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Introduction

Given a graph G = (V , E) a matching is a set of vertex-disjoint
edges M ⊆ E .

The endpoints of edges in M are said to be matched, others
are unmatched.

Maximum cardinality matching is a fundamental problem in
combinatorial optimization.
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Previous Work

Matchings in bipartite graphs can be found using flows. We are
interested in general graphs.

Algorithms timeline

Berge [1957] - exponential
Edmonds [1965]- first poly-time algorithm O(n4)

Hopcroft and Karp [1971] - O(m
√

n)

Micali and Vazirani [1980] - O(m
√

n)
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Random Graphs

The random graph Gn,m is chosen uniformly at random from all
graphs with n vertices and m edges.

Gδ≥2
n,m is chosen uniformly at random from all graphs with n

vertices, m edges and minimum degree at least 2.

Gn,p is a graph on n vertices where each edge appears
independently with probability p.
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Previous Work

For random graphs, we have

Karp and Sipser [1981] - O(n) time, size of matching o(n)
away from optimum

Motwani [1994] - O(n log n) for p > log n
n

Aronson, Frieze and Pittel [1998] - Karp-Sipser is Õ(n1/5)
away from optimum
Bast et al. [2005] - O(n log n) for sparse graphs, i.e. p = c

n
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Our Work

Theorem
The maximum cardinality matching can be found in O(n)
expected time in Gn,m where m = c1n.
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Augmenting Paths

An augmenting path is a path between two unmatched vertices
in a graph s.t. every other edge on the path is a matching edge.
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An augmenting path is a path between two unmatched vertices
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Augmenting Trees

Augmenting trees are rooted at an unmatched vertex, all leaves
are connected with a matching edge and all paths from leaves
to the root alternate between matching and nonmatching
edges.

u

Tu
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Karp-Sipser

Simple heuristic. Given a graph G
If there are vertices of degree 1, pick one at random and
include it in the matching
Otherwise pick an edge at random, include it in the
matching
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Karp-Sipser

We split the execution of Karp-Sipser into two phases.

We start in phase 1 and go into phase 2 when there are no
vertices of degree 1 for the first time.

The Karp-Sipser algorithm makes no mistakes in phase 1.
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Previous work on KS

Karp and Sipser (1981): KS on Gn,cn/2:
If c ≤ e then whp at the end of Phase 1, G has only o(n)
vertices
If c > e then whp Phase 2 leaves o(n) vertices unmatched

Aronson, Frieze and Pittel (1998):
If c < e then whp at the end of Phase 1, G consists of
disjoint cycles
If c > e then whp Phase 2 leaves Õ(n1/5) vertices
unmatched

Frieze and Pittel (2004):
If c > e then whp the graph at the end of Phase 2 has a perfect
matching modulo isolated odd cycles.
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Linear expected time algorithm:
Run KS to find initial matching. Let G be the graph at the
end of Phase 2
For every two unmatched vertices in G,
find an augmenting path by growing augmenting trees from
both vertices.

Why should this work?

KS finds a matching in G with Õ(n.2)
unmatched vertices
G has a perfect matching modulo
isolated odd cycles
Augmenting trees grow by a constant
factor per level
Once trees are of size

√
n log n, they

should connect across

yielding an
augmenting path.
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unmatched vertices
G has a perfect matching modulo
isolated odd cycles

Augmenting trees grow by a constant
factor per level
Once trees are of size

√
n log n, they

should connect across

yielding an
augmenting path.

u v

Prasad Chebolu Finding a Maximum Matching in a Sparse Random Graph in O(n) Expected Time



Linear expected time algorithm:
Run KS to find initial matching. Let G be the graph at the
end of Phase 2
For every two unmatched vertices in G,
find an augmenting path by growing augmenting trees from
both vertices.

Why should this work?

KS finds a matching in G with Õ(n.2)
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What could go wrong?

Trees might not grow to a large size

Whp trees larger than Ω
(

log n
c

)
and smaller than n0.99will

expand by a constant factor
Trees smaller than O

(
log n
log c

)
will grow, unless there are two

short cycles connected by a short path
Whp Gn,m has no such cycles

Large trees might not have edges connecting them

This is very unlikely if we have randomness
How much randomness do we have?
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How much randomness is there?

Initially G is random and then we run KS it sees the entire
graph.
Is there any randomness left?

We condition on the output of KS and designate certain edges
as witnesses.

All other edges will not affect the course of the algorithm. They
are our source of randomness.
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Analysis - KS conditioning

We have two sources of randomness, in the input and in the
algorithm.

We can get around this by assuming the edges come with an
ordering and the algorithm always picks the first available edge.
From now we assume the input is an ordered set of edges.

When vertices are removed from the graph they either have
degree ≥ 2, 1 or 0. We refer to them as regular, pendant and
isolated.
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From now we assume the input is an ordered set of edges.

When vertices are removed from the graph they either have
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Witness edges

If KS removes a regular vertex, the first
edge incident to it becomes its regular
witness edge.
It ensures this vertex had degree at least 2

If KS removes an edge such that one of its
endpoints becomes pendant, this edge
becomes a pendant witness edge.
It ensures this vertex had degree 2 before
that time

If KS removes an edge such that one of its
endpoints becomes isolated, this edge is an
isolated witness edge. It ensures this vertex
was not isolated before that time

3

7

10

u

u
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Analysis - KS conditioning
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Conditioning on the matching and witness edges we view G as
an ordered list of boxes containing edges, of which some have

been revealed.

x

y

z7

2

3

5
a

b

1

. . .

1 2 3 4 5 6 7 8
M W ?M M W? ?

a can go into boxes 4,6 and 8
b cannot go into boxes 4 or 6, since edge 7 would not be a
witness edge for x , but b can go into box 8
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We can put an edge between a regular vertex x and any vertex
y as long as

the edge is placed in a box after the witness edge of x
y is removed from the graph after x is removed
y has degree at least 2 when x is removed

Some edges can appear in more boxes than others.

If an edge can go into an open box, it can go into any box that
comes after it.

Whether an edge can go into a box or not depends only on the
matching and witness edges.
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This allows us to sample the random graph, conditioned on the
output of KS

For each open box, create a list of potential edges
Starting with the first box, pick an edge from the list at
random
Remove the edge chosen from all the remaining lists

. . .

1 2 3 4 5 6 7 8
M W ?M M W? ?
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What could go wrong?

Trees might not grow to a large size

Whp trees larger than Ω
(

log n
c

)
and smaller than n0.99will

expand by a constant factor
Trees smaller than O

(
log n
log c

)
will grow, unless there are two

short cycles connected by a short path
Whp Gn,m has no such cycles

Large trees might not have edges connecting them

This is very unlikely if we have randomness
How much randomness do we have?
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≈ n.59 ≈ n.59

Start with large augmenting trees

Good edges can help us connect across
Such pairs of edges ensure the algorithm finds an augmenting
path after two rounds
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≈ n.59 ≈ n.59

Edges removed before n.83

both endpoints regular
both witnesses before m/2

vertices removed
after n.83

All such edges
can go into any
box after m/2

Start with large augmenting trees
Good edges can help us connect across
Such pairs of edges ensure the algorithm finds an augmenting
path after two rounds
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≈ n.59 ≈ n.59

Edges removed before n.83

both endpoints regular
both witnesses before m/2

vertices removed
after n.83

We have skipped a few technical details here.
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Since the trees are at most O(n.79) in size

and we repeat this
Õ(n.2) times this implies a o(n) running time for finding
augmenting paths.

The running time is dominated by KS which runs in linear time.
Actually we have to be more careful in conserving randomness

when we repeat this Õ(n.2) times. Consecutive iterations are
not independent.

Still, this can be shown to take no more than o(n) time.
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Õ(n.2) times this implies a o(n) running time for finding
augmenting paths.

The running time is dominated by KS which runs in linear time.
Actually we have to be more careful in conserving randomness
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Thank you
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