
Finding a Heaviest Triangle is not Harder than Matrix Multiplication∗

Artur Czumaj† Andrzej Lingas‡

Abstract
We show that for any ε > 0, a maximum-weight triangle in
an undirected graph with n vertices and real weights assigned
to vertices can be found in time O(nω + n2+ε), where ω is
the exponent of fastest matrix multiplication algorithm. By the
currently best bound on ω, the running time of our algorithm
is O(n2.376). Our algorithm substantially improves the previous
time-bounds for this problem recently established by Vassilevska
et al. (STOC 2006, O(n2.688)) and (ICALP 2006, O(n2.575)).
Its asymptotic time complexity matches that of the fastest known
algorithm for finding a triangle (not necessarily a maximum-weight
one) in a graph.

By applying or extending our algorithm, we can also improve
the upper bounds on finding a maximum-weight triangle in a sparse
graph and on finding a maximum-weight subgraph isomorphic to
a fixed graph established in the papers by Vassilevska et al. For
example, we can find a maximum-weight triangle in a vertex-
weighted graph with m edges in asymptotic time required by the
fastest algorithm for finding any triangle in a graph with m edges,
i.e., in time O(m1.41).

1 Introduction
We consider a classical graph problem of finding a fixed
subgraph in a graph. The most basic version of that problem,
that of finding a triangle (a cycle of length three), is related
to the shortest path problem. It is well known that the
asymptotic time complexity of finding a triangle in a graph
does not exceed that of matrix multiplication (cf. [10]), that
is, O(nω), where ω < 2.376 is the exponent of the fastest
matrix multiplication algorithm [4] (see also [2]).

The more general problem of finding a maximum-
weight triangle in a graph with vertex or edge weights has
been widely open for long time. The first substantially sub-
cubic upper time-bound for vertex weighted graphs has been
established only recently by Vassilevska et al. in [12]. It has
been later improved by Vassilevska et al. [13], who observed
that the problem of finding a maximum weight triangle in a
vertex-weighted graph immediately reduces to the problem
of finding the so-called maximum witnesses of Boolean ma-
trix product studied in [7, 11]. Hence, by the upper time-
bound O(n2.616) for the latter problem established in [11]

∗Research supported in part by NSF ITR grant CCR-0313219 and by
VR grant 621-2005-4085.

†Department of Computer Science, University of Warwick, Coventry
CV4 7AL, United Kingdom. czumaj@dcs.warwick.ac.uk.

‡Department of Computer Science, Lund University, 22100 Lund, Swe-
den. Andrzej.Lingas@cs.lth.se.

(improved to O(n2.575) by rectangular matrix multiplication
in [6, 7]), they could obtain the same upper time-bounds
for finding a maximum-weight triangle in a vertex weighted
graph.

In this paper, we present a new algorithm for finding
a maximum-weight triangle in a vertex weighted graph. It
does not rely on computing maximum witnesses of Boolean
matrix product and on contrary, it strongly utilizes the fact
that the output to the problem is a single triangle. By apply-
ing a recursive elimination scheme and fast matrix multipli-
cation algorithm, we obtain an algorithm whose running time
is O(nω∗) = O(n2.376), where ω∗ = max{ω, 2 + ε} and ε
can be chosen an arbitrarily small positive constant. (Ob-
serve that the running time is O(nω) assuming that ω − 2
is a positive constant.) The running time of our algorithm
matches that of the fastest algorithm for finding a triangle
(not necessarily one with the maximum-weight) in a graph.

Next, we study the same problem for sparse graphs with
m edges (with the running time being a function of m).
Previously, Vassilevska et al. [13] designed an algorithm
that finds a maximum-weight triangle in time O(m

18−4 ω
13−3 ω) =

O(m1.45). We use our O(nω∗)-time algorithm for finding
a maximum-weight triangle to design an algorithm running
in time O(m

2 ω∗
1+ω∗) = O(m1.41). The running time of this

algorithm matches that of the fastest algorithm for finding
any triangle in a graph, due to Alon et al. [1].

The problems of finding fixed cliques and more gener-
ally subgraphs isomorphic to fixed graph are natural gener-
alizations of the problem of finding a triangle in a graph. In
[12, 13], Vassilevska et al. considered the vertex-weighted
variants of these problems, where the task is to find a max-
imum (or, equivalently minimum) weight subgraph isomor-
phic to a fixed graph. The weight of a subgraph is defined
as the total weight of its vertices. Vassilevska et al. obtained
non-trivial upper time bounds for these variants by applying
their algorithm for a maximum-weight triangle in [13]. We
improve these bounds by using or extending our algorithm
for a maximum-weight triangle. And so, our algorithm for
finding a maximum-weight triangle can be easily extended to
find a maximum-weight clique K3 k (or, in general, to find
a maximum-weight fixed subgraph (either induced or not)
with 3 k vertices) in time O(nω∗ k) = O(n2.376 k), for any
constant k. For other values of the size of the graphs, we de-
sign two algorithms. The first algorithm finds a maximum-
weight clique Kh (or, in general, any fixed subgraph with

986

Problem Source Running-time Numerical running-time/Comments

maximum-weight triangle [12] O(B · n 3+ω
2) O(B · n2.688)

[12] O(n
3+ω

2 log n) O(n2.688); randomized

[13] O(n2+1/(4−ω)) O(n2.616)

[13] O(n2.575)

this paper O(nω∗) O(n2.376)

maximum-weight triangle [13] O(m
18−4 ω
13−3 ω) O(m1.45)

graph with m edges this paper O(m
2 ω∗
1+ω∗) O(m1.41)

Table 1: Summary of results for the problem of finding a maximum-weight triangle. In all results, n denotes the number
of vertices, m number of edges, B is the number of bits of precision of the input, ω < 2.376 is the exponent of the fastest
matrix multiplication algorithm [4], and ω∗ = max{ω, 2+ε}, where ε can be chosen as an arbitrarily small positive constant
(hence, ω∗ < 2.376).

h vertices) in time O(nbh/3c·ω∗+(h mod 3)). This algorithm
improves the running time upon the fastest previously ex-
isting algorithms (see [13]) for all values of h ≥ 6. Our
second algorithm uses fast rectangular matrix multiplication
(instead of that for square matrices) and improves the run-
ning time even further (for values h mod 3 6= 0). And so,
if h = 3 f + 1, then the second algorithm runs in time
O(nf ·ω(1, f+1

f ,1) + nf ·(2+ 1
f +ε)), where ω(1, r, 1) is the ex-

ponent of the multiplication of an n × nr matrix by an
nr × n matrix. For h = 3 f + 2, the running time is
O(n(f+1)·ω(1, f

f+1 ,1) +n(f+1)·(2+ε)). By known result about
ω(1, r, 1) [3, 4, 9], this yields in particular running times of
O(n2.376 f) for h = 3f , O(n2.376·f+1) for h = 3f + 1, and
O(n2.376f+1.844) for h = 3f + 2.

These bounds subsume the corresponding ones from
[13] (see Table 2).

2 Finding a maximum-weight triangle in O(nω∗) time
In this section, we present our recursive algorithm
HTξ(G, I,K, J) for finding a maximum-weight triangle in
O(nω∗) time. It starts from a search region specified by three
sets of vertices, each of size n and sorted in weight increas-
ing order, where the maximum weight triangle is supposed
to have precisely one vertex from each set. Letting ξ to be
a large constant, the region is divided into ξ3 subregions,
where each subregion contains three sets of O(n/ξ) vertices.
The algorithm determines for each subregion whether or not
it contains a triangle in time O((n/ξ)ω). Even if Ω(ξ3) of the
subregions can contain a triangle, only O(ξ2) among them
can contain a maximum-weight triangle. These O(ξ2) sub-
regions can be determined in constant time. Our algorithm
recurses on each of these O(ξ2) subregions. By choosing ξ
to be an appropriate constant, the running time of our algo-
rithm becomes O(nω∗).

The algorithm HTξ(G, I,K, J) is presented in details
on the next page. Now, we will begin with its analysis.

LEMMA 2.1. The procedure HTξ is correct, that is, it re-
turns a maximum-weight triangle (i, j, k), if any, such that
i ∈ I , j ∈ J , and k ∈ K.

Proof. The correctness of the algorithm follows from the
two following observations:

1. just before pruning T , (p, r, q) ∈ T if and only if there
is a triangle (i, k, j) with i ∈ [i0 +(p−1)`+1, i0 +p`],
k ∈ [k0 + (r − 1)` + 1, k0 + r`], and j ∈ [j0 + (q −
1)` + 1, j0 + q`];

2. (p, r, q) is then removed from T if and only if there is a
(p′, r′, q′) ∈ T with p < p′, r < r′, q < q′.

Indeed, the latter property implies that if there is a
triangle (i, k, j) with i ∈ [i0 + (p − 1)` + 1, i0 + p`], k ∈
[k0+(r−1)`+1, k0+r`], and j ∈ [j0+(q−1)`+1, j0+q`],
then the triple (p, q, r) representing such triangles (i, k, j) is
removed from T only if there is another triangle (i′, k′, j′)
such that for some (p′, r′, q′) ∈ T with p < p′, r < r′,
q < q′, we have i′ ∈ [i0 +(p′−1)`+1, i0 +p′`], k′ ∈ [k0 +
(r′−1)`+1, k0+r′`], and j′ ∈ [j0+(q′−1)`+1, j0+q′`]. It
follows by the properties of the initial vertex numbering that
then such a triangle (i, k, j) cannot be any maximum-weight
triangle. ut

To estimate the running time of the procedure HTξ we
shall use the following lemma.

LEMMA 2.2. Let ξ be any positive integer. Let X be any
subset of {1, 2, . . . , ξ}3 which does not contain any two
t, t′ such that t′ has each coordinate greater than the
corresponding one in t. The cardinality of X is at most
3(ξ − 1)2 + 3(ξ − 1) + 1.

987

procedure HTξ(G, I,K, J)

Input: A graph G = (V,E) with vertex weights (G is given as adjacency matrix)
vertices are numbered in non-decreasing weight order from 1 to n
subintervals I , K, and J of [1, . . . , n], of the same length κ assumed to be a power of ξ

Output: Maximum-weight triangle (i, j, k), if any, such that i ∈ I , j ∈ J , and k ∈ K

let i0, j0, and k0 be such that
I = [i0 + 1, i0 + κ], K = [k0 + 1, k0 + κ], and J = [j0 + 1, j0 + κ]

` = κ/ξ

if κ = 1 then
if (i0 + 1, j0 + 1, k0 + 1) is a (non-degenerate) triangle in G then return (i0 + 1, j0 + 1, k0 + 1);
stop

for all p, r = 1, . . . , ξ do
form an `× ` Boolean matrix Apr such that for every 1 ≤ i′ ≤ ` and 1 ≤ k′ ≤ `:

Apr[i′, k′] =

{
1 if (i0 + (p− 1)` + i′, k0 + (r − 1)` + k′) ∈ E

0 otherwise.

for all r, q = 1, . . . , ξ do
form an `× ` Boolean matrix Brq such that for every 1 ≤ k′ ≤ ` and 1 ≤ j′ ≤ `:

Brq[k′, j′] =

{
1 if (k0 + (r − 1)` + k′, j0 + (q − 1)` + j′) ∈ E

0 otherwise.

for all p, r, q = 1, . . . , ξ do
compute Cr

pq = Apr ×Brq (using the fast Boolean matrix multiplication algorithm)

T = ∅
for all p, r, q = 1, . . . , ξ do

for all i′, j′ = 1, . . . , ` do
if Cr

pq(i
′, j′) = 1 and (i0 + (p− 1)` + i′, j0 + (q − 1)` + j′) ∈ E then

T = T ∪ {(p, r, q)}
{ Observation 1: (p, r, q) ∈ T iff there is a triangle (i, k, j) with i ∈ [i0 + (p− 1)` + 1, i0 + p`],

k ∈ [k0 + (r − 1)` + 1, k0 + r`], and j ∈ [j0 + (q − 1)` + 1, j0 + q`] }
for every (p, r, q) ∈ T do

if there is a (p′, r′, q′) ∈ T with p < p′, r < r′, q < q′ then
remove (p, r, q) from T

{ Observation 2: (p, r, q) is removed from T iff there is a (p′, r′, q′) ∈ T with p < p′, r < r′, q < q′. }
for every (p, r, q) ∈ T do

call HTξ(G, [i0 + (p− 1)` + 1, i0 + p`], [k0 + (r − 1)` + 1, k0 + r`], [j0 + (q − 1)` + 1, j0 + q`])

Return the maximum-weight triangle among the triangles returned by these calls

988

Proof. Define the relation ≺ such that (i, k, j) ≺ (i′, k′, j′)
iff i < i′, k < k′, and j < j′. The relation ≺ defines
a partial order on {1, 2, . . . , ξ}3. For each (t1, t2, t3) ∈
{1, 2, . . . , ξ}3 that has at least one coordinate equal to
1 define chain((t1, t2, t3)) to be the set of all triples in
{1, 2, . . . , ξ}3 of the form (t1 + i, t2 + i, t3 + i) for i =
0, 1, . . . Observe that chain(t) is indeed a chain in the poset
({1, 2, . . . , ξ}3,≺) and the chains chain(t) cover all the el-
ements in {1, 2, . . . , ξ}3. It follows now from Dilworth’s
lemma [8] that the cardinality of the largest anti-chain in
the aforementioned poset does not exceed the number of the
triples with at least one coordinate equal to 1, which in turn,
is at most ξ3 − (ξ − 1)3 = 3(ξ − 1)2 + 3(ξ − 1) + 1. ut

LEMMA 2.3. The running time of HTξ satisfies the recur-
rence
(2.1)
τ(κ) ≤ (3(ξ−1)2+3(ξ−1)+1)·τ(κ/ξ)+O(ξ3−ω·κω+ξ6) .

Proof. Forming the Boolean matrices Apr and Brq, comput-
ing their products Cr

pq, and computing T , take time O(ξ2 ·
`2), ξ3 · O(`ω) and O(ξ3 · `2 + ξ6), respectively. By Lemma
2.2, the final size of T is at most 3(ξ − 1)2 + 3(ξ − 1) + 1.
Hence, we obtain the following recurrence for the running
time of HTξ:

τ(κ) ≤ O(ξ2 · `2) + ξ3 · O(`ω) +O(ξ3 · `2 + ξ6) +
(3(ξ − 1)2 + 3(ξ − 1) + 1) · τ(`)

= O(ξ3−ω · κω + ξ6) +
(3(ξ − 1)2 + 3(ξ − 1) + 1) · τ(κ/ξ) .

ut

As an immediate corollary, for a sufficiently large con-
stant ξ, we obtain our main result1.

THEOREM 2.1. A maximum-weight triangle in a vertex
weighted graph on n vertices can be found in timeO(nω∗) <
O(n2.376).

Proof. This result follows from Lemma 2.3 by solving the
recurrence for the running time of HTξ.

Let us first assume that ω > 2+ε for some constant 0 <
ε ≤ 0.1. Then, let us choose ξ large enough, e.g., ξ ≥ 91/ε,
and solve the recurrence (2.1) using the Master Theorem
(see, e.g., [5, Chapter 4.3]) to obtain τ(κ) ≤ O(κω). Indeed,
by the Master Theorem, we have to choose ξ large enough
so that (1) κlogξ(3(ξ−1)2+3(ξ−1)+1) ≤ O(κω−ε/2) and that
(2) (3(ξ − 1)2 + 3(ξ − 1) + 1) · (κ/ξ)ω ≤ c · κω for some
constant c < 1 and for large enough κ.

1Observe that logξ(3(ξ − 1)2 + 3(ξ − 1) + 1) ≤ logξ(6ξ2) =
log 6+2 log ξ

log ξ
−→

ξ→∞
2.

For the first bound, it is easy to see that it is
enough to have ξ such that ξ ≥ 72/ε; indeed, we have
κlogξ(3(ξ−1)2+3(ξ−1)+1) ≤ O(κω−ε/2) if 3(ξ − 1)2 + 3(ξ −
1) + 1 ≤ ξω−ε/2. Next, 3(ξ − 1)2 + 3(ξ − 1) + 1 ≤
7ξ2 and ξ2+ε/2 ≤ ξω−ε/2. Hence, if ξ ≥ 72/ε, then
κlogξ(3(ξ−1)2+3(ξ−1)+1) ≤ O(κω−ε/2). To see the second
bound, we note that (2) holds if we set 7ξ2−ω ≤ c. Hence,
we can choose any ξ ≥ 141/ε in order to obtain 7ξ2−ω ≤ 1

2 .
Next, let us consider the case when ω ≤ 2 + ε. Then

similarly as in the other case, one can choose ξ to solve the
recurrence (2.1) (e.g., using the Master Theorem) to obtain
τ(κ) ≤ O(κ2+4ε).

Let us set ξ = 21/(2ε). Then, since ε ≤ 0.1, we have
that ξ ≥ 9, and thus 3(ξ − 1)2 + 3(ξ − 1) + 1 ≥ 2ξ2. With
this bound and using the inequality ω ≤ 2 + ε, we obtain
that ξω+ε ≤ ξ2+2ε = 2ξ2 ≤ 3(ξ − 1)2 + 3(ξ − 1) + 1.
Hence, we get ω ≤ logξ(3(ξ − 1)2 + 3(ξ − 1) + 1) − ε.
Therefore, κω = O(κlogξ(3(ξ−1)2+3(ξ−1)+1)−ε), what, by
the Master Theorem (see, e.g., Case 1 in [5, Theorem 4.1]),
yields τ(κ) = O(κlogξ(3(ξ−1)2+3(ξ−1)+1)). Finally, we
observe that logξ(3(ξ − 1)2 + 3(ξ − 1) + 1) ≤ logξ(7ξ2) =
2·log2 ξ+log2 7

log2 ξ ≤ 2+ 3
log2 ξ = 2+ 3

1/(2ε) = 2+6ε. Therefore,
τ(κ) = O(κ2+6ε).

Summarizing, we obtain the running time
max{O(n2+ε),O(nω)} = O(nω∗) for an arbitrarily
small fixed ε > 0. ut

3 Improved bounds for sparse graphs
By arguing analogously as in the proof of Theorem 2 in [13],
we can refine the upper bound from Theorem 2.1 in the case
of sparse graphs as follows.

COROLLARY 3.1. A maximum-weight triangle in a vertex
weighted graph with m edges and no isolated vertices can
be found in time O(m

2 ω∗
1+ω∗) < O(m1.41).

Proof. Let G = (V,E) be the input graph and let X be
the set of all vertices in V of degree at most δ. It follows
that |V \ X| ≤ 2 m/δ. In time O(m δ), we can enumerate
all triangles in G that contain a vertex in X and find a
maximum-weight one among them. On the other hand, a
maximum-weight triangle in G that has all vertices in V \X
can be found in time O((m/δ)ω∗) by Theorem 2.1. By

setting δ = m
ω∗−1
1+ω∗ , we obtain the corollary. ut

4 Finding max-weight clique Kh and H-subgraphs
In this section, we present a construction that extends the
algorithm for finding a maximum-weight triangle to include
finding a maximum-weight clique or any maximum-weight
subgraph isomorphic to a given graph.

989

THEOREM 4.1. A maximum-weight clique Kh in a vertex
weighted graph on n vertices can be found in time

O(nbh/3c·ω∗+(h mod 3)) .

Proof. Let f = bh/3c. Suppose first that h = 3f . Form
a new graph G′ in which each vertex corresponds one to
one to a Kf in the original graph G and the weight of
such a vertex equals the total weight of the vertices in this
Kf . Two vertices in G′ are connected by an edge if and
only if the corresponding cliques form an K2f clique in G.
Observe that G′ hasO(nf) vertices and it can be constructed
in time O(n2f). Furthermore, a maximum-weight triangle
in G′ corresponds to a maximum-weight Kh clique in G.
Therefore, by using Theorem 2.1 to find a maximum-weight
triangle in G′, we can find a maximum-weight clique in G in
time O(nω∗).

Next, let us consider the case h = 3f + 2. Find all
cliques Kf and Kf+1 that are subgraphs of G. Divide the
Kf+1 subgraphs into O(n) groups of size O(nf). For each
such two groups a and b (a can be equal to b) and the Kf

subgraphs form a tripartite graph Ga,b whose vertices in
the first part, second part and the third part are in one to
one correspondence with: the Kf+1 subgraphs in the first
group, the Kf+1 subgraphs in the second group, and the Kf

subgraphs of G, respectively. The weights of the vertices
in Ga,b are equal to the total weights of the corresponding
cliques in G. There is an edge between two vertices in
Ga,b if the corresponding cliques are disjoint and induce
the clique in G whose size equals the sum of their sizes.
Observe that all the constructions can be easily done in total
time O(n2f+2). Now note that a maximum-weight triangle
among the maximum-weight triangles in the graphs Ga,b

yields a maximum-weight Kh in G. By Theorem 2.1, it takes
time O(n2 × (nf)ω∗).

The proof of case h = 3f + 1 is analogous. For each
group a of the Kf+1 subgraphs we form a tripartite graph Ga

whose vertices in the first part are in one to one correspon-
dence with the Kf+1 subgraphs in a, whereas the vertices
in each of the two remaining parts are in one to one corre-
spondence with the Kf subgraphs of G. The vertex weights
and edges are specified analogously as in case of Ga,b and all
the constructions take time O(nf+1 × nf). Analogously, a
maximum-weight triangle among the maximum-weight tri-
angles in the graphs Ga yields a maximum-weight Kh in G.

ut

It is easy to extend the result from Theorem 4.1 to
arbitrary induced subgraphs isomorphic to a given graph H
on h vertices. We use an analogous construction to that in the
proof of Theorem 4.1. We decompose H into three induced
subgraphs Hi (possibly isomorphic), i = 1, 2, 3, and for each
isomorphism between an induced subgraph of G and Hi, we
form a separate node in an auxiliary graph. Two such nodes

are connected by an edge if the union of the corresponding
isomorphisms yields an isomorphism between the subgraph
induced by the vertices of the two underlying subgraphs and
the subgraph of H induced by the vertices of the Hi images
(required to be different) of the two isomorphisms. (In case
H = Kh, it has not been necessary to have separate nodes
for different isomorphisms between an induced subgraph of
G and a clique which is a subgraph of Kh because of the
symmetry between the vertices in the clique with respect to
Kh.)

Furthermore, since any subgraph (not necessarily in-
duced) of G on h vertices which is isomorphic to H is a
subgraph of the induced subgraph of G on the same h ver-
tices, finding (not necessarily induced) subgraphs reduces to
finding induced subgraphs of the same size. The induced
subgraphs correspond to all possible super-graphs of H on h
vertices. This yields the following.

THEOREM 4.2. Let H be a fixed graph on h vertices. A
maximum-weight induced subgraph of a vertex weighted
graph on n vertices that is isomorphic to H can be found
in time

O(nbh/3c·ω∗+(h mod 3)) .

In asymptotically the same time complexity one can find a
maximum-weight subgraph (not necessarily induced) iso-
morphic to H .

5 Refinement by using fast rectangular matrix
multiplication

The algorithms and the bounds from Theorems 4.1 and
4.2 can be improved for h mod 3 6= 0 if we use fast
rectangular matrix multiplication algorithms (instead of fast
square matrix multiplication).

Let ω(1, σ, 1) denote the exponent of the multiplication
of an n × nσ matrix by an nσ × n matrix. In order to
improve Theorems 4.1 and 4.2 in terms of ω(1, σ, 1), we
need to generalize the procedure HTξ(G, I,K, J) to include
the case where the sizes of the intervals I , K and J are not
necessarily equal. We also relax the requirement that vertices
are numbered in non-decreasing weight order by requiring
solely that within each of the three input intervals I , K and
J , the numbering has this property.

For any σ, 1
2 ≤ σ ≤ 2, let HT

〈σ〉
ξ (G, I,K, J) denote

such an analogous generalized procedure, where the sizes of
I , K, and J (besides being powers of ξ) satisfy |I| = |J |
and |K| = |I|σ . The key difference in the body of HT

〈r〉
ξ

compared with that of HTξ is that since the matrices Apr

and Brq are now of sizes κ/ξ × (κ/ξ)σ and (κ/ξ)σ × κ/ξ,
respectively, we use the fast rectangular Boolean matrix
multiplication algorithm with the exponent ω(1, σ, 1) instead
of the fast square one with the exponent ω.

990

procedure HT
〈σ〉
ξ (G, I,K, J)

Input: A graph G = (V,E) with vertex weights (G is given as adjacency matrix)
vertices are numbered in non-decreasing weight order from 1 to n
subintervals I , K, and J of [1, . . . , n], of the length κ, κσ , and κ, respectively,

where κ, κσ , and (κ/ξ)σ are powers of ξ

Output: Maximum-weight triangle (i, j, k), if any, such that i ∈ I , j ∈ J , and k ∈ K

let i0, k0, and j0 be such that
I = [i0 + 1, i0 + κ], K = [k0 + 1, k0 + κσ], and J = [j0 + 1, j0 + κ]

if κ = 1 then
if (i0 + 1, j0 + 1, k0 + 1) is a (non-degenerate) triangle in G then return (i0 + 1, j0 + 1, k0 + 1);
stop

for all p = 1, . . . , ξ, r = 1, . . . , ξσ do
form an κ

ξ × (κ
ξ)σ Boolean matrix Apr such that for every 1 ≤ i′ ≤ κ

ξ and 1 ≤ k′ ≤ (κ
ξ)σ:

Apr[i′, k′] =

{
1 if (i0 + (p− 1)κ

ξ + i′, k0 + (r − 1)(κ
ξ)σ + k′) ∈ E

0 otherwise.

for all r = 1, . . . , ξσ , q = 1, . . . , ξ do
form an (κ

ξ)σ × κ
ξ Boolean matrix Brq such that for every 1 ≤ k′ ≤ (κ

ξ)σ and 1 ≤ j′ ≤ κ
ξ :

Brq[k′, j′] =

{
1 if (k0 + (r − 1)(κ

ξ)σ + k′, j0 + (q − 1)κ
ξ + j′) ∈ E

0 otherwise.

for all p, q = 1, . . . , ξ and r = 1, . . . , ξσ do
compute Cr

pq = Apr ×Brq (using the fast rectangular Boolean matrix multiplication algorithm)

T = ∅
for all p, q = 1, . . . , ξ and r = 1, . . . , ξσ do

for all i′, j′ = 1, . . . , κ
ξ do

if Cr
pq(i

′, j′) = 1 and (i0 + (p− 1)κ
ξ + i′, j0 + (q − 1)κ

ξ + j′) ∈ E then
T = T ∪ {(p, r, q)}

{Observation 1: (p, r, q) ∈ T iff there is a triangle (i, k, j) with i ∈ [i0 + (p− 1)κ
ξ + 1, i0 + pκ

ξ],
k ∈ [k0 + (r − 1)(κ

ξ)σ + 1, k0 + r(κ
ξ)σ], and j ∈ [j0 + (q − 1)κ

ξ + 1, j0 + q κ
ξ] }

for every (p, r, q) ∈ T do
if there is a (p′, r′, q′) ∈ T with p < p′, r < r′, q < q′ then

remove (p, r, q) from T

{Observation 2: (p, r, q) is removed from T iff there is a (p′, r′, q′) ∈ T with p < p′, r < r′, q < q′. }
for every (p, r, q) ∈ T do

call HT
〈σ〉
ξ (G, [i0 + (p−1)κ

ξ + 1, i0 + pκ
ξ], [k0 + (r−1)κσ

ξσ + 1, k0 + rκσ

ξσ], [j0 + (q−1)κ
ξ + 1, j0 + qκ

ξ])

return the maximum-weight triangle among the triangles returned by these calls

991

By performing an analysis of HT
〈σ〉
ξ analogous to that

of HTξ, we obtain the following lemma.

LEMMA 5.1. For any ε > 0, there is a sufficiently large ξ

such that the procedure HT
〈σ〉
ξ (I,K, J) returns a maximum-

weight triangle (i, j, k), if any, where i ∈ I , j ∈ J , and
k ∈ K, in time O(|I|ω(1,σ,1) + |I|2+ε + |I|1+σ+ε).

Proof. We proceed as in the proof of Lemma 2.3, but this
time to compute the matrices Cr

pq we use fast rectangular
matrix multiplication. Forming the Boolean matrices Apr

and Brq takes time O(ξ1+σ · κ
ξ · (κ

ξ)σ) = O(κ1+σ), com-
puting their products Cr

pq takes timeO(ξ2+σ ·(κ/ξ)ω(1,σ,1)),
and computing T takes time O(ξσ · κ2 + ξ4+2σ). Using the
arguments from Lemma 2.2, the final size of T is at most
ξ2+σ − (ξ−1)2(ξσ −1) = 2ξ1+σ + ξ2−2ξ− ξσ +1. Since
we consider ξ ≥ 1, this is always bounded from above by
2ξ1+σ + ξ2. Hence, we obtain the following recurrence for
the running time of HT

〈σ〉
ξ :

τ(κ) ≤ O(κ1+σ) +O(ξ2+σ · (κ/ξ)ω(1,σ,1)) +
O(ξσ · κ2 + ξ4+2σ) + (2ξ1+σ + ξ2) · τ(κ/ξ)

≤ O(ξ2+σ κω(1,σ,1) + ξ6) + (2ξ1+σ + ξ2) τ(κ/ξ) ,

with the base case τ(1) = O(1).
Since we have assumed that 1

2 ≤ σ ≤ 2 and since ξ is a
parameter that we can set as an arbitrary integer constant,
one can solve this recurrence analogously as in the proof
of Theorem 2.1 to conclude that the running time of the
algorithm is τ(κ) = O(κω(1,σ,1) + κ2+ε + κ1+σ+ε).

Indeed, the recurrence for τ(κ) can be simplified to
τ(κ) ≤ O(κω(1,σ,1))+ (2ξ1+σ + ξ2) · τ(κ/ξ). Furthermore,
by using the Master Theorem and by setting the parame-
ter ξ appropriately, we can bound τ(κ) from above by the
maximum of the bound coming from the first term, i.e., by
O(κω(1,σ,1)), and the bound coming from the other term, i.e.,
O(κlogξ(2ξ1+σ+ξ2)), where ξ is an arbitrary integer parame-
ter. Next , let us simplify the latter bound. If σ ≤ 1 then we
have O(κlogξ(2ξ1+σ+ξ2)) ≤ O(κlogξ(3ξ2)) = O(κ2+logξ 3);
otherwise, if σ > 1 then O(κlogξ(2ξ1+σ+ξ2)) ≤
O(κlogξ(3ξ1+σ)) = O(κ1+σ+logξ 3) holds. Therefore, for
any positive constant ε, by setting ξ to an appropriately large
constant we have O(κlogξ(2ξ1+σ+ξ2)) ≤ O(κ2+ε +κ1+σ+ε).
This yields the lemma. ut

Equipped with Lemma 5.1, we can improve the bound
form Theorem 4.1 for h 6= 3 f as follows.

Consider first the case when h = 3 f+2. Find all cliques
Kf and Kf+1 that are subgraphs of G. Next, form a new
graph G′′, where vertices are in one to one correspondence
with the found cliques and their weight equals the total
weight of the corresponding clique. Two vertices in G′′

are adjacent if the corresponding cliques induce a clique in

G′′ whose size equals the sum of their sizes. Next, number
the vertices of G′′ such that the vertices corresponding to
the Kf+1 cliques occur in a continuous interval in non-
decreasing weight order as well as those corresponding to the
Kf cliques occur in a continuous interval in non-decreasing
weight order.

Set I and J to the first of the aforementioned in-
tervals and K to the second one, and run the procedure
H

〈σ〉
ξ (I,K, J) for G′′ and σ = log|I| |K|, where 1

2 ≤ σ <

1.2 Observe that by Lemma 5.1 and by the definitions of G′′,
I , K and J , the triangle returned by H

〈σ〉
ξ (I,K, J), if any,

corresponds to a maximum-weight Kh in G. By Lemma 5.1,
monotonicity of the time taken by the multiplication of an
n× nσ matrix by an nσ × n matrix with respect to n and σ,
and straightforward calculations, H

〈σ〉
ξ (I,K, J) takes time

O((nf+1)ω(1, f
f+1 ,1) +(nf+1)2+ε) for sufficiently large con-

stant ξ.
The proof in case h = 3 f + 1 is analogous with

the exception that now I and J are set to the interval of
vertices corresponding to Kf cliques whereas K is set to
the interval of vertices corresponding to Kf+1 cliques. By
analogous arguments, we conclude that in this case we can
find a maximum-weight Kh in time O((nf)ω(1, f+1

f ,1) +
nf (2+ 1

f +ε)).
By combining our improvements with Theorem 4.1, we

obtain the following theorem.

THEOREM 5.1. Let h be a positive integer, and let f =
bh/3c. A maximum-weight clique Kh in a vertex weighted
graph on n vertices can be found in time Th(n), where

Th(n) =


O(nf ω∗) h mod 3 ≡ 0

O(nf ·ω(1, f+1
f ,1) + nf (2+ 1

f +ε)) h mod 3 ≡ 1

O(n(f+1)ω(1, f
f+1 ,1) + n(f+1)(2+ε)) h mod 3 ≡ 2

Similarly as in the previous section, the results from
Theorem 5.1 can be extended to finding a maximum-weight
fixed graph.

THEOREM 5.2. For any fixed integer h, let H be any graph
on h vertices. A maximum-weight induced subgraph of a
vertex weighted graph on n vertices that is isomorphic to
H can be found in time Th(n), where the function Th(n) is
defined in Theorem 5.1.

In asymptotically the same time complexity one can
find a maximum-weight subgraph (not necessarily induced)
isomorphic to H .

Coppersmith [3] and Huang and Pan [9] proved the
following facts.

2The simplifying assumption about the sizes of the intervals being the
power of ξ can be achieved by increasing the sizes by a multiplicative factor
less than ξ via adding dummy vertices.

992

FACT 5.1. [3, 9] Let ω = ω(1, 1, 1) < 2.376 and let
α = sup{0 ≤ r ≤ 1 : ω(1, r, 1) = 2+ o(1)} > 0.294. Then
ω(1, r, 1) ≤ β(r), where β(r) = 2 + o(1) for r ∈ [0, α] and
β(r) = 2 + ω−2

1−α (r − α) + o(1) for r ∈ [α, 1].

(Observe a useful fact, that if our goal is to compute
(f +1) ·ω(1, f

f+1 , 1), then the bounds in Fact 5.1 simplify it

to (f + 1) · ω(1, f
f+1 , 1) = (f + 1) · (2 + ω−2

1−α (f
f+1 − α) +

o(1)) = 2− (ω−2) α
1−α + f ·ω + o(f) < 1.844+ f ·ω + o(f).)

FACT 5.2. [9, Section 8.1] ω(1, 2, 1) < 3.334, and for
every r > 1, we have ω(1, r, 1) ≤ ω + r − 1.

(Section 8.1 in [9] contains some discussion about
stronger bounds for ω(1, r, 1) for other values r > 2.)

Therefore, for example, by using the bounds from Facts
5.1 and 5.2, we have (see also Table 2):

T3(n) = O(nω∗) < O(n2.376) ,

T4(n) = O(nω(1,2,1) + n3+ε) < O(n3.334) ,

T5(n) = O(n2·ω(1, 1
2 ,1) + n4+ε) < O(n4.220) ,

T6(n) = O(n2 ω∗) < O(n4.752) ,

T3f (n) = O(nf ω∗) < O(n2.376 f) ,

T3f+1(n) = O(nf ω∗+1) < O(n2.376 f+1) ,

T3f+2(n) = O(nf ω∗+1.844) < O(n2.376 f+1.844) .

Note that, for example, this bound subsumes the upper
bound of Theorem 4.1 for K4, K5, and for K3f+2 for every
f ≥ 1.

6 Final remarks
We have shown that finding a maximum-weight triangle is
asymptotically not more difficult than matrix multiplication.
Consequently, we could substantially improve prior upper
time-bounds on finding a maximum-weight clique of size
O(1) and a maximum-weight subgraph isomorphic to a fixed
graph.

A natural question arises whether or not our results for
vertex weighted cliques are asymptotically optimal.

We can generalize our method for finding a maximum-
weight triangle to include the problem of finding a
maximum-weight subgraph isomorphic to a fixed graph K
on k vertices in a vertex-weighted graph on n vertices. For
any ε > 0, we can solve the subgraph problem in time
O(nδ + nk−1+ε), where δ is the exponent of fastest algo-
rithm for determining the existence of a subgraph isomorphic
to K.

Another possible extension is the problem of detecting
a triangle, or more generally, a subgraph of given weight.

7 Acknowledgments
The authors are grateful to an unknown referee for useful
comments, in particular pointing the extension to include the
problem of detecting a triangle of given weight.

References

[1] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of
the ACM, 42: 844-856, 1995.

[2] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans. Group-
theoretic algorithms for matrix multiplication. Proceedings
of the 46th IEEE Symposium on Foundations of Computer
Science (FOCS’05), pp. 379–388, 2005.

[3] D. Coppersmith. Rectangular matrix multiplication revisited.
Journal of Symbolic Computation, 13: 42–49, 1997.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progression. Journal of Symbolic Computation, 9:
251–290, 1990.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. 2nd edition, McGraw-Hill Book
Company, Boston, MA, 2001.

[6] A. Czumaj and A. Lingas. Improved algorithms for the all-
pairs lowest common ancestor problem in directed acyclic
graphs. Manuscript, July 2005.

[7] A. Czumaj, M. Kowaluk, and A. Lingas. Faster algorithms
for finding lowest common ancestors in directed acyclic
graphs. To appear in Theoretical Computer Science, spe-
cial issue devoted to selected papers from the 32nd Inter-
national Colloquium on Automata, Languages and Program-
ming (ICALP’05). This paper is a result of merging [6] and
[11].

[8] R. P. Dilworth. A decomposition theorem for partially or-
dered sets. Annals of Mathematics 51(1):161–166, January
1950.

[9] X. Huang and V. Y. Pan. Fast rectangular matrix multiplica-
tions and applications. Journal of Complexity, 14: 257–299,
1998.

[10] A. Itai and M. Rodeh. Finding a minimum circuit in a graph.
SIAM Journal on Computing, 7(4): 413–423, 1978.

[11] M. Kowaluk and A. Lingas. LCA queries in directed acyclic
graphs. Proceedings of the 32nd International Colloquium
on Automata, Languages and Programming (ICALP’05), pp.
241–248, 2005.

[12] V. Vassilevska and R. Williams. Finding a maximum weight
triangle in n3−δ time, with applications. Proceedings of
the 38th Annual ACM Symposium on Theory of Computing
(STOC’06), pp. 225–231, 2006.

[13] V. Vassilevska, R. Williams, R. Yuster. Finding the smallest
H-subgraph in real weighted graphs and related problems.
Proceedings of the 33rd International Colloquium on Au-
tomata, Languages and Programming (ICALP’06), pp. 262–
273, 2006.

993

Problem Source Running-time Numerical runtime

maximum-weight fixed [13] O(nω+1) O(n3.376)

subgraph with 4 vertices this paper O(nω(1,2,1) + n3+ε) O(n3.334)

maximum-weight fixed [13] O(nω+2) O(n4.376)

subgraph with 5 vertices this paper O(n2·ω(1, 1
2 ,1) + n4+ε) O(n4.220)

maximum-weight fixed [13] O(n4+2/(4−ω)) O(n5.232)

subgraph with 6 vertices this paper O(n2 ω∗) O(n4.752)

maximum-weight fixed [13] O(n4+3/(4−ω)) O(n5.848)

subgraph with 7 vertices this paper O(n2 ω(1, 3
2 ,1) + n5+ε) O(n5.752)

maximum-weight fixed [13] O(n2 ω+2 + n4+ε) O(n6.752)

subgraph with 8 vertices this paper O(n3 ω(1, 2
3 ,1) + n6+ε) O(n6.596)

maximum-weight fixed [13] O(n2 ω+3) O(n7.752)

subgraph with 9 vertices this paper O(n3 ω∗) O(n7.128)

maximum-weight fixed [12] O(n
(3+ω) f

2); randomized O(n2.688 f)

subgraph with 3f vertices [13] O(n2.575·f)

this paper O(nω∗·f) O(n2.376·f)

maximum-weight fixed

subgraph with 3f + 1 vertices this paper O(nf ω(1, f+1
f ,1) + nf (2+ 1

f +ε)) O(n2.376·f+1)

maximum-weight fixed

subgraph with 3f + 2 vertices this paper O(n(f+1) ω(1, f
f+1 ,1) + n(f+1) (2+ε)) O(n2.376·f+1.844)

Table 2: Summary of results for finding maximum-weight cliques of size greater than 3 and fixed induced subgraphs. In all
results, n denotes the number of vertices, m number of edges, B is the number of bits of precision of the input, ω < 2.376 is
the exponent of the fastest matrix multiplication algorithm [4], ω∗ = max{ω, 2+ ε}, where ε can be chosen as an arbitrarily
small positive constant (hence, ω∗ < 2.376), and ω(1, r, 1) is the exponent of the multiplication of an n× nr matrix by an
nr × n matrix [3, 9].

994

	Introduction
	Finding a maximum-weight triangle in O(n*) time
	Improved bounds for sparse graphs
	Finding max-weight clique Kh and H-subgraphs
	Refinement by using fast rectangular matrix multiplication
	Final remarks
	Acknowledgments

