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Finding a Path of Superlogarithmi Length

Andreas Björklund and Thore Husfeldt

Department of Computer Siene, Lund University

Abstrat. We onsider the problem of �nding a long, simple path in an
undireted graph. We present a polynomial-time algorithm that �nds
a path of length Ω

�
(log L/ log log L)2

�
, where L denotes the length of

the longest simple path in the graph. This establishes the performane
ratio O

�
|V |(log log |V |/ log |V |)2

�
for the Longest Path problem, where

V denotes the graph's verties.

1 Introdution

Given an unweighted, undireted graph G = (V, E) the longest path problem is to
�nd the longest sequene of distint verties v1 · · · vk suh that vivi+1 ∈ E. This
is a lassial NP-hard problem (number ND29 in Garey and Johnson [5℄) with
a onsiderable body of researh devoted to it, yet its approximability remains
elusive:

�For most anonial NP-hard problems, either dramatially improved ap-
proximation algorithms have been devised, or strong negative results have
been established, leading to a substantially improved understanding of the
approximability of these problems. However, there is one problem whih has
resisted all attempts at devising either positive or negative results � longest
paths and yles in undireted graphs. Essentially, there is no known algo-
rithm whih guarantees approximation ratio better than |V |/polylog|V | and
there are no hardness of approximation results that explain this situation.� [4℄

Indeed, the quoted ratio has been obtained only for speial lasses of graphs
(for example, Hamiltonian graphs), while in the general ase the best known
ratio prior to the present paper was of order |V |/ log |V |.

We present a polynomial-time algorithm for the general ase that �nds a
path of length Ω

(

(log L/ log log L)2
)

in a graph with longest path length L; the
best previous bound was Ω(log L). This orresponds to a performane ratio of
order

O

(

|V |
(

log log |V |
)2

log2 |V |

)

. (1)

For bounded degree graphs we improve the ratio to O
(

|V | log log |V |/ log2 |V |
)

.
For three-onneted graphs we establish the perormane ratio (1) for the longest
yle problem.
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Previous work

The �rst approximation algorithms for longest path are due to Monien [7℄ and
Bodlaender [2℄, both �nding a path of length Ω(log L/ log log L). Neither of these
algorithms an be used to �nd a log |V | path if it exists, but Papadimitriou
and Yannakakis onjetured that suh a polynomial-time algorithm exists [8℄.
This was on�rmed by Alon, Yuster, and Zwik [1℄, introduing the important
method of olour-oding. Espeially, this algorithm �nds an Ω(log L)-path and
orresponds to a performane ratio of

O

(

|V |

log |V |

)

,

whih is the best ratio known prior to the present paper.
The problem has reeived additional study for restrited lasses of graphs,

where the � log |V |-barrier� has been broken by Vishwanathan [9℄. His algorithm
ahieves the same performane ratio (1) as ours, but works only for Hamiltonian
graphs. In sparse Hamiltonian graphs, Feder, Motwani, and Subi [4℄ �nd even
longer paths.

The hardness results for this problem are mainly due to Karger, Motwani,
and Ramkumar [6℄: The longest path problem does not belong to APX and

annot be approximated within 2log1−ǫ |V | unless NP ⊆ DTIME
(

2O(log1/ǫ n)
)

for
any ǫ > 0.

2 Preliminaries

In the remainder, we onsider a onneted graph G = (V, E) with n = |V |
verties and e = |E| edges. We write G[W ] for the graph indued by the vertex
set W .

Paths and yles

The length of a path and a yle is its number of edges. The length of a yle C
is denoted l(C). A k-yle is a yle of length k, a k+-yle is a yle of length
k or larger. A k-path and k+-path is de�ned similarly. For verties x and y, an
xy-path is a (simple) path from x to y, and if P is a path ontaining u and v
we write P [u, v] for the subpath from u to v. We let LG(v) denote the length
of the longest path from a vertex v in the graph G, and sometimes abbreviate
LW (v) = LG[W ](v). The path length of G is maxv∈V LG(v).

We need the following result, Theorem 5.3(i) of [2℄:

Theorem 1 (Bodlaender) Given a graph, two of its verties s, t, and an integer
k, one an �nd a k+-path from s to t (if it exists) in time O

(

(2k)!22kn + e
)

.

Corollary 1 A k+-yle through a given vertex an be found in time t(k) =
O

(

((2k)!22kn + e)n
)

, if it exists.



Proof. Let s be the given vertex. For all neighbours t of s apply the Theorem
on the graph with the edge st removed. ⊓⊔

We also need the following easy lemma.

Lemma 1 If a onneted graph ontains a path of length r then every vertex is
an endpoint of a path of length at least 1

2r.

Proof. Given verties u, v ∈ V let d(u, v) denote the length of the shortest path
between u and v.

Let P = p0 · · · pr be a path and let v be a vertex. Find i minimising d(pi, v).
By minimality there is a path Q from v to pi that ontains no other verties
from P . Now either QP [pi, pr] or QP [pi, p0] has length at least 1

2r. ⊓⊔

The next lemma is entral to our onstrution: Assume that a vertex v orig-
inates a long path P and v lies on a yle C; then the removal of C deomposes
G into onneted omponents, one of whih must ontain a large part of P .

Lemma 2 Assume that a onneted graph G ontains a simple path P of length
LG(v) > 1 originating in vertex v. There exists a onneted omponent G[W ] of
G[V − v] suh that the following holds.

1. If G[W + v] ontains no k+-yle through v then every neighbour u ∈ W of
v is the endpoint of a path of length

LW (u) ≥ LG(v) − k.

2. If C is a yle in G[W +v] through v of length l(C) < LG[W+v](v) then there
exists a onneted omponent H of G[W −C] that ontains a neighbour u of
C − v in G[W + v]. Moreover, every suh neighbour u is the endpoint of a
path in H of length

LH(u) ≥
LG(v)

2l(C)
− 1.

Proof. Let r = LG(v) and P = p0 · · · pr, where p0 = v. Note that P [p1, pr] lies
entirely in one of the omponents G[W ] of G[V − v].

First onsider statement 1. Let u ∈ W be a neighbour of v. Sine G[W ] is
onneted, there exists a path Q from u to some vertex of P . Consider suh a
path. The �rst vertex pi of P enountered on Q must have i < k sine other-
wise the three paths vu, Q[u, pi] and P [p0, pi] form a k+-yle. Thus the path
Q[u, pi]P [pi, pr] has length at least r − k + 1 > r − k.

We proeed to statement 2. Consider any yle C in G[W + v] through v.
Case 1. First assume that P ∩C = v, so that one omponent H of G[W −C]

ontains all of P exept v. Let N be the set of neighbours of C − v in H . First
note that N is nonempty, sine G[W ] is onneted. Furthermore, the path length
of H is at least r − 1, so Lemma 1 gives LH(u) ≥ (r − 1)/2 for every u ∈ N .

Case 2. Assume instead that |P ∩ C| = s > 1. Enumerate the verties on P
from 0 to r and let i1, . . . , is denote the indies of verties in P ∩C, in partiular



i1 = 0. Let is+1 = r. An averaging argument shows that there exists j suh
that ij+1 − ij ≥ r/s. Consequently there exists a onneted omponent H of
G(W −C) ontaining a simple path of length r/s−2. At least one of the ijth or
ij+1th verties of P must belong to C −v, so the set of neighbours N of C −v in
H must be nonempty. As before, Lemma 1 ensures LH(u) ≥ r/2s − 1 for every
u ∈ N , whih establishes the bound after noting that s ≤ l(C). ⊓⊔

3 Result and Algorithm

The onstrution in this setion and its analysis establishes the following theo-
rem, aounting for the performane ratio (1) laimed in the introdution in the
worst ase.

Theorem 2 If a graph ontains a simple path of length L then we an �nd a
simple path of length

Ω

(

( log L

log log L

)2
)

in polynomial time.

3.1 Constrution of the Cyle Deomposition Tree

Given a vertex v in G, our algorithm onstruts a rooted node-weighted tree Tk =
Tk(G, v), the yle deomposition tree. Every node of Tk is either a singleton or a
yle node: A singleton node orresponds to a single vertex u ∈ G and is denoted
〈u〉, a yle node orresponds to a yle C with a spei�ed vertex u ∈ C and
is denoted 〈C, u〉. Every singleton node has unit weight and every yle node
〈C, u〉 has weight 1

2 l(C).
The tree is onstruted as follows. Initially Tk ontains a singleton node 〈v〉,

and a all is made to the following proedure with arguments G and v.

1. For every maximal onneted omponent G[W ] of G[V − v], exeute step 2.
2. Searh for a k+-yle through v in G[W +v] using Theorem 1. If suh a yle

C is found then exeute step 3. Otherwise pik an arbitrary neighbour u ∈
G[W + v] of v, insert the node 〈u〉 and the tree edge 〈v〉〈u〉, and reursively
ompute Tk

(

G[W ], u
)

.
3. Insert the yle node 〈C, v〉 and the tree edge 〈v〉〈C, v〉. For every onneted

omponent H of G[W−C] hoose an arbitrary neighbour u ∈ H of C−v, and
insert the singleton node 〈u〉 and the tree edge 〈C, v〉〈u〉. Then, reursively
ompute Tk(H, u).

Note that eah reursive step onstruts a tree that is onneted to other
trees by a single edge, so Tk is indeed a tree. Also note that the anestor of every
yle node must be a singleton node. The root of Tk is 〈v〉.



3.2 Paths in the Cyle Deomposition Tree

The algorithm �nds a path of greatest weight in Tk. This an be done in linear
time by depth �rst searh. The path found in Tk represents a path in G, if we
interpret paths through yle verties as follows. Consider a path in Tk through
a yle vertex 〈C, u〉. Both neighbours are singleton nodes, so we onsider the
subpath 〈u〉〈C, u〉〈v〉. By onstrution, v is onneted to some vertex w ∈ C
with w 6= u. One of the two paths from u to w in C must have length at least
half the length of C, all it P . We will interpret the path 〈u〉〈C, u〉〈v〉 in Tk as a
path uPv in G. If a path ends in a yle node 〈C, u〉, we may assoiate it with a
path of length l(C) − 1, by moving along C from u in any of its two diretions.
Thus a path of weight m in Tk from the root to a leaf identi�es a path of length
at least m in G.

We need to show that Tk for some small k has a path of su�ient length:1

Lemma 3 If G ontains a path of length r ≥ 28 starting in v then Tk = Tk(G, v)
for

k =

⌈

2 log r

log log r

⌉

ontains a weighted path of length at least 1
8k2 − 1

4k − 1.

Proof. We follow the onstrution of Tk in �3.1.
We need some additional notation. For a node x = 〈w〉 or x = 〈C, w〉 in Tk

we let L(x) denote the length of the longest path from w in the omponent G[X ]
orresponding to the subtree rooted at x. More preisely, for every suessor y of
x (inluding y = x), the set X ontains the orresponding verties w′ (if y = 〈w′〉
is a singleton node) or C′ (if y = 〈w′, C′〉 is a yle node).

Furthermore, let S(n) denote the singleton node hildren of a node n and let
C(n) denote its yle node hildren. Consider any singleton node 〈v〉.

Lemma 2 asserts that

L(v) ≤ max

{

max
w∈S〈v〉

L(w) + k, max
〈C,v〉∈C〈v〉
w∈S〈C,v〉

(

2L(w) + 2
)

l(C)

}

. (2)

De�ne n(v) = w if 〈w〉 maximises the right hand side of the inequality (2)
and onsider a path Q = 〈x0〉 · · · 〈xt〉 from 〈v〉 = 〈x0〉 desribed by these heavy
nodes. To be preise we have either n(xi) = xi+1 or n(xi) = xi+2, in the latter
ase the predeessor of 〈xi+2〉 is a yle node.

We will argue that the gaps in the sequene

L(x0) ≥ L(x1) ≥ · · · ≥ L(xt).

1 All logarithms are to the base 2 and the onstants involved have been hosen aiming
for simpliity of the proof, rather than optimality.



annot be too large due to the inequality above and the fat that L(xt) must be
small (otherwise we are done), and therefore Q ontains a lot of yle nodes or
even more singleton nodes.

Let s denote the number of yle nodes on Q. Sine every yle node has
weight at least 1

2k the total weight of Q is at least 1
2sk + (t− s) = s(1

2k− 1)+ t.
Consider a singleton node that is followed by a yle node. There are s suh

nodes, we will all them yle parents. Assume 〈xj〉 is the �rst yle parent node.
Thus aording to the �rst part of Lemma 2 its predeessors 〈x0〉, . . . , 〈xj〉 satisfy
the relation L(xi+1) ≥ L(xi) − k, so

L(xj) ≥ r − jk ≥ r − 1
8k3 ≥ 7

8r,

sine j ≤ t ≤ 1
8k2 (otherwise we are �nished) and r ≥ k3.

From the seond part of Lemma 2 we have

L(xj+2) ≥
7r

16l(C)
− 1 ≥

r

k2
.

where we have used l(C) ≤ 1
4k2 (otherwise we are �nished) and r ≥ 4

3k2.
This analysis may be repeated for the subsequent yle parents as long as

their remaining length after eah yle node passage is at least k3. Note that Q
must pass through as many as s′ ≥ ⌈ 1

4k − 1⌉ yle nodes before

r

k2s′
< k3,

at whih point the remaining path may be shorter than k3. Thus we either have
visited s ≥ s′ yle nodes, amounting to a weighted path Q of length at least

s(1
2k + 1) ≥ 1

8k2 − 1
4k − 1

(remembering that any two onseutive yle nodes must have a singleton node
in-between), or there are at most s < s′ yle nodes on Q. In that ase there is a
tail of singleton nodes starting with some L(x) ≥ k3. Sine L(xj) ≤ L(xj+1)+ k
for the nodes on the tail, the length of the tail (and thus the weight of Q) is at
least k2. ⊓⊔

3.3 Summary

Our algorithm divides the input graph into its onneted omponents and per-
forms the following steps for eah. It piks a vertex v in the omponent and on-
struts yle deomposition trees Tk for all k = 6, . . . , ⌈2 logn/ log log n⌉. Corol-
lary 1 tells us that this is indeed a polynomial time task. Moreover, Lemma 1
ensures that v originates a path of at least half the length of the longest path
in the omponent. The algorithm then �nds paths in G identi�ed by the longest
weighted paths in Tk in linear time. Finally, Lemma 3 establishes the desired
approximation ratio.



4 Extensions

4.1 Bounded Degree Graphs

As in [9℄, the lass of graphs with their maximum degree bounded by a onstant
admits a relative log log n-improvement over the performane ratio shown in
this paper. All paths of length log n an be enumerated in polynomial time for
these graphs. Consequently, we an replae the algorithm from Theorem 1 by
an algorithm that e�iently �nds yles of logarithmi length or larger through
any given vertex if they exist.

Proposition 1 If a onstant degree graph ontains a simple path of length L then
we an �nd a simple path of length

Ω

(

log2 L

log log L

)

in polynomial time.

This gives the performane ratio O
(

|V | log log |V |/ log2 |V |
)

for the longest
path problem in onstant degree graphs.

4.2 Three-Conneted Graphs

Bondy and Loke [3℄ have shown that every 3-onneted graph with path length
l must ontain a yle of length at least 2l/5. Moreover, their onstrution is
easily seen to be algorithmi and e�ient. This implies the following result on
the longest yle problem:

Proposition 2 If a 3-onneted graph ontains a simple yle of length L then
we an �nd a simple yle of length

Ω

(

( log L

log log L

)2
)

in polynomial time.

This gives the performane ratio O
(

|V |(log log |V |/ log |V |)2
)

for the longest
yle problem in 3-onneted graphs. Note that for 3-onneted ubi graphs,
[4℄ show a onsiberably better bound.
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