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Abstract

An algorithm for finding a maximum clique in an arbitrary
graph is described. The algorithm has a worst-case time bound
of k(l.286)n for some constant k, where h is the number of
vertices in the graph. ‘Within a fixed time, the algorithm can
“analyze a graph with 2 3/4 as many vertices as the largest
graph which the obvious algorithm (examining all subsets of

vertices) can analyze.
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Introduction

* Let G = (VA E) be a graph with | V| = n vertices. Consider
the problem of discovering a clique (a set of vertices which
determlne a complete subgraph) of maximum size in G. Cook (1)
has shown that if the clique problem has an algorithm with a
time bound polynomial in n, then any algorithmically solvable
problem has an algorithm with a time bound polynoﬁial in the
size of the problem data. Thus any improvement over the obv1ous
clique-finding algorithm is an interesting forward step.

Suppose we examine every subset S_éV to see if S determines
é clique, and then we choose the largest clique found. This is
the obvious algorithm. Since vhas P (V) = 2" subsets, the
algorithm-has a time bound of 0(n2™). However, the algorithm
may be improved. .

A Fast Algorithm for Finding a Maximum Clique

1f we do not examine all subsets of V but only a sufficiently
large number of them, we may get a faster method for determining
a maximum clique. The basic idea is partibn Vv into two sets,

s andv -s. LetG and G be the subgraphs of G determined

y-S
by these two vertex sets. Then any clique in G determines a

clique in Gg and a clique in Gy-g® Further, any clique C in Gg



may be combined with any clique in GA(C)-—:S to give a clique
in G, if A(C) is the set of vertices adjacent to one or more
vertices in C. By finding each clique in Gg, solving a corresponding
clique problem in Gy-gr and combining all these solutions, we
may find a maximum clique in G. '
A lemma will state this result more precisely. If S CV,
let GAS be the .subgraph of G with vertex set S. Let A(s) be _ |
the set of vertices adjacent to one or more vertices in S.

Finally, let |]|G || be the size of a maximum clique in G.

Lemma l: Let G = (V , E) be a graph. Let S € V. Then:

- (1) ] 6 || = max ﬁcl + || Ga(C) -5 H}
_ C a clique : : .
in GS

Proof: If X is a clique in G, XNS is a clique in Gg, and

Xn (v-s) is a cl;que’:m GA(X()S)E-’-S{ Expression (I) is then

immediate.

In fact, the maximum in (I) need not be taken over all cliques
in Gg but only over a subset of them. Let s € G and let X,Y be

. 1 . < .
cliques in Gg. Suppose that | Gy U (A(Y)-5) Il <11 Gy U (A(X) -S) ||
Then X is said to dominate Y. A set of cliques o C #(s) is

said to be dominant in G. if every cligue in G, is dominated

S S

by at least one clique in € . Dominance is a transitive relation.
A clique X may be shown to dominate a clique Y by giving a

simple method of transforming any c%l.lque in Gy (A (Y)-8) into -a

clique .of equal size in GxU (A (X)-S)* For instance, suppose .

that if C 1is a clique in Gg,,/n svy_oy» then



(CA(A(X) - B))V X is always a clique as large as C. Then X

dominates Y.
Lemma 2: Let s Cv, Let C be a dominant set of cliques in GS'

Then:

[

(11) Il 6 || = max { |c| + || GA(C)—stl }
ceC

proof: Let Y be a clique in Gg, Then some clique X e C dominates
Y in Gg . If Z is a clique 1n GY‘J(A(Y)—S)' there is a clique at
least as big as 2z in Gy, (a(x)-g)° Thu; the maximum in (I)

need only be taken over the dominant set of cliquesff .

Thus to find a maximum clique in G, we carefully choose a
subset s of vertices, and we soive one smaller clique problem
for each clique in a dominant set of cliques for GS. The. ‘
procedure is applied recursively to solve the subproblems.
Thé set S depends on the nature of G; thus the algorithm has
several.cases. (Ih one case, the cligque problem is solved
directly.) Eprsition of the cases is tedious; we shall skip
details in a. few places.

The entire algorithm has a time pound t(n) = kb" for some constant
b and k. We shall calculate b separately for each case; the |

maximum of these values will give a bound for the complete

algorithm.



The Possible Subproblems

The function ti(n) is a time bound for the algorithm if

case (i) always applies.
(1) If G contains a vertex v of degree n-1 or n-2,
let S = {vIU(V-A(v)). Clique {v} dominates all cliques in

G Thus ||G]|] =1 + ||GV_S|| and only one subproblem must

S.
be solved. If this case applies, t;(n) = t;(n-1) + p(n) for

some polynomial p(n).

(2) Suppose G contains only vertices of degree n-3. Then
G, the complement graph of G, consists exclusively of cycles.
We may easily find a maximum set of independent (pairwise non-
adjacent) vertices in G. Such a set is a maximum clique in

G. If this case applies, tz(n) = p(n) for some polynomial

p(n).

(3) If G contains a vertex v of degree n-3 and a non-
adjacent vertex of degree n-4 or less, let

s = {vIU(V - A({v]})) = {vy,w,wy} .
If' (wi,wz) ¢ E, there is one subproblem of size n-3. If
(wl,wz) € E, there are two subproblems, one of size n-3
and one of size [A({w;,w,}) - S| < n-5. In the worst case

t3(n) = t3(n—3) + t(n-5) + p(n) for some polynomial p(n),

and t3(n) = (1.17)n, ignoring constants and polynomial terms.



(4) If G contains a vertex v of degree n-4, - let
s = {vlU(Vv - A(Vv)) = {v,wl,wz,w3}. Let A, = A({wi}) - S,

for i =1,2,3. The subproblems depend on the subgraph Gg

and the Aif

(42) Gg = «.e0 llel] = 1 + ]IGV_SI . There is one
subproblem of size n-4. t4a(n) = t4a(n—4) + p(n) for
some polynomial p(n). ' .
" vV oW, W, Wa
(4b) Gg = =+ T T o 1f |A20A3| = n-5, there
js one subproblem of size n-5. If lAznA3| < n-6, there
are two subproblems, one of size n-4 and one of size
|A90A3l- In this case t (n) = t,y (n-4) + t,y, (n=6) + p(n)
for some polynomial p(n), and ‘t4b(n-4) = (1,15)n, ignor-
ing constants and polynomial terms.
v W, W, W :
. 1l 2 3 : =
(4c) Gg = =+ T =T . 1f IAlnA2|_<_|A2ﬂA3[-n-6,
there are two subproblems,'one of size n-4 and one of
size n-6. In this case t4c(n) = t4c(n—4) + t4c(n-6) + p(n)
_ n
and t4c(n) = (lf15) .
if IAlnAzl < |A20A3| < n-7, there are three sub-
problems. In this case t,(n-4) + 2t4c(n—7)+-p(n) and

_ n
t4c(n) = (1.22) .

(44) v, There are several cases, depending
' =V
G. = upon IAlﬂAznA3|.
- ,
3 ,
If IAlnAznA3l > n-7, there are two subproblems, one of
size n-4 and onc of size n-7. t4d(n) = t4d(n-4) + t4d(n-7)

+ p(n) for some polynomiai p(n), and t(n) = (1.14)n.



If IAlnA20A3| = n-8, there are at most three sub-

problems) of sizes n-4, n-6, and n-8.
t4d(n) = t4d(n~4) + t4d(n-6) + t4d(n-8) + p(n),

_ n
and t4d(n) = (li215) .
If |AfﬂAzﬂA3| = n-9, there are at most three sub-

‘problems, of sizes n-4, n-6, and n-9. This case is better

than the one just above.

If IAlnA20A3| > n-10, there may be five subproblems,
one of size n-4, three of size n-8, and one of size n-10.
In this case t4d(n) = t4d(n—4) + 3t4d(n—8) + t4d(nf10) + p(n)

for some polynomial p(n), and t4d(n) = (1.26)n.

(5 If G contains a vertex v of degree n-6, let s = {v}.

There are two subproblems, one of size n-1 and one of size n-6.

tg(n) = tg(n-1) + tg(n-6) + p(n) tg(n) = (1.286)"

(6) If G contains a vertex of degree. n-5, let
s = {v} U (Vv - A(V)) ='{v,wl,w2,w3,w4} .
Let Ai = A(wi) - s, for i=1,2,3,4. The subproblems depend

upon the subgraph GS and the Ai .
v 'wl
(6a) G, = =* ° G .

is better than some set of subproblems which arises in case (4).

v w w w w :

(6b) Gg =
two subproblems, of sizes n-5 and n-7 . 1If |A2nA3| < n-8

but lAlﬂA2| = n-7, there may be three subproblems, one of size

Any possible set of subproblems



/.

n-5 and two of size. n-7 . In this case
t6b(n) = th(n 5) + 2t6b(n 7) + p(n) and t6b(n) (1.21) .

if lAlﬂAzl,lAzﬂA3],|A3nA4| < n-8, there may be four sub-
problems. In this case, t6b(n) = tsb(n-S) + 3t6b(n-8) + p(n),

and t (n) = (1.22)".

| VoW W V3 -
(6c) Gg = S—— if lAlnAzl.; n-8, there may
w
4

be at most four subproblems. A recursive bound on t(n) in all

cases is: ‘ :

t6c(n) = tec(n-S) + t6c(n—7) + tec(n~8) + tbc(n_lo) + p(n), and
—- n

tec(n) = (1.21)",

If |AéﬂA3nA4| > n-9, there are at most three subproblems,
" and the bound above works in all cases.

If |AaNajna

3 4|

and the bound above works in all cases.

= n-10, there are at most four subproblems,

Suppose lAzﬂA3ﬂA4[ = n-11. 1In the worst case there are five

subproblems. A Venn diagram illustrates the situation.

o~ o~

t6c(n) = tsc(n-S) + 3tsc(n—9) + tsc(n—112+ p(n)
_ n
tec(p) = (1.22)
Suppose ]AznA3nA4| = n-12. In the worst case there are six

subproblems. A Venn diagram illustrates the situation.

t6c(n—5) + 2t6c(n-9) +2t6c(n~10) + th(n—lZ)

r'-
(<))
Q
g
I

(1.24)"

rr
(+2]
6
—
2
u

+p(r



. , v oW, . .
(6a) Gg = - Wy If IAlnA4| = n-7, there

: w4 .
are at most three subproblems. t6d(n-5) + 2t6d(n-7) + p(n),
_ n
and t6d(n) = (1.20)".
e IE lAlnAzl < IA20A3| < IA3nA4| < IA4nAi| < n-8, there may
b i h) =
| e five subproblems. tGd(n) = t6d(n-5) + 4t6d(n—8) + p(n),
and tgy(n) = (1.25)", |
v, <
- e v w : :
(6¢) GS _ . 1 Wy 1f |A2nA4| = n-8, there are
Vg

at most four subproblems, of sizeé n-5, n-8, n-10, n-10.

If IAlnA2] = n-8, there are at most four subproblems, of sizes’

n-s, n-s' n-8, n-lO. ) ’ N

If IAlnAznAél = n-9, there are at most two subproblems.
if lAr“A2”A4| = n-10, there are at most five subproblems.

tGe(n) = t6e(n-5) +2tse(n-9) + tGe(n-IO) + tﬁe(n-ll) + p(n).

_ n
tge(n) = (1.22)
If [AlnAznA4| =|A2ﬂA3nA4lw= n-11, there are at most seven
subproblems. t6€(n) = tg (n=5) + 4tc (n-9) + 2t (n-11) + p(n).
_ n
_ t6e(n) = (1.26) .
If |apa,nn,| = n-ll, |a,oa3nA,| < n-12, there are at most

seven.subproblems. The bound above applies in this case.

If |A;nA,nn,| < [AjnAgnA,] < n-12, there are at most eight
subproblems. A Venn diagram illustrates the situation, which

is symmetric for Wie Wor Wy, and for Wor Wy, Wy




tee(n) = tg (n-5) + 5tc (n-10) + 2t (n-12) *+ F(n).

2
n-12
NN Ay te (n) = (1.26)"
v, |

: v w

(6£) G = °* 1 Y3 The situation is now really complicated.
S - .

‘ _ w4

cases (6f)-(6k) handle tﬁe possibilities. Suppose some vertex
Ve is non-adjacent to Wy, Wy, W3 and Wy Then let |

S = {v, Wys Wys Wgs Wyu ws}. v veu ¥y

We now use the fact that GS = e %{EES{EE};WB

since case (5) does not | o W,

apply, all vertices are of degree n-5. Thus clique {v, wsj
dominates all cliques in_ GS except those containing three or

more vertices.

1f IAfﬁAznA3nA4| > n-13, there can be at most five sub-
problems. Case (4d) has a worse bound than this case.

If IAlﬂAénA3nA4l < n-14, there can be six subproblems.
In the worst case, tsf(n) = t6f(n-6) + 4t6f(n—12) + th(nf14) + pl
Several cases are worse than this one.
(6g) No vertéx except Vv is non-adjacent to wi, Vz, Way and Wy
and lAlnA2| = n-8. 1If IAlnA3nA4l > n-11, there are at most
four subproblcms, and t6g(n) = tsg(n—S) + tGg(n-8) + tsg(n-Q) +

tég(n-ll) + p(n). Case (6d) above is worse.



10.

If IAlnA3hA4| < n-12, there may be six subproblems, and
tGg(n) = teg(n-S) +tsg(n-9) + 3t6g(nf10) + tsg(n—lz) + p(n).

Case (6e) above is worse.

(6h) |A10A2| = n-9. In this case cliques {wl,w3} and {wz,w3}

are dominated by {wl,wz,w3}. Similarly {wl,w4} and {wz,w4}

are dominated by {wl,wz,w4}. There are at most eight subproblems,
and t6h(n) = tGh(n-S) + 2t6h(n-9) + 4t6h(n—ll) + tGh(n-lB) + p(n).
tGh(n) = (1.25)". All cases with fewer than eight subproblems

are better than case (Ge).

(6i) We may now assume that ]AinAj] < n-10 for all i # j.
Suppose |AInA2nA3[ > n-11. Then there are at most nine sub-
problems. t6i(n) = tGi(n-S) + 4t6i(n-10) +3t6i(n-12) + tsi(n-14)

+pn). tg(n) = (1.26)7.

If lAlnAznABnA4| > n-13, then there are at most eight sub-
problems. tGi(n) = tGi(n-S) + 6t6i(n-10)'+t6i(n-12) + p(n).

_ n
tGi(?) = (1.26) .

(63) IAlnAéﬂAénA4l = n-14. Consider the Venn diagram below.

» ) : “\\ This situation is impossible, since
/r; \\ ~ every vertex in V-S is adjacent to
— - Al Wyr Wys Wy O W,. Thus at least one
n-14 '2 ﬁ\) 3-cligue in S in non-dominant, and
_ "/ at least one 2-cligue as well. 1If
2 A, only one of the 3-cliques is non-
‘ 1 ‘dominant,'the worst situation is:
123 . - |




. (" \ ' “\\
o / , \\ £y (M) = tgs(n=5) - 4t (n=10)

| B 1 . + 3t6j(n-12) + tgy (n=14)
1 2 n-14 2 .
' 1 ‘. ’(} + p(n).

. 1 . A .
t\\n ~,>) ’ = n
‘ ’ t6j(n) = (1.25)

If two of the 3-cliques are non-dominanat, the worst situation

is:
e I ‘
) ! R 2 ;\\ : . t .(n) = t..(n=-5) + 3t,..(n-10)
Ry 63 63 63
' : » + 2t .(n-12) + t..(n-14)
\‘(r—z n-14 1] 1f\}a(/ 63 63
. . o ' + p(n), which gives a better
: 1 1 . A,
\ . S : pound than above.
. ° - A .
1 j 3
S\
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(6k) |A; A, A3 By | < n-15. The worst case is:

~

an
(IR

NIE
L

te, (n) = tg (n=5) + 3ty (n-10)

6k {

+ 3t6k(n—ll) + tsk(n—lZ)

+ 3t6k(n—13)

+ tGk(n-ls) + p(n).

L 3 . tGk(ni = (1.28)"

These are the only possible cases we need to consider. What-
ever the form of G , the cligue problem must be reducible in one
of the ways described above. By applying the reductions recursively,
we may find a maximum clique in G . The cases may look complicated,
but the algorithm can be implemented as a stralghtforward back-
tracking procedure; deciding between cases does not require too deep
a decision tree, Or too much extra work. (The polynomial p(n) < kn2

in all cases.)

A Time Bound

Let t(n) be the time required to find a maximal clique in a

graph with n vertices using the algorithm outlined above. Max ti(n)
, i
gives an upper pound for t(n). The maximum occurs in case (5). Thus

t(n)‘i_(l.286)n, ignoring polynomial‘terms; This bound is asymptoti-



o)

Sy
b, o

T
LAY i

13.

cally correct; if we multiply by 2@ constant the pound is correct for
all n. Thus for some k,‘t(n) < k(1.286)n. since

Jog., (1.286) = 364, t(n) < 23647,
2 <

Wwithin a fixed time,.the re-
cursive algorithm can handle a graph with about 2 3/4 as many Ver-

tices as the obvious algorithm can handle.

Conclusions

A recursive algorithm'for finding a maximal clique in a graph
has been described. The algérithm has a worst-case time bound of
k(1.286)n for sbme constant k. if n is.the number of vertices
in the graph. This algorithﬁ is a substantial improvement over

the obvious algorithm. Tt is not clear whether the algorithm can

pbe improved much more, OY whether there is a non—exponential time

algorithm for finding a maximal clique.
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