

ρ(Z1) ≤ ρ(Z2) ⇐⇒ σ2
Z1

≤ σ2
Z2

proving (3.).
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• For any linear portfolio of elliptical risk factors, VaR is a coherent measure of risk.

• If the risk factors are elliptical, the linear correlation is the canonical measure of dependence.

• For elliptical risk factors, the Markowitz mean variance optimal portfolio, for a given level of
expected return, will be the same regardless of whether the risk measure is given by the variance,
VaR, expected shortfall or any other positive homogeneous, translation invariant risk measure.
Hence, all the usual techniques of portfolio theory and risk management apply.

• It may be strange at first that the expected shortfall Sα(X), for example, which does not involve
subtraction of the mean (see (22)), can be used instead of the variance in Markowitz’ risk
minimization portfolio theory. This is because one considers a set of portfolios E, all of the same
mean. Since Sα(X − EX) = Sα(X) − EX and since EX is the same for all portfolios X in E,
the term EX can be ignored.

Note that elliptical distributions are not required to be thin-tailed. The multivariate normal is but
one elliptical distribution. The risk manager may well feel that the risk factors under consideration
are better modelled using a heavy-tailed elliptical distribution44. The usual techniques then apply, but
the risk of a linear portfolio will be greater than if the risk factors were assumed multivariate normal.

6 Univariate Extreme Value Theory

Managing extreme market risk is a goal of any financial institution or individual investor. In an effort
to guarantee solvency, financial regulators require most financial institutions to maintain a minimum
level of capital in reserve. The recommendation of the Basle Committee [oBS5b] of a minimum capital
reserve requirement based on VaR is an attempt to manage extreme market risks. Recall that VaR
is nothing more that a quantile of a probability distribution. The minimum capital reserve is then
a multiple of this high quantile, usually computed with α = 0.99. Therefore it is very important
to attempt to model correctly the tail of probability distribution of returns (profit and losses). The
primary difficulty is that we are trying to model events about which we know very little. By definition,
these events are rare. The model must allow for these rare but very damaging events. Extreme value
theory (EVT) approaches the modelling of these rare and damaging events in a statistically sound way.
Once the risks have been modelled they may be measured. We will use VaR and Expected Shortfall
to measure them.

Extreme value theory (EVT) has its roots in hydrology, where, for example, one needed to compute
how high a sea dyke had to be to guard against a 100 year storm. EVT has recently found its way
into the financial community. The reader interested in a solid background may now consult various
texts on EVT such as Embrechts, Klüppelberg, and Mikosch [EKM97], Reiss and Thomas [RT01] and
Beirlant, Teugels and Vynckier [BTV96]. For discussions of the use of EVT in risk management, see
Embrechts [Emb00] and Diebold, Schuermann and Stroughair [DSS00].

The modelling of extremes may be done in two different ways: modelling the maximum of a
collection of random variables, and modelling the largest values over some high threshold. We start,
for historical reasons, with the first method, called block maxima.

44In a recent paper, Lindskog [Lin00a] compares estimators for linear correlation showing that the standard covariance
estimator (17) performs poorly for heavy-tailed elliptical data. Several alternatives are proposed and compared.
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6.1 Limit Law for Maxima

The Fisher-Tippett theorem is one of two fundamental theorems in EVT. It does for the maxima of
i.i.d. random variables what the central limit theorem does for sums. It provides the limit law for
maxima.

Theorem 6.1 (Fisher-Tippett(1928)). Let (Xn) be a sequence of i.i.d.random variables with distri-
bution F . Let Mn = max (X1, . . . , Xn). If there exist norming constants cn > 0 and dn ∈ R and some
non-degenerate distribution function H such that

Mn − dn

cn

d→ H,

then H is one of the following three types:

Fréchet Φα(x) =

{
0 : x ≤ 0
exp {−x−α} : x > 0

α > 0,

Weibull Ψα(x) =

{
exp {−(−x)α} : x ≤ 0
1 : x > 0

α > 0,

Gumbel Λ(x) = exp {−e−x} x ∈ R.

The distributions Φα,Ψα, and Λ are called standard extreme value distributions. The expressions
given above are cumulative distribution functions. The Weibull is usually defined as having support
(0,∞) but, in the context of extreme value theory, it has support on (−∞, 0), as indicated in the
theorem. These distributions are related:

X ∼ Φα ⇐⇒ lnXα ∼ Λ ⇐⇒ −1/X ∼ Ψα.

A one-parameter representation of these distributions (due to Jenkinson and von Mises) will be
useful. The reparameterized version is called the generalized extreme value (GEV) distribution.

Hξ(x) =

{
exp {−(1 + ξx)−1/ξ} : ξ 6= 0
exp {−e−x} : ξ = 0

where 1+ξx > 0. The standard extreme value distributions Φα,Ψα, and Λ follow by taking ξ = α−1 >
0, ξ = −α−1 < 0, and ξ = 0 respectively45. There densities are sketched in Figure 10. The parameter
ξ is the shape parameter of H. Since for any random variable X ∼ FX and constants µ ∈ R and σ > 0,
the distribution function of X̃ = µ+σX is given by FX̃(x) = FX(x−µ

σ ), we can add location and scale
parameters to the above parameterization, and consider

Hξ,µ,σ(x) = Hξ

(
x − µ

σ

)
.

45Consider, for example, the Fréchet distribution where ξ = α−1 > 0. Since the support of Hξ is 1 + ξx > 0, one has

Hα−1(x) = exp
{
−(1 + α−1x)−α}

= Φα(1 + α−1x)

for 1 + α−1x > 0.
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Figure 10: Densities of the generalized extreme value distribution Hξ. (Left) Weibull with ξ = −0.5.
(Middle) Gumbel with ξ = 0. (Right) Fréchet with ξ = 0.5.

If the Fisher-Tippett theorem holds, then we say that F is in the maximum domain of attraction
of H and write F ∈ MDA(H). Most distributions in statistics are in MDA(Hξ) for some ξ. If
F ∈ MDA(Hξ) and ξ = 0 or F ∈ MDA(Hξ) and ξ < 0, then F is said to be thin-tailed or short-
tailed respectively. Thin-tailed distributions (ξ = 0) include the normal, exponential, gamma and
lognormal. Short-tailed distributions (ξ < 0) have a finite right-hand end point and include the
uniform and beta distributions. The heavy-tailed distributions, those in the domain of attraction of
the Fréchet distribution, F ∈ MDA(Hξ), for ξ > 0, are of particular interest in finance. They are
characterized in the following theorem due to Gnedenko.

Theorem 6.2 (Gnedenko(1943)) The distribution function F ∈ MDA(Hξ) for ξ > 0 if and only if
F̄ (x) = 1 − F (x) = x−1/ξL(x) for some slowly varying function L46.

Distributions such as the Student-t, α-stable and Pareto are in this class. Note that if X ∼ F with
F ∈ MDA(Hξ), ξ > 0 then all moments EXβ are infinite for β > 1/ξ. Note also that ξ < 1 corresponds
to α > 1, where α is as in Theorem 6.1.

6.2 Block Maxima Method

We now explain the block maxima method, where one assumes in practice that the maximum is dis-
tributed as Hξ,µ,σ. The implementation of this method requires a great deal of data. Let X1, X2, . . . , Xmn

be daily (negative) returns and divide them into m adjacent blocks of size n. Choose the block size

n large enough so that our limiting theorem results apply to M
(j)
n = max(X(j−1)n+1, . . . , X(j−1)n+n)

for j = 1, . . . , m. Our data set must then be long enough to allow for m blocks of length n. There
are three parameters, ξ, µ and σ, which need to be estimated, using for example maximum likelihood
based on the extreme value distribution. The value of m must be sufficiently large as well, to allow for

46The function L is said to be slowly varying (at infinity) if

lim
x→∞

L(tx)

L(x)
= 1 , ∀ t > 0.
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a reasonable confidence in the parameter estimation. This is the classic bias-variance trade-off since
for a finite data set, increasing the number of blocks m, which reduces the variance, decreases the

block size n, which increases the bias. Once the GEV model Hξ,µ,σ is fit using M
(1)
n , . . . , M

(m)
n , we

may estimate quantities of interest.
For example, assuming n = 261 trading days per year, we may want to find R261,k, the daily loss

we expect to be exceeded in one year every k years47. If this loss is exceeded in a given day, this day is
viewed as an exceedance day and the year to which the day belongs is regarded as an exceedance year.
While an exceedance year has at least one exceedance day, we are not concerned here with the total
number of exceedance days in that year. This would involve taking into consideration the propensity
of extremes to form clusters. Since we want M261 to be less than R261,k for k − 1 of k years, R261,k is
the 1 − 1/k quantile of M261:

R261,k = inf

{
r |P(M261 ≤ r) ≥ 1 − 1

k

}
. (38)

If we assume that M261 has approximately the Hξ,µ,σ distribution, the quantile R261,k is given by

R261,k = H−1
ξ,µ,σ

(
1 − 1

k

)
(39)

= µ +
σ

ξ

((
− ln

(
1 − 1

k

))−ξ

− 1

)
, ξ 6= 0, (40)

since the inverse function of y = exp{−(1 + ξx)}−1/ξ is x = (1/ξ)[(− ln y)−ξ − 1]. Confidence intervals
for R261,k may also be constructed using profile log-likelihood functions. The idea is as follows. The
GEV distribution Hξ,µ,σ depends on three parameters. Substitute R261,k for µ using (40) and denote
the reparameterized H as Hξ,R261,k,σ after some abuse of notation. Then obtain the log-likelihood
L(ξ, R261,k, σ |M1, . . . , Mm) for our m observations from Hξ,R261,k,σ. Take H0 : R261,k = r as the
null hypothesis in an asymptotic likelihood ratio test and let Θ0 = (ξ ∈ R, R261,k = r, σ ∈ R+) and
Θ = (ξ ∈ R, R261,k ∈ R, σ ∈ R+) be the constrained and unconstrained parameter spaces respectively.
Then under certain regularity conditions we have that

−2

[
sup
Θ0

L(θ |M1, . . . , Mm) − sup
Θ

L(θ |M1, . . . , Mm)

]
∼ χ2

1

as m → ∞ where θ = (ξ, R261,k, σ) and χ2
1 is a chi-squared distribution with one degree of freedom.

Let L(ξ̂, r, σ̂) = supΘ0
L(θ |M1, . . . , Mm) and L(ξ̂, R̂261,k, σ̂) = supΘ L(θ |M1, . . . , Mm) denote the

constrained and unconstrained maximum log-likelihood values respectively. The α confidence interval
for R261,k is the set

{r : L(ξ̂, r, σ̂) ≥ L(ξ̂, R̂261,k, σ̂) − 1

2
χ2

1(α)},

that is, the set r for which the null hypothesis cannot be rejected for level α. See McNeil [McN98a]
or Këllezi and Gilli [KG00] for details.

47Note the obvious hydrological analogy: How high to build a sea dyke to guard against a k year storm.
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Figure 11: The GEV distribution Hξ̂,µ̂,σ̂ fitted using the 31 annual maxima of daily (negative, as %)
NASDAQ returns.

Example 6.1 We have 7570 data points for the NASDAQ , which we subdivided into
m = 31 blocks of roughly n = 261 trading days. (The last block, which corresponds
to January 2001, has relatively few trading days, but was included because of the large
fluctuations.) Estimating the GEV distribution by maximum likelihood leads to ξ̂ = .319,
µ̂ = 2.80 and σ̂ = 1.38. The value of ξ̂ corresponds to α̂ = 1/ξ̂ = 3.14, which is in the
expected range for financial data. The GEV fit is not perfect (see Figure 11). Choosing
k = 20 yields an estimate of the twenty year return level R̂261,20 = 9.62%. Figure 12, which
displays the log-likelihood corresponding to the null-hypothesis that R̂261,20 = r, where r
is displayed on the abscissa, also provides the corresponding confidence interval.

6.3 Using the Block Maxima Method for Stress Testing

For the purpose of stress testing (worst case scenario), it is the high quantiles of the daily return
distribution F that we are interested in, not those of Mn. If the Xi ∼ F have a continuous distribution,
we have

P(Mn ≤ Rn,k) = 1 − 1/k.

If they are also i.i.d.,
P(Mn ≤ Rn,k) = (P(X ≤ Rn,k))

n ,

where X ∼ F , and hence
P(X ≤ Rn,k) = (1 − 1/k)1/n. (41)

This means that Rn,k is the (1 − 1/k)1/n quantile of the marginal distribution F . Suppose we would
like to calculate VaR at very high quantiles for the purposes of stress testing. The block size n has
been fixed for the calibration of the model. This leaves the parameter k for the Rn,k return level free.
High α quantiles, xα = F−1(α), of F may then be computed from (41) by choosing α = (1− 1/k)1/n,
that is k = 1/(1 − αn). Hence

VaRα(X) = Rn,k where k =
1

1 − αn
. (42)
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Figure 12: The profile log-likelihood curve for the 20 year return level R261,20 for NASDAQ . The
abscissa displays return levels (as %) and the ordinate displays log-likelihoods. The point estimate
R̂261,20 = 9.62% corresponds to the location of the maximum and the asymmetric 95% confidence
interval, computed using the profile log-likelihood curve, is (6.79%, 21.1%).

For the NASDAQ data, our choice of k = 20, corresponds to α = .9998, and V̂aRα=.9998(X) =
R̂261,20 = 9.62%. In practice α is given, and one chooses k = 1/(1 − αn), then computes Rn,k using
(40) and thus one obtains VaRα(X) = Rn,k.

We assumed independence but, in finance, this assumption is not realistic. At best, the marginal
distribution F can be viewed as stationary. For the extension of the Fisher-Tippett theorem to
stationary time series see Leadbetter, Lindgren and Rootzén [LLR83], [EKM97] and McNeil [McN98a].
See McNeil [McN98b] for a non-technical example pertaining to the block maxima method and the
market crash of 1987.

6.4 Peaks Over Threshold Method

The more modern approach to modelling extreme events is to attempt to focus not only the largest
(maximum) events, but on all events greater than some large preset threshold. This is referred to as
peaks over threshold (POT) modelling. We will discuss two approaches to POT modelling currently
found in the literature. The first is a semi-parametric approach based on a Hill type estimator of the
tail index ([BTV96], Danielsson and de Vries [DdV97] and [DdV00], and Mills [Mil99]). The second
approach is a fully parametric approach based on the generalized Pareto distribution ([EKM97], McNeil
[MS97], and Embrechts, Resnick and Samorodnitsky [ERS99]).

6.4.1 Semiparametric Approach

Recall that FX is in the maximum domain of attraction of the Fréchet distribution if and only if
F̄X(x) = x−αL(x) for some slowly varying function L. Suppose FX is the distribution function of
a loss distribution over some time horizon, where we would like to calculate a quantile based risk
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measure such as VaR. Assume for simplicity that the distribution of large losses is of Pareto type

P(X > x) = cx−α , α > 0 , x > x0. (43)

The semi-parametric approach uses a Hill type estimator for α and order statistics of historical data
to invert and solve for VaR.

We first focus on VaR. Let X(1) ≥ X(2) ≥ · · · ≥ X(n) be the order statistics of an historical sample
of losses of size n, assumed i.i.d. with distribution FX . If X is of Pareto type in the tail and X(k+1)

is a high order statistic then for x > X(k+1),

F̄X(x)

F̄X(X(k+1))
=

( x

X(k+1)

)−α
.

The empirical distribution function estimator ˆ̄FX(X(k+1)) = k/n suggests the following estimator of
FX in the upper tail,

F̂X(x) = 1 − k

n

( x

X(k+1)

)−α̂
forx > X(k+1).

By inverting this relation, one can express x in terms of F̂X(x), so that fixing q = F̂X(x) one gets48

x = V̂aRq(X). The value of q should be large, namely, q = F̂X(x) > F̂ (X(k+1)) = 1−k/n. This yields

V̂aRq(X) = X(k+1)
(n

k
(1 − q)

)−1/α̂
. (44)

We obtained an estimator for VaR but it depends on k through X(k+1), on the sample size n and
α̂. To estimate α, Hill [Hil75] proposed the following estimator α̂(Hill) which is also dependent on the
order statistics and sample size:

α̂(Hill) = α̂
(Hill)
k,n =

(
1

k

k∑

i=1

lnX(i) − lnX(k+1)

)−1

. (45)

The consistency and asymptotic normality properties of this α̂(Hill) estimator are known in the i.i.d.
case and for certain stationary processes. There are however, many issues surrounding Hill-type
estimators, see for example [BTV96], [EKM97] and Drees, de Haan and Resnick [DdHR00].

To obtain VaRq(X), one also needs to choose the threshold level X(k+1) or, equivalently, k. Daniels-
son, de Haan, Peng and de Vries [DHPV01] provide an optimal choice for k by means of a two stage
bootstrap method. Even in this case, however, optimal means merely minimizing the asymptotic
mean squared error, which leaves the user uncertain as to how to proceed in the finite sample case.
Traditionally the choice of k is done visually by constructing a Hill plot.

The Hill plot {(k, α̂
(Hill)
k,n ) : k = 1, . . . , n − 1} is a visual check for the optimal choice of k. The

choice of k and therefore of α̂
(Hill)
k,n , is inferred from a stable region of the plot since in the Pareto case,

where (43) holds, α̂
(Hill)
n−1,n is the maximum likelihood estimator for α. In the more general case

1 − F (x) ∼ x−αL(x) , x → ∞ , α > 0, (46)

48We write here VaRq and not VaRα since now α represents the heavy-tail exponent.
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Figure 13: Hill plots for the NASDAQ data set. (Left) The Hill plot {(k, α̂
(Hill)
k,n ) : k = 1, . . . , n − 1}.

(Right) The AltHill plot{(θ, α̂(Hill)

⌈nθ⌉,n) : 0 ≤ θ < 1}. The Hill plot is difficult to read, whereas the

AltHill plot gives the user an estimate of α̂AltHill ≈ 3.

where L is a slowly varying function, the traditional Hill plot is often difficult to interpret. Resnick and

Stărică [RS97] suggest an alternative plot, called an AltHill plot by plotting {(θ, α̂(Hill)

⌈nθ⌉,n) : 0 ≤ θ < 1}
where ⌈nθ⌉ denotes the smallest integer greater than or equal to nθ. This plot has the advantage of
stretching the left hand side of the plot, which corresponds to smaller values of k, often making the
choice of k easier. See Figure 13 for examples of the Hill and AltHill plots for the ordered negative
returns X(j) for the NASDAQ .

6.4.2 Fully Parametric Approach

The fully parametric approach uses the generalized Pareto distribution (GPD) and the second funda-
mental theorem in EVT by Pickands, Balkema and de Haan. The GPD is a two-parameter distribution

Gξ,β(x) =





1 −
(
1 + ξx

β

)−1/ξ
: ξ 6= 0

1 − exp
(
−x

β

)
: ξ = 0,

where an additional parameter β > 0 has been introduced. The support of Gξ,β(x) is x ≥ 0 for ξ ≥ 0
and 0 ≤ x ≤ −β/ξ for ξ < 0. The distribution is heavy-tailed when ξ > 0. GPD distributions with
β = 1 are displayed in Figure 14.

Definition 6.1 Let X ∼ F with right-end-point xF = sup{x ∈ R |F (x) < 1} ≤ ∞. For any high
threshold u < xF define the excess distribution function

Fu(x) = P(X − u ≤ x |X > u) for 0 ≤ x < xF − u. (47)
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Figure 14: GPD distribution functions Gξ,β, all with β = 1. (Left) ξ = −0.5, (Middle) ξ = 0, (Right)
ξ = 0.5, which corresponds to a location adjusted Pareto distribution with α = 2.

The mean excess function of X is then

eX(u) = E(X − u |X > u). (48)

If X has exceeded the high level u, Fu(x) measures the probability that it did not exceed it by more
than x. Note that for 0 ≤ x < xF − u, we may express Fu(x) in terms of F ,

Fu(x) =
F (u + x) − F (u)

1 − F (u)
,

and the mean excess function eX(u) may be expressed as a function of the excess distribution Fu as

eX(u) =

∫ xF−u

0
x dFu(x).

The following theorem relates Fu to a GPD through the maximum domain of attraction of a GEV
distribution. In fact, it completely characterizes the maximum domain of attraction of Hξ.

Theorem 6.3 (Pickands (1975), Balkema and de Haan (1974)). Let X ∼ F . Then for every ξ ∈ R,
X ∈ MDA(Hξ) if and only if

lim
u↑xF

sup
0<x<xF−u

|Fu(x) − Gξ,β(u)(x)| = 0

for some positive function β.

This theorem says that the excess distribution Fu may be replaced by the GPD distribution G
when u is very large. To see how it can be used, note that by (47) above, we may write

F̄ (x) = F̄ (u)F̄u(x − u) (49)

for x > u. Assuming that u is sufficiently large, we may then approximate Fu by Gξ,β(u) and use the
empirical estimator, for F̄ (u),

ˆ̄F (u) =
Nu

n
where Nu =

n∑

i=1

1{Xi>u}
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Figure 15: Sample mean excess plot (u, êX(u)) for NASDAQ .

and where n is the total number of observations. The upper tail of F (x) may then be estimated by

F̂ (x) = 1 − ˆ̄F = 1 − Nu

n

(
1 + ξ̂

x − u

β̂

)−1/ξ̂

for all x > u. (50)

This way of doing things allows us to extrapolate beyond the available data which would not be
possible had we chosen an empirical estimator for F (x), x > u. We can therefore deal with potentially
catastrophic events which have not yet occurred.

The parameters ξ and β of the GPD Gξ,β(u) may be estimated by using, for example, maximum
likelihood once the threshold u has been chosen. The data points that are used in the maximum
likelihood estimation are Xi1 − u, . . . , Xik − u where Xi1 , . . . , Xik are the observations that exceed u.
Again there is a bias-variance trade-off in the choice of u. To choose a value for u, a graphical tool
known as the mean excess plot (u, eX(u)) is often used.

The mean excess plot relies on the following theorem for generalized Pareto distributions.

Theorem 6.4 ([EKM97]) Suppose X has GPD distribution with ξ < 1 and β. Then, for u < xF ,

eX(u) =
β + ξu

1 − ξ
, β + ξu > 0.

The restriction ξ < 1 implies that the heavy-tailed distribution must have at least a finite mean.
If the threshold u is large enough so that Fu is approximately Gξ,β then, by Theorem 6.4, the

plot (u, e(u)) is linear in u. How then is one to pick u? The mean excess plot is a graphical tool for
examining the relationship between the possible threshold u and the mean excess function eX(u) and
checking the values of u where there is linearity. In practice it is not eX(u), but its sample version

êX(u) =

∑n
i=1(Xi − u)+∑n
i=1 1{Xi>u}

which is plotted against u. After using the mean excess plot to pick the upper threshold u one obtains
an estimator of the tail of the distribution by applying (50). For the NASDAQ data, since linearity
seems to start at relatively small values of u (Figure 15), we choose u = 1.59 which corresponds to the
95% of the empirical NASDAQ return distribution.
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Figure 16: Time series of NASDAQ daily prices, (log) returns and annual maxima and minima daily
returns given as a percent for the period February 1971 (when it was created) to February 2001. If
Pt is the price (level) at time t, the returns are defined as 100 ln(Pt/Pt−1) and expressed as %. The
crash of 1987 is clearly visible. The NASDAQ price level peaked in March of 2000.

To obtain VaRα(X) for VaRα(X) > u, one simply inverts the tail estimator (50), which yields

V̂aRα(X) = u +
β̂

ξ̂

((
n

Nu
(1 − α)

)−ξ̂

− 1

)
. (51)

Since expected shortfall is a risk measure with better technical properties than VaR we would like to
find an estimator for it which uses our GPD model of the tail. Recalling the definitions of the expected
shortfall (22) and the mean excess function (48) we have that

Sα(X) = VaRα(X) + eX(VaRα(X)).

Since the excess distribution Fu is approximated by a GPD Gξ,β(u) with ξ < 1 then, applying Theo-
rem 6.4, we get for VaRα(X) > u,

Sα(X) = VaRα(X) +
β + ξ (VaRα(X) − u)

1 − ξ
=

β + VaRα(X) − ξu

1 − ξ
.
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Figure 17: For the NASDAQ return data (as %), there were 379 exceedances above the high threshold
u = 1.59%. These are fitted with a GPD distribution Gξ̂,β̂ with ξ̂ = .189 and β̂ = .915. (Left) The

fitted GPD distribution (dark curve) and the empirical one (dotted curve). (Right) QQ-Plot of sample
quantiles versus the quantiles of the fitted Gξ̂,β̂ distribution.

This suggests the following estimator for expected shortfall,

Ŝα(X) =
x̂α

1 − ξ̂
+

β̂ − ξ̂u

1 − ξ̂
(52)

where x̂α = V̂aRα(X) may be obtained by using (51). As in the case of block maxima, confidence

intervals for V̂aRα and Ŝα may be constructed using profile log-likelihood functions.

6.4.3 Numerical Illustration

To illustrate the usefulness of EVT in risk management, we consider the following example. Let
X1, . . . , Xn represent the daily negative returns of the NASDAQ index over most of its history from
February 1971 to February 2001, which gives a time series of n = 7570 data points.

The price and return series are displayed in Figure 16. Let X(1) ≥ . . . ≥ X(n) be the correspond-
ing order statistics. Suppose the risk manager wants to obtain value at risk and expected shortfall
estimates of the returns on the index at some high quantile. Assume that {Xi}n

i=1 are i.i.d. so that
Theorem 6.1 holds. Then, using Theorem 6.3, we model the tail of the excess distribution Fu by a
GPD Gξ,β and use (49) to model the distribution F (x) of the observations for all x > u. We use
Theorem 6.4 and the sample mean excess plot, Figure 15, to pick the high threshold u = 1.59%. This
leaves us with k = 379 observations from which we estimate the parameters of the GPD by maximum
likelihood. The estimates give ξ = .189 and β = .915. The model fit is checked by using a QQ plot
displayed in Figure 17. Accepting the model, we go on to calculate the value at risk and expected
shortfall for various high quantiles α by using (51) and (52). The results for the NASDAQ are plotted
in Figure 18 (solid lines). If one had assumed that the observations were normally distributed (dashed
lines), both the VaR and the expected shortfall would have been significantly underestimated for high
quantiles.
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Figure 18: Risk estimates for NASDAQ in percent returns versus α. (Left) Value at risk VaRα,
for GPD (solid) and normal (dashed). (Right) Expected shortfall Sα, for GDP (solid) and normal
(dashed). The parameters of the GPD are fitted by maximum likelihood using 30 years of data. The
sample mean and volatility of the normal distribution are computed by (16) using the most recent
year of daily observations.

For example, at the α = .99 confidence level, V̂aRα(X) = 6.59% under the normal model versus

V̂aRα(X) = 8.19% for the GPD model. For the expected shortfall, the difference is even more
dramatic. For the normal model, Ŝα(X) = 7.09% versus Ŝα(X) = 10.8% for the GPD model. This is
to be expected, since under the assumption of normality it may be shown ([EKM97]) that

Sα

VaRα
−→ 1 as α → 1−,

whereas for the GPD model
Sα

VaRα
−→ 1

1 − ξ
as α → 1−.

These results indicate that for very high quantiles, the expected shortfall Sα and the value at risk
VaRα are comparable under normality, but for the GPD with ξ < 1, Sα tends to be larger than VaRα.

6.4.4 A GARCH-EVT model for Risk

In order to invoke Theorems 6.1 and 6.3 in the numerical illustration above it was necessary to assume
that the (negative) returns {Xt}t∈Z were i.i.d. However, from inspection of Figures 16 and 19, it is
apparent that this assumption is unrealistic. The time series of returns is characterized by periods of
varying volatility, that is, the time series is heteroscedastic. The heteroscadicity of the time series may
cause problems for the estimation of the parameters of the GPD model since we would expect the
high threshold u to be violated more often during periods of high volatility. Smith [Smi00] suggests
using Bayesian techniques to model time-varying GPD parameters. In this section, we review a model
proposed by McNeil and Frey [MF00] which extends the EVT methodology to models of financial time
series that allow for stochastic volatility and apply this model to the NASDAQ data set.
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Figure 19: Sample auto correlation functions with lags on the abscissa and sample autocorrelation on
the ordinate: Returns (top left), squared Returns (bottom left), GARCH Innovations (top right),
squared GARCH Innovations (bottom right). The sample consists of 1000 daily returns for the
NASDAQ ending Feb. 2001. Horizontal lines indicate the 95% confidence bands (±1.96/

√
n) cor-

responding to Gaussian white noise.

Recall from Section 3.2.2 that the standard GARCH(1,1) model is given by49

Xt = σtZt where Zt ∼ FZ i.i.d., (53)

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1. (54)

Since the time t + 1 volatility σt+1 is known at time t we have that

V aRα(Xt+1 |Ft) := inf {x ∈ R |FXt+1 |Ft
(x) ≥ α}

= σt+1zα, (55)

where zα = F−1
Z (α). The same argument shows that the conditional expected shortfall

Sα(Xt+1 |Ft) := E (Xt+1 |Xt+1 > V aRα(Xt+1 |Ft) , Ft) = σt+1E(Z |Z > zα).

49Since the NASDAQ series appears to have a zero conditional mean we do not set Xt = µt + σtZt and model the
mean µt, for example as an AR(1) process µt = φXt−1.
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Traditionally the innovation distribution FZ is assumed normal. Figures 6 and 20 show that this
assumption may still underestimate the tails of the loss portion of the distribution. McNeil and Frey
propose a two step procedure to estimate VaR and expected shortfall of the conditional distribution.
First they use a GARCH(1,1) model for the volatility of the (negative) return series {Xt}. This gives
a series of model implied innovations Zt = Xt/σt. Second, EVT is used to model the tails of the
distribution of these innovations. This approach has the obvious benefit that the resulting innovations
Zt are much closer to satisfying the requirements of Theorems 6.1 and 6.3 than is the original series.
We illustrate the methodology with an example using the NASDAQ data.

1. Let (xt−n+1, . . . , xt−1, xt) be n daily negative returns of the NASDAQ . We take50 n = 1000 and
use pseudo-maximum-likelihood (PML) to estimate the model parameters θ̂ = (α̂0, α̂1, β̂1) in
(54) under the assumption51 that FZ is normal in (53). The parameter vector θ̂ depends on the
true distribution of (Xt−n+1, . . . , Xt−1, Xt), which is assumed stationary, and on the distribution
FZ used to compute the likelihood function52. When we assume FZ is normal we fit a model
whose distributional assumptions we do not believe. Under standard regularity conditions this
is justified since θ̂ is a consistent estimator of θ (in fact, asymptotically normal) even if FZ is
non normal. See Gouriéroux [Gou97] and references therein for details.

2. The model innovations (zt−n+1, . . . , zt−1, zt) = (xt−n+1/σ̂t−n+1, . . . , xt−1/σ̂t−1, xt/σ̂t) are now
calculated. If the model is tenable, these innovations should be i.i.d. Figure 19 shows that while
the i.i.d. assumption is not realistic for the series of returns, it is defensible for the series of
innovations53. While the returns appear uncorrelated, their squares clearly are not, and hence
the returns are dependent. The GARCH innovations and their squares appear uncorrelated.
The i.i.d. assumption is therefore more tenable.

3. Examination of the QQ plot of the innovations in Figure 20 reveals that the loss tail is heavier
than that of the normal. Therefore the EVT tools of Section 6.4.2 are now applied to the
innovations (zt−n+1, . . . , zt−1, zt). Let z(1) ≤ · · · ≤ z(n) be the order statistics of the innovation
sample. We choose the threshold u = 1.79, again corresponding to the 95% of the empirical
distribution of innovations, which leaves k = 50 observations (z(n−k+1), . . . , z(n)), from which
to estimate the GPD parameters by maximum likelihood. The estimates give ξ = .323 and
β = .364.

Observe that ξ = .323 corresponds to a heavier tail than ξ = .189 which we found in Section 6.4.3.
We are fitting here, however, over a particularly volatile period of 1000 days of the NASDAQ ending
Feb. 2001, whereas in Section 6.4.3, we considered nearly 30 years worth of returns where for the
majority of the time the NASDAQ was significantly less volatile (see Figure 16).

Since the model is assumed stationary, we could, in principle, use the estimated GARCH parameters
to compute σ̂t+1 |Ft using (54) for t beyond Feb. 2001. Using zα corresponding to the GPD distribution

Gξ,β, we would obtain, by using (55), V̂ aRα(Xt+1 |Ft) for t beyond Feb. 2001. In practice, however,

50We keep the sample size moderate in order to avoid the IGARCH effect, that is α1 + β1 = 1, corresponding to
non-stationarity. See [MS00] for details.

51The term pseudo refers to the fact that one is not maximizing the true likelihood.
52The condition α1 + β1 < 1 is sufficient for stationarity of the GARCH model. We found α̂0 = .080, α̂1 = .181 and

β̂1 = .811. However, as indicated in the sequel, the GARCH model is constantly updated, and hence is never used on an
infinite horizon.

53Ljung-Box tests also found no evidence against the i.i.d. assumption for the innovations.
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Figure 20: QQ plots versus the normal for returns (left) and innovations (right) in Figure 19. Notice
that the lower (loss) tail of the innovations are still heavier than the normal distribution.

stationarity is not always assured and in any case one wants to use the most recent data available in
order to calibrate the model.

In order to backtest the methodology we use the most recent 500 days in our NASDAQ data
set. For each day, t + 1, in this data set we use the previous n = 1000 days (negative) returns
(Xt−n+1, . . . , Xt−1, Xt) to calibrate the model and estimate V aRα(Xt+1 |Ft) for α = .95 and α = .99

using the steps above. We compare V̂ aRα(Xt+1 |Ft) with the actual loss xt+1. A violation, at the α

level, is said to occur whenever xt+1 > V̂ aRα(Xt+1 |Ft). Results for the period ending Feb. 2001 are
given in Figure 21.

7 Stable Paretian Models

The works of Mandelbrot [Man63] and Fama [Fam65] introduced the use of stable distributions to
finance. The excessively peaked and heavy-tailed nature of the return distribution led the authors
to reject the standard hypothesis of normally distributed returns in favor of the stable distribution.
Since this time, the stable distribution has been used to model both the unconditional, and condi-
tional return distributions. In addition, portfolio theories and market equilibrium models have been
constructed using it. For an in depth introduction to the general properties of stable distributions
see Samorodnitsky and Taqqu [ST94] and the upcoming text Nolan [Nol01]. A major reference for
applications in finance is Rachev and Mittnik [RM00].

In Definition 3.2, the stable distribution Sα(σ, β, µ) is defined as the limiting distribution of the
sum of i.i.d. random variables. Like the normal distribution, stable distributions are closed under
addition, and are often defined by this property. Recall that if X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2)

are independent then X1 + X2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2). Similarly, for stable random variables, if
X1 ∼ Sα(σ1, β1, µ1) and X2 ∼ Sα(σ2, β2, µ2) are independent, then X1 + X2 ∼ Sα(σ, β, µ) where

σ = (σα
1 + σα

2 )1/α , β =
β1σ

α
1 + β2σ

α
2

σα
1 + σα

2

, µ = µ1 + µ2.
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Figure 21: Backtest results for the GARCH-EVT methodology of McNeil and Frey. Under the as-
sumption that the model correctly estimates the conditional quantiles we expect violations 5% and
1% of the time for α = .95 and α = .99 respectively. VaR for α = .95 and α = .99 are given by the
solid and dotted lines respectively. We obtain 5.8% violations of the α = .95 level and 1% violations
of the α = .99 level.

It is in this sense that the stable distribution is a natural heavy-tailed alternative to the normal
distribution. However, a common criticism of the stable distribution is that their tails are too heavy.
One has P(X > x) ∼ cαx−α as x → ∞. For 0 < α < 2, this implies that E|X|p < ∞ if 0 < p < α. In
particular, EX2 = ∞, that is, all non-Gaussian stable distributions have infinite variance.

The stable distributions can be defined and parameterized in different ways. One way to specify
a stable distribution is through its characteristic function. This is helpful since in general there exists
no closed form for the probability density function54, which historically, has been an impediment to
their widespread use. Today, however, there are efficient computer programs to evaluate their densities
using fast Fourier transform methods ([RM00] and [Nol01]).

Definition 7.1 A random variable X is said to have a stable distribution if there are parameters
α ∈ (0, 2], σ ∈ [0,∞), β ∈ [−1, 1] and µ ∈ R such that its characteristic function has the following
form:

ΨX(t) =

{
exp

{
−σα|t|α(1 − iβ(sign t) tan πα

2 + iµt)
}

for α 6= 1,
exp

{
−σ|t|(1 + iβ 2

π (sign t) ln |t|) + iµt
}

for α = 1.
(56)

If both the skewness and location parameters β and µ are zero, X is said to be symmetric stable,
which is denoted X ∼ SαS, and its characteristic function takes the simple form

ΨX(t) = e−σα|t|α .

If X ∼ SαS, then it is characterized completely by its index of stability α and its scale parameter σ.

If α = 2, the Gaussian case, then the scale parameter is σ =
√

1
2Var(X).

54The exceptions to this rule are the distributions S2(σ, 0, µ), S1(σ, 0, µ),and S1/2(σ, 1, µ) which correspond to the
Gaussian, Cauchy and Lévy distributions respectively.
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7.1 Stable Portfolio Theory

In Section 2.2 we introduced the mean-variance portfolio theory of Markowitz. The model assumed
that the distribution of asset returns is multivariate normal, and provides efficient portfolios, that
is, portfolios with maximum expected return for a given level of risk, where risk is measured by the
variance of the portfolio. It is possible to extend the ideas of portfolio theory to the case where asset
returns have a multivariate stable distribution, even though, variances are now infinite. We need first
to define a stable random vector and specify its characteristic function.

Definition 7.2 The random vector X = (X1, . . . , Xn) is said to be a stable random vector in Rn if
for any a, b > 0 there exists c > 0 and d ∈ Rn such that

aX1 + bX2
d
= cX + d (57)

where Xj, j = 1, 2 are independent copies of X.

The constants in (57) are related by cα = aα + bα, where α ∈ (0, 2] is the index of stability. Setting
n = 1 in (57) yields one of the alternate definitions of a stable random variable alluded to earlier. In
the case of a stable random vector, the scale and skewness parameters σ and β are replaced by a finite
measure ΓX on the unit hypersphere in Rn. For convenience here, let (·, ·) denote the inner product
so that (t, s) =

∑n
i=1 tisi

55.

Theorem 7.1 Let 0 < α < 2. Then X = (X1, . . . , Xn) is a stable random vector with index of stability
α if and only if there exists a finite measure ΓX on the unit hypersphere Sn = {s ∈ Rn | ‖s‖ = 1} and
a vector µ ∈ Rn such that

Ψα(t) =





exp
{
−

∫
Sn

|(t, s)|α
(
1 − isign((t, s)) tan πα

2

)
ΓX(ds) + i(t, µ)

}
for α 6= 1,

exp
{
−

∫
Sn

|(t, s)|
(
1 + i 2

π sign((t, s)) ln |(t, s)|
)
ΓX(ds) + i(t, µ)

}
for α = 1.

(58)

The pair (ΓX, µ) is unique.

The measure ΓX is called the spectral measure of the stable random vector X and specifies the
dependence structure. If X is SαS in Rn, then the characteristic function takes the simple form

Ψα(t) = exp

{
−

∫

Sn

|(t, s)|αΓX(ds)

}
,

where Γ is the unique symmetric spectral measure. The expression in (58) for the characteristic func-

tion is also valid for the normal case α = 2. When α = 2, it reduces to Ψ2(t) = exp
{
−

∫
Sn

|(t, s)|2ΓX(ds)
}

but in this case ΓX is no longer unique. To get a feeling for ΓX, suppose X = (X1, X2) and that the
distribution is Gaussian. Then

∫

S2

|(t, s)|2Γ(X1,X2)(ds) =

∫

S2

|(t1s1 + t2s2)|2Γ(X1,X2)(ds)

= t21σ
2
1 + 2t1t2σ1,2 + t21σ

2
1

55Previously we wrote tT s instead of (t, s).
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where

σ2
i =

∫

S2

s2
i Γ(X1,X2)(ds), i = 1, 2 and σ1,2 =

∫

S2

s1s2Γ(X1,X2)(ds),

and where integration over the circle S2 means integration on {s = (s1, s2) | s2
1+s2

2 = 1}. One recognizes
the normal characteristic function with VarX1 = 2σ2

1, VarX2 = 2σ2
2 and Cov(X1, X2) = 2σ1,2. Since

different choices of Γ(X1,X2) can yield the same values for σ2
1, σ2

2 and σ1,2, the choice of ΓX is not
unique in the Gaussian case.

As in the case of a normal random vector, if X is multivariate stable with index of stability
0 < α < 2, then all linear combinations of the components of X are stable with the same α. So,
if X is a stable random vector in Rn, and w ∈ Rn, we know that Y = (w, X) =

∑n
i=1 wiXi is

Sα(σY , βY , µY ). Using the characteristic function (58), it can be shown (see [ST94], Example 2.3.4),
that

σY =

(∫

Sn

|(w, s)|αΓX(ds)

)1/α

, (59)

βY =

∫
Sn

|(w, s)|αsign(w, s)ΓX(ds)∫
Sn

|(w, s)|αΓX(ds)
, (60)

µY =

{
(w, µ) for α 6= 1,
(w, µ) − 2

π

∫
Sn

(w, s) ln |(w, s)|ΓX(ds) for α = 1.
(61)

In the mean-variance portfolio theory, the risk to be minimized for any level of expected return is
given by the portfolios’ variance. If the asset returns are assumed multivariate stable with index of
stability 0 < α < 2 then the variance is infinite and cannot be used. In the stable portfolio theory,
it is assumed that 1 < α < 2, EX = µ and that X − µ ∼ SαS. Let w be the vector of weights for
the risky portfolio Xp = (w,X). Given the relationship between the scale parameter and the variance
in the Gaussian case (that is, stable with α = 2), it is natural to use the scale parameter σXp of the
resulting stable distribution instead of the standard deviation. It is given by (59). This brings us to
the corresponding stable portfolio problem:

min
w

σXp =

(∫

Sn

|(w, s)|αΓX(ds)

)1/α

,

such that (w, µ) ≥ a, (62)

(w, e) = 1.

The risk measure σXp = σ(w,X) is a convex function of w and the problem is generally solved using
sequential quadratic programming. See Belkacem [Bel97] and [RM00] and references therein for details
of the procedure and on the estimation of the index of stability, spectral measure and scale parameters.
If a risk free asset is included in the asset universe, then we end up with a maximization problem similar
to (2) in Section 2.2, but where the risk measure is the scale parameter σXp of the risky portfolio.

7.2 Stable Asset Pricing

Since there exists a portfolio theory under the assumption of a multivariate stable distribution of asset
returns (1 < α < 2), it is natural to ask whether there exists an analogous CAPM. The answer is
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positive, and it was first introduced by Fama [Fam70]. For recent descriptions of the stable CAPM
see Belkacem, Lévy Véhel and Walter [BVW96] and, of course, Rachev and Mittnik [RM00].

The assumptions behind the stable CAPM are the same as in the Gaussian case in Section 2.3 with
the assumption of joint normality of asset returns replaced by that of jointly stable asset returns with
index of stability α ∈ (1, 2). That is, we assume EX = µ and that X − µ ∼ SαS. Recall from the
traditional CAPM and Equations (3) and (4), that the expected premium of holding the risky asset
i over the riskless asset is proportional to the expected premium of holding the market portfolio over
the riskless asset. The constant of proportionality was the risky assets beta given by (4). In the stable
CAPM, we require an alternative measure of dependence since covariances do not exist. Naturally,
the scale parameter σ replaces the standard deviation.

The covariation is a natural alternative to the covariance in the stable case when 1 < α < 2. This
measure possesses many, but not all, of the useful properties of covariance in the Gaussian case. We
define and present several of the properties of covariation. Details may be found in [ST94] and [RM00].

Definition 7.3 Let X1 and X2 be jointly SαS with 1 < α ≤ 2 and let Γ(X1,X2) be the spectral measure
of the random vector (X1, X2). The covariation of X1 on X2 is given by

[X1, X2]α =

∫

S2

s1s
<α−1>
2 Γ(X1,X2)(ds) (63)

where s<p> denotes the signed power s<p> = |s|p(sign s).

In the Gaussian case α = 2 it reduces to

[X1, X2]2 =
1

2
Cov(X1, X2). (64)

Note, however, that whereas in the Gaussian case the dependence structure is fully characterized by
the covariance, in the stable one needs to use ΓX, and the covariation does not fully characterize the
dependence structure. We now derive the stable CAPM under the preceding assumptions, following
[BVW96].

Consider a portfolio of a riskless asset with rate of return r and a risky asset Xi with weights w
and 1 − w respectively. The expected rate of return of the portfolio Xp = wr + (1 − w)Xi is then
EXp = wr + (1 − w)EXi, and its risk, as given by its scale parameter, is σp = (1 − w)σi

56. The
risk-return trade-off is then given by

EXp = r +
EXi − r

σi
σp (65)

after setting w = 1 − σp/σi. Under the assumptions of CAPM, investors have homogeneous beliefs,
that is, they all agree on the multivariate stable parameters. This means that all investors hold the
market portfolio (as in Section 2.3) as their risky asset and the risk-return trade-off (65) becomes

EXp = r +
EXM − r

σM
σp. (66)

where XM and σM are the rate of return and scale parameter respectively of the market.

56Note that if X ∼ Sα(σ, β, µ) then aX + b ∼ Sα(|a|σ, sign(a)β, aµ + b) if 1 < α < 2.
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Figure 22: The stable efficient frontier. The portfolio Xp = wXi + (1 − w)XM is suboptimal, and
hence must be dominated by the efficient frontier.

Now consider the suboptimal portfolio Xp = wXi + (1−w)XM obtained by adding to the market
portfolio a certain position in asset i (the portfolio is optimal if w = 0). Since X −µ ∼ SαS we know
that Xi − µi and XM − µM are jointly SαS. By properties of symmetric stable random vectors this
means that Xp ∼ Sα(σp, 0, µp), where the scale and location parameters are given by (59) and (61),
that is

σα
p =

∫

S2

|ws1 + (1 − w)s2|αΓ(Xi,Xp)(ds1, ds2), (67)

µp = EXp = wµi + (1 − w)µM , (68)

respectively. Differentiating with respect to w gives

∂µp

∂w
= µi − µM , (69)

∂σp

∂w
=

1

ασα−1
p

∂σα
p

∂w
=

1

σα−1
p

∫

S2

(s1 − s2)(ws1 + (1 − w)s2)
<α−1>Γ(Xi,Xp)(ds1, ds2). (70)

So evaluating (69) and (70) at w = 0 and using Definition 7.3 we get

∂µp

∂σp

∣∣∣∣
w=0

=
∂µp

∂w

/∂σp

∂w

∣∣∣∣
w=0

=
σα−1

M (µi − µM )

[Xi, XM ]α − σα
M

, (71)

since at w = 0 the portfolio Xp becomes XM and σp becomes σM . Moreover, in market equilibrium
the trade-off between risk and return is given by (66), so that the slope ∂µp/∂σp at w = 0 is given by
(µM − r)/σM (see Figure 22). Hence

µM − r

σM
=

σα−1
M (µi − µM )

[Xi, XM ]α − σα
M

. (72)
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This may be rewritten in the familiar CAPM form (3) as

E(Xi − r) = βiE(XM − r),

where now, in the stable case,

βi =
[Xi, XM ]α

σα
M

. (73)

Note that if we assume Gaussian returns, then X − µ ∼ SαS with α = 2, and by using (64), we
recover

βi =
Cov(Xi, XM )

Var(XM )
,

that is, the traditional CAPM result.

Acknowledgments

We would like to thank Paul Embrechts and Filip Lindskog for many valuable comments which led
to an improved exposition of this material. This research was partially supported by the NSF Grant
ANI-9805623 at Boston University.

References

[ADEH97] P. Artzner, F. Delbaen, J.M. Eber, and D. Heath. Thinking coherently. RISK, 10(11), 1997.

[ADEH99] P. Artzner, F. Delbaen, J.M. Eber, and D. Heath. Coherent measures of risk. Mathematical Finance,
9(3):203–228, 1999.

[Alb97] C. Albanese. Credit exposure. Diversification risk and coherent VaR. Preprint, Department of
Mathematics, University of Toronto, 1997.

[BCK92] T. Bollerslev, R.Y. Chou, and K.F. Kroner. ARCH modelling in finance: A review of the theory
and empirical evidence. Journal of Econometrics, 52:307–327, 1992.

[Bel97] L. Belkacem. How to select optimal portfolio in α-stable markets. Preprint, INRIA, 1997.

[Ber96] P. L. Bernstein. Against the Gods: The Remarkable Story of Risk. John Wiley & Sons, Inc., 1996.

[BG98] M. Broadie and P. Glasserman. Simulation for option pricing and risk management. In C. Alexander,
editor, Risk Management and Analysis. John Wiley & Sons, 1998.

[BLS00] D. Bertsimas, G. J. Lauprete, and A. Samarov. Shortfall as a risk measure: Properties, optimization
and application. Preprint, MIT, 2000.

[BN77] O.E. Barndorff-Neilsen. Exponentially decreasing distributions for the logarithm of particle size.
Proceeding of the Royal Society London A, 1977.

[Bol86] T. Bollerslev. Generalized autoregressive conditional heteroscadicity. Journal of Econometrics,
31(1):34–105, 1986.

[BS73] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political
Economy, 81:637–654, 1973.

[BTV96] J. Beirlant, J.L. Teugels, and P. Vynckier. Practical Analysis of Extreme Values. Leuven University
Press, 1996.

60
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