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Abstract

Modern day trading practice resembles a thought
experiment, where investors imagine various possi-
bilities of future stock market and invest accord-
ingly. Generative adversarial network (GAN) is
highly relevant to this trading practice in two ways.
First, GAN generates synthetic data by a neural net-
work that is technically indistinguishable from the
reality, which guarantees the reasonableness of the
experiment. Second, GAN generates multitudes
of fake data, which implements half of the exper-
iment. In this paper, we present a new architec-
ture of GAN and adapt it to portfolio risk mini-
mization problem by adding a regression network
to GAN (implementing the second half of the ex-
periment). The new architecture is termed GANr.
Battling against two distinctive networks: discrimi-
nator and regressor, GANr’s generator aims to sim-
ulate a stock market that is close to the reality while
allow for all possible scenarios. The resulting port-
folio resembles a robust portfolio with data-driven
ambiguity. Our empirical studies show that GANr
portfolio is more resilient to bleak financial scenar-
ios than CLSGAN and LASSO portfolios.

1 Introduction

Current trading practice resembles to Ernst Mach’s thought
experiment in the sense that traders leverage their own per-
ceptions of the future stock market and invest accordingly. A
good trader should be able to perceive multiple market scenar-
ios that are close to the reality and aim to construct a portfolio
that perform well under all those imaginary conditions. Such
a thinking process is a typical thought experiment, where by
conceiving “good copies of facts” and employing “method
of variation”, we can “discover new properties” and establish
new theory; see [Mach, 1973].

By drawing connections between portfolio construction
and thought experiment processes, we naturally turn to the
state-of-the-art machine learning technique: generative ad-
versarial networks (GAN). When it was first introduced by
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[Goodfellow et al., 2014], GAN was used to generate sam-
ples that are indistinguishable from the real data by a dis-
criminating neural network. Many developments of GAN
have been made to make the generated sample more alike
to the reality and promote the diversity of generated out-
put; see [Mirza and Osindero, 2014; Arjovsky et al., 2017,
Mao et al., 2017]. The application of GAN to financial strate-
gies has a potential to objectively and computationally repli-
cate the thought experiment for portfolio construction. Re-
cently, [Koshiyama er al., 2019] adopted conditional GAN, a
variation of GAN, for fine-tuning financial trading strategies.
The application of GAN was proved to be advantageous over
conventional techniques in some cases. However, our appli-
cation of GAN has very different objectives and thus requires
an innovative architecture.

The most vivid illustration of GAN application in finance
may be through an analogy to image generation, for which
GAN was initially devised. Imagine that the returns of the
stocks in the market on each day is a line of an “artwork”
and the nature continues painting it from left to right. We
have the access of the semi-finished paining up to date. To
experiment the financial thoughts, we ought to draft the next
few lines and plan accordingly from the big picture. GAN has
the capacity of drafting the next few lines based on what have
been painted. In this paper, we extend the framework of GAN
such that it can conduct the financial experiment for portfolio
construction at the same time. Our proposed framework adds
a regressor on top of the existing discriminator and generator
in GAN, for which we termed as GAN with regessor or GANr
in short.

To design a GAN architecture for financial applications, we
incorporate the financial knowledge in empirical finance into
GANTr. Due to the stationarity consideration, we use only the
daily financial data of recent past one year as training data,
leading to small sample size. Thanks to the introduction of
gross-exposure constraints, our proposed framework, GANTr,
is still applicable for the market with arbitrarily many risky
assets. Following [Fan er al., 2012], we recast the classi-
cal portfolio risk minimization problem with gross-exposure
constraints as a regression problem with a ¢;-norm constraint,
which can be considered as a simple neural network and be
embedded into the GAN framework. Heuristically, the gen-
erator of GANTr still aims to deceive the discriminator. On the
other hand, the major difference between GANr and the origi-
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nal GAN is that the generator of GANr will also maximize the
risk of the portfolio. Such a proposal resembles the theories
of the worst-case utility and robust controls; see [Wald, 1945;
Gilboa and Schmeidler, 1989; Hansen et al., 2006]. Ro-
bust portfolio selection has been studied extensively in the
literature on financial mathematics; see [Fouque et al., 2016;
Pun and Wong, 2015; Pun et al., 2016; Pun and Wong, 2016b;
Pun, 2018c; Pun, 2018a]. However, most of their ambiguity
sets are model-based and none of them can handle arbitrarily
many risky assets. With the power of neural networks and
the idea of GAN, we study the vast robust portfolio selection
problem computationally.

The rest of the paper is organized as follows. Section 2
describes some of the major developments about GAN, on
which we heavily rely for our proposed GAN architecture.
In Section 3, we propose and describe in detail a new GAN
structure and apply it to a risk minimization problem. The
new GAN architecture is examined with empirical data and
the test results are summarized in Section 4. Section 5 con-
cludes.

2 Related GAN Architectures

2.1 GAN

GAN, originated by [Goodfellow et al., 2014], consists of two
competing networks: generator (G) and discriminator (D).
The former takes in latent noise (z) to simulate the fake data.
The generated fake data along with some real data are then in-
put to the latter, which estimates the probability of the input
data being real. In this process, generator aims to minimize
log(1 — D(G(z))) while discriminator maximizes its binary
cross entropy, where D(x;6p) is a scalar multi-layer per-
ception (MLP) function with parameters 6 representing the
probability that x came from the data rather than the genera-
tor’s distribution and G(z; f) is another differentiable MLP
function with latent input z and parameters 6 that outputs a
fake data of the same dimension of the real data. The interac-
tion between G and D mathematically amounts to a minmax
game:

min max V (G, D) (1)

G D

where for GAN, the value function V takes the form:
Exnpiara (0 [108(D(X))] + Eznp, (2 [log(1 — D(G(2)))],

in which, p,(z) is the prior on the latent noise z. Training D
and G are equivalent to determining 6 and 6.

2.2 Conditional GAN (CGAN)

Since the introduction of the GAN, many improvements on
GAN have been made. One of them is conditioning both gen-
erator and discriminator on some auxiliary information y; see
[Mirza and Osindero, 2014]. Specifically, conditional GAN
(CGAN) feed the auxiliary information y about the intended
output into the generator on top of the latent noise. Then, the
auxiliary information y along with the generated data are in-
put to the discriminator. Mathematically, the value function
in (1) for the CGAN takes the following form instead:

B ~piara (0 [108(D(X[Y))] + Egnp, (z) [log (1 — D(G(2]y)))].

4620

The slight modification of the networks is simple but yet
powerful. Not only does CGAN improve the quality of the
generated image “categorically” as demonstrated in its origi-
nal paper, but is also adopted by [Koshiyama et al., 2019] for
financial trading strategies and outperforms other traditional
techniques in numerous cases. Moreover, the conditioning
property in CGAN is desired in applying a GAN-based ap-
proach in regression problems.

2.3 Least Squares GAN (LSGAN)

When GAN was first introduced, [Goodfellow et al., 2014]
acknowledged that in practice, GAN may experience vanish-
ing gradients. To alleviate this issue, [Mao et al., 2017] pro-
posed a different loss function for the minmax game between
the generator and discriminator. The novel reformulation of
GAN is named least squares GAN or LSGAN in short. In-
stead of using the sigmoid cross entropy as the loss function,
the discriminator of LSGAN measures the difference between
the output and the real label, which are quantified. When the
output is more deviated from the real label, the model is pe-
nalized more. The new formulation generates more gradients
to update the generator and stabilizes the training process.
Moreover, LSGAN incentivizes generator to simulate outputs
that are close to the decision boundary of the discriminator,
ensuring that the fake data does not lie too far away from the
decision boundary, a problem that GAN suffers intrinsically.

Suppose we use the a-b coding scheme for the discrimina-
tor, where a and b are the labels for fake data and real data,
respectively. LSGAN trains D and G by solving the mini-
mization problems iteratively:

minp  Vig'(D) = $Exepue 0l (D(x) = b)?]
32, [(D(G(2)) — a)?],
ming Vi (G) = 3Eep, ) [(D(G(2) = ¢)?),
where ¢ denotes the value that G wants D to believe for fake

data. The benefits and effectiveness of LSGAN are docu-
mented in [Mao et al., 2019].

Conditional LSGAN (CLSGAN)

It is noteworthy that the idea of conditioning in the CGAN
can be incorporated into LSGAN, for which we call it as con-
ditional LSGAN (CLSGAN). For simplicity, we label the real
and fake data by 1 and 0, respectively. Then, the value func-
tions of the discriminator and the generator with conditioning
on the auxiliary information y become

. D
min  VELs(D) = 3Bxepuy, ol (DEXY) = 17]
l + 3Bz [(D(G(2]y)))7];
ming  Vers(G) = 5Esmp, () [(D(G(zly)) — 1)%].
2)
The 0-1 coding scheme suffices for our application as we will
introduce a scaling factor in our new GAN architecture that
will absorb the belief on fake data generation. The CLSGAN
is interesting in its own right while it serves as a building
block of our proposed GAN architecture.

3 GAN with Regressor (GANr)

In this paper, we present a new GAN architecture, namely
GAN with regressor (GANr), whose design is motivated by



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on Al in FinTech

N
G
Xf
D (xrayr) R
with scaling factor -mu

Figure 1: GANr architecture: square boxes represent MLP; bub-
bles represent information (input or output); the arrows indicate the
direction of information flow. The subscripts indicate whether the
information is real (r) or fake (f). The figure shows that the gener-
ator (G) synthesizes data (xy) with latent noise (z), conditional on
information y ¢, where y s is data bootstrapped from the real data
yr. Both the fake data (xy, ys) and real data (x,, y) are then input
to the discriminator (D) and the regressor (R). D and R then output
their respective gradient updating information to G. It is important
to note that our framework further takes a transfer function of the
regression loss value and assign a scaling factor of —y to it.

robust portfolio construction while its applicability is extend-
able to general regression problems with robustness. Its gen-
erator and discriminator closely follow the architecture of
CLSGAN in pursuit of good data simulation. Therefore,
GANT preserves the merits of CGAN and LSGAN. In addi-
tion to generator and discriminator networks, GANr contains
the third neural network, regressor (R), which solves some
regression problem of our interest. The graphical illustration
of GANTr architecture is presented in Figure 1.

In GANTr, the auxiliary information y is taken as the re-
sponse (dependent variable) while x is the features (indepen-
dent variables). We use R(x;0p) to represent the regression
model, parameterized by g, for the paired data (x,y) such
that y = R(x;0g) + e. Similarly, training R is equivalent
to determining 6. Mathematically, the value functions of
GANTr are defined as follows:

minp Ve, (D) == 5By, 0 (D(X]y) — 1)?]
+5Esmp, ) [(D(G(2y)))?],
ming V([;IZ]NT(R) = 2 Bxpanea 0 [(y — R(x))?
+5E s, () [(y — R(G(2]y)))?],
Vv (G) =B\ [(D(Glzly)) - 1)2]
19 (Egmp, () [(y — R(G Z|y)))2(]3))7
where ;1 > 0 is a tuning parameter balancing the impacts of
Dand Ron G and g : RT — R is a transfer function, for
which we take g(-) = tanh(-) in our numerical studies. It
is found necessary to introduce the transfer function because
scales of discrimination loss and regression loss are very dif-
ferent, which may lead to a generator disregarding the reality
of generated data in pursuit of a huge reduction in regression
loss. Hence, the transfer function can limit the impact of re-

gressor on the generator’s loss.
It is clear that when 1 = 0, GANr is reduced to CLSGAN.

ming
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The financial interpretation of the parameter p will be dis-
cussed later. As illustrated in Figure 1, D and R are trained
simultaneously and then the results are feedback for training
G. Since D and R are mathematically similar, it is easy to see
that GANr enjoys the same computational advantages of LS-
GAN, while the idea of conditioning, borrowed from CGAN,
guarantees the stability of the GANr’s performance.

Different from the initial objective of GAN, the primary
objective of GANTr is to solve for the regressor R, which is
referred to as financial solution. The original components of
GAN, D and G, are trained to simulate different realistic sce-
narios for the agent (i.e. investor in financial applications).
Then the R is trained to perform well in different scenarios,
by noting that its training involves both real and different fake
data. The feedback from R to G ensures that the G is aware of
how the R performs and generates tougher scenarios, which
makes an essential difference from “generating fake data and
then performing regression with a bunch of fake data sepa-
rately” (that corresponds to the case ;4 = 0). The R resulted
from GANr will be more resilient to bleak scenarios.

3.1 Application to Vast Portfolio Selection

In this section, we illustrate the application of GANr to
vast portfolio selection. Suppose that the market consists
of p stocks with returns, r = (ry,rg,...,7,) for the fu-
ture one period (for which we consider one day in this pa-
per). Based on the modern portfolio theory, initiated in
[Markowitz, 1952], we presume that an investor aims to de-
termine her portfolio, characterized by a weight vector w with
w’l = 1, by minimizing the risk (variance) of the daily re-
turn of her portfolio: Var(w'r), subject to the gross-exposure
constraint |w|; < ¢. Since the gross-exposure constraint is
introduced, we can consider a large universe of stock market
with p even larger than n, the training sample size. Following
[Fan et al., 2012], we recast the vast portfolio selection as a
regression problem by noting that

min E[(w'r — b)?]

Var(w'r) =
= mbinIE[(y —Wi1T1p — -~ Wp—1Tp—1 — b)Q],

wherey =r,and z; =1, —r; forj =1,...,p — 1. There-
fore, the construction of gross-exposure-constrained mini-
mum variance portfolio can be converted into the following
regression problem:

E[(y — (w")'x = b)’] @)

min
b,lwll1<d

where x = (x1,22,...,%p—1)’. When we apply GANr
to vast portfolio selection, we substitute the regression loss
function in (3) by (4). The rest of implementation follows
the procedure stated in the previous section or Figure 1. Fi-
nally, we output the minimizer of R which suggests a trading
strategy.

It is important to note that the problem (4) is an approx-
imation to the minimum variance problem as the regression
outcome depends on the choice of y. When y is properly cho-
sen, the portfolio is nearly optimal. There are some proposals
stated in [Fan et al., 2012], while the authors pointed out that
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(4) is equivalent to the problem of using the “assets” with re-
turns x to track y. Therefore, we pick equally weighted (EW)
portfolio as y in our paper as it is free of model assumption
and performs well out-of-sample in terms of Sharpe ratio and
many measures; see [DeMiguel e al., 2009]. In other words,
we specify the pth asset as the EW portfolio of the rest p — 1
assets and note that p could be arbitrary.

In finance, EW portfolio can represent the overall perfor-
mance of the market. The implementation of GANr is based
on conditioning on y and thus the GANr’s simulation of mul-
tiple scenarios is conditional on the market’s performance and
the generator yields the artificial data of excess returns of the
stocks with respect to the market. These financial insights,
which are in line with the market’s practice, explain the ratio-
nale behind incorporating the conditioning into GANT.

3.2 Relation to Robust Portfolio Selection

The benchmark portfolio selection problem (4) can be con-
sidered as a special case of (3) when there is no fake data
(generation). Hence, it is interesting to heuristically explore
what the add-ons by GANTr bring to the portfolio selection.
From R’s perspective, D is not directly involved in R’s
minimization but impacts it through regulating G. The
probabilistic interpretation of the regression loss function in
(3) can be through an alternative measure Q¢ for real and
fake data that is characterized by the current generator G:
VC[;IENT(R) = E%[(y — (w*)'x — b)?]. Let us denote the
measure for real data only by P, which is the measure used in
(4). In every iteration of (3), Vc[ﬁl ~ (R) uses different mea-
sure Qg. Note that the existence of D is to ensure that G
generates the data close to real data. Hence, we can define

a set of measures using the mathematical notations: Q :=
{Q¢|G is regulated by D in the fashion of CLSGAN}. An

important observation is that the Vc[ﬁ] ~-(G) in (3) is adver-
sarial to R since a negative scaled transferred regression loss
is part of the generator’s loss function. Hence, the equilib-
rium of GANr will find the worst-case measure among Q for
R. Heuristically, in equilibrium, GANr solves a robust con-
trol version of the portfolio selection problem (4):

min  max E¢ — (w*)x — b)?].
b,|lw|1<d Qe €Q [(y ( ) ) }

The similar minimax problems have appeared in many studies
on robust controls or robust portfolio selection; see [Hansen
et al., 2006; Wald, 1945; Fouque et al., 2016; Pun and Wong,
2015; Pun et al., 2016; Pun and Wong, 2016b; Pun, 2018c;
Pun, 2018a]. However, the unique features of GANTr are its
applicability to a large universe of stocks and its characteri-
zation of purely data-driven ambiguity set.

Economically speaking, using the real data for solving (4)
implicitly assumes that the future market movement repli-
cates the history, which may not be advocated by many mar-
ket practitioners. Hence, it makes perfect sense to conduct
thought experiment on various future scenarios that are in-
ferred with the historical data. The trading strategy resulting
from GANr resembles the outcome of thought experiment on
vast robust portfolio selection.
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1 in GANr

Now, the user-defined parameter p in GANr can be inter-
preted as the ambiguity aversion level of the investor. When
w is of a small value, the generator tends to generate data
closer to the real data, which implies that the investor believes
that the real data are good enough to reflect the future market
situation. When p is large, the generator tends to generate
more severe market scenario, where even minimum variance
strategy has a relatively large variance. As a rule of thumb,
w1 should be set a small value during the boom period and a
large value during the recession period.

4 Empirical Studies
4.1 Data and Methodology

We examine GANr with two empirical datasets on S&P
500 index components (p = 408) for two different peri-
ods, namely the recession period from 1 December 2006 to
30 June 2009 and the boom period from 31 December 2015
to 29 December 2017. The data can be downloaded from
[Pun, 2018b]. For each of the dataset, we examine the out-
of-sample performance of LASSO (see [Fan et al., 2012]),
GANTr (with ¢ = 0.1,0.2 in (3)) and CLSGAN (with 4 = 0
in (3)) portfolios.

The daily returns of the recent past one year are used as
training set, allowing generator and discriminator to learn
about the distribution of real daily returns conditional on the
EW portfolio’s return. The regressor simultaneously take into
account both real and fake data, learning a robust minimum
variance portfolio. As the regressor basically does LASSO
regression (see [Tibshirani, 1996]), the selection of tuning
parameter A is determined by cross-validation with the first
training set and sticks with it throughout the study. Specif-
ically, the first training set is divided into 12 folds. In each
fold, the chronological order of the data is maintained. Then
we carry out 12 folds of cross-validation tests to determine
the optimal A with the highest portfolio return. Such cross-
validation approach has been carried out in [Pun and Wong,
2016a; Chiu et al., 2017; Pun and Wong, 2019] and yields
desirable outcomes.

4.2 Configuration of GANr

In our empirical studies, the generator consists of five lay-
ers (including input and output layers) and each layer has
p nodes. Specifically, the first two hidden layers adopt
ReLU activation function with dropout (see [Srivastava et al.,
2014]), where the dropout rate is 0.25, and the last two layers
(including output layer) use tanh activation function without
dropout. As for the discriminator, the three hidden layers are
identical to the generator’s, while its output layer uses a linear
activation function with one output node. The regressor has
no hidden layer and uses a linear activation function with one
output node and ¢; kernel regularizer.

The latent noise input follows a uniform distribution while
the daily EW portfolio return fed into the generator is resam-
pled with replacement from the real daily EW portfolio re-
turn. Though the latent noise is completely random, GANr
may still run into mode collapse problem. Therefore, the
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weights of all layers in GANTr are initialized with standard
normal distribution.

Two important parameters in training GANr are the num-
ber of epochs and the number of discriminator training cycles
per an update of generator. Our empirical studies are con-
ducted in a moving window fashion and thus for the first test,
we train GANr 10000 times (i.e. 10000 epochs). Note that
subsequently, only one day of new return data is added and
the oldest day of data is removed. By assuming that the dis-
tribution of daily returns does not change drastically, we re-
duce the number of epochs to 150 and initialize the networks
weights with the optimal weights from the previous day, start-
ing from the second training of GANTr. The discriminator and
regressor are trained 5 times every training of generator. The
batch size is 50. This approximately corresponds to the num-
ber of working days in one financial year. In [Mao e al.,
2017], it is found that RMSProp optimizer exhibits more sta-
ble performance than Adam. Hence, we adopt RMSProp for
the back-propagation. The learning rate is set at 0.0001.

4.3 Empirical Results

The empirical results are presented in Figures 2 and 3 and
Table 1, where the LASSO portfolio serves as a benchmark.
Figure 2 presents the time-series plot of the cumulative out-
of-sample returns of the portfolios. Figure 3 provides the QQ
plots of the out-of-sample returns of the GAN-based portfo-
lio and the LASSO portfolio over different periods. Table 1
presents the statistics of the portfolios, including risk (mea-
sured by the (annualized) volatility of the daily portfolio re-
turns), portfolio Sharpe ratio, and five quantile values of the
daily portfolio returns.

Robustness of GANr Portfolio

Figure 2(a) shows that except for the GANr (1 = 0.2), the
other three portfolios perform bad during the recession pe-
riod. Even the GANr (u = 0.2) also suffers loss, it is clear
that it has better protection when the market is volatile, which
echoes our initiative on setting a large p during the recession.
In the Figure 2(b) for the boom period, two GANTr portfolios
with 4 = 0.1 and px = 0.2 perform similarly. At the first
glance, CLSGAN performs the best in terms of return but we
should also examine the variance and quantile statistics to in-
vestigate their risk profiles. Both Figures 2(a) and 2(b) show
that GAN-based portfolios improve the LASSO portfolio.

Figures 3(a) and 3(b) show that the two GAN-based port-
folios not only uniformly outperform the LASSO portfolio
over the period from 2006 to 2009, but also demonstrate a
robustness against bleak stock market. Both GANr and CLS-
GAN portfolios beat the LASSO portfolio at almost all quan-
tiles as shown by the fact that almost every point lies on the
right hand side of the identity line in Figures 3(a) and 3(b).
Moreover, at lower quantiles, the points are further from the
identity line. Thus, over the recession period, LASSO suffers
a more severe loss than the two GAN-based portfolios.

The GANr portfolio demonstrates a more robust perfor-
mance than the CLSGAN portfolio over two test periods. In
terms of downside risk performance, CLSGAN is slightly
worse off as compared to LASSO. As depicted in 3(d),
LASSO returns consistently defeats that of CLSGAN over the
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return range from 0.99 to 1.00, while the comparison between
the two portfolios over the return range from 0.98 to 0.99 is
inconclusive. In contrast, GANr almost unanimously outper-
forms LASSO at all extremely low quantiles while having a
comparable return level to LASSO at all other quantiles.
Both empirical results indicate that by subjecting portfolio
construction to a more volatile market (with a GAN-based
approach), the portfolio becomes more robust to bear market.

Improvement on Risk and Sharpe Ratio
For the recession period, the performance of GANr (1 = 0.1)
and CLSGAN are almost identical, while GANr (1 = 0.2)
performs the best. All of them successfully bring down the
annualized volatility of the LASSO portfolio. They also beat
LASSO portfolio at all five quantiles of annual returns. At
lower quantiles, the difference is more significant than that at
higher quantiles as shown in Table 1, Figures 3(a) and 3(b).
For 2016-2017 data, GANr outperforms CLSGAN and
LASSO in terms of annualized risk. The low volatility of
GANIr is attributed to the robustness of the GANr portfolio.
CLSGAN performs the best in terms of Sharpe ratio. Table
1 suggests that CLSGAN yields the highest annualized re-
turn thanks to its high-performing upside gains (qg.5, o.75
and qo.9). It is further confirmed by Figures 3(c) and 3(d).
The former shows that GANr and LASSO have comparable
performances at higher quantiles. In comparison, Figure 3(d)
depicts that CLSGAN tend to perform better than LASSO at
higher quantiles of annualized return.

5 Conclusion and Future Research

This paper presents a way of financial thought experiment
with the aid of the GAN framework. We illustrate the thought
experiment with vast robust portfolio selection. Our pro-
posed framework is, however, extendable for general regres-
sion problems. By providing another angle of view on GAN,
we link the proposed GANr with the robust control/optimiza-
tion theory. In particular, the design of the GANr architecture
is perfect for financial applications, where we need to sim-
ulate multiple complex scenarios. An noteworthy merit of
GAN:T is that it allows users to control the trade-off between
the closeness to real data and the volatility of the generated
data with tuning parameter y. Not only does GANr simulate
data, but also helps users find a robust portfolio that is re-
silient to bleak financial market. As shown by our empirical
studies, GANr portfolio consistently outperforms CLSGAN
and LASSO portfolios in terms of the lower quantiles.

Some promising future research include incorporating
GANr with other GAN architectures, such as Wasserstein
GAN (see [Arjovsky et al., 2017]) or generalizing the mean
squares loss function in the regressor network to any utility or
loss function. It will also be interesting to explore the mathe-
matical property of GANTr, such as its relation to Pearson y?
divergence as in [Mao et al., 2017].
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Figure 2: Figures 2(a) and 2(b) are the cumulative returns of the LASSO, GANr, and CLSGAN portfolios.
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Figure 3: Figures 3(a) and 3(c) are QQ plots of the GANr (¢ = 0.2) daily portfolio returns versus the LASSO daily portfolio returns. Figures
3(b) and 3(d) are QQ plots of the CLSGAN daily portfolio returns versus the LASSO daily portfolio returns.

Year Strategy Risk  Sharpe ratio Qo.1 qo.25 q0.5 q0.75 q0.9
LASSO 0.5941 - 0.8595 0.8849 09014 09138 0.9343
°06-"09 CLSGAN (. =0) 0.4006 — 0.8843 0.8992 0.9120 0.9230 0.9413
GANr (1 =0.1) 0.4006 — 0.8843 0.8993 09120 0.9230 0.9413
GANr (1 = 0.2) 0.4748 - 0.9677 09855 1.0000 1.0131 1.0328
LASSO 0.0902 1.7511 0.9946 0.9977 1.0006 1.0037 1.0079

CLSGAN (= 0) 0.1066 2.4279 0.9934 0.9967 1.0008 1.0046 1.0093
GANr (. =0.1)  0.0878 2.0172 0.9944 0.9973 1.0004 1.0037 1.0079
GANr (. =0.2) 0.0791 2.3592 0.9949 0.9978 1.0005 1.0035 1.0071

16-717

Table 1: Annualized risk (volatility), Sharpe ratio, and different quanitles of daily returns for four portfolios. The Sharpe ratios over the
recession period ("06-’09) are negative for all portfolios and thus they are not reported as a negative Sharpe ratio lacks of interpretability.
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