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Abstract— A fundamental problem in Quality-of-Service
(QoS) routing is to find a path between a source-destination
node pair that satisfies two or more end-to-end QoS constraints.
We model this problem using a graph with n vertices and m
edges with K additive QoS parameters associated with each
edge, for any constant K ≥ 2. This problem is known to
be NP-hard. Fully polynomial time approximation schemes
(FPTAS) for the case of K = 2 have been reported in the
literature. We concentrate on the general case and make
the following contributions. (1) We present a very simple
O(Km + n log n) time K-approximation algorithm that can be
used in hop-by-hop routing protocols. (2) We present an FPTAS
for one optimization version of the QoS routing problem with a
time complexity of O(m( n

ǫ
)K−1). (3) We present an FPTAS for

another optimization version of the QoS routing problem with a
time complexity of O(n log n + m(H

ǫ
)K−1) when there exists an

H-hop path satisfying all QoS constraints. When K is reduced
to 2, our results compare favorably with existing algorithms.
The results of this paper hold for both directed and undirected
graphs. For ease of presentation, undirected graph is used.

Keywords: QoS routing, multiple additive constraints, efficient
approximation algorithms.

I. INTRODUCTION

A fundamental problem of routing in a network that pro-

vides Quality-of-Service (QoS) guarantees is to find a path

between a specified source-destination node pair that simulta-

neously satisfies multiple QoS constraints, such as cost, delay,

and reliability [3], [12], [16], [18], [22]. Such an environment

is commonly modeled by a graph with n vertices and m edges

where the n vertices represent computers or routers and the

m edges represent links. Each edge has K weights associated

with it, representing cost, delay, and reliability, etc. Weights

on edges extend to weights on paths in a natural way. If the

edge weights represent cost, delay, and reliability, then the

corresponding path weight is obtained by adding (multiplying,

in the case of reliability) the weights of the edges on the

path. For this reason, such QoS parameters are said to be

additive. QoS parameters such as bandwidth are known as

bottleneck parameters where the corresponding weight of a

path is the smallest of the weights of the edges on the path [8],

[22]. Problems involving bottleneck constraints can be easily

solved by ignoring all edges whose weights are smaller than
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a chosen value. Therefore we restrict our attention to additive

parameters only.

It is well known that the multi-constrained path (MCP)

problem is NP-hard, even when the number of constraints

is two [22]. Recognizing the need for an efficient solution

to this fundamental problem, many researchers have studied

this problem in the last few years. Most of the existing works

concentrate on the MCP problem with two additive constraints.

This special case is known as the delay constrained least cost

path (DCLC) problem where the two edge weights are cost and

delay, and one seeks a minimum cost path subject to a given

delay constraint. Chen et al. [3] studied the DCLC problem

and proposed a polynomial time heuristic algorithm based on

scaling and rounding of the delay parameter so that the delay

parameter of each edge is approximated by a bounded integer.

Xue [25], [26] proposed to use a linear combination of the two

weights and presented a simple algorithm for finding a good

linear combination of the two weights. He also proved near

optimality properties of the two paths found. These heuristics

can find a good solution quickly, but do not provide any

performance guarantee.

Warburton in [23] first developed a fully polynomial time

approximation scheme (FPTAS) [5] for the DCLC problem

on an acyclic graph. Hassin in [9] presented two improved

FPTASs, one with a time complexity of O(mn(n
ǫ
) log(n

ǫ
)),

where ǫ is the approximation parameter, and the other with

a time complexity of O(log logB(mn/ǫ + log logB)) where

B is an upper bound on the optimal solution value which is

no more than n − 1 times the maximum edge-cost. Hassin’s

algorithm, which has a straightforward extension to general

graphs, finds a delay constrained path whose cost is within a

factor of (1 + ǫ) of that of the delay constrained least cost

path. Lorenz and Raz in [15] presented a faster FPTAS with

a time complexity of O(mn(log log n + 1/ǫ)). In [7], Goel et

al. presented an approximation algorithm for the single source

all destinations delay sensitive least cost path problem of time

complexity O((m + n log n)H/ǫ), where H is the hop count

of the computed path. Note that the path computed by this

algorithm does not necessarily satisfy the delay constraint: its

delay is at most (1+ ǫ) times the delay constraint and its cost

is at most that of the delay constrained least cost path. In [6],

Ergun et al. presented an FPTAS for the case of acyclic graphs

with a time complexity of O(m(n
ǫ
)). Orda and Sprintson [19]

presented a precomputation scheme for QoS routing with two

additive parameters. Guerin and Orda [8] presented efficient

approximation algorithms for QoS routing with inaccurate

information. More recently [20], Orda and Sprintson presented

efficient approximation algorithms for computing a pair of

disjoint QoS paths. Applications of QoS in multiservice IP
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networks and their practical significance may be found in [17].

The MCP problem with three or more constraints has also

been studied. In [14], Korkmaz and Krunz proposed a random-

ized heuristic for the MCP problem. Using simulations they

showed that their heuristic provides better performance than

other algorithms with comparable computational complexity.

In [28], Yuan presented a limited granularity heuristic and a

limited path heuristic. Xue et al. [27] presented an FPTAS

whose running time depends on the size of the input.

In this paper, we concentrate on the general case with

K ≥ 2 being any fixed integer and make the following

contributions. (1) We present a simple O(Km + n log n)
time K-approximation algorithm which can be easily used

in hop-by-hop routing protocols. (2) We present an FPTAS

for one optimization version of the MCP problem with a

time complexity of O(m(n
ǫ
)K−1). (3) We present an FPTAS

for another optimization version of the MCP problem with

a time complexity of O(n log n + m(H
ǫ
)K−1) when there

exists an H-hop path satisfying all QoS constraints. When

reduced to the special case of K = 2, the time complexities

of our algorithms compare favorably with existing algorithms.

Table I summarizes complexities of related algorithms for

various versions of the MCP problems.

The rest of this paper is organized as follows. In Section II,

we define the problems and some notations. In Section III, we

present our simple K-approximation algorithm. In Sections IV

and V, we present our two FPTASs. In Section VI, we

present computational experiences. We conclude this paper in

Section VII.

II. DEFINITION OF PROBLEMS AND NOTATIONS

Throughout this paper, K denotes an integer constant which

is greater than or equal to 2. All other constants, functions

and variables are assumed to have real values unless specified

otherwise.

We model a computer network by an edge weighted undi-

rected graph G = (V,E, ω1, . . . , ωK), where V is the set of

n vertices, E is the set of m edges each with K weights, and

ωk(e) ≥ 0 is the kth weight of edge e, ∀ e ∈ E, ∀ 1 ≤ k ≤ K.

Let p be a path in G. The kth weight of p, denoted by ωk(p),
is the sum of the kth weights over the edges on p. We assume

that G is a connected graph. The decision version of the MCP

problem (DMCP) is defined in the following.

Definition 2.1 (DMCP(G, s, t,K,W )): INSTANCE: an

undirected graph G = (V,E), with K nonnegative real-

valued edge weights ωk(e), 1 ≤ k ≤ K, associated with each

edge e ∈ E; a positive constant W ; and a source-destination

node pair (s, t). QUESTION: Is there an s–t path p such

that ωk(p) ≤ W, ∀ 1 ≤ k ≤ K?

A path p satisfying all K QoS constraints is called

a feasible path of DMCP(G, s, t,K,W ). We say that

DMCP(G, s, t,K,W ) is feasible if it has a feasible path, and

infeasible otherwise. Note that we could formulate the DMCP

problem in a seemingly more general form by replacing

W with K independent positive constants W1, . . . ,WK and

replacing the K constraints ωk(p) ≤ W, ∀ 1 ≤ k ≤ K with

the following K constraints: ωk(p) ≤ Wk, ∀ 1 ≤ k ≤ K.

However, the two forms are equivalent because we can scale

the kth weight (on edges, and thereby on paths) from ωk(e)
to ω′

k(e) = ωk(e) × W
Wk

so that for any path p, ωk(p) ≤
Wk, ∀ 1 ≤ k ≤ K if and only if ω′

k(p) ≤ W, ∀ 1 ≤ k ≤ K.

Therefore we choose to use the simpler form in this paper.

In the following, we define two optimization versions of this

NP-hard problem.

Definition 2.2 (SMCP(G, s, t,K,W )): INSTANCE: an

undirected graph G = (V,E), with K nonnegative real-

valued edge weights ωk(e), 1 ≤ k ≤ K, associated with each

edge e ∈ E; a positive constant W ; and a source-destination

node pair (s, t). PROBLEM: find an s–t path popt such that

ωk(popt) ≤ ζopt · W, ∀ 1 ≤ k ≤ K, where ζopt is the

smallest real number ζ ≥ 0 such that there exists an s–t path

p satisfying ωk(p) ≤ ζ · W, ∀ 1 ≤ k ≤ K.

In the definition of SMCP, we are treating all K constraints

equally, where a single parameter ζopt is applied to all K
constraints. This is slightly different from traditional optimiza-

tion versions of the DCLC problem, where we strictly enforce

the delay constraint while approximating the minimum cost.

When the number of constraints K is greater than 2, we have

to approximate at least K − 1 constraints, because finding

a path satisfying two or more additive constraints is itself

an NP-hard problem. This motives us to approximate all K
constraints simultaneously.

We call ζopt the optimal value of SMCP(G, s, t,K,W )
and call popt an optimal path or an optimal solution of

SMCP(G, s, t,K,W ). Note that ζopt ≤ 1 if and only if

DMCP(G, s, t,K,W ) is feasible. Since ζopt is allowed to

be smaller than 1, our optimization problem SMCP also

introduces a metric to compare two feasible solutions to

DMCP–the one with the smaller corresponding ζ value is

regarded as a better solution. When ζopt ≤ 1, any op-

timal solution of SMCP(G, s, t,K,W ) is a feasible path

for DMCP(G, s, t,K,W ), but the reverse is not true. Note

that when a feasible path for DMCP(G, s, t,K,W ) is not

an optimal solution of SMCP(G, s, t,K,W ), we must have

ζopt < 1. Therefore we define another optimization version of

the MCP problem, named FMCP.

Definition 2.3 (FMCP(G, s, t,K,W )): INSTANCE: an

undirected graph G = (V,E), with K nonnegative real-

valued edge weights ωk(e), 1 ≤ k ≤ K, associated with each

edge e ∈ E; a positive constant W ; and a source-destination

node pair (s, t). PROBLEM: find an s–t path qopt such

that ωk(qopt) ≤ ξopt · W, ∀ 1 ≤ k ≤ K, where ξopt is the

smallest real number ξ ≥ 1 such that there exists an s–t path

q satisfying ωk(q) ≤ ξ · W, ∀ 1 ≤ k ≤ K.

We call ξopt the optimal value of FMCP(G, s, t,K,W )
and call qopt an optimal path or an optimal solution

of FMCP(G, s, t,K,W ). Note that ξopt ≥ 1. Also note

that ξopt = 1 if and only if DMCP(G, s, t,K,W )
has a feasible path. When ξopt = 1, any optimal so-

lution of FMCP(G, s, t,K,W ) is also a feasible path

for DMCP(G, s, t,K,W ). Also, any feasible path for

DMCP(G, s, t,K,W ) is guaranteed to be an optimal path for

FMCP(G, s, t,K,W ).
We note that every optimal solution to

SMCP(G, s, t,K,W ) is also an optimal solution
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TABLE I

SUMMARY OF COMPUTATIONAL COMPLEXITIES OF ALGORITHMS FOR THE MCP PROBLEM

paper K enforcing approximating guarantee time complexity
Lorenz and Raz [15] 2 delay cost 1 + ǫ O(mn(log log n + 1/ǫ))
Goel et al. [7] 2 cost delay 1 + ǫ O((m + n log n)H/ǫ)
Korkmaz and Krunz [14] ≥ 2 K constraints none heuristic O(Km + Kn log n)

Yuan [28] ≥ 2 K constraints none heuristic O(mn(n/ǫ)K−1)
This paper ≥ 2 none K constraints K O(Km + n log n)

This paper ≥ 2 none K constraints 1 + ǫ O(m(n/ǫ)K−1)

This paper ≥ 2 none K constraints 1 + ǫ O(n log n + m(H/ǫ)K−1)

to FMCP(G, s, t,K,W ), but not vice versa. When

DMCP(G, s, t,K,W ) is infeasible, every optimal solution

to FMCP(G, s, t,K,W ) is also an optimal solution to

SMCP(G, s, t,K,W ).
Let p be an s–t path in G and β ≥ 1 be a constant. If

ωk(p) ≤ β ·ζopt ·W, ∀ 1 ≤ k ≤ K (ωk(p) ≤ β ·ξopt ·W, ∀ 1 ≤
k ≤ K, respectively), then p is called a β-approximation to

SMCP(G, s, t,K,W ) (to FMCP(G, s, t,K,W ), respectively).

If A is an algorithm that guarantees a β-approximation, then

A is called a β-approximation algorithm. Aǫ is called a fully

polynomial time approximation scheme (FPTAS), if for any

fixed ǫ > 0, Aǫ is a (1 + ǫ)-approximation algorithm with

running time bounded by a polynomial in the input size of the

instance, and in 1
ǫ
.

Our FPTASs for SMCP(G, s, t,K,W ) and

FMCP(G, s, t,K,W ) need to solve instances of the

following restricted version of DMCP (where W is denoted

by τ in the restricted version, and the edge weights take

positive integer values) repeatedly with τ is bounded by a

polynomial in n.

Definition 2.4 (RMCP(G, s, t,K, τ)): INSTANCE: an

undirected graph G = (V,E), with K positive integer-valued

edge weights ωk(e), 1 ≤ k ≤ K, associated with each edge

e ∈ E; a positive integer constant τ ; and a source-destination

node pair (s, t). QUESTION: Is there an s–t path p such that

ωk(p) ≤ τ, ∀ 1 ≤ k ≤ K?

III. A SIMPLE K-APPROXIMATION ALGORITHM FOR

SMCP

A very simple K-approximation algorithm, named K-

Approx, is presented in Algorithm 1. The algorithm computes

an auxiliary edge weight ωM (e) as the maximum of all K edge

weights ω1(e), . . . , ωK(e) divided by W . It then computes a

shortest s–t path pM using this auxiliary edge weight (instead

of using K edge weight functions). The path pM is guaranteed

to be a K-approximation of SMCP(G, s, t,K,W ). Note that

the auxiliary edge weights can be computed locally at each

node, and the shortest path can be computed using either

Dijkstra’s algorithm or Bellman-Ford’s algorithm. Therefore

our K-approximation algorithm can be implemented as either

a centralized or a distributed algorithm, and can be used by

existing routing protocols such as RIP and OSPF [10].

Theorem 3.1: The path pM found by K-Approx is a K-

approximation to SMCP(G, s, t,K,W ), i.e., ωk(pM ) ≤ K ·

Algorithm 1 K-Approx(G, s, t,K,W )

Step 1 For each edge e of G, compute an auxiliary edge

weight ωM (e) = max1≤k≤K
ωk(e)

W
.

Step 2 Compute a shortest s–t path pM in G, where the dis-

tance is measured using the auxiliary edge weighting

function ωM . Output pM .

ζoptW, ∀ 1 ≤ k ≤ K, where ζopt is the optimal value of

SMCP(G, s, t,K,W ). Moreover,

1) if Dijkstra’s algorithm is used, the time complexity of

K-Approx is O(Km + n log n);
2) if centralized Bellman-Ford algorithm is used, the time

complexity of K-Approx is O(Km + mn);
3) if distributed Bellman-Ford algorithm is used, the time

complexity (measured in terms of the number of rounds

of executions needed) of K-Approx is O(n).
PROOF. With a centralized algorithm the auxiliary weights can

be computed in O(Km) time as there are m edges. The rest

of the time analysis comes from well known results [5]. For

distributed computation, each node can compute the auxiliary

weights of the adjacent edges in one round of execution.

Bellman-Ford distributed shortest path algorithm will termi-

nate in at most n rounds. So the overall time complexity of

the distributed algorithm is O(n).
Recall that ζopt is the optimal value of

SMCP(G, s, t,K,W ). Therefore there exists an s–t path popt

such that ωk(popt) ≤ ζoptW , ∀ 1 ≤ k ≤ K. This implies
∑

e∈popt

ωk(e) ≤ ζoptW, ∀ 1 ≤ k ≤ K. (1)

We can rewrite (1) as

∑

e∈popt

ωk(e)

W
≤ ζopt, ∀ 1 ≤ k ≤ K. (2)

Summing (2) over all K possible values of k, we have

∑

e∈popt

K
∑

k=1

ωk(e)

W
≤ K · ζopt. (3)

Since for every edge e ∈ E we have ωM (e) =

max1≤k≤K
ωk(e)

W
≤

∑K

k=1
ωk(e)

W
, (3) implies

∑

e∈popt

ωM (e) ≤ K · ζopt. (4)
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Note that the left hand side of (4) is ωM (popt). Since pM is

a shortest s–t path in G with respect to ωM , we must have

ωM (pM ) ≤ ωM (popt). Therefore

ωM (pM ) ≤ ωM (popt) ≤ K · ζopt. (5)

Since for every edge e ∈ E we have ωM (e) =

max1≤k≤K
ωk(e)

W
≥ ωk(e)

W
, ∀ 1 ≤ k ≤ K, (5) implies

∑

e∈pM

ωk(e)

W
≤ K · ζopt, ∀ 1 ≤ k ≤ K. (6)

We can rewrite (6) as ωk(pM ) ≤ K · ζoptW, ∀ 1 ≤ k ≤ K.
This proves that pM is a K-approximation to

SMCP(G, s, t,K,W ). ✷

IV. AN FPTAS FOR SMCP

In this section, we will present an FPTAS for

SMCP(G, s, t,K,W ) for any constant K ≥ 2.

A. A Pseudo-Polynomial Time Algorithm for RMCP

We first present an O(mτK−1) time algorithm for

RMCP(G, s, t,K, τ). The algorithm is named PseudoRMCP

and is listed as Algorithm 2. When the answer is YES,

our algorithm also computes a feasible s–t path pG which

minimizes max1≤k≤K ωk(p) among all s–t paths in G.

Recall that all edge weights in RMCP are positive integers.

Therefore along any path, each hop increases each of the K
path lengths by at least 1. Our algorithm uses a transformation

from an undirected graph G to a directed acyclic graph GK,τ .

Each vertex v ∈ G is associated with (1 + τ)K−1 vertices

in GK,τ , of the form (v, C2, . . . , CK), where the integers

C2, . . . , CK ∈ [0, τ ] are used to record the kth path length

for k = 2, . . . ,K. Therefore for each undirected edge (u, v)
in G, we have directed edges in GK,τ from (u, C2, . . . , CK)
to (v,D2, . . . ,DK) such that Dk = Ck + ωk(u, v), k =
2, . . . ,K; as well as directed edges from (v, C2, . . . , CK) to

(u,D2, . . . ,DK) such that Dk = Ck +ωk(u, v), k = 2, . . . ,K.

All such edges have length ω1(u, v). Therefore a feasible

solution to RMCP(G, s, t,K, τ) corresponds to a path from

(s, 0, . . . , 0) to (t, τ, . . . , τ) with length no more than τ .

Theorem 4.1: Algorithm 2 computes a feasible path pG for

RMCP(G, s, t,K, τ) if it has a feasible solution. The worst

case time complexity of the algorithm is O(mτK−1). In

addition, when the answer is YES, the path pG is a feasible

solution to RMCP(G, s, t,K,D), where D is the smallest

integer less than or equal to τ such that RMCP(G, s, t,K,D)
is feasible.

PROOF. Note that GK,τ has n(τ + 1)K−1 vertices and

O(2mτK−1 + nτK−1) = O(mτK−1) edges (recall that

G is connected and K is a constant). It follows from the

construction of GK,τ that GK,τ has a directed path pK,τ

from (u, C2, . . . , CK) to (v,D2, . . . ,DK) with length ℓ if and

only if the corresponding path pG in G (obtained by keeping

only the first component in each vertex on pK,τ ) satisfies

ω1(p) = ℓ and ωk(p) ≤ Dk −Ck for k = 2, . . . ,K. Therefore

RMCP(G, s, t,K, τ ) has a feasible solution if and only if

Algorithm 2 PseudoRMCP(G, s, t,K, τ)

Step 1 Construct a directed graph GK,τ with node set

V K,τ = V × {0, 1, . . . , τ}K−1 and edge set EK,τ .

Let (u, v) be an undirected edge in E. EK,τ contains

directed edges from vertex (u, C2, . . . , CK) to vertex

(v,D2, . . . ,DK) such that Dk = Ck + ωk(u, v), k =
2, . . . ,K; as well as directed edges from vertex

(v, C2, . . . , CK) to vertex (u,D2, . . . ,DK) such that

Dk = Ck +ωk(u, v), k = 2, . . . ,K; The length of all

such edges is ω1(u, v). In addition, EK,τ also con-

tains zero-length edges from vertex (t, C2, . . . , CK) to

vertex (t,D, . . . ,D) where D = max{Cj |2 ≤ j ≤
K} if not all of the K − 1 values Cj are equal,

D = C + 1 if C2 = · · · = CK = C < τ .

Step 2 Compute shortest paths pK,D from vertex

(s, 0, . . . , 0) to vertices (t,D, . . . ,D) in GK,τ ,

D = 1, 2, . . . , τ . If the length of path pK,τ is greater

than τ , then RMCP(G, s, t,K, τ) does not have a

feasible solution. Output NO.

Step 3 Find the smallest integer X ≤ τ such that the shortest

path pK,X has length no more than X . Output YES,

together with the path pG corresponding to pK,X ,

obtained by ignoring the last K − 1 components

within each node along the path pK,X .

there is a directed path from vertex (s, 0, . . . , 0) to vertex

(t, τ, τ, . . . , τ) in GK,τ with length at most τ . This proves

the correctness of Algorithm 2.

We note that if a directed path pK,D (from vertex

(s, 0, . . . , 0) to vertex (t,D, . . . ,D) in GK,τ ) computed in

Step 2 has length at most D for some integer D ∈
{1, 2, . . . , τ}, then the path pK,D is also a feasible solution

to RMCP(G, s, t,K,D). The reverse is also true. This proves

that the path pG returned by Algorithm 2 is a feasible solution

to RMCP(G, s, t,K,D), where D is the smallest integer less

than or equal to τ such that RMCP(G, s, t,K,D) is feasible,

provided that RMCP(G, s, t,K, τ) is feasible.

Since each ωk(e) is a positive integer, for k = 2, . . . ,K and

e ∈ E, the existence of a directed edge from (u, C2, . . . , CK)
to (v,D2, . . . ,DK) in GK,τ implies that Ck < Dk, ∀ 2 ≤
k ≤ K. Therefore the graph GK,τ is acyclic. As a result, it

takes O(mτK−1+nτK−1) = O(mτK−1) time to compute the

shortest paths from (s, 0, . . . , 0) to all other vertices in GK,τ ,

since the single source shortest paths in an acyclic graph can

be computed in linear time (see [5], page 592). ✷

B. Polynomial Time Approximate Testing

Our FPTAS uses the following polynomial time approxi-

mate testing procedure [15]. For a given positive real number

θ, we construct an auxiliary graph Gθ = (V,E, ωθ
1 , . . . , ωθ

K)
which is the same as G except that the edge weighting

function ωk is changed to ωθ
k such that ωθ

k(e) = ⌊ωk(e) ·
θ⌋ + 1 for every e ∈ E, which is called the kth θ-scaled

weighting function. For given real numbers C > 0 and

ǫ > 0 (we assume ǫ < K), we define TEST(C, ǫ) =
YES if RMCP(Gθ, s, t,K, ⌊n−1

ǫ
⌋ + n − 1) is feasible (where
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θ = n−1
C·W ·ǫ ) and define TEST(C, ǫ) = NO otherwise. Using

standard techniques of scaling and rounding [9], [11], [15],

[21], one can prove that TEST(C, ǫ) = NO implies ζopt > C

and that TEST(C, ǫ) = YES implies ζopt < C ·(1+ǫ). Recall

that ζopt is the optimal value of SMCP(G, s, t,K,W ). This

is formally stated in the following theorem.

Theorem 4.2: Let ζopt be the optimal value of

SMCP(G, s, t,K,W ). Let C and ǫ be two fixed positive

numbers. Then

• TEST(C, ǫ) = YES implies ζopt < C · (1 + ǫ);
• TEST(C, ǫ) = NO implies ζopt > C.

Furthermore, the time complexity of TEST(C, ǫ) is

O(m(n
ǫ
)K−1). ✷

C. The FPTAS for SMCP

We may apply Algorithm 1 to compute an s–t path

pM . According to Theorem 3.1, ωM (pM )/K is a lower

bound for ζopt and ωM (pM ) is an upper bound for ζopt.

If ωM (pM ) = 0, we know that pM is also an optimal

solution to SMCP(G, s, t,K,W ). If ωM (pM ) > 0, we can

use the approximate testing procedure to generate a sequence

of lower bound-upper bound pairs so that the ratio of the upper

bound over the corresponding lower bound goes sufficiently

close to 1, and then solve an instance of RMCP to obtain

an (1 + ǫ)-approximation to SMCP. Following the ideas of

Lorenz and Raz [15], we say that UB[0] (UB[i], respectively)

is an approximate upper bound for ζopt if 2 · UB[0] ≥ ζopt

(2 · UB[i] ≥ ζopt, respectively). We set the initial lower

bound of ζopt to LB[0] ≡ ωM (pM )/K and initial approximate

upper bound of ζopt to UB[0] ≡ ωM (pM )/2. Our FPTAS is

presented in Algorithm 3.

Algorithm 3 FPTAS-SMCP(G, s, t,K,W )

Step 1 Apply Algorithm 1 to compute a K-approximation

pM to SMCP(G, s, t,K,W ).
if ωM (pM ) = 0, output pM and stop. pM is an

optimal solution to SMCP(G, s, t,K,W ).
Step 2 Set LB := LB[0] := ωM (pM )/K and set UB :=

UB[0] := ωM (pM )/2;

Step 3 if UB ≤ 2 · LB then

goto Step 4;

else

let C :=
√

UB · LB;

if TEST(C, 1) = NO, set LB := C;

if TEST(C, 1) = YES, set UB := C;

goto Step 3;

endif

Step 4 Set θ := n−1
LB·W ·ǫ . Apply Algorithm 2 to

RMCP(Gθ, s, t,K, ⌊ 2UB(n−1)
LBǫ

⌋ + n − 1) and output

the corresponding feasible path pG.

Theorem 4.3: Algorithm 3 finds a (1+ ǫ)-approximation to

SMCP(G, s, t,K,W ) in O(m(n
ǫ
)K−1) time.

PROOF. Let {LB[i]} and {UB[i]} denote the sequences of lower

bounds and approximate upper bounds generated by Step 2

and Step 3 of the algorithm. We know that

LB[i] ≤ ζopt ≤ 2 · UB[i] (7)

is true for i = 0. Assume that (7) is true for i =

l ≥ 0. If TEST(
√

LB[l] · UB[l], 1) = NO, we set

LB[l+1] :=
√

LB[l] · UB[l] and UB[l+1] := UB[l]. If

TEST(
√

LB[l] · UB[l], 1) = YES, we set LB[l+1] := LB[l] and

UB[l+1] :=
√

LB[l] · UB[l]. It follows from Theorem 4.2 that

(7) is also true for i = l + 1. Also from the definition of the

sequences {LB[i]} and {UB[i]}, we have

log UB[i+1]−log LB[i+1] =
log UB[i] − log LB[i]

2
, i ≥ 0. (8)

Therefore Step 3 of the algorithm is executed no more

than ⌈log(log UB[0] − log LB[0])⌉ times. However, log UB[0] −
log LB[0] ≤ log K according to Theorem 3.1. As a result, the

worst case running time required by Step 2 and Step 3 of the

algorithm is bounded by O(mnK−1 × log log K).
In the rest of this proof, we will use θ to denote n−1

LB·W ·ǫ (as

in Step 4) to simplify notations within the proof. Let popt be

an optimal solution to SMCP(G, s, t,K,W ), i.e., popt is an

s–t path such that ωk(popt) ≤ ζopt · W for k = 1, 2, . . . ,K.

Since ωθ
k(e) = ⌊ωk(e) · n−1

LB·W ·ǫ⌋ + 1 ≤ ωk(e) · n−1
LB·W ·ǫ + 1 for

every edge e ∈ E, we have (noting that popt has at most n−1
edges)

ωθ
k(popt) ≤ ωk(popt)· n − 1

LB · W · ǫ +n−1 ≤ ζopt · n − 1

LB · ǫ +n−1

≤ 2UB(n − 1)

LBǫ
+ n − 1, ∀ 1 ≤ k ≤ K. (9)

Since ωθ
k always have integer values, (9) implies

ωθ
k(popt) ≤ ⌊2UB(n − 1)

LBǫ
⌋ + n − 1, ∀ 1 ≤ k ≤ K. (10)

This implies that popt is a feasible solution to

RMCP(Gθ, s, t,K, ⌊ 2UB(n−1)
LBǫ

⌋+ n− 1). Therefore Step 4 of

the algorithm is guaranteed to find a feasible path. Note that

(9) also implies

max
1≤k≤K

ωθ
k(popt) ≤ ζopt · n − 1

LB · ǫ + n − 1. (11)

Let pG be the s–t path found in Step 4 of the algo-

rithm. It follows from Theorem 4.1 that pG is a feasible

solution to RMCP(Gθ, s, t,K,D), where D is the smallest

integer less than or equal to ⌊ 2UB(n−1)
LBǫ

⌋ + n − 1 such that

RMCP(Gθ, s, t,K,D) is feasible. Since pG is optimal while

popt is only feasible, the maximum path weight of pG cannot

exceed the maximum path weight of popt:

max
1≤k≤K

ωθ
k(pG) ≤ max

1≤k≤K
ωθ

k(popt). (12)

Combining (12) with (11), we obtain

max
1≤k≤K

ωθ
k(pG) ≤ ζopt · n − 1

LB · ǫ + n − 1. (13)

On the other hand, we also have

ωθ
k(pG) =

∑

e∈pG

ωθ
k(e) ≥

∑

e∈pG

ωk(e) · (n − 1)

LB · W · ǫ
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= ωk(pG) · n − 1

LB · W · ǫ , ∀ 1 ≤ k ≤ K. (14)

Combining (13) and (14), we have

ωk(pG) · n − 1

LB · W · ǫ ≤ ζopt · n − 1

LB · ǫ + n − 1, ∀ 1 ≤ k ≤ K.

(15)

Some algebraic manipulations on (15) yield the following.

ωk(pG) ≤ ζopt·W +LB·W ·ǫ ≤ (1+ǫ)·ζopt ·W, ∀ 1 ≤ k ≤ K.
(16)

Therefore pG is an (1 + ǫ) approximation to

SMCP(G, s, t,K,W ). It follows from Theorem 4.1 that

the worst case time complexity of Step 4 is O(m(n
ǫ
)K−1).

Since K ≥ 2 is a constant, the time complexity of Step 4
dominates the time complexity of all other steps. Therefore

the overall time complexity of Algorithm 3 is O(m(n
ǫ
)K−1).

✷

The limited granularity heuristic algorithm of Yuan [28]

is closest to our approximation scheme. Given a precision

ǫ > 0, Yuan’s heuristic maintains a table of size O((n
ǫ
)K−1)

at each node and has a time complexity of O(mn(n
ǫ
)K−1).

We would like to point out the difference between Yuan’s

heuristic and our FPTAS-SMCP. Yuan’s heuristic is designed

for DMCP(G, s, t,K,W ), the decision version of the problem.

If there is an s–t path p such that every path weight of p is

no more than (1 − ǫ)W , Yuan’s heuristic is guaranteed to

find a feasible path. When the above condition is not true,

the heuristic does not guarantee finding a feasible path, even

in the case where a feasible path exists. Note that for a

given ǫ > 0, checking the existence of an s–t path p with

every path weight no more than (1 − ǫ)W is itself an NP-

hard problem. Therefore when Yuan’s heuristic fails to find

an s–t path, we do not know whether DMCP(G, s, t,K,W )
is feasible or infeasible. This is a character common to

all heuristics. In contrast, FPTAS-SMCP is designed for

SMCP(G, s, t,K,W ), an optimization version of the prob-

lem. In the case where DMCP(G, s, t,K,W ) is feasible,

FPTAS-SMCP always finds an s–t path p such that every

path weight of p is no more than (1 + ǫ)W . Regardless

of the feasibility of DMCP(G, s, t,K,W ), FPTAS-SMCP

always finds a (1 + ǫ)-approximation to the optimal solution

of SMCP(G, s, t,K,W ). In addition, if for the found path

pG we have max
1≤k≤K

ωk(pG)

W
> 1 + ǫ, we can conclude that

DMCP(G, s, t,K,W ) is infeasible.

Note that Yuan’s heuristic can also be implemented with

the constraint W enlarged to W ′ = W/(1− ǫ). To distinguish

from its original form, we call Yuan’s heuristic implemented

in this way Yuan’s reverse heuristic. Note that the feasibility

of DMCP(G, s, t,K,W ) guarantees Yuan’s reverse heuristic

to find an s–t path p such that max
1≤k≤K

ωk(p) ≤ W

1 − ǫ
. Note

that for ǫ ∈ (0, 0.5], 1
1−ǫ

= 1+ǫ+ǫ2 + · · ·, which is a number

in the interval (1 + ǫ + ǫ2, 1 + 2ǫ]. So for ǫ ∈ (0, 0.5], the

feasibility of DMCP(G, s, t,K,W ) guarantees Yuan’s reverse

heuristic to find an s–t path p such that max
1≤k≤K

ωk(p) ≤
(1+2ǫ)W . When it fails to find an s–t path, we can conclude

that DMCP(G, s, t,K,W ) is infeasible. So Yuan’s reverse

heuristic exhibits several advantages over the original Yuan’s

heuristic. We point out that compared with Yuan’s reverse

heuristic, FPTAS-SMCP has a lower time complexity and

a better approximation performance.

Note that for K = 2, FPTAS-SMCP runs in time O(mn
ǫ

),
which is faster than the FPTAS of Lorenz and Raz [15] with

a complexity of O(mn(log log n+1/ǫ)). We point out that for

SMCP(G, s, t, 2,W ) FPTAS-SMCP approximates both the

cost and the delay while the FPTAS of [15] is designed to

compute a path that minimizes cost under delay constraint.

V. AN FPTAS FOR FMCP

Following the technique of [7], we present an FP-

TAS for FMCP(G, s, t,K,W ) which guarantees finding

a (1 + ǫ)-approximation to FMCP(G, s, t,K,W ). When

DMCP(G, s, t,K,W ) is feasible, our FPTAS finds a (1 +
ǫ)-approximation to FMCP(G, s, t,K,W ) in O(n log n +
m(H

ǫ
)K−1) time, where H is the minimum length (in hops)

of any feasible path to DMCP(G, s, t,K,W ). The worst-

case time complexity of the algorithm (in all cases) is

O(m(n
ǫ
)K−1), which is asymptotically the same as the time

complexity of FPTAS-SMCP. This FPTAS is named FPTAS-

FMCP and presented in Algorithm 4.

Algorithm 4 FPTAS-FMCP(G, s, t,K,W )

Step 1 Apply Algorithm 1 to compute a K-approximation

pM to SMCP(G, s, t,K,W ).
if (ωM (pM ) ≤ 1 + ǫ) then

output pM and stop. pM is a (1+ǫ)-approximation

to FMCP(G, s, t,K,W ).
else

set LB := ωM (pM )/K; set UB := ωM (pM )/2;

set H := 1;

endif

Step 2 Set θ := H
LB·W ·ǫ . Apply Algorithm 2 to

RMCP(Gθ, s, t,K, ⌊ 2UB·H
LB·ǫ ⌋ + H).

if (RMCP(Gθ, s, t,K, ⌊ 2UB·H
LB·ǫ ⌋ + H) is infeasible)

then

set H := min{2H,n − 1}; goto Step 2;

else

Let pG be the s–t path returned by Algorithm 2.

if ωk(pG) ≤ (1 + ǫ) · W, ∀ 1 ≤ k ≤ K then

output path pG and stop.

pG is a (1 + ǫ)-approximation to

FMCP(G, s, t,K,W ).
endif

endif

Step 3 if H < n − 1 then

set H := min{2H,n − 1}; goto Step 2;

else

output path pG and stop.

DMCP(G, s, t,K,W ) is infeasible (ξopt > 1).

pG is a (1 + ǫ)-approximation to

SMCP(G, s, t,K,W ).
endif
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Theorem 5.1: FPTAS-FMCP finds a (1+ǫ)-approximation

to the FMCP(G, s, t,K,W ) problem in O(m(n
ǫ
)K−1)

time. In particular, when DMCP(G, s, t,K,W ) is feasi-

ble, FPTAS-FMCP finds a (1 + ǫ)-approximation to the

FMCP(G, s, t,K,W ) problem in O(n log n + m(H
ǫ
)K−1)

time, where H is the minimum length (in hops) among all

feasible solutions to DMCP(G, s, t,K,W ).
PROOF. Due to the condition checking in Step 1, we

know that the path pM is a (1 + ǫ)-approximation to

FMCP(G, s, t,K,W ) if the algorithm stops within Step 1.

Similarly, we know that the path pG is a (1+ǫ)-approximation

to FMCP(G, s, t,K,W ) if the algorithm stops within Step 2.

If Algorithm 4 stops within Step 3, we know (from the

correctness proof of Algorithm 3) that the path pG is a (1+ǫ)-
approximation to SMCP(G, s, t,K,W ), since the constraint in

the instance of RMCP is set to ⌊ 2UB·(n−1)
LB·ǫ ⌋+n− 1 (which is

equivalent to Step 4 of FPTAS-SMCP).

Next, we analyze the time complexity of Algorithm 4.

Step 1 calls our K-approximation algorithm, which has a time

complexity of O(Km + n log n). Suppose that Step 2 solves

t instances of RMCP using Algorithm 2, with H taking the

values 1 = H1 < H2 < · · · < Ht. Then Hj = 2j−1 for

j = 1, 2, . . . , t − 1 and Ht = min{2t, n − 1}. Therefore the

total time required for these t calls to Algorithm 2 is bounded

by (recall that K ≥ 2 is a constant)

O(m(
H1

ǫ
)K−1) + O(m(

H2

ǫ
)K−1) + · · ·O(m(

Ht

ǫ
)K−1)

= O(m(
Ht

ǫ
)K−1). (17)

In the worst-case, we have Ht = n − 1. Therefore the time

complexity of Algorithm 4 is bounded by O(Km +n log n+
m(n

ǫ
)K−1) = O(m(n

ǫ
)K−1) in the worst case.

Finally, we prove the claim corresponding to the case

where DMCP(G, s, t,K,W ) is feasible. If the algorithm stops

within Step 1, the running time is O(Km + n log n), which

is bounded by O(n log n + m(H
ǫ
)K−1). Therefore we will

assume that the algorithm does not stop within Step 1. Let

popt be a feasible solution to DMCP(G, s, t,K,W ) which,

among all feasible solutions to DMCP(G, s, t,K,W ), has the

minimum number of hops, denoted by H = |popt|. We will

prove that Algorithm 4 will stop within Step 2 with H = Ht

such that Ht−1 < H ≤ Ht (H0 is assumed to be 0 for

notational purpose, in case H1 = H = 1).

Since popt is a feasible solution to DMCP(G, s, t,K,W ),
we have

ωk(popt) ≤ W, ∀ 1 ≤ k ≤ K. (18)

The feasibility of DMCP(G, s, t,K,W ) also implies that

ζopt ≤ 1. It follows from Theorem 3.1 that LB ≤ ζopt ≤ 2·UB.

It follows from the description of Algorithm 4 that we must

have ωM (pM ) > (1+ ǫ) when the algorithm enters Step 2. In

other words, we have 2 ·UB = ωM (pM ) > (1 + ǫ). Therefore

the following inequality is true.

LB ≤ ζopt ≤ 1 < 1 + ǫ < 2 · UB. (19)

Assume that we enter Step 2 with H ≥ H. We will

have θ = H
LB·W ·ǫ . Since popt is a feasible solution to

DMCP(G, s, t,K,W ) with hop-length equal to H, we have

ωθ
k(popt) =

∑

e∈popt

(⌊θ · ωk(e)⌋ + 1) <
∑

e∈popt

(θ · ωk(e) + 1)

= θ · ωk(popt) + |popt| ≤ θ · W + H, ∀ 1 ≤ k ≤ K. (20)

It follows from (19) that 2 · UB > 1. Therefore (20) implies

ωθ
k(popt) ≤ θ · W + H =

H

LB · W · ǫ · W + H

≤ 2UB · H
LB · ǫ + H, ∀ 1 ≤ k ≤ K. (21)

Since ωθ
k(popt) is an integer, (21) implies

ωθ
k(popt) ≤ ⌊2UB · H

LB · ǫ ⌋ + H, ∀ 1 ≤ k ≤ K. (22)

Therefore popt is a feasible solution to

RMCP(Gθ, s, t,K, ⌊ 2UB·H
LB·ǫ ⌋ + H).

It follows from (20) that

max
1≤k≤K

ωθ
k(popt) ≤ θ · W + H. (23)

Let pG be the s–t path returned by Algorithm 2 for

RMCP(Gθ, s, t,K, ⌊ 2UB·H
LB·ǫ ⌋ + H). Since pG is optimal and

popt has been proved to be feasible, we must have the

following.

max
1≤k≤K

ωθ
k(pG) ≤ max

1≤k≤K
ωθ

k(popt) ≤ θ · W + H. (24)

It follows from the definition of ωθ
k(e) that ωθ

k(pG) ≥ θ ·
ωk(pG). Therefore (24) implies

ωk(pG) ≤ ωθ
k(pG)/θ ≤ θ · W + H

θ
= W + LB · W · ǫ

≤ (1 + ǫ) · W, ∀ 1 ≤ k ≤ K. (25)

This proves that pG is guaranteed to be a (1 + ǫ)-
approximation to FMCP(G, s, t,K,W ) and that Algorithm 4

must stop after pG is computed. Since this is the first time

we have entered Step 2 with H ≥ H, we conclude that

H ≤ 2 · H. Therefore the running time in this case is

O(n log n + m(H
ǫ
)K−1). ✷

We point out some features of FPTAS-FMCP. When

DMCP(G, s, t,K,W ) is feasible, it runs very fast, often at the

speed of K-Approx. When DMCP(G, s, t,K,W ) is infeasible,

it still computes a provably good path, although the running

time could be larger than that of FPTAS-SMCP. When K is

reduced to 2, its corresponding running time is faster than that

of [7] (again note that the goal here is slightly different from

that in [7]).

VI. NUMERICAL RESULTS

To verify the theoretical analysis of the algorithms presented

in this paper, we implemented K-Approx, FPTAS-SMCP and

FPTAS-FMCP and compared them with Yuan’s heuristic (L-

GRANU), Yuan’s reverse heuristic (L-GRANU2), as well as

Korkmaz and Krunz’s randomized heuristic (RANDOM). The

tests were performed on a 2.4GHz Linux PC with 1G bytes

of memory.
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Fig. 1. Ratio of path weight vs constraint.

We used well known Internet topologies to verify the suit-

ability of the algorithms, and randomly generated topologies

to verify the computational scalability of the algorithms. The

known Internet topologies include NSFNET (14 nodes and 21

edges) [4], ARPANET (20 nodes and 32 edges) [1], and Italian

National Network (33 nodes and 67 edges) [1]. As in [3], [7],

[13], [14], [28], the edge weights were uniformly generated

in a range (we used the range [1, 10]). From our analysis, one

should expect our algorithms to perform similarly on various

edge weights. For each topology, we used the same (s, t) pair

for all algorithms. For a fair comparison with the limited gran-

ularity heuristic, we used 1/ǫ as the parameter n in [28]. For

each topology, we tested three different values of W : a small

value of W such that DMCP(G, s, t,K,W ) is infeasible; a

large value of W such that DMCP(G, s, t,K,W ) is feasible;

and a larger value of W such that DMCP(G, s, t,K,W/2) is

feasible. We performed the tests with K = 3.

For NSFNET, we first set W to 5 (the small value of

W ). FPTAS-SMCP, FPTAS-FMCP and K-Approx were all

able to find a path whose three path weights are 20, 20, 14,

for each of ǫ ∈ {1.0, 0.5, 0.2, 0.1}. However, RANDOM, L-

GRANU and L-GRANU2 all failed to find any path. Next, we

set W = 20. This time, RANDOM was able to find a path with

path weights 20, 20, 14. L-GRANU2 was able to find a path

with path weights 19, 21, 23 for ǫ = 0.5, 0.2. For ǫ = 0.1, L-

GRANU2 was able to find a path with path weights 20, 20, 14.

However, L-GRANU still failed to find a path. Finally, we set

W = 40. This time, all algorithms were able to find a path.

Figure 1(a) illustrates the quality of the paths found (with

ǫ = 0.5), where the y-axis measures the maximum ratio of

the path weight over the path constraint for the path found by

the different algorithms. In case no path was found, we treat

this ratio as infinity. Figures 1(b) and 1(c) illustrate the results

for ARPANET and Italian National Network respectively. We

can see that in all cases, FPTAS-SMCP, FPTAS-FMCP and

Approx find a good path.

Figure 2(a) illustrates the running times (in seconds) of the

different algorithms, as well as their dependency on the value

of W , using the case of ǫ = 0.5 for Italian National Network.

As expected, K-Approx and RANDOM are always the fastest.

Also, we observe that both FPTAS-SMCP and FPTAS-

FMCP are much faster than L-GRANU and L-GRANU2. As

expected, the running time of FPTAS-SMCP is independent

of W , while the running time of FPTAS-FMCP is either

slightly larger than that of FPTAS-SMCP (when W is small),

or very small (when W is large). We also observe that the

running times of L-GRANU and L-GRANU2 may increase

with W slightly, but not significantly. This is due to the

fact that more edge relaxations may be performed by L-

GRANU and L-GRANU2 for larger values of W .

Figure 2(b) illustrates the running times (in seconds) of our

two FPTASs as functions of ǫ, using the case of W = 5, 35
for Italian National Network. As expected, the running times

increase with 1
ǫ
. Again, we note that the running time of

FPTAS-SMCP is independent of W , while the running time

of FPTAS-FMCP is either slightly larger than that of FPTAS-

SMCP (for small W ) or very small (for large W ).

To study the scalability of our FPTASs with the network

size, we also tested FPTAS-SMCP and FPTAS-FMCP on

large network topologies generated by BRITE, a well known

Internet topology generator [2]. The values of W were chosen

similarly as in the case of well known topologies. We report

results with ǫ = 0.5 for all topology sizes for illustration.

BRITE provides several well-known models (including

the Waxman model [24]) for generating reasonable net-

work topologies. We adopted the Waxman model (with

default parameters provided by BRITE) to generate ran-

dom networks. We used five different numbers of nodes:

80, 100, 120, 140, 160. Correspondingly, BRITE generated five

network topologies with the following sizes: (1) 80 nodes with

314 edges, (2) 100 nodes with 390 edges, (3) 120 nodes with

474 edges, (4) 140 nodes with 560 edges, (5) 160 nodes with

634 edges. For each topology, we ran 10 test cases. For each

test case, we randomly generated a source-destination node

pair (s, t) and used this pair for all tested algorithms. For this

node pair, we used a small value of W and a large value of

W to test the algorithms (note that these values of W may

change when the node pair changes). The running times of

our algorithms are shown in Figure 2(c), where the running

time shown for each algorithm is the average over 10 cases,

where the largest standard deviation is 1.29.

We observe that the running times of all algorithms (expect
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Fig. 2. Running time vs various factors.

that of FPTAS-FMCP with large W ) increase with the in-

crease of the network size. For the random networks generated,

m is approximately 4n. Since we used K = 3 and ǫ =
0.5, the running times of both FPTAS-SMCP and FPTAS-

FMCP should be O(m( n
0.5 )2) = O(n3) for the cases tested.

For small values of W , FPTAS-FMCP may have to solve

instances of RMCP with τ set to 7H (note that ⌊ 2UB

LB·ǫ⌋ = 6 in

this case) for H = 1, 2, 4, . . . , 2⌊log2
(n−1)⌋, n − 1. Note that

for the same setting, FPTAS-SMCP only needed to solve one

instance of RMCP with τ set to 7(n − 1). Since the running

time of PseudoRMCP is proportional to τK−1, we can use

1 + [1 + 1
4 + ( 1

4 )2 + ...] = 7
3 as an estimate of the maximum

of the ratio of the running time of FPTAS-FMCP over the

running time of FPTAS-SMCP. Figure 2(c) conforms to this

analysis.

In terms of running time, most heuristic algorithms are fast,

but do not guarantee quality of solutions. There could be

situations where they will produce solutions that deviate from

the optimal solutions to a considerable extent. So, RANDOM

is quite fast since it requires K+1 shortest path computations.

K-Approx is the fastest since it requires only one shortest

path computation. We note that K-Approx produces solutions

better than or as good as the solutions produced by RANDOM

whenever the latter is successful. FPTASs take more time as

the value of ǫ chosen becomes smaller. In other words, the

more accuracy required for the solution, the more is the time

taken. This is not surprising since FPTASs provide guarantees

on the accuracy of the solutions produced. This guarantee

requirement is the reason for large running times taken by

the FPTASs. K-Approx is a constant factor approximation

algorithm with the constant equal to the number of edge

weights. However, simulation results in comparison with those

of our FPTASs which guarantee accuracy of the solutions

(specified arbitrarily by the value of ǫ), provide evidence that

K-Approx performs quite well in practice.

VII. CONCLUSIONS

In this paper, we have studied the MCP problem with K
additive QoS constraints, where K ≥ 2 is a fixed constant. We

presented a novel O(Km + n log n) time K-approximation

algorithm which uses a single auxiliary edge weight to com-

pute a shortest path. Because of this property, the algorithm is

easily implementable in a hop-by-hop environment. We also

presented two FPTASs for two slightly different versions of

the problem whose time complexities, when reduced to the

case of K = 2, compare favorably with existing algorithms. To

implement the FPTASs proposed in this paper in the current

networking environment, some careful modifications will be

necessary. The routing tables will have to store the next hop

addresses for every source destination pair for a few discrete

values of ǫ. These values of ǫ may be used to determine the

traffic classes in the network. It may be noted that the results

presented in this paper, although derived under the model of

an undirected graph, are equally valid for the case of directed

graphs.
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