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Finding a Path of Superlogarithmi
 Length

Andreas Björklund and Thore Husfeldt

Department of Computer S
ien
e, Lund University

Abstra
t. We 
onsider the problem of �nding a long, simple path in an
undire
ted graph. We present a polynomial-time algorithm that �nds
a path of length Ω

�
(log L/ log log L)2

�
, where L denotes the length of

the longest simple path in the graph. This establishes the performan
e
ratio O

�
|V |(log log |V |/ log |V |)2

�
for the Longest Path problem, where

V denotes the graph's verti
es.

1 Introdu
tion

Given an unweighted, undire
ted graph G = (V, E) the longest path problem is to
�nd the longest sequen
e of distin
t verti
es v1 · · · vk su
h that vivi+1 ∈ E. This
is a 
lassi
al NP-hard problem (number ND29 in Garey and Johnson [5℄) with
a 
onsiderable body of resear
h devoted to it, yet its approximability remains
elusive:

�For most 
anoni
al NP-hard problems, either dramati
ally improved ap-
proximation algorithms have been devised, or strong negative results have
been established, leading to a substantially improved understanding of the
approximability of these problems. However, there is one problem whi
h has
resisted all attempts at devising either positive or negative results � longest
paths and 
y
les in undire
ted graphs. Essentially, there is no known algo-
rithm whi
h guarantees approximation ratio better than |V |/polylog|V | and
there are no hardness of approximation results that explain this situation.� [4℄

Indeed, the quoted ratio has been obtained only for spe
ial 
lasses of graphs
(for example, Hamiltonian graphs), while in the general 
ase the best known
ratio prior to the present paper was of order |V |/ log |V |.

We present a polynomial-time algorithm for the general 
ase that �nds a
path of length Ω

(

(log L/ log log L)2
)

in a graph with longest path length L; the
best previous bound was Ω(log L). This 
orresponds to a performan
e ratio of
order

O

(

|V |
(

log log |V |
)2

log2 |V |

)

. (1)

For bounded degree graphs we improve the ratio to O
(

|V | log log |V |/ log2 |V |
)

.
For three-
onne
ted graphs we establish the perorman
e ratio (1) for the longest

y
le problem.
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Previous work

The �rst approximation algorithms for longest path are due to Monien [7℄ and
Bodlaender [2℄, both �nding a path of length Ω(log L/ log log L). Neither of these
algorithms 
an be used to �nd a log |V | path if it exists, but Papadimitriou
and Yannakakis 
onje
tured that su
h a polynomial-time algorithm exists [8℄.
This was 
on�rmed by Alon, Yuster, and Zwi
k [1℄, introdu
ing the important
method of 
olour-
oding. Espe
ially, this algorithm �nds an Ω(log L)-path and

orresponds to a performan
e ratio of

O

(

|V |

log |V |

)

,

whi
h is the best ratio known prior to the present paper.
The problem has re
eived additional study for restri
ted 
lasses of graphs,

where the � log |V |-barrier� has been broken by Vishwanathan [9℄. His algorithm
a
hieves the same performan
e ratio (1) as ours, but works only for Hamiltonian
graphs. In sparse Hamiltonian graphs, Feder, Motwani, and Subi [4℄ �nd even
longer paths.

The hardness results for this problem are mainly due to Karger, Motwani,
and Ramkumar [6℄: The longest path problem does not belong to APX and


annot be approximated within 2log1−ǫ |V | unless NP ⊆ DTIME
(

2O(log1/ǫ n)
)

for
any ǫ > 0.

2 Preliminaries

In the remainder, we 
onsider a 
onne
ted graph G = (V, E) with n = |V |
verti
es and e = |E| edges. We write G[W ] for the graph indu
ed by the vertex
set W .

Paths and 
y
les

The length of a path and a 
y
le is its number of edges. The length of a 
y
le C
is denoted l(C). A k-
y
le is a 
y
le of length k, a k+-
y
le is a 
y
le of length
k or larger. A k-path and k+-path is de�ned similarly. For verti
es x and y, an
xy-path is a (simple) path from x to y, and if P is a path 
ontaining u and v
we write P [u, v] for the subpath from u to v. We let LG(v) denote the length
of the longest path from a vertex v in the graph G, and sometimes abbreviate
LW (v) = LG[W ](v). The path length of G is maxv∈V LG(v).

We need the following result, Theorem 5.3(i) of [2℄:

Theorem 1 (Bodlaender) Given a graph, two of its verti
es s, t, and an integer
k, one 
an �nd a k+-path from s to t (if it exists) in time O

(

(2k)!22kn + e
)

.

Corollary 1 A k+-
y
le through a given vertex 
an be found in time t(k) =
O

(

((2k)!22kn + e)n
)

, if it exists.



Proof. Let s be the given vertex. For all neighbours t of s apply the Theorem
on the graph with the edge st removed. ⊓⊔

We also need the following easy lemma.

Lemma 1 If a 
onne
ted graph 
ontains a path of length r then every vertex is
an endpoint of a path of length at least 1

2r.

Proof. Given verti
es u, v ∈ V let d(u, v) denote the length of the shortest path
between u and v.

Let P = p0 · · · pr be a path and let v be a vertex. Find i minimising d(pi, v).
By minimality there is a path Q from v to pi that 
ontains no other verti
es
from P . Now either QP [pi, pr] or QP [pi, p0] has length at least 1

2r. ⊓⊔

The next lemma is 
entral to our 
onstru
tion: Assume that a vertex v orig-
inates a long path P and v lies on a 
y
le C; then the removal of C de
omposes
G into 
onne
ted 
omponents, one of whi
h must 
ontain a large part of P .

Lemma 2 Assume that a 
onne
ted graph G 
ontains a simple path P of length
LG(v) > 1 originating in vertex v. There exists a 
onne
ted 
omponent G[W ] of
G[V − v] su
h that the following holds.

1. If G[W + v] 
ontains no k+-
y
le through v then every neighbour u ∈ W of
v is the endpoint of a path of length

LW (u) ≥ LG(v) − k.

2. If C is a 
y
le in G[W +v] through v of length l(C) < LG[W+v](v) then there
exists a 
onne
ted 
omponent H of G[W −C] that 
ontains a neighbour u of
C − v in G[W + v]. Moreover, every su
h neighbour u is the endpoint of a
path in H of length

LH(u) ≥
LG(v)

2l(C)
− 1.

Proof. Let r = LG(v) and P = p0 · · · pr, where p0 = v. Note that P [p1, pr] lies
entirely in one of the 
omponents G[W ] of G[V − v].

First 
onsider statement 1. Let u ∈ W be a neighbour of v. Sin
e G[W ] is

onne
ted, there exists a path Q from u to some vertex of P . Consider su
h a
path. The �rst vertex pi of P en
ountered on Q must have i < k sin
e other-
wise the three paths vu, Q[u, pi] and P [p0, pi] form a k+-
y
le. Thus the path
Q[u, pi]P [pi, pr] has length at least r − k + 1 > r − k.

We pro
eed to statement 2. Consider any 
y
le C in G[W + v] through v.
Case 1. First assume that P ∩C = v, so that one 
omponent H of G[W −C]


ontains all of P ex
ept v. Let N be the set of neighbours of C − v in H . First
note that N is nonempty, sin
e G[W ] is 
onne
ted. Furthermore, the path length
of H is at least r − 1, so Lemma 1 gives LH(u) ≥ (r − 1)/2 for every u ∈ N .

Case 2. Assume instead that |P ∩ C| = s > 1. Enumerate the verti
es on P
from 0 to r and let i1, . . . , is denote the indi
es of verti
es in P ∩C, in parti
ular



i1 = 0. Let is+1 = r. An averaging argument shows that there exists j su
h
that ij+1 − ij ≥ r/s. Consequently there exists a 
onne
ted 
omponent H of
G(W −C) 
ontaining a simple path of length r/s−2. At least one of the ijth or
ij+1th verti
es of P must belong to C −v, so the set of neighbours N of C −v in
H must be nonempty. As before, Lemma 1 ensures LH(u) ≥ r/2s − 1 for every
u ∈ N , whi
h establishes the bound after noting that s ≤ l(C). ⊓⊔

3 Result and Algorithm

The 
onstru
tion in this se
tion and its analysis establishes the following theo-
rem, a

ounting for the performan
e ratio (1) 
laimed in the introdu
tion in the
worst 
ase.

Theorem 2 If a graph 
ontains a simple path of length L then we 
an �nd a
simple path of length

Ω

(

( log L

log log L

)2
)

in polynomial time.

3.1 Constru
tion of the Cy
le De
omposition Tree

Given a vertex v in G, our algorithm 
onstru
ts a rooted node-weighted tree Tk =
Tk(G, v), the 
y
le de
omposition tree. Every node of Tk is either a singleton or a

y
le node: A singleton node 
orresponds to a single vertex u ∈ G and is denoted
〈u〉, a 
y
le node 
orresponds to a 
y
le C with a spe
i�ed vertex u ∈ C and
is denoted 〈C, u〉. Every singleton node has unit weight and every 
y
le node
〈C, u〉 has weight 1

2 l(C).
The tree is 
onstru
ted as follows. Initially Tk 
ontains a singleton node 〈v〉,

and a 
all is made to the following pro
edure with arguments G and v.

1. For every maximal 
onne
ted 
omponent G[W ] of G[V − v], exe
ute step 2.
2. Sear
h for a k+-
y
le through v in G[W +v] using Theorem 1. If su
h a 
y
le

C is found then exe
ute step 3. Otherwise pi
k an arbitrary neighbour u ∈
G[W + v] of v, insert the node 〈u〉 and the tree edge 〈v〉〈u〉, and re
ursively

ompute Tk

(

G[W ], u
)

.
3. Insert the 
y
le node 〈C, v〉 and the tree edge 〈v〉〈C, v〉. For every 
onne
ted


omponent H of G[W−C] 
hoose an arbitrary neighbour u ∈ H of C−v, and
insert the singleton node 〈u〉 and the tree edge 〈C, v〉〈u〉. Then, re
ursively

ompute Tk(H, u).

Note that ea
h re
ursive step 
onstru
ts a tree that is 
onne
ted to other
trees by a single edge, so Tk is indeed a tree. Also note that the an
estor of every

y
le node must be a singleton node. The root of Tk is 〈v〉.



3.2 Paths in the Cy
le De
omposition Tree

The algorithm �nds a path of greatest weight in Tk. This 
an be done in linear
time by depth �rst sear
h. The path found in Tk represents a path in G, if we
interpret paths through 
y
le verti
es as follows. Consider a path in Tk through
a 
y
le vertex 〈C, u〉. Both neighbours are singleton nodes, so we 
onsider the
subpath 〈u〉〈C, u〉〈v〉. By 
onstru
tion, v is 
onne
ted to some vertex w ∈ C
with w 6= u. One of the two paths from u to w in C must have length at least
half the length of C, 
all it P . We will interpret the path 〈u〉〈C, u〉〈v〉 in Tk as a
path uPv in G. If a path ends in a 
y
le node 〈C, u〉, we may asso
iate it with a
path of length l(C) − 1, by moving along C from u in any of its two dire
tions.
Thus a path of weight m in Tk from the root to a leaf identi�es a path of length
at least m in G.

We need to show that Tk for some small k has a path of su�
ient length:1

Lemma 3 If G 
ontains a path of length r ≥ 28 starting in v then Tk = Tk(G, v)
for

k =

⌈

2 log r

log log r

⌉


ontains a weighted path of length at least 1
8k2 − 1

4k − 1.

Proof. We follow the 
onstru
tion of Tk in �3.1.
We need some additional notation. For a node x = 〈w〉 or x = 〈C, w〉 in Tk

we let L(x) denote the length of the longest path from w in the 
omponent G[X ]

orresponding to the subtree rooted at x. More pre
isely, for every su

essor y of
x (in
luding y = x), the set X 
ontains the 
orresponding verti
es w′ (if y = 〈w′〉
is a singleton node) or C′ (if y = 〈w′, C′〉 is a 
y
le node).

Furthermore, let S(n) denote the singleton node 
hildren of a node n and let
C(n) denote its 
y
le node 
hildren. Consider any singleton node 〈v〉.

Lemma 2 asserts that

L(v) ≤ max

{

max
w∈S〈v〉

L(w) + k, max
〈C,v〉∈C〈v〉
w∈S〈C,v〉

(

2L(w) + 2
)

l(C)

}

. (2)

De�ne n(v) = w if 〈w〉 maximises the right hand side of the inequality (2)
and 
onsider a path Q = 〈x0〉 · · · 〈xt〉 from 〈v〉 = 〈x0〉 des
ribed by these heavy
nodes. To be pre
ise we have either n(xi) = xi+1 or n(xi) = xi+2, in the latter

ase the prede
essor of 〈xi+2〉 is a 
y
le node.

We will argue that the gaps in the sequen
e

L(x0) ≥ L(x1) ≥ · · · ≥ L(xt).

1 All logarithms are to the base 2 and the 
onstants involved have been 
hosen aiming
for simpli
ity of the proof, rather than optimality.




annot be too large due to the inequality above and the fa
t that L(xt) must be
small (otherwise we are done), and therefore Q 
ontains a lot of 
y
le nodes or
even more singleton nodes.

Let s denote the number of 
y
le nodes on Q. Sin
e every 
y
le node has
weight at least 1

2k the total weight of Q is at least 1
2sk + (t− s) = s(1

2k− 1)+ t.
Consider a singleton node that is followed by a 
y
le node. There are s su
h

nodes, we will 
all them 
y
le parents. Assume 〈xj〉 is the �rst 
y
le parent node.
Thus a

ording to the �rst part of Lemma 2 its prede
essors 〈x0〉, . . . , 〈xj〉 satisfy
the relation L(xi+1) ≥ L(xi) − k, so

L(xj) ≥ r − jk ≥ r − 1
8k3 ≥ 7

8r,

sin
e j ≤ t ≤ 1
8k2 (otherwise we are �nished) and r ≥ k3.

From the se
ond part of Lemma 2 we have

L(xj+2) ≥
7r

16l(C)
− 1 ≥

r

k2
.

where we have used l(C) ≤ 1
4k2 (otherwise we are �nished) and r ≥ 4

3k2.
This analysis may be repeated for the subsequent 
y
le parents as long as

their remaining length after ea
h 
y
le node passage is at least k3. Note that Q
must pass through as many as s′ ≥ ⌈ 1

4k − 1⌉ 
y
le nodes before

r

k2s′
< k3,

at whi
h point the remaining path may be shorter than k3. Thus we either have
visited s ≥ s′ 
y
le nodes, amounting to a weighted path Q of length at least

s(1
2k + 1) ≥ 1

8k2 − 1
4k − 1

(remembering that any two 
onse
utive 
y
le nodes must have a singleton node
in-between), or there are at most s < s′ 
y
le nodes on Q. In that 
ase there is a
tail of singleton nodes starting with some L(x) ≥ k3. Sin
e L(xj) ≤ L(xj+1)+ k
for the nodes on the tail, the length of the tail (and thus the weight of Q) is at
least k2. ⊓⊔

3.3 Summary

Our algorithm divides the input graph into its 
onne
ted 
omponents and per-
forms the following steps for ea
h. It pi
ks a vertex v in the 
omponent and 
on-
stru
ts 
y
le de
omposition trees Tk for all k = 6, . . . , ⌈2 logn/ log log n⌉. Corol-
lary 1 tells us that this is indeed a polynomial time task. Moreover, Lemma 1
ensures that v originates a path of at least half the length of the longest path
in the 
omponent. The algorithm then �nds paths in G identi�ed by the longest
weighted paths in Tk in linear time. Finally, Lemma 3 establishes the desired
approximation ratio.



4 Extensions

4.1 Bounded Degree Graphs

As in [9℄, the 
lass of graphs with their maximum degree bounded by a 
onstant
admits a relative log log n-improvement over the performan
e ratio shown in
this paper. All paths of length log n 
an be enumerated in polynomial time for
these graphs. Consequently, we 
an repla
e the algorithm from Theorem 1 by
an algorithm that e�
iently �nds 
y
les of logarithmi
 length or larger through
any given vertex if they exist.

Proposition 1 If a 
onstant degree graph 
ontains a simple path of length L then
we 
an �nd a simple path of length

Ω

(

log2 L

log log L

)

in polynomial time.

This gives the performan
e ratio O
(

|V | log log |V |/ log2 |V |
)

for the longest
path problem in 
onstant degree graphs.

4.2 Three-Conne
ted Graphs

Bondy and Lo
ke [3℄ have shown that every 3-
onne
ted graph with path length
l must 
ontain a 
y
le of length at least 2l/5. Moreover, their 
onstru
tion is
easily seen to be algorithmi
 and e�
ient. This implies the following result on
the longest 
y
le problem:

Proposition 2 If a 3-
onne
ted graph 
ontains a simple 
y
le of length L then
we 
an �nd a simple 
y
le of length

Ω

(

( log L

log log L

)2
)

in polynomial time.

This gives the performan
e ratio O
(

|V |(log log |V |/ log |V |)2
)

for the longest

y
le problem in 3-
onne
ted graphs. Note that for 3-
onne
ted 
ubi
 graphs,
[4℄ show a 
onsiberably better bound.
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