
When the experimental stimulus is a picture, we often 
want to know the geometric properties of the spatial layout 
it represents. For instance, to find out whether we cor-
rectly perceive what we see in a perspective display, we 
need to know what the distances, depths, and directions 
are in the virtual space seen “behind” the display. And to 
know these things without measuring the real 3-D scene, 
we must reconstruct its properties from its depiction.

To reconstruct the virtual space of a picture made in 
correct perspective (e.g., photographs and much of Re-
naissance pictorial art), we first must locate the picture’s 
station point, which is the “taking” or “making” view-
point, where the camera or the artist’s eye had been. (For 
purposes such as positioning observers in front of a stimu-
lus picture, the entire reconstructive goal might be simply 
to find this original station point.) Until now, we could 
find this point only for pictures that happened to contain 
an element or pattern of known spatial proportions ex-
tending in depth (Greene, 1983; Sedgwick, 1980) or for 
certain three-point perspectives1 (Greene, 1983). With the 
sightline approach offered here, we can find the station 
point in many pictorial situations for which the usual ways 
will not work. The approach has uses in vision studies and 
in historical reconstruction, and it may have implications 
for perceptual theory and machine vision, as briefly dis-
cussed at the end of this article.

Alberti’s Ground-Plane Grid
Alberti (1435/1991) presented two methods, now 

called Alberti’s grid and Alberti’s veil, for making an ac-

curate perspective drawing. His grid method (Alberti, 
1435/1991, pp. 56–58) was a way of projectively drafting 
into the picture a pattern of squares (he suggested paving 
tiles) laid out on level ground, so that the pattern became 
depicted in correct perspective. Then, objects and people 
were painted appropriately in place on the depicted tiles, 
according to the positions they had on the real paving-
tile pattern in space. As more or less of a reversal of this 
method of making a picture, there evolved the traditional 
ground-plane-grid method, described in Greene (1983), 
for rediscovering the gridded picture’s station point. After 
the station point is found, the grid may also be used to 
reconstruct the picture’s virtual space (Steadman, 2001), 
much as pieces shown in a photograph of a chessboard 
could be located on the real board.

A ground-plane grid consisting of a single square or 
rectangle, or sometimes even a circle (Greene, 1983), is 
sufficient for finding the station point, and the grid need 
not be horizontal. Figure 1 shows the picture of a cube-
shaped box with the open side facing the viewer, and it 
also shows the plan and elevation views of the box, from 
which this picture was drafted by projection, as indicated. 
Considering the floor (and/or the ceiling) of the box as a 
square grid of one element, Figure 2 shows the construc-
tion on the picture of distance points, which are points 
where diagonals, drawn across the grid and then extended 
beyond it, cross the horizon. (The vertical sides of the pic-
ture of the box might instead have been used to construct 
such diagonals and distance points, though this was not 
done.) In a one-point or two-point perspective, the dis-
tance points will specify where the line of sight (LOS), 
which is a perpendicular from the station point, intersects 
the picture plane, and they also specify the distance, d, 
along the LOS, from the picture plane to the station point 
(Greene, 1983; Sedgwick, 1980). In Figure 2, as in any 
other one-point perspective, each distance point is the 
same distance from the LOS as the station point is from 
the picture plane.
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Alberti’s Veil and the Sightline Method 
Compared With the Grid

Unfortunately for finding the generality of station 
points, many pictures show nothing we could satisfac-
torily interpret as a ground-plane grid. However, Alberti 
(1435/1991, pp. 65–67) also suggested another method 
of drawing (Alberti’s veil or Alberti’s window), in which 
a perspective is made by direct projection, analogously to 
the sightline approach for finding the station point. The 
simplest version of the veil is a pane of glass placed in the 
picture plane, on which we trace the outlines of what we 
see through the glass. As Alberti points out, if we do this, 
we will realize that the picture that results is specific to its 
own station point. It follows that the visual array from a 
wrong station point, projected through the same picture, 

will indicate a wrong virtual space. Because this is so, we 
can find the station point with the sightline approach.

The geometric basis of the sightline approach is this: 
Axiomatically, when a known relation exists in space be-
tween an amount in depth and an amount in lateral extent, 
the depiction of that relation will specify the distance (d ) 
along the LOS, from the picture to its station point. This 
is true because, at a wrong value of d, virtual-space depths 
are shortened or elongated, relative to virtual-space lateral 
extents, which remain unchanged. (By definition, depth 
and laterality extend, respectively, parallel with and per-
pendicular to the LOS.)

Both the sightline approach and the ground-plane-grid 
approach depend on the same fundamental properties of 
perspective. But in the sightline approach, the relational 

Figure 1. The construction of a picture, in one-point perspective, of a 
cube-shaped box (that has its open-end forward), from plan and eleva-
tion drawings of the box.

Figure 2. The traditional ground-plane-grid solution for d for the pic-
ture of a cube-shaped box that was constructed in Figure 1.
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principle stated above is applied explicitly and more di-
rectly, resulting in two considerable advantages over the 
ground-plane-grid method: The features that are in depth-
to-lateral relation may be discontinuous or may meet at 
any angle, and their relation may express linear or angular 
properties.2 In short, the sightline procedures can be more 
flexibly applied. However, their advantages can sometimes 
be offset by the need to identify the place where the LOS 
intersects the picture plane, before we can apply them. 
(This is not a problem with the ground-plane-grid method, 
in which the LOS intersection is determined integrally 
with finding d.) The LOS intersects the center of any un-
cropped photograph, unless perspective-shifting camera 
equipment was used. And in a one-point perspective, a kind 
frequently encountered,3 it intersects the picture’s readily 
identified single principal vanishing point (Greene, 1983; 
also see Figure 2). Nonetheless, there are some pictures 
in which there is no sure way to locate the LOS from the 
pictures themselves, in which case the sightline approach 
will not work. (To locate a station point, there must be 
information of some kind regarding all three orthogonal 
directions in space. A depth-to-lateral relation in and of 
itself does not provide this, but, together with the LOS 
position, it does.)

The Graphic Procedure
When the requirements for using the sightline approach 

are fulfilled, one may choose between graphic and com-
putational versions of it. Figure 3 displays the essentials 
of this approach; only two of the topmost edges of a box 
identical to the box in Figure 1 are present. As seen by 
the observer, these are the top rear and top right edges, 
which form the right-angle figure shown in the plan and 
elevation. From these views, a picture showing only those 
two right-angled edge lines is drafted by projection, in 
the manner of Figure 1. With a picture made in this way, 
graphic reconstruction by the sightline approach amounts 
to a direct reversal of the picture-making projections, with 
the exception that there will almost always be one or more 
trial reconstructions of plan and elevation views, which, 
because d is wrong, contain the criterion depth-to-lateral 
relation incorrectly and in which, therefore, the criterion 
object or feature set is wrongly shaped.

In Figure 3, the criterion relation that must appear in 
virtual space and that we must know independently of the 
picture is, technically, that the leg a2 of the depicted angle 
extends in depth the same amount as the leg a1 extends 
laterally. We also must know the entry point of the LOS, 
and this is shown in the picture.

Figure 3. The graphic (projective) sightline procedure for finding d for the 
picture of a simple right-angled figure (formed from two of the upper edges of 
the box shown in Figures 1 and 2).
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(We actually know also that this is a right-angle fig-
ure, oriented with one leg extending directly forward, and, 
with this information, we can see that the angle is horizon-
tal in space. Because we know this much, we could have 
constructed the LOS position from just knowing the level 
of the horizon, by extending the depiction of leg a2 to meet 
it. We also could have solved for d using the traditional 
grid method as in Figure 2; since the picture of the angle is 
a rudimentary ground-plane-grid element, we could have 
extended to a distance point the single diagonal the picture 
defines.)

More programmatically, the steps in a graphic-
projection sightline reconstruction of the station point are 
the following.

1. Identify in the picture a depth-to-lateral relation, the 
3-D value of which is known.

2. Using a trial value of d, draft a plan-and-elevation 
orthographic layout, showing edge views of the picture 
plane with relevant object-contour coordinates marked on 
them, enough of the virtual space behind the picture to 
show the criterion depth-to-lateral relation, and the trial 
station point in front of the picture. (Use a “side” elevation, 
which presents a direct view of extents along the LOS.) To 
position in virtual space the object that has or the fea-
tures that have the critical depth-to-lateral relation, extend 
visual-array lines from the trial station point through 
picture-plane coordinates of the object’s relevant contour 
intersections, until the array lines reach positions in vir-
tual space that match the object’s known size or distance. 
If the object’s true size/distance is unknown, select either 
some reasonable size for it or a position for it in space 
along an appropriate array line. For example, select a size 
for the lateral leg (a1) of the angle pictured in Figure 3; 
position leg a1 in virtual space (in plan view) where its 
array lines have spread apart enough to produce exactly 
the specified distance a1 laterally between them. Draw 
in leg a2 where it will match its own array lines and will 
abut a1 perpendicularly as it should. (Such a layout made 
without knowing any true object size or distance will yield 
a correct d but will not determine the scale of the virtual 
space it reconstructs, since the value of d is independent of 
the size assumed for the scene. However, d is proportional 
to the size of the picture itself—that is, to its degree of 
enlargement or minification from the original.)

3. See whether the layout contains the correct value of 
the criterion relation. In Figure 3, this means measuring 
whether a1 � a2, in the plan view. In general, in recon-
structing any pictorial situation, the plan and elevation 
views must agree completely with respect to the criterion 
relation and must, taken together, express that relation 
correctly for d to be considered correct.

4. Assuming the first trial produces an incorrect value 
for the criterion depth-to-lateral relation, repeat Steps 2 
and 3, using feedback from the first trial as a guide to 
selecting a more correct trial value of d. Often, only one 
or a very few retrials will be needed. (For maximum ac-
curacy, it sometimes is best to construct a series of layouts 

that brackets the values for d at which no depth-to-lateral 
error is revealed, and d is considered correct.)

Iteration is not always necessary and, strictly speaking, 
might never in principle be required. When the criterion 
relation is a simple proportion of depth to breadth, the true 
value of d may be calculated directly from the amount of 
criterion error that is produced by the (incorrect) first trial 
value for d, since the amount of distortion in virtual depth 
will be proportional to the amount of error in d. When 
the criterion relation is more complex, however, such as 
in Figures 5–8 and Figure 10, iterative drafting may be a 
much easier and faster way than specifying the correc-
tional calculation that should be made.

The Computational Procedure
Figure 4 shows the derivation of an equation that may 

be solved for d, given the pictorial situation of Figure 3. 
This computational procedure requires a slightly different 
set of steps.

1. As with the graphic solution, identify in the picture a 
depth-to-lateral relation that is known.

2. Make a plan-and-side-elevation sketch, which need 
not be to scale, showing enough of the scene being pic-
tured to include the station point, edge views of the picture 
plane, and the depth-to-lateral relation of interest.

3. Sketch into place all the trigonometric and geometric 
properties that relate specific picture-plane coordinates to 
features in virtual space that seem relevant to the depth-
to-lateral relation being used and therefore might help in 
finding d. For the most part, these will be the properties 
of similar triangles and/or the Pythagorean relation of the 
sides of a right triangle with its hypotenuse. More sophis-
ticated algebraic methods involving matrices may some-
times be appropriate, but we will not discuss these here.

4. Express these picture-to-scene relations as equations, 
at least some of which will involve d. The goal is an equa-
tion expressing d in terms of picture-plane-coordinate 
distances only, to be solved for d.4 If the depth-to-lateral 
relation is validly specified, such an equation should exist. 
Equations will be specific to a pictorial situation and to 
the depth-to-lateral relation that is identified therein.

When Only the Sightline Procedures Will Work
Figure 5 is a one-point-perspective picture showing 

part of a casement window, with a sash swung open from 
its frame. Assuming we have no independent information 
about the proportion of sash width to sash height from 
which to reconstruct a ground-plane grid, the traditional 
reconstructive methods are of no help in this case. How-
ever, this depiction does contain a definable depth-to-
lateral relation in virtual space, which makes a sightline 
solution possible, per Step 1: The sash is angled open. The 
sash presumably fits its opening, so that both have essen-
tially the same real width. But the sash, being opened, has 
a lateral component to its width in virtual space, unlike its 
opening, which extends only in depth. Thus, the sash and 
its opening will be differentially shortened or elongated 
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in any virtual depth projected from an incorrect value of 
d. (At any given incorrect value of d, the opening will 
be more shrunk or stretched than will the sash.) Either 
a graphic or a computational version of the sightline ap-
proach may be used to find d.

Figure 6 shows the final, successful trial graphic layout, 
produced by following the steps given for a graphic solu-
tion. In Step 2, if nothing is independently known of the 
window’s real size or location in depth, the sash and its 
opening may be placed in virtual space by assuming either 
a size in height for the sash and its opening or a difference 
in height between the top of the opening and the LOS. 
If the latter amount is assumed, array lines are projected 
from the trial station point in the elevation view through 
the picture-plane coordinates for the top corners of the 

sash’s opening (i.e., for the top ends of dimensions c and e, 
as these appear in Figure 5), until they intersect the height 
in virtual space that is chosen for the opening, which inter-
sections locate the opening in depth. Then, extending lines 
(perpendicular to the LOS) from the elevation to the plan, 
the window and wall are located laterally by where these 
extension lines intersect array lines drawn through plan-
view picture-plane coordinates for the opening’s vertical 
(jamb) edges. Since this is a one-point perspective, these 
jamb edges should appear in virtual space along a line 
(representing the wall) that is parallel with the LOS.

When a layout contains the correct criterion relation 
(Step 3) and therefore the correct d, the top open corner 
of the sash itself, as located in the plan view where the 
array line through its picture-plane coordinate crosses an 

Figure 4. The computational (algebraic) procedure of the sightline approach, applied to the 
picture of a right-angled figure that was shown in Figure 3.

a one-point
perspective of
two lines of
equal length
(a1 and a2)
which meet in
space at a right
angle

Computational solution: When a depth and a laterality have
the relation of two sides of a horizontal square drawn in
one point perspective,

Derivation of the above equation for d, given the relation 
that a1 = a2 in the virtual space constructed from the original 
station point:

1. a1 = a2 = a    2. d = e + p + q    3. q /e = r /d ; d = r e/q

2 & 3. r e /q = e + p + q,

which, multiplying through by q and rearranging terms, yields

e = ( pq + q 2) / (r – q ).

Then, from Equation 3, substituting for e,

d =              .
p + q

1 – q /r

=             .
p + q

1 – q /r

d = ( pr + qr )/(r – q)
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arc drawn to represent the corner’s trajectory as the sash 
opens, will be at the same depth in virtual space as when it 
is located in the elevation view where its array line crosses 
the top of the sash opening. (A vertical line in Figure 6, 
drawn from elevation to plan at the depth of the open cor-
ner, confirms this.)

Figure 7 shows what happens in virtual space to the 
width of the sash (w2) versus the width of its opening (w1) 

when d is incorrect: The sash no longer fits its opening. 
(Figure 7 assumes that the length w2 has been established 
by projection from the elevation view.) Like Figure 5, Fig-
ure 7 indicates variable dimensions that refer to Figure 8.

Figure 8 illustrates the computational procedure ap-
plied to a not-to-scale plan-and-elevation sketch of the 
sash and opening in Figure 5. Picture-plane and virtual-
space coordinates are related as comparable points in sim-
ilar triangles formed by array lines, and the sash width w2 
is the hypotenuse of a right triangle, the other two sides of 
which are specified by virtual-space dimensions parallel 
with and perpendicular to the LOS. From these relations 
are constructed the equations given, from which a resul-
tant equation for d is derived.

Figure 9 is a well-known picture in perspective on 
which the methods of Figures 5–8 can be used, whereas, 
as Steadman (2001, p. 80) indicates, traditional methods 
seem inapplicable.

Two-Point Perspectives: Rectilinearity as a 
Depth-to-Lateral Relation

Only in one-point perspectives, where the main object’s 
axes are all either parallel with or normal to the LOS, is 
the rectilinearity of those axes preserved in virtual spaces 
reconstructed from the wrong d. This means that two-
point and three-point perspectives, unlike the one-point 
perspective, generally contain a very simple and useful 
means of finding d. Figure 10 illustrates this, with a two-
point-perspective picture of a horizontally positioned 
cross. When reconstructed using the correct value of d, 
the lines forming the cross meet at 90º in virtual space; 
when d is chosen incorrectly, they do not.

The three-point-perspective graphic solution for recti-
linearity is more complex than Figure 10, since it requires 
auxiliary projections. Halloran (1989) shows the sightline-
reconstructed geometry of a three-point picture. But such 
a solution for a three-point perspective may seldom be 
needed, since there is a nongrid, noniterative traditional 
way to find d and the LOS for any three-point perspective 

Figure 5. A picture showing a partially opened casement sash 
in one-point perspective. (The dimensions are lettered with refer-
ence to those in Figure 8.)

Figure 6. Graphic reconstruction of the window pictured in Figure 5.
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Figure 8. Derivation of an equation for the sightline computation of d 
for any pictorial situation resembling Figure 5.

1. w1 = w2 = w

2. ms = dv

3. dv = nu

4. kt = dx

5. dh = gt

6. eu = dh

7. gx = hk

8. w = u – s

9. (u – f )2 + (v – x)2 = w 2

  = (u – s)2

By replacing terms in Equation 9 with terms from Equations 1–8,
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Figure 7. Diagrams of the effect of correct and incorrect values of d 
on the virtual space reconstructed for the picture of a casement window 
shown in Figure 5. (A) d is correct; w1 � w2. (B) 0.5 d is too short; w1 < 
w2. (C) 1.5 d is too long; w1 > w2.
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for which all three main vanishing points are discernible 
(Greene, 1983).

Differences in the Kind of Result Between 
Graphic and Computational Procedures

The choice between graphic and computational sight-
line procedures may reflect the researcher’s skills and incli-
nations, as well as which procedural solution might seem 
easier to apply, for a given picture. However, there is also 
a difference in the nature of the result to be considered. 
Nominally, the value of d obtained from either procedure 
would be the same. But graphic layouts tend to produce a 
small range of values within which d must fall if it is to be 
considered correct. (This will be the range within which 
variation in the criterion depth-to-lateral relation is indis-
tinguishable from drafting imprecision.) Computation from 
an equation, on the other hand, produces a single, discrete 
value for d, but one or more other equivalent equations 
are possible whenever the relevant perspective information 
is redundant, and any small errors in measuring picture-
plane coordinates might cause other equations to produce 
slightly different values of d. The range of this variability 
could not be indicated by one equation’s result.5

Completing the Reconstruction
The sightline approach is not confined to those pictures 

for which the entire virtual scene (vs. one depth-to-lateral 
relation only) can be reconstructed. But once the station 
point is found, it is usually a straightforward matter to re-

construct some or all of the scene. If a ground-plane grid 
has been employed, the pictured objects may be located 
directly on the grid as laid out in virtual space (Alberti, 
1435/1991, pp. 67–71; Steadman, 2001, p. 77). 

Alternatively, and regardless of how the station point 
was located, array lines constructed from the station point 
through contour intersections in the picture can be ex-
tended into virtual space, in plan and elevation, until they 
reach the positions where the depicted objects will have 
their correct sizes, elevations, and distances (Steadman, 
2001, p. 78); in other words, the method shown in Fig-
ures 3 and 6 for reconstructing the critical depth-to-lateral 
relation is extended to reconstructing the rest of the scene 
in virtual space. This is generally what must be done when 
d has been found by the sightline method (Halloran, 1989, 
2004). Unlike when finding d, we must know something 
of the 3-D sizes, shapes, and/or locations of the scene’s 
objects in order to reconstruct their spatial positions.

Some Factors Affecting Accuracy
When the ground-plane-grid method is used, accuracy 

depends on the size or extent of the grid as depicted; for 
the sightline procedures, accuracy depends on the size and 
particular characteristics of the depth-to-lateral relation. 
Small errors in measuring the picture can produce dispro-
portionately larger errors in the value of d when the array 
lines on which the reconstruction depends have a very small 
included angle with each other or, in the sightline approach, 
with the LOS. In Figure 6, for example, it would have been 

Figure 9. Jan Vermeer, Officer and Laughing Girl. Copyright The 
Frick Collection, New York.
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impossible, as a practical matter, to reconstruct a reasonably 
accurate value of d using picture-plane coordinates mea-
sured for the bottom of the sash shown in Figure 5, rather 
than the sash-top coordinates that were used, though either 
choice would, in principle, have been correct.

A Summary Contrast: Sightline Versus Grid 
in Concept and in Practice

In the sense employed by Sedgwick (1983), the sight-
line approach is viewer centered and the ground-plane-
grid method is environment centered, in that the former 
fixes directions and distances from the original observer 
directly, whereas the latter determines positions and orien-
tations in space (grid positions, vanishing points, etc.).

The grid method is often an attractive choice, when it 
can be used. It assures a noniterative solution, and when 
an equations is needed, its form is known. The wider ap-
plicability of the sightline approach carries with it the 
burden of finding, in the picture at hand, some usable 
depth-to-lateral relation, without the configuration of that 
relation being known beforehand. This need to discover a 
good depth-to-lateral relation is mostly an issue with one-
point perspectives, since two-point and three-point per-
spectives contain a relation of rectilinearity, and there is a 
nongrid traditional solution for the three-point perspective 
(Greene, 1983), as mentioned.

Broader Implications
Although originally intended for evaluating pictorial 

stimuli in vision studies, the sightline approach also has 

uses in historical, art-historical, and architectural re-
search, where a photograph or perspective rendering of 
something might be the only dimensional record of it that 
we have. Concerning vision per se, the discovery that, at 
least analytically, we are more often able to recover 3-D 
from 2-D than has been thought may provide insights for 
machine vision (Beck, Hope, & Rosenfeld, 1983). And 
this recoverability of 3-D, together with the redundantly 
overdeterminate nature of perspective stimuli generally 
(Halloran, 1989, especially p. 473), suggests that static 
monocular stimuli in general may be more adequate for 
visual perception than some theories would predict (see 
Hershenson, 1998, chapters 6–8).
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NOTES

1. Perspectives of buildings and other constructed objects are conven-
tionally categorized as one-point, two-point, or three-point, according 
to how many of the orthogonal axes of the main depicted rectilinear 
object (or group of aligned objects in a scene) are not perpendicular to 
the LOS.

2. For an angular relation to be useful to reconstruction requires that at 
least one side of the included angle be neither parallel with nor perpen-
dicular to the picture plane.

3. Alberti’s (1435/1991) and Pozzo’s (1693/1989) treatises on perspec-
tive, for example, consider only one-point constructions.

4. Ideally, this would be a general equation, applicable to all suffi-
ciently similar pictorial situations, as in Figures 4 and 8. Sometimes, 
though, it is easier to incorporate the measured numerical picture-
coordinate values directly into each equation as it is developed, thereby 
producing a set of equations that is specific to one picture only, to be 
solved for d.

5. I applied sightline procedures to Figure 5 using values measured on 
a reproduction of Figure 9. A series of layouts produced a 12-cm range 
for correct d. Values of d from two different equations were 6 cm apart 
and well within the layout range.
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