
HYPOTHESIS AND THEORY ARTICLE
published: 10 September 2013
doi: 10.3389/fnins.2013.00118

Finding a roadmap to achieve large neuromorphic

hardware systems

Jennifer Hasler* and Bo Marr†

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Edited by:

Gert Cauwenberghs, University of

California, San Diego, USA

Reviewed by:

Bernabe Linares-Barranco, Instituto

de Microelectrónica de Sevilla, Spain

Theodore Yu, Texas Instruments

Inc., USA

John Harris, University of Florida,

USA

*Correspondence:

Jennifer Hasler, Georgia Institute of

Technology, Atlanta, GA 30332-250,

USA

e-mail: phasler@ece.gatech.edu

†Present address:

Bo Marr, Raytheon Segundo,

CA, USA

Neuromorphic systems are gaining increasing importance in an era where CMOS digital

computing techniques are reaching physical limits. These silicon systems mimic extremely

energy efficient neural computing structures, potentially both for solving engineering

applications as well as understanding neural computation. Toward this end, the authors

provide a glimpse at what the technology evolution roadmap looks like for these systems

so that Neuromorphic engineers may gain the same benefit of anticipation and foresight

that IC designers gained from Moore’s law many years ago. Scaling of energy efficiency,

performance, and size will be discussed as well as how the implementation and application

space of Neuromorphic systems are expected to evolve over time.
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A primary goal since the early days of neuromorphic hardware

research has been to build large-scale systems, although only

recently have enough technological breakthroughs been made to

allow such visions to be possible. What many people outside

looking into the neuromorphic community want to see, as well

as some even within the community, is the long-term technical

potential and capability of these approaches. Neuromorphic engi-

neering builds artificial systems utilizing basic nervous system

operations implemented through bridging fundamental physics

of the two mediums, enabling both superior synthetic applica-

tion performance as well as physics and computation biological

nervous systems knowledge. The particular technology choice is

flexible, although most research progress is built upon analog and

digital IC technologies.

Given the community is making its first serious approaches

toward large-scale neuromorphic hardware [e.g., FACETs

(Schemmel et al., 2008a), DARPA SyNAPSE, Caviar (Serrano-

Gotarredona et al., 2009)], a neuromorphic hardware roadmap

could be seen as a way through the foreseen upcoming bottle-

necks (Marr et al., 2011) in computing performance, further

enabling research and applications in these areas. To ignore a

long-term neuromorphic approach, such as depending solely on

digital supercomputing techniques, is to ignore major contem-

porary issues such as system power, area, and cost and misses

both application opportunities as well as misses utilizing the

similarities between silicon and neurobiology to drive further

modeling advances.

Figure 1 shows the estimated peak computational energy effi-

ciency for digital systems, analog signal processing, and potential

neuromorphic hardware-based algorithms; we discuss the details

throughout this paper. This comparison requires keeping com-

munication local and low event rate, two properties seen in

cortical structures. Computational power efficiency for biologi-

cal systems is 8–9 orders of magnitude higher (better) than the

power efficiency wall for digital computation; one topic this paper

will explore is that analog techniques at a 10 nm node can poten-

tially reach this same level of biological computational efficiency.

Figure 1 show huge potential for neuromorphic systems, show-

ing the community has a lot of room left for improvement, as

well as potential directions on how to achieve these approaches

with technology already being developed; new technologies only

improve the probability of this potential being reached.

One focus is looking at what neural systems to date have a

chance to scale to larger sizes, which is one metric of the particular

implementation’s merit going forward. In addition, considerable

time is spent discussing systems that can scale and how they will

be able to scale to larger systems, both in IC process improve-

ments, circuit approaches, as well as system level constraints. One

conclusions drawn is that with current research capabilities, with

additional research to transition these approaches to more typi-

cal IC and system building, that reaching a system at the scale of

the human brain is quite possible. Within our current grasp are

circuits and technologies that can reach these large levels; when

researchers are building small prototypes, these issues must be

considered to enable scaling to these larger levels.

In the following sections, we will, in turn, discuss these aspects

by focusing on key issues that effect this performance. section 1

will discuss a framework for discussing large-scale neuromorphic

systems. section 2 discusses computational complexity and the

necessary programmability and configurability, utilizing the right

set of dense features to make an efficient implementation. section

3 considers the power constraints in computation and communi-

cation required to operate such systems, as well as discuss power

constrained cortical structure design. section 4 continues with
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FIGURE 1 | A spectrum showing the computational efficiency of

various technologies, including digital technologies, analog Signal

Processing (SP), as well as best estimate of biological neuron

computation. Three orders of magnitude has produced amazing

improvements in digital technology from speak-and-spell devices (Frantz

and Wiggins, 1982) to current day smart phones. Three orders of

magnitude in analog SP approaches has the promise of similar

advancements as it becomes a stable capability. Biological neurons show a

potential of five more orders of magnitude of improvement, opening further

opportunity for efficient computational devices. Further, this observation

defines one definition for efficient neuromorphic systems as those

physically implemented algorithms that improve power efficiency beyond

the analog SP metrics.

other key aspects to the neuromorphic roadmap, including SNR

and Tools for design. We finally discuss in section 5 some initial

thoughts on learning of parameters (i.e., synapses), although a

complete discussion would be fairly long and complicated by the

early state of research in these fields. Eventually, any useful neu-

romorphic system will have to rely on learning to realistically set

the entire state of the network.

LARGE-SCALE NEUROMORPHIC SYSTEMS

Although the eventual goal would be the complexity of human

brain, it remains beneficial to consider intermediate steps as well,

such as a limited region of cortex, or potentially smaller nervous

systems like a mouse. Estimates of the number of neurons in the

human brain are between 1011 and 1012 (Williams and Herrup,

1988; Mead, 1990; Azevedo et al., 2009), although most recent

data leans toward 1011 (Azevedo et al., 2009). Estimates on the

number of neurons in a mouse is roughly 108 neurons (Williams,

2000). Size of the cortex structure would be somewhat propor-

tional to the sensor size of the incoming signals (Allman, 2000);

size of the cortex tends to be correlated to the body size in mam-

mals (Allman, 2000). Further, building a cortex or cortex in a

handheld device imposes additional significant constraints in area

and power consumed.

A lot of previous work has focused on front-end sensory and

motor systems, including retina models (e.g., Mead, 1989; Boahen

and Andreou, 1992; Delbruck and Mead, 1994; Delbruck, 1994;

Marwick and Andreou, 2006; Lichtsteiner et al., 2008) cochlea

models (e.g., Mead, 1989; van Schaik et al., 1996; Sarpeshkar

et al., 1998, 2005a,b; Ravindran et al., 2005; Hamilton et al.,

2008; Odame and Hasler, 2008; Rumberg et al., 2008; van Schaik

et al., 2010; Rumberg and Graham, 2012) as well as others (e.g.,

LeMoncheck, 1992). Although these input representations are

important for neural computation, and some have done some

interesting engineering work based on these front-end systems

(Riesenhuber and Poggio, 2000; Fu et al., 2008; Schaik et al., 2009;

Chakrabartty and Liu, 2010; Liu and Delbruck, 2010; Farabet

et al., 2011; Sejnowski and Delbruck, 2012), our focus will be on

the computation using these front-end structures in the highly

modular cortical structure (Eliasmith and Anderson, 2003).

Si TECHNOLOGIES FOR IMPLEMENTATION: PROGRAMMABILITY, AND

CONFIGURABILITY

The VLSI revolution for digital computation allowed abstraction

and thus specialization in building different aspects of systems

such that each group could communicate with each other and

effectively contribute to the solution (Mead and Conway, 1980).

This approach enabled application engineers to use digital tech-

niques without having to be circuit or device physics experts, and

as a result, rapidly increased the pace of innovation. For com-

mercial digital IC and system development, almost all solutions

are microprocessors (µP) that have become diverse in their spe-

cializations such as in digital signal processing (DSP), graphics

processing (GPU), or field programmable gate arrays (FPGA).

Rarely are custom IC solutions built because of the resulting

cost of the mask sets and engineering time versus the projected

commercial value (i.e., revenue) of the resulting solution. This

direction puts more pressure on abstraction and tools for building

these systems, particularly tools that enable engineering of sys-

tems as well as scientific explorations. Neuromorphic solutions

utilize digital solutions where ever appropriate and effective for

the resulting metrics.

Economics dictate that custom digital design at modern pro-

cess nodes is typically not feasible unless there is an extremely

high utilization or expected product volume, and a similar

result is expected for computational approaches that are phys-

ically (biologically) inspired. The early analog VLSI research

steps required heavy custom IC design to initially develop the

field. On the other hand to compete either in the current sig-

nal processing, neural modeling or application development

arena, analog VLSI, particularly for neuromorphic areas, must

move to similar high use approaches and allow efficient pro-

grammability, configurability, and adaptability. Rarely are custom

ICs built currently without high IC reuse to offset the result-

ing high opportunity cost. Most current approaches, heavily

use digital interfacing, computation, and memories to achieve

these approaches even for analog computation approaches; other
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efforts include researchers using long-term analog memory

devices.

Physically based computation schemes, similar to analog com-

puting, required time to develop the infrastructure for analog

signal processing, neuromorphic hardware, as well as comparison

with modeling approaches. These physically based solutions are

inspired by the potential improvement in power efficiency and

density efficiency compared to digital solutions, as well as the

belief there is similar physics in Si and biological systems; more

will be discussed in the following section.

Similar to how FPGAs revolutionized digital prototyping

efforts , developing reconfigurable hardware that reduces the

development and test cycle will fuel key innovation in neuromor-

phic systems. This approach requires developing configurability,

which allows different computational flows, and programmabil-

ity, which allows different parameter values, for physical compu-

tation systems. Figure 2 summarizes these concepts. If all values

are known ahead of time, programmability is extremely useful to

eliminate mismatch effects. In cases where learning is used, there

is a need for parameters and precise elements. At a high level,

some level of modular computing is expected given what appears

to be a repeatable structure throughout cortex, thus lending itself

to a configurable approach.

The most critical issue for achieving programmability and

configurability in any physical computation based technology is

a storage medium that enables efficient computation. The Single

Transistor Learning Synapse (STLS) concept (Hasler et al., 1995)

provided such an approach. The STLS are modified EEPROM

devices, fabricated in a standard CMOS process, that simultane-

ously provide long-term storage (non-volatile), computation, and

adaptation in a single device. The development of Large-Scale

Field Programmable Analog Arrays (FPAA) enabled configura-

tion to be used for physically based neuromorphic techniques

(Twigg et al., 2007; Basu et al., 2010a,b; Schlottmann et al.,

2010, 2012a,b,c; Wunderlich et al., 2012). These approaches

allow the added advantage of those building applications not

to have expertise in IC design, a separation that should prove

useful for the neuromorphic community as well. General FPAA

chips will be advantageous for moderate size system investiga-

tion; when structures are understood well, one would specialize

some of the infrastructure, but always enable some configura-

bility in the system. All of these aspects should enable neuro-

morphic/analog solutions to compete effectively with classical

engineering solutions.

NEURAL STRUCTURE BASICS

One neuromorphic area focuses on building arrays of neuron

elements with realistic soma dynamics at a density that enables

looking at neural dynamics of 100 neurons or more (Indiveri

et al., 2001; Lin et al., 2006; Renaud et al., 2007; Silver et al.,

2007; Schemmel et al., 2008a; Saighi et al., 2010). Typically a

tradeoff is seen between dense circuit structures and accurate

modeling of biological behavior, similar to computational neuro-

science but with different rules. The hope is not simply modeling

neural systems, but enabling engineering applications based upon

neuromorphic techniques.

A biological neuron is defined by its soma, dendrite, synapses,

and axons, as seen in Figure 3. The electrical IC models will fol-

low a similar block diagram for the basic components. Incoming

axon lines form a connection through synapses to the neuron

dendrite line that feeds into the soma block of the neuron. The

soma block creates the dynamics/computation to send a resulting

action potential, often described as an event, to its output axon

connection. The dendrite is the computation region between the

signal inputs from the post-synaptic computation and the soma

node for the neuron. Synapses represent the connection between

axon signals and the resulting dendrite of a particular neuron.

CHANNEL MODELS

The base components are based on transistor channel models

of biological channel populations (Farquhar and Hasler, 2005);

summarized briefly here are the key concepts as well as in
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FIGURE 2 | Programmable and configurable concepts exist, recently with

analog approaches as well as digital. The line can in some cases be blurry

between programmability and configurability, although for classical

engineering systems the difference is fairly clear. Both concepts are critical for

neurobiological systems which use programmability and configurability,

sometimes in the same device. In all cases, having a long-term memory

element is critical for these implementations. For analog approaches, the best

solution to date has been using floating-gate based devices. Floating-gate

elements are fabricated in standard CMOS, with 10 year qualified data

retention for analog quantities with more than billions of read-write

operations. A drop of 1–100 µV in floating-gate voltage over 10 year lifetime is

typical, depending on particular process. Configurability in analog computation

has seen success using Field Programmable Analog Arrays (FPAA), because

analog computation is typically performed as a data-flow architecture.
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Figure 4. The physical principles governing ion flow in biologi-

cal neurons share interesting similarities to electron flow through

MOSFET channels, and exploiting these similarities results in

dense circuits that effectively model biological soma behavior.

The energy band diagram (source to drain) looking through the

channel of the MOSFET is similar to the energy band diagram

(inside to outside) looking through a biological channel. Because

the similarities between biological and silicon channels are uti-

lized, the voltage difference between the channel resting potentials

on the silicon implementation is similar to the biological power

supplies. The resulting spiking action-potential circuit requires

six transistors, which is the same number of transistors and just
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FIGURE 3 | Basic definition of neurons that uses biologically realistic

transistor based models of neurobiological computation. A biological

neuron is made up of its soma, dendrite, synapse, and axon components.

For our electrical IC models, we will follow a similar block diagram for the

basic components, including efficient models of synapses, channel regions

in the soma, and communication of spikes to other synapses.

a few more capacitors (transistor size capacitors) than the basic

integrate and fire neuron approach (Mead, 1989).

Other approaches are still being considered for implementing

channel models (Indiveri et al., 2011), typically in systems where

only the soma compartment is considered relevant (dendrite is

approximated as a wire). This includes approaches implement-

ing a range of integrate and fire neurons, including modifica-

tions to enable second order dynamics (Izhikevich, 2003), as

well as models that attempt to implement some part or all of

the classic Hodgkin–Huxley type channel equations (Mahowald

and Douglas, 1991; Yu and Cauwenberghs, 2010). Also, other

approaches have been recently considered in transistor channel

modeling (Hynna and Boahen, 2006), although these approaches

require more complicated circuitry without improving the chan-

nel’s dynamical properties.

Solutions of ordinary differential equations (ODEs) remains

an area that analog techniques are significantly more efficient

than digital techniques, but given the ability to rapidly try out

algorithms, digital solutions continue to be popular with a wide

community. Further, there is a significant community of compu-

tational neuroscientists porting neural models to FPGAs (Cassidy

and Andreou, 2009) and GPU systems, potentially resulting in

leverage points. Most large-scale digital models remain to be inte-

grate and fire networks (Izhikevich, 2003; Cassidy et al., 2007;

Indiveri et al., 2011), attributing to the significant ease of such

implementations over ODE solutions of channel populations

(Izhikevich, 2003). The question of whether integrate and fire

neurons is the correct zeroth order computation is still an open

question.

SYNAPSE MODELS

Synapses represent the connection between axon signals and the

resulting dendrite of a particular neuron. The connection starts
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FIGURE 4 | An overview of MOSFET channel modeling of biological

channels. This approach is possible given the similar (although not

identical) physics between MOSFET and Biological channels both

modulated by a gating potential. The physical structure of a biological

channel consists of an insulating phospholipid bilayer and a protein which

stretches across the barrier. The protein is the channel in this case. The

physical structure of a MOSFET consists of polysilicon, silicon dioxide,

and doped n-type silicon. A channel is formed between the source and

the drain. The band diagram of silicon has a similar shape to the

classical model of membrane permeability proposed by Hille (2001). This

approach yields an updated model for modeling biological channels that

also empowers dense MOSFET implementation of these approaches. The

primary design constraint is modeling the gating function with other

transistor devices; such an approach is shown to model the classic

Hodgkin–Huxley squid axon data, resulting in a close model to the action

potential, as well as voltage clamp experiments.
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FIGURE 5 | A single transistor synapse device is presented and

architecture that uses non-volatile storage, generates biological

post-synaptic potential (PSP) outputs, can easily be arrayed in a mesh

architecture, and demonstrates biological synapse learning rules, such

as long term potentiation (LTP), long term depression (LTD), and spike

time dependent plasticity (STDP).

as an electrical event arriving into the presynaptic cell, releasing

chemicals that reach and modulate the channels at the postsynap-

tic cell, resulting in a response in the dendritic structure. A Post-

Synaptic Potential (PSP) is modeled typically as (Koch, 1998)

Isyn = te−t/τfall (1)

where τfall is typically on the order of 0.5–2 ms.

Biological synapses adapt to their environment of event inputs

and outputs, where typical programming rules include long-term

potentiation (LTP), long-term depression (LTD), and spike-time-

dependent plasticity (STDP). In biology, synapses strengthen

through chemical and morphological changes that improve sig-

nal transduction from the presynaptic to the postsynaptic cell

(Markram et al., 1997; Bi and Poo, 1998).

This single transistor learning synapse has a triangle waveform

modeling the presynaptic computation, a MOSFET transistor

modeling the postsynaptic channel behavior, and a floating-gate

to model the strength of the resulting connection. A floating-

gate device is employed that can be used to store a weight in

a non-volatile manner, compute a biological excitatory post-

synaptic potential (EPSP), and demonstrate biological learning

rules (Hasler et al., 1995; Gordon et al., 2004; Ramakrishnan et al.,

2011). A MOSFET transistor in subthreshold has an exponential

relationship between gate voltage and channel current; therefore

to get the resulting gate voltage to get the desired synapse current,

we take a log of Equation (1) to get the gate voltage, which has the

shape of a triangle waveform.

A single floating-gate device has enabled both the long-term

storage and PSP generation (Figure 5), but also has allowed a

family of LTP, LTD, and STDP type learning approaches through

the same device (Ramakrishnan et al., 2011). In this neuron chip,

we have implemented these learning algorithms as part of the

array, and we will summarize the key aspects of the STDP learn-

ing algorithm. The weight increases when the postsynaptic spikes

follow the presynaptic spikes and decreases when the order is

reversed. The learning circuitry is again placed at the edges of the

array at the end of the rows, included in the soma blocks, there-

fore not limiting the area of the synaptic matrix/interconnection

fabric. This approach has been extended to inhibitory and N-

methyl-D-aspartic acid (NMDA) synapses at similar array den-

sities. Using the transistor channel type modeling, these synapses

model the current source and conductance synapse, still using a

single transistor for the channel element.

Figure 6 shows the circuit structure for an array of learning

synapses; effectively we have a modified EEPROM array, with the

associated density from such a structure. Current synaptic density

already extrapolates to large number of synapses per mm2 using

unoptimized devices, as seen in Figure 7; a range of optimization

techniques as well as optimizing the use of input and tunneling

capacitors gets the density near EEPROM levels. The data points

are based on experimentally measured and publicly released val-

ues; additional data points for 45 nm and 65 nm ICs correspond

well to current known research efforts. In a practical system com-

munication is a significant issue for power consumption, as we

will discuss in later sections, and related issues for Vector-Matrix

Multiplication (VMM) (Schlottmann and Hasler, 2011), which

shows that complexity scales linearly for mesh-type architectures.

Current EEPROM devices already store 4 bits (16 levels) in a

single transistor of 100 × 100 nm area in 32 nm process (Li et al.,

2008; Marotta et al., 2010). A good overview of EEPROM/Flash

history was presented at ISSCC2012 (Harari, 2012). Recent data

on EEPROM devices shows commercially announced devices at

15 nm (Hynix, IEDM) and 19 nm [Toshiba/ScanDisk (Li et al.,

2012b; Shibata et al., 2012a) and Samsung (Lee et al., 2012a)] as

well as production of 32 nm devices. From the current EEPROM

progress, such devices are expected to migrate to 7 and 11 nm

technology nodes; therefore the risk that the industry will not

commercially produce a 10 nm floating-gate device is very low.

Most nano-technology devices make comparisons to mesh

type architectures. One expects a linear scaling down to 10 nm

process to result in a 30 × 30 nm or smaller array pitch area,

which is practically as small as any other competing technol-

ogy, making floating gate arrays extremely competitive with other

nanotechnology approaches. Even considering non-optimized

floating-gate transistor arrays, one can already see the resulting

scaling of these approaches. One expects that optimization of

floating-gate devices for synaptic structures should yield an array

density close to EEPROM densities.

These learning synapses have storage capabilities to enable

them to retain 100 s of quantization levels (7–10 bits), limited

by electron resolution, even for scaled down floating-gate devices

(i.e., 10 nm process). Often there is a concern on the number

of bits of resolution in neuromorphic systems, and although the

question of bits of resolution remains a topic of discussion, float-

ing gates and other types of neuromorphic storage often allow

much denser storage than digital approaches. Since the densest

synapse hardware implementation can achieve as many quanti-

zation levels as needed by algorithms, this concern is effectively

irrelevant from a hardware perspective.
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FIGURE 6 | An array of floating-gate synapses capable of

adaptively modifying their weight values as well as

computation and weight storage. A dense array of synapses

can be programmed, using only one transistor per cell, as in

EEPROM approaches, while adding somewhat more complex

circuitry on the periphery.

The density for a 10 nm EEPROM device acting as a synapse

begs the question of whether other nanotechnologies can improve

on the resulting Si synapse density. One transistor per synapse is

hard to beat by any approach, particularly in scaled down Si (like

10 nm), when the synapse memory, computation, and update is

contained within the EEPROM device. Most nano device tech-

nologies [i.e., memristors (Snider et al., 2011)] show considerable

difficulties to get to two-dimensional arrays at a similar density

level. Recently, a team from U. of Michigan announced the first

functioning memristor two-dimensional (30 × 30) array built on

a CMOS chip in 2012 (Kim et al., 2012), claiming applications in

neuromorphic engineering, the same group has published inno-

vative devices for digital (Jo and Lu, 2009) and analog applications

(Jo et al., 2011).

Phase change memory is often considered a potential option

for neuromorphic synapses, often due to initial success in such

devices commercially (i.e., by Samsung (Chung et al., 2011; Choi

et al., 2012), although earlier papers are also published). Micron

started production of 1 Gbit memories in 2012. Even with all

of the commercial development, the phase change memories

are an order of magnitude larger area of flash devices at the

same technology node, often due to selectivity issues due to high

temperature controls needed for programming. In general, a sin-

gle transistor is needed for programming, the same number of

transistors for a flash device.

Even if the functionality was the same, then the question

of additional cost of the technology infrastructure must be

addressed. Further, the phase change methodolody puts into

question all approaches that use external IC memories, since at

some point, the value must be stored, and if digitally, requiring

multiple cells per value. Such techniques include multiplexing

synaptic memories to save locally on the resulting die area. The

resulting issues we discuss in later sections on power efficiency

and cost of communication makes such approaches prohibitively

expensive.

COMPARISON OF FABRICATED ICs OF SOMA AND SYNAPSE ARRAYS

Figure 8 shows a complexity comparison for channel and synap-

tic numerical and silicon models. Computational neuroscience

community has an understanding of model complexity for

digital computation based on years of research (Izhikevich,

2003). Physically based implementations do not follow the same
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tradeoffs, partially because we have transistor channel approaches

built upon similar physics with biological devices. For example,

digital computation shows a factor of 1000-fold reduced compu-

tational load when modeling with an integrate and fire neuron

and HH physics based modeling (Izhikevich, 2003). For analog
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FIGURE 7 | Single-Transistor Learning Synapse density with process

node. We plot both the synaptic density per mm2 as well as total number

of synapses per reticle, as well as data points from experimentally verified,

floating-gate array of devices.

approaches the differences among many metrics between these

two approaches is small.

Table 1 shows the structure presented in this paper results in

the best synaptic density over other ICs built to date (Indiveri

et al., 2006; Schemmel et al., 2006, 2008b; Camilleri et al., 2007;

Brink et al., 2012). We define synapse density as the synapse area

normalized by the square of the process node. Further, we achieve

this synapse density in a working neural array with synapse com-

plexity capable of high storage as well as STDP behavior; these

techniques will scale down and have relatively similar density to

EEPROM density at a given process node. These results demon-

strate the resulting advantage of floating-gate approaches for

neuromorphic engineering applications.

These approaches only consider the impact for dense simple

synapses; we will discuss the impact of dendritic computation in

the following areas. Having a memory that is also a transistor, as

is typical for floating-gate approaches, will have advantages over

other approaches.

DENDRITE MODELS

The computation in dendritic areas is highly debated, particularly

given the complexity and computational richness available here.

In many modeling and implementation approaches, the dendrite

is approximated to be a wire, greatly simplifying the resulting

network and enabling a system that is tractable by a range of

computational principles. For our discussions, the possible effec-

tiveness of dendritic computation is considered, particularly given

recent results that indicate efficient computational models using

these structures.

Using channel model approaches, one can successfully build

dense dendritic compartments and configurable structures

(Farquhar et al., 2004b) that compare well to classical mod-

els of dendrites (Nease et al., 2012). The resulting computation

from dendritic elements is often debated, and in most computa-

tional models is ignored because of the increased computational
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FIGURE 8 | Comparisons of implementation measures for digital and

analog implementations for channel models and synapse models.

A spectrum of easy to complicated aspects understood in one area (i.e.,

digital) might have no similar approach in the other area (i.e., physical

devices). Although the moving from an integrate and fire neuron to a HH

based neuron might be a difference of 1000 in computational complexity for

digital approaches, the difference in transistor, capacitor, or bias count is very

small for physically implemented approaches.
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Table 1 | Comparison of synapse density and function of working implementations.

Chip built Process Die No of Synapse Syn Synapse storage

node (nm) area (mm2) synapses area (µm2) density resolution and complexity

GT neuron1d (Brink et al., 2012) 350 25 30,000 133 1088 >10 bit, STDP

FACETs chip (Schemmel et al., 2006, 2008b) 180 25 98,304 108 3338 4 bit register

Stanford STDP 250 10.2 21,504 238 3810 STDP, no storage

INI chip (Indiveri et al., 2006) 800 1.6 256 4495 7023 1 bit w/learning dynam

ISS + INI chip (Camilleri et al., 2007) 350 68.9 16,384 3200 26,122 2.5 w/learning dynam

Bold value indicates synapse density as the synapse area normalized by the square of the process node.

complexity. Given recent results that show powerful computa-

tional aspects of dendritic structures in engineering applications

(George and Hasler, 2011; George et al., 2013), it is unreasonable

to ignore such effects.

INTERCONNECTIONS BETWEEN NEURONS

Communication is one of the significant differences between what

would appear to be the capabilities of Si and biology. Si is mostly

a two-dimensional interconnect [although there is getting to be

more research efforts in limited 3D approaches (Culurciello and

Andreou, 2006)] while neural tissue allows for 3D interconnec-

tion between the roughly 2D computation sheets in cortex.

Solving the 3D issue is significant for hardware implementa-

tions. On the otherhand, we can transmit events that are digital

signals over wires on a digital chip in less than 1 ns; therefore it

seems natural to take advantage of this aspect of the Si physics

to handle event communication. Of course, to multiplex many

axons on a single wire, particularly one going a long distance (over

a board or sets of boards), requires a sparse firing rate among

neurons. Biological neurons fire, on average, once every 2 s; this

firing rate would enable such time-multiplexed communication

schemes to work well, although some event coding schemes don’t

allow for such low event behavior.

The class of communication schemes that use this technique

are called Address Event Representation (AER). Figure 9 shows a

typical block diagram communicating events on and off the IC.

For example, a typical communication is to just send an address

from a particular neuron when it creates an event; the firing of

an address communicates both that a neuron fired, and its logical

address for data processing purposes. If we have a sparse number

of events, then the communication happens almost instantly and

without issue of collisions with other events. AER is often used to

enable reconfigurability through digital storage and processing.

Leaning on the digital system allows for rapid prototyping, but

with significant cost in some areas (power, complexity). Current

AER systems are used as a standard interface primarily between

neuromorphic sensors ICs and next layer of processing connected

to it. This approach enables neuromorphic systems a level of con-

figurability and programmability using AER (and other digital

interfaces) to directly communicate to digital systems.

Typical architectures could allow for senders and receiver ele-

ments in a one-dimensional or a two-dimensional scheme; a two-

dimensional communication scheme often requires significant

complexity in the resulting asynchronous design. One can expect

a range of circuit approaches under these conditions; clearly the

Ackin
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Ackout
Reqout

Addressin Addressout
AER 

Receiver 

Module

AER 

Sender 

Module

Computational 
Block 

(neurons, synapses) 

Input & Output 
through events

Other Analog / Digital I/O signals

FIGURE 9 | Block diagram of our address event representation (AER)

communication scheme. AER approach is used to interface the input and

output events (action potentials) of a network of neurons to the outside

world. We use an AER receiver to get input events, and an AER transmitter

to send output events.

technique that scales with current digital design (e.g., VHDL to

silicon implementation) will have a significant advantage for the

entire community.

COMPUTATION COMPLEXITY TOWARD NEUROMORPHIC

APPLICATION

The last section gave a sense that feasible approaches are available

to build all of the basic components in digital as well as physi-

cal computational models. These thoughts lead to two additional

questions:

• How do these approaches scale up to networks of neurons, say

cortical neurons, of small vertebrates (i.e., fish) to mammals

(i.e., mouse, cat) and finally humans?

• What computations are possible using these techniques that

can compete with current implementations, whether digital or

physical implementation?

Both questions are important as the computational complexity is

considered that is required for neuromorphic approaches.

Although, computational neuroscience has decades of experi-

ence and significant results, finding neural system concepts that

provide competitive engineering applications is only beginning.

At the time of writing, the short list of particularly efficient

neuromorphic computational algorithms currently proposed are

• Analog Neural Network (ANN)

• Winner-Take-All (WTA) Networks (Lazzaro et al., 1988;

Indiveri et al., 2001; Chicca, 2006)

• Wordspotting (e.g., Juang and Rabiner, 1991; Lippmann and

Jankowski, 1994) in groups of cortical cells
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In the following paragraphs, we will model the computational

load for each of these approaches as well as the computa-

tion required for a full ODE solution to the components that

are currently understood. The comparisons are made in terms

of the minimum digital computational complexity to perform

the algorithm, and will express these comparisons in Multiply-

Accumulates required for the operation. Building this framework

allows for performance comparisons with traditional engineer-

ing solutions, always with an eye to where will these approaches

exceed the capabilities of existing systems. Whether a digital

or physical computation technique, the traditional implementa-

tion of algorithms (i.e., digital on FPGAs, DSPs, or analog on

FPAAs) versus the corresponding neuromorphic implementation

of algorithms are compared.

ANN: ANALOG NEURAL NETWORK MODEL

The rise of the neural network community in the 1980’s solidi-

fied a framework of neuron models that have shown a range of

diversity to solve problems in many applications, so much so,

that many of these techniques are considered standard techniques

taught in most universities. The approach has its early roots in

the perceptron (Rosenblatt, 1958) and adaptive filter (Widrow

and Hoff, 1960) models that then extend to multilevel neural

network models, hopfield models, as well as other related com-

putational models. The simplest one-node approach is seen in

Figure 10, where we have an input being multiplied by a weight

value, all of those values added together at the soma compart-

ment, where a linear or non-linear function is applied before

we receive the output. ANN approaches include having contin-

uous valued (i.e., tanh functions) or spiking (i.e., integrate and

fire neurons, rate encoded signals) devices as well as feedforward

or feedback stages (Figure 11). Often, when adding many values

together, we will draw all the lines connected together and use

Kirchoff ’s current law (sum of currents into a node equal sum

of currents leaving a node) to do the summation of values; effec-

tively this model assumes the dendrite is a wire and it performs

no effective computation.

In terms of computational level, a one layer ANN would

simply require the computation for the vector-matrix multipli-

cation. Assuming we have m synapses (or inputs) per neuron,

and n neurons, a complexity of mn would result for the synaptic

W1

W2

W3

Wn

Axon 
Out

FIGURE 10 | Block diagram of a single neuron abstraction, typical in

analog neural network (ANN) approaches.

computation. The rest of the computation depends on the com-

plexity of the resulting neuron. Taking the simplest typical model,

the output node would be a tanh(·) function, or roughly 4

multiply-accumulates (MAC) per neuron computation. Usually,

the computation in the somas is much smaller than the computa-

tion in the synapses when m is of moderate size.

Figure 10 shows graphically the similarity of a spiking network

of integrate and fire neurons to continuous-valued approaches.

Spiking networks, rate encoded, etc., with PSP from synapses,

give exactly the same computation. When a spiking network is

operating with low spike rates (e.g., 1 Hz), typically seen with real

neurons (with dendritic components), the computation takes a

different form. At low (1 Hz and below, rare for rate-encoding)

rates we probably have outputs from strong-inhibition WTA cir-

cuits (or multiple layers), and most likely an event based coding

based on the location of the neuron element. Such compu-

tational approaches are open questions, although some initial

applications are starting to be presented such as in robotic path-

planning (Koziol et al., 2012) and sparse image/data reconstruc-

tion (Shapero and Hasler, 2012b). Further, we can extend classic

ANN approaches to Gaussian mixture Models (GMM), radial

basis function, and other similar network approaches by taking

the difference of two sigmoids.

WINNER TAKE ALL (WTA) + VECTOR MATRIX MULTIPLY (VMM)

WTA networks of neurons was an early area where Si engineering

and neuroscience positively interacted with each other, providing

a unique and efficient means of computation. As a simple defini-

tion, the network is composed of multiple (n) excitatory somas

that all synapse or connect (excitatory synapses) onto a single

neuron that provides inhibitory feedback connection to all of the

original soma elements. The net effect is that we have an adap-

tive threshold, which can be global or local, that is the largest of

some function on the inputs. Whether these “somas” are contin-

uous valued or spike representations is dependent on the design

and computing environment. The classic circuit implementation

was based on continuous valued elements, that closely utilized

transistor device physics to build an efficient circuit (Lazzaro

et al., 1988). Following that success, others built multiple spike-

based representations to complete the connection between these

circuit approaches and biological computation (Indiveri et al.,

2001; Bartolozzi and Indiveri, 2007). Further, by having local

reciprocal inhibitory connections, one can make the WTA net-

work a locally winning network, similar to WTA networks with

horizontal diffusor connections between neighbor neurons. The

network performs one form of an analog max function, which

enables analog sorting computations.

The approach provides a much more accurate model of corti-

cal computation with ANN type models; the added complexity

is only at the soma compartments. Figure 12 shows the block

diagram of this approach. For n somas, we have n + 1 dynam-

ical equations. Spiking or non-spiking is similar. For effective

digital numerical computation, at least a factor of 10 greater

than the input samples would be needed for the dynamics. Some

non-linearities are needed on each neuron to reduce their input,

which in the simplest case would be say 2 MAC/element. So

we are looking at approximately 30 MAC ∗ (n + 1) for a WTA
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FIGURE 11 | Basic block diagram illustrating the most typical of neural

models, that of a fully connected array of synapses, possibly

reciprocally connected, connected to an array of neurons. The block

diagram on the left is a typical approach for an array of spiking neurons

and biologically modeled synapses. The block diagram on the right is a

typical approach for an array of neurons with continuous valued outputs;

such an approach is called an analog neural network (ANN). The

connection between spiking networks and ANN approaches starts with the

realization that many neuron models, such as the family of integrate and

fire neurons, are effectively linear or weakly non-linear sigma-delta

modulators. Typically such functions are used for analog to digital

converters (ADC), where the signal (or a low-pass filtered version) is

recovered by performing a low-pass filter operation. For neural modeling,

synapses effectively perform a low-pass filter on the resulting input event

stream, particularly for rate encoded outputs. This model breaks down for

low event rates, particularly for place coding; this case is rare for such

networks which are based upon integrate and fire based neurons that are

resulting in rate encoded signals. Typically, dealing with continuous-valued

elements has similar implementation complexity and lower power

consumption; The primary operation in either case is a Vector-matrix

multiplication (VMM), with similar complexity in either case. One might

find particular niche applications where one structure can be optimized

over the other approach. The non-linearity block for the ANN approach

might be a time-dependant non-linearity; for Hodgkin–Huxley type neurons,

the resulting function resembles more of a bandpass filter function. The

mesh architecture approach enables direct computing through memory.

network for a basic structure. When we consider more local win-

ning approaches, which are necessary, then these values clearly

increase. When putting these elements into a network, one would

still want a VMM at the input to model the synaptic inputs into

these soma elements. As in the ANN case, the computational

complexity of the synapses would be much larger than the soma

elements, even for the WTA components, if m is large.

WORDSPOTTING NETWORKS

One recent addition to these computing platforms is a recent

algorithm demonstrating experimentally in Si that neurons with

at least basic dendritic structure can compute wordspotting algo-

rithm (George and Hasler, 2011; George et al., 2013), a key

engineering approach for many classifier applications. Figure 13

summarizes this approach. There are similarities between the

dendritic structure and typical HMM classification structures

used in speech recognition for wordspotting algorithms (Lazzaro

et al., 1997), but with far more states in dendritic structures than

can be practically used in any classifier.

Given this algorithm potential, we will discuss the computa-

tional complexity of this approach based on the equivalent simple

HMM classifier computation; certainly both practical HMM

algorithms as well as real dendritic computation is more com-

plex. A lower bound on this computation would be 2 MAC per

state variable for the required sample rate for continuous inputs.

A typical dendrite would have over 1000 state variable equivalents

in its continuous structure.

For a particular neuron timeconstant, τ, we would want to

have multiple samples for proper operation. This discussion uses

an effective discrete time sample rate 5 times more than τ; we

use τ = 1 ms here. Therefore, conservatively, we have each tree

computing 10 MMAC just for feedforward HMM computation.

Then on top of that would be computations for learning and other

functions.

The need for dendritic models is still debated in compu-

tational neuroscience (Hausser and Mel, 2003; Gonzales et al.,

2011), including the resulting functionality being multiple spa-

tially constrained neurons or more advanced features (Polsky

et al., 2004); the question partially gets answered by the resulting

computational efficiency demonstrated through Si based models.

The question of model detail is a classic one in compu-

tational neuroscience often debates the clear tradeoff between
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somas and coupled inhibitory interneurons. These approaches allow for a

small number of winning neurons, and sharpens up the neuron responses

as well as reduces the overall spike rate. The computational power of this

approach, whether using spiking neurons or as circuit implementation using

a range of dynamics is still an active area of research.
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FIGURE 13 | Block diagram for computation through a number of

neurons with dendritic structure; this structure comes from modeling

of groups of cortical neurons. This approach is similar to wordspotting

networks used for speech recognition systems. The inputs come from

another event generation layer, whether a layer of cortical neurons or as

part an initial transform from sensor inputs to symbol event representation.

Linear dendritic lines are being assumed in this figure, although both

biological neurons and Si implementations utilize a multi-branching tree.

model complexity and computation complexity (i.e., Izhikevich,

2003), based on digital computation of ODEs. When consider-

ing electrical (and some ion related) modeling using physical

(analog) hardware, transistor channel modeling, pioneered by

Farquhar and Hasler, 2005, changes these constraints. For exam-

ple, modeling a Hodgkin–Huxley (HH) model neuron requires

6–7 transistors directly modeling the channel population and gat-

ing mechanisms. Implementing the simplest integrate and fire

neuron requires 6–7 transistors for its operation (Mead, 1989).

The most effective electrical model, tuned to biological parame-

ters like channel currents, often becomes the model of choice.

Dendritic processing is capable of significantly improved

power efficiency, operating on a problem set that is well known in

engineering applications (i.e., HMM, Viterbi, and related classifi-

cation algorithms). Dendritic elements are a primary and funda-

mental structure in cortex, having a significant (factor of 1000 or

better) power efficiency. Therefore, modeling a dendrite as a wire

leaves far too much potential efficiency on the table. Further, such

techniques would be utilized for engineering applications requir-

ing these functions. The known efficiencies discussed so far do not

make up the computational efficiency gap observed between cur-

rent computers and neurobiological systems; it is suspected that

neurobiological systems are computing additional functions not

currently modeled.

The precision required for such operation is typically a func-

tion of system SNR, which is a function of effective capaci-

tance (addressed in later sections) and parameter programming

precision. Biological systems would follow similar noise lev-

els, or potentially higher due to additional devices at a node,

as a result of physical noise processes. Mismatch in analog

is classically a significant question, a problem that is directly

addressed by using floating-gate approaches; without program-

ming approaches, these mismatch issues easily overwhelm a sys-

tem design. Floating-gate elements can be programmed to 100 uV

or smaller floating-gate voltage resolution, allowing precision

better than 1% accuracy, better than it is believed neurobio-

logical systems currently employ; straightforward tradeoffs are

possible (i.e., increased area) if more accuracy is needed for

programming.

FULL COMPARTMENT ODE MODELING

Another bound to the problem is provided, where we numerically

compute the equivalent Ordinary Differential Equations (ODE)

for each soma, dendrite, and synapse elements.

If we use a fixed sample rate, which is easier for comparison

rather than adaptive rates as well as for real-time interactions,

typically one uses a factor of 10 larger sample rate than the incom-

ing signals. To numerically solve the ODE at this sample rate,

we will chose a 4th order Runga–Kutta method; we would esti-

mate roughly 10 MAC per computation, which models a few

non-linearities. One can choose a wide range of methods and

oversampling but generally will get similar results. Finally, for a

typical line, we will assume we would need at least five state vari-

ables per node; therefore, the overhead for a single node is a factor

of 500 MACs/node.

This level of computation is over 40 times larger than for the

wordspotting approach. This ODE solution probably captures a

better sense of the real biological computational requirements.

For example, normalization and pruning of data in a wordspot-

ting HMM classifier type model requires more computation that

could be modeled by biological channel models.
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COMPUTATIONAL MODEL COMPARISONS

Table 2 shows a summary measure of the algorithms mentioned

in the previous sections. These initial measure of complexity gives

a sense of what is possible with classical digital computation tech-

niques, as well as looking at comparisons for more physically based

approaches. Figure 14 illustrates these tradeoffs assuming neurons

with 1000 synapses each and an effective input signal frequency of

1 kHz. As we go to higher than real time speeds, we would face lin-

early higher more MACs per operation. All of the functions scale

similarly in number of computations, but with significantly dif-

ferent scale factors. All lines do not include any overhead of the

processor, data communication, and memory access, but rather

only is there enough raw computation for the task.

The algorithmic comparisons between the best formulation of

these particular algorithms are made to achieve the resulting func-

tionality for digital computation. If one was to make a comparison

to say a SPICE level simulation, the numbers would be signif-

icantly higher; even if we computed the resulting ODE models

the computation time would be much larger than we illustrate,

such as in the ANN case, or the wordspotting case, where in both

Table 2 | Multiply accumulates per second (MACs) required for a

network with m synapses per neuron and n neurons.

Computation MAC (1 neuron/input) MAC (n neurons)

ANN 4 + m n (4 + m) f

WTA + synapses 30 + m n (30 + m) f

Wordspotting 30 + 11 m n (30 + 11 m) f

ODE dendrite sim 500 m n (500 m) f

Other issues are assumed to be negligable for this table. Input data rate

assumed to be f (Hz). Assume average dendrite has 1 compartment per synapse.
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FIGURE 14 | Plot illustrating the computation described in Table 2 for

the computation assuming 1000 synapses and assuming real time

operating frequency (1 kHz). One curve for the ANN and WTA complexity

is plotted because they are effectively identical on this plot. To reach a

computational level of 1012 neurons with 1000 synapses or 1011 neurons

with 10,000 synapses, we would be missing a gap of 10,000 in the

resulting computational complexity to the wordspotting approach, for the

limited level of modeling of biological computation would achieve.

cases we compare against the best case practice algorithm for that

solution as the metric for the number of MAC elements. The

computation to compute the resulting ODE is shown because it

might be the case that the biological system is enabling that level

of computation through the electrical modeling.

The incoming data rate (say 1 event per 2 s) has little to do

with whether systems of neurons would need to be computed

using ODEs. The total input firing rate from all synapses (i.e.,

100 synapses), not the output firing rate, would directly impact an

ODE sample rate. Further, given that the ODEs are multitimescale

processes, resulting in stiff ODEs, the resulting digital step size for

computation may be rather small even for 0.5 Hz output event

rates.

Using the largest computer currently available [IBM Sequoia,

2–8 PMAC (/s) range sustained (TOP500 List, 2012)] one could

build a 109 to 1010 neuron (with 1000 synapses) ANN network,

build a 108 neuron wordspotting model, or build a 106 to 107

neuron ODE model operating in real time. For the wordspotting

model, that still leaves us with 104 factor in computation from

a human cortex 1012 neurons with 1000 synapses or 1011 neu-

rons with 10,000 synapses, with questions how we might achieve

that resulting large hurdle. Even with a factor of 10 over current

digital supercomputer architectures, we still stand far away from

building a human cortex.

Physically based computation approaches give some perspec-

tive on how to approach this issue. One key aspect of physical

computation, originally discussed by Mead (Mead, 1990), is that

it could be a factor of 100–1000 more dense than custom dig-

ital approaches. The fundamental argument is the number of

transistors that are needed for an operation is significantly less

than for a digital computation, say for a multiplication. In prac-

tice, analog transistors might be slightly larger and the routing

needs to be more careful than for a digital system, so in prac-

tice an efficiency improvement of 100 seems realistic. On the

otherhand, most architectures have memory locally configured,

reducing both complexity and memory access times, resulting

in an improvement in density. In many cases, like a VMM net-

work, there is effectively a memory array where the computation

is done through the memory, and therefore, the entire compu-

tation is complete in the complexity of accessing 2–3 rows of

digital memory. These modifications give promise that will enable

a solution to achieving the resulting complexity for neural archi-

tectures. These approaches could reasonably be extended to other

supercomputing problems.

To illustrate the different complexity of computation, we will

consider the relative size of digital processor as well as more

physical implementations. Figure 15 shows the resulting compar-

ison between these approaches, as well as a relative factor of 500

expected between the two approaches. Using current chip data for

these approaches, it is assumed that we can implement roughly

8 pyramidal cell neurons/mm2 in a 350 nm CMOS process, a

chip which includes local FPGA style routing as well as synap-

tic and dendritic modeling using local memory elements. From

this data, the scaling can be approximated as roughly quadratic

with process dimensions. This data per mm2, as well as the max-

imum IC size on a wafer can be plotted, typically 2 cm × 2 cm in

area, or the size of the reticle stepping. Further, these approaches
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FIGURE 15 | Projection showing the number of neuron computations

possible on a single IC (2 × 2 cm), assuming both digital and analog

computation, as a function of process node.

can be compared to an array of digital processors, typical of video

processor ICs, and optimistically assume quadratic scaling with

technology. A recent Nvidia IC achieves 512 processors on a single,

reticle sized IC in a 40 nm process (Daly, 2011); it is assumed one

processor could handle a wordspotting complexity neuron model

in real time. Such an approach requires that the communication

scales effectively as the resulting system is built; that issue will be

discussed further when considering power dissipation issues.

What is the physical size of an analog system scaled up

to human cortical levels (1011) neurons and 10,000 synapses?

Conservatively 3 million neurons per IC would require 300,000

chips; the digital solution requires roughly 10–20 million ICs. In

terms of building a physical system, one could vertically stack

multiple chips in a package (e.g., 30 is possible), and one could

put multiple chips on an IC board (say 100 on a 30 × 30 cm

board). The analog approach requires a set of 100 boards for this

architecture, which seems possible given current technologies.

A similar digital system would require 40 k boards, if possible;

effectively, digital solution will have a hard time reaching the com-

plexity of a human brain, as well as having a portable application

at the complexity of a mouse (i.e., 400 boards). This size system

is probably not a portable system, but possible as a small rack

computer.

SILICON DIE COST SCALING FOR NEUROMORPHIC COMPUTING

Silicon die area is linearly related to larger IC cost; therefore, an

idea of the resulting cost of these neuromorphic type approaches

is formed. The total cost for a fabricated IC is the wafer cost

and the mask cost. The cost for the mask set is a one-time cost,

and typically much larger than the per wafer cost. A wafer has a

number of square (or rectangular) reticles that are repeated over

an entire wafer; for a typical 20 cm diameter wafer, one approxi-

mately gets 50 reticles of roughly 2 × 2 cm size. Figure 16 shows

a typical scaling of wafer cost with process node; a human cortex

solution is entirely a question of per die cost, and would be the

production cost of these system ICs. For a 10 nm IC process, the

die cost would be approximately $20 M, which is high for indi-

vidual households, but in the range for large commercial systems.

A digital system requires a factor of 400 more ICs, so base cost

would be a similar factor to these analog estimates. These costs

only consider the IC cost, not the rest of the system communica-

tion and memory complexity, which will be higher for the digital

computation system.

Our calculations stop at 10 nm devices, since theoretically the

MOS transistor scaling stops around 10 nm devices; of course,

one should never underestimate the impact of smart individuals

to further push these limits, with the resulting benefits. Further,

there is a possibility of new technologies pushing these limits

further. To date, no technology has shown enough promise to

compete with Si approaches with appropriate memory technolo-

gies. Any approach needs to compete with Si 10 nm node, the

aspects of interfacing to a Si substrate, which would be necessary

for any novel technology in the short term. If a technology can

not show to get at least densities greater than a factor of two over

a 10 nm process, the odds of its adoption is unlikely given the rest

of the system complexity required.

POWER-EFFICIENCY OF NEUROMORPHIC SOLUTIONS

The obvious question missing after addressing the potential com-

putational approaches, both for physical and digital processing

systems, is the need to address the resulting power consumed

by each system, as well as address the related question of the

required communication to perform these computations. Further

from Mead (Mead, 1990), it is expected that physical comput-

ing systems would be more power efficient by using physical

computation techniques, and not just more area efficient com-

putation, because of the far fewer devices needed for a single

computation.

One of the amazing thing about the human brain is its ability

to perform tasks beyond current supercomputers using roughly

20 W of average power, a level smaller than most individual

computer microprocessor chips. A single neuron emulation can

tax a high performance processor; given there is 1012 neurons

operating at 20 W, each neuron consumes 20 pW average power.

Assuming a neuron is conservatively performing the wordspot-

ting computation (1000 synapses), 100,000 PMAC (PMAC =

“Peta” MAC = 1015 MAC/s) would be required to duplicate the

neural structure. A higher computational efficiency due to active

dendritic line channels is expected as well as additional computa-

tion due to learning. The efficiency of a single neuron would be

5000 PMAC/W (or 5 TMAC/µW). A similar efficiency for 1011

neurons and 10,000 synapses is expected.

Building neuromorphic hardware requires that technology

must scale from current levels given constraints of power, area,

and cost: all issues typical in industrial and defense applications;

if hardware technology does not scale as other available technolo-

gies, as well as takes advantage of the capabilities of IC technology

that are currently visible, it will not be successful.

POWER EFFICIENCY IN TRADITIONAL DIGITAL COMPUTATION

Although one might expect that conventional digital systems are

simply going to keep scaling, to the contrary it certainly seems
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FIGURE 16 | Estimating of cost to build neuromorphic systems. (A) A

picture of a wafer, reticle, and mask, and stepping to illustrate the resulting

discussion. (B) Estimate of mask cost, die cost, and cost of building a system

at the level of human cortex for a physically based computing system. The

prices for the mask and die cost are approximate, publically based

information; real numbers are typically proprietary information of the

particular vendor. We assume that one mask set is required for the cost of

the system; in mass production of such units, the mask cost would already

be spent. The resulting system cost is then almost entirely dependent on the

die cost.

that MOSFET devices will scale to some lower limit around

the 10 nm level (or smaller), and digital system performance

improvements due strictly to classical MOSFET transistor scaling

can no longer be expected. For example, computational efficiency

of floating-point MAC units has only slowly improved over the

last 11 years (factor of 2); the result is digital computation is

moving toward lower precision type computations, favoring com-

petition with neuromorphic and analog systems. Figure 17 was

generated by normalizing a “computation” as a 32-bit multiply

accumulate (MAC) operation (Marr et al., 2011); the approach

seems independent of the particular computation architecture

(DSP, FPGA, etc.); typically DSP or low-power microprocessors

are used in low-power computation, due to the high baseline cur-

rent required for FPGA devices (≈1 W for large devices). MAC

operations are often the key aspect for high performance, signal

processing, and power efficient computing, as well as is a well

defined computation operation to compare approaches.

This power efficiency asymptote changes the paradigm in dig-

ital processing; one can not use single- or double-precision arith-

metic without considering its cost in power. In practice, energy

efficient computing systems are increasingly being designed with

smaller and smaller word lengths for a particular operation

to reduce the required power for the resulting computations.

Decreasing the word length roughly gives a quadratic decrease

in power dissipation; a limit of 100 W/TMAC for 32-bit MAC

units is expected, which scales to 6 W/TMAC for 8-bit MAC

computation. At 8 bit operations, conventional numerical anal-

ysis of ODEs is highly error prone and unstable, so successful

use of these calculations requires reformulating models, if possi-

ble, for the dynamics. ODE computations of multiple timescales,

such as adaptive filters, require significantly higher resolution

to achieve reasonable SNR levels; the ideal summation in ana-

log approaches eliminates many of these constraints. Adding

non-linear operations introduces additional complexities, both

in terms of MAC operations as well as resulting dynamics.

Finite word length effects are still serious issues in these cases,
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FIGURE 17 | Plots of computational efficiency for digital multiply

accumulate (MAC) operations normalized to 32 bit size computation.

Over the last several years, the computational efficiency has not scaled

along the lines expected by traditional Moore’s law type scaling. A closer

look suggests an asymptote is being reached in MAC computational

efficiency using classical digital techniques. The computation efficiency

levels off below 10 MMAC/mW (or 10 GMAC/W or 100 pJ per MAC). The

asymptotic curve falls off from the linear trend at approximately the

90–65 nm minimum feature size node. One hypothesized factor might be

mismatch between digital components requiring larger transistors, and

requiring larger capacitance to be charged for each operation.

particularly where one gets accumulation of values over a period

of time. Further, expertise in small word length digital compu-

tations is rare, nearly as rare as experienced analog IC designers.

Finally, at 8 bit accurate computations, the argument that digital

is more accurate than analog computations is no longer valid.

One can expect innovation to improve this approach. One

example of a recent asynchronous approach optimizes based on

average delay rather than optimizing on worst case delay, and

therefore shows results that could get past the 100 pJ per MAC

barrier (Marr et al., 2011). Another approach is to consider the

asymptote seems set by device mismatch; therefore, the use of

programmable analog techniques (Degnan et al., 2005) might
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be able to overcome some of these issues. Any more special-

ized solution for getting past the digital efficiency asymptote

requires an approach that can be pulled through the typical deep

digital-design tool flow.

COMPUTATIONAL EFFICIENCY COMPARISON BETWEEN DIGITAL,

PHYSICAL, AND NEUROBIOLOGICAL SYSTEMS

Figure 18 shows a viewpoint to compare ranges of power effi-

ciencies. In this section we discuss the computational aspect of

these comparisons, comparisons not including the cost of com-

putation (communication power is zero). The next subsection

looks at the cost of communication, which must be minimized to

not cancel out improvements in computational power efficiency.

We will consider computational efficiency versus effective capac-

itance, the capacitance that an additional input is required to

modulate. Typically, the computational efficiency is proportional

to the resulting effective capacitance; local SNR is proportional to

effective capacitance due to thermal voltage. Computational effi-

ciency is a measure that normalizes across real-time, and faster

than real-time, approaches.

We approach the discussion by reviewing computational effi-

ciency in digital and typical analog signal processing approaches,

and then focus on the opportunities seen by the wordspot-

ting structures in comparison to biological neuron computa-

tional efficiency (5 TMAC/µW), in the next paragraphs. From

the previous subsection, a digital system using 8 bit MAC arith-

metic is a 3 × 107 factor higher than the biological compu-

tation numbers. Analog signal processing techniques have been

shown to have a factor of 1000 improvement, on average, on

computational efficiency for many algorithms. If we implement

the biological approach as a sequence of VMM computations

and similar approaches, efficiencies of roughly 10 MMAC/µW

or 10 TMAC/W would be achieved; analog VMM and similar

approaches are in the 1–10 TMAC/W range. Understanding neu-

ral computation offers opportunities of significant improvement

in computational efficiency (5 × 105).

From the discussions and data presented so far, it is expected

Neuromorphic algorithm approaches are techniques that will

have higher energy efficiencies than typical analog signal pro-

cessing algorithms; the improvement and impact, as well as

the architecture demonstrating these efficiencies, is illustrated in

Figure 18. For a dendrite implementation, such as the circuit

that demonstrated the wordspotting algorithm, this neuromor-

phic approach has higher computational efficiency compared to

classic analog signal processing techniques. This implementa-

tion gives some insight into the advantages of techniques used

in cortical structures. The time constant (≈1 ms) is set by the

conductance at each node with the capacitance (C) at each node,

which, in turn, sets the bias current because the transistors near

rest, Vrest, (say 10 mV above Ek) are ohmic. For the dendritic line,

the effective average energy per MAC equivalent operation is

Energy/MAC =
1

2
C(Vrest − Ek)Vdd (2)

For a VMM computation, the efficiency per operation set by total

effective line capacitance (Ceff) is (Schlottmann and Hasler, 2011)

Energy/op = 12πCeffUTVdd

where UT is the thermal voltage, kT/q. The effective line capac-

itance is capacitance at the input line divided by amplifier loop

gain driving the line. In one sense, the VMM requires getting

the data to the computation in a matrix array, with the associ-

ated capacitance; with the dendrite approach, the computation

starts closer to the inputs. Getting the data to that part in the com-

putation would be a separate discussion, and is addressed in the

following section.

Both approaches scale linearly with power supply voltage

(Vdd); decreasing the supply results in a proportional improve-

ment in efficiency. Typical numbers are mentioned for Vdd at

2.5 V. For a VMM, one could imagine decreasing the supply volt-

age to 0.5 V, probably limited to the driving amplifier headroom.

The dendritic line, with the use of programmable analog ele-

ments, should be able to decrease the supply voltage to biological

levels (180 mV) (Siwy et al., 2003). For a digital structure, the

dynamic power decreases with V2
dd due to switching energy, and

is proportional to the capacitance of the entire multiplier circuit.

The capacitance of the entire multiplier element is orders of mag-

nitude larger than a typical single floating-gate transistor doing

an equivalent vector-matrix multiplication shown in Figure 19.

Static digital power tends to increase with decreasing Vdd (Kim

et al., 2003), and can offset the resulting gains, as well as increase

transistor mismatch, requiring larger (Width ∗ Length) devices

and larger capacitance.

Using the equivalent computation of a network of cortical

neurons in Table 2 , the different computational approaches are

compared. Figure 20 plots computational efficiency versus effec-

tive capacitance, as well as providing a comparison between these

computational approaches. Effective capacitance is defined as the

resulting increase of charge required for an additional node of the

computation occurring in parallel. The classical 32-bit MAC dig-

ital power wall is at the top of the graph, and the power wall

for 8-bit computation is nearly at the top of the graph; power

efficiency would scale as the total capacitance for the digital oper-

ation. When power is a constraint for a digital system, SNR can

not be assumed to be effectively infinite. A typical value for a

VMM compiled in an FPAA would be at 10 MMAC/µW (=10

TMAC/W) power level. By utilizing the computation efficiency

in dendritic structures for wordspotting approaches, a basic com-

piled structure with large node capacitances (i.e., ≈1 pF) shows

an improvement in power efficiency of a factor of 10, a more

dedicated approach would show an improvement of 450 over

the VMM structure. Decreasing the resulting power supply to

biological levels (Vdd = 180 mV), shows another factor of 10

improvement in power efficiency (45 PMAC/W). All of these fac-

tors, with typical node capacitances results in structures within

two orders of magnitude of the power efficiency of biological sys-

tems; the Si internode capacitance could be further decreased as

nodes scale down. These neuromorphic techniques show promise

to approach the computational efficiency and raw computational

power as mammalian nervous systems.

Capacitance 1 fF 10 fF 100 fF 1 pF

SNR (dB) 22.1 32.1 42.1 52.1
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FIGURE 18 | Dendritic computation results in computational efficiency

improvements over analog SP techniques. The first approach was a

compiled FPAA design, showing an order of magnitude increase, with

the second, more optimized configurable approach potentially enabling

three orders of magnitude over analog SP techniques (Ramakrishnan

et al., 2012). The second approach was based on a local, configurable

architecture (FPGA/FPAA) for routing neurons with a high percentage of

local connectivity.

Further, scaling capacitance at each node has a direct impact on

the thermal noise at that location, whether in a silicon or biolog-

ical system. The best case (lowest level) for thermal noise current

(Î) in a device is related to its bias current (I) as

Î2/I2
=

2q�f

I
(3)

where �f is the bandwidth of interest; for a Si transistor in sat-

uration, we exactly reach this level (Sarpeskar et al., 1993). Low

current levels are often needed to achieve the resulting power

efficiency, which requires programming to low currents (i.e., pA

levels, similar to biological levels), leading to lower, classically

measured SNR levels, typical of biological systems. For example,

for 1 kHz bandwidth, we get a relative noise variance as

Ibias 10 fA 1 pA 10 pA 1 nA

% noise 20 2 0.2 0.02

Further, for coupling of capacitors with transistor source junc-

tions (subthreshold), the noise level is related to the familiar

kT/C = (UT/q)/C noise, where C is the capacitance at that node.

Figure 20 shows a table of SNR at each of these capacitance nodes,

which are consistent with the low currents mentioned above.

As capacitances scale down, the resulting bias currents for the

real-time performance will also decrease as a result. For neuro-

morphic circuits, faster than real-time performance is not only

possible, but often easier. Fortunately, MOSFET transistors can

easily handle smaller currents, although for lower threshold volt-

age processes, either the source voltage must be moved relative

to the substrate or the gate voltage must be outside the resulting

power supply voltages, easily achieved with floating-gate devices.

Typically, the lowest currents are bounded by the dark current in

the drain and source junction devices, limiting current levels in

the 1–10 fA range in practice, but still enabling biological time

constants with small (say 1–10 fF) capacitances. The current lev-

els, as well as the resulting thermal noise levels, would be similar

to biological levels.

POWER EFFICIENT NEURON EVENT COMMUNICATION

In the previous section, we have developed models on compu-

tation scaling, particularly requirements toward cortical comput-

ing requirements. These models are necessary for understanding

computation, but not sufficient because we need to consider

the resulting power dissipation for communication. So for this
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FIGURE 19 | Programmable floating-gate transistors performing a

vector matrix multiply using current-domain mathematics.
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FIGURE 20 | Plot of computational efficiency versus capacitance level

for VMM (analog) and Dendrite computation (neuromorphic,

wordspotting) physical algorithms for Vdd = 2.5 V. For both algorithms,

the efficiency improves linearly with decrease in Vdd , since power scales

linearly with Vdd here. We also show the computational efficiency for the

dendrite computation for Vdd = 180 mV, typical of neurobiological

systems (Siwy et al., 2003). We also include a table of effective SNR,

computed from thermal noise at the node over signal size (≈UT ), as a

function of capacitance.

discussion, a computational scheme that fits the power budget

is assumed, as modeled in the previous section, particularly for a

cortical structure. To consider the power consumption for com-

munication, we must consider communication of events, mem-

ory access, and resulting infrastructure requirements, discussions

we did not address in the previous section.

CONSTRAINTS FROM BIOLOGICAL COMPUTATION

For biological systems, the communication is primarily commu-

nicating events, or action potentials, which are effectively digital

signals. In some cases, we might start preconditioning signals for

computation, but where successful, it has minimal effect. Analog

encoding is possible, and might have power efficiency improve-

ments if the event encoding is directly representable in analog

signals, which for non-rate encoded signals is challenging. For

the remainder of this section, we assume we are communicating

digital events between neurons.

Neurobiological computation systems also address power effi-

ciency constraints. The human cortex consumes about 20 W of

power, of which, only a fraction of this power is used for compu-

tation; going forward, we will assume 25% of average power (5 W)

for communication of events from somas to synapses. One for-

mulation for switching energy, which is commonly used in digital

for charging or discharging a capacitor is

Energy =
1

2
CLV2

dd, (4)

where CL is the capacitive load, and Vdd is the power sup-

ply, which for a biological communication is between 140 and

180 mW (Hodgkin et al., 1952). The total energy for a biological

event is twice this value (using the digital modeling of charg-

ing and discharging a capacitance). Calculating capacitance from

power in a digital model, given a typical spike rate in the cortex

occurring once every 2 s (0.5 Hz firing rate), and 1012 neurons

in the cortex, this results in 245 pF total capacitance on an axon

line for a biological system, corresponding to 30.6 mm average

total cable length of 1 µm diameter axon cable (fairly thin axon).

This calculation shows that digital communication must be con-

strained to replicate the low switching energy of the biological

system. Average event rate for neurons in cortex has been consen-

sus below 1 Hz, although that level depends on region to region of

cortex [i.e., Early auditory cortex is 2.5–4 Hz average rate (Kock

and Sakmann, 2009; Koulakov et al., 2009; Roxin et al., 2011)]

(Sejnowski and Churchland, 1992; Kock and Sakmann, 2009).

Typical axons range in diameter from 1 to 20 µm, although val-

ues outside this range are found (Verveen, 1962; Debanne et al.,

2011) , and typically have elaborate arborization patterns to large

numbers of neurons, often within a single region of the brain

(Debanne et al., 2011). Mylenation will extend the length due to

lower capacitance, particularly for larger axons which also have

larger diameters; small, thin axons tend to have little mylenata-

tion axons. If a typical sum total length of all mylenated axons in

the human brain is 1.5 × 108 m (Kandel et al., 2000), the result-

ing axon length for a particular neuron is 1.5 mm increase of

the 30.6 mm average cable length per neuron; the effect mostly

increases the length of long-distance connections.

The net result is that with most communication on biolog-

ical axon lines, even though they might be present everywhere,

including intricate three-dimensional patterns, one does find an

exponentially decreasing distribution of axon cable length in cor-

tex, consistent with the neural communication being constrained

to a tight power budget. This result is consistent with data that

most neurons have a high level of local interconnection (Douglas
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and Martin, 2004), such as nearby cortical neurons; any cortical

architecture must explicitly incorporate these effects to achieve

the necessary power efficiency gains. Further, these results are also

consistent with the low average spike rates found in cortical sys-

tems (1 spike per second); an entire cortical network operating

with rate encoded signals (i.e., 3–300 Hz) would consume 100

times the power, and therefore the axon cable length for a cor-

tical power dissipation requires 100 times shorter cables, which is

impractical. We expect that constraining silicon communication

power may be required based on this biological inspiration.

CONSTRAINTS FROM DIGITAL COMPUTATION SYSTEMS

Classical digital computation systems have considerable depth of

experience in communication of digital signals, including event

structures. For typical CMOS communication, (4) is directly

relevant to digital systems communication; for source coupled

approaches (Emitter or Source Coupled Logic), the V2
dd term

is modified by voltage swing times Vdd, resulting in somewhat

lower dynamic power but potentially higher static current; we will

focus on the classical approach through this discussion, which will

have minimal differences for other encoding schemes. Classically,

communication of information over a longer distance is expen-

sive in power; a good summary for these approaches is written

elsewhere (Culurciello and Andreou, 2006). The capacitance for

a line is a function of the distance of the connection, as well

as making connections from one package to another or making

connections between boards or other approaches. Given digital

communication is fast, in theory, communication could happen

with small delay; a low average spike rate is essential in having the

communication being nearly instantaneous.

Figure 21A shows a few representative levels for com-

munication of events, typical boundary locations for typical

communication. Where possible, we want to have as much com-

munication locally on a single IC for low-power operation, since

that decreases the total amount of capacitance needed to be

charged and discharged (i.e., 1 pF for long distance connection

on chip), as well as allows for a (lower) range of Vdd could be

supplied as well as a range of possible communication schemes.

Further, the tighter integration between memory elements and

computation further decreases communication power; ideally, as

in the STLS approaches, the memory and computation are inte-

grated together, eliminating this particular issue. The types of

approaches at a local level needed to optimize the use of mem-

ory in the routing architecture. For example, efficient FPGA

approaches achieve both approaches, integrating the non-volatile

memory for the connections with the communication of events

in a low capacitance infrastructure. Further, dendritic struc-

tures bring more of the information refinement to the axon

outputs.

Almost all systems require communication between multi-

ple chips. When communicating events with a neighbor chip

(e.g., 1 chip right next to the transmitting IC), the minimum

capacitance is typically set by 10 pF by specification (due to pack-

aging, bonding, etc.), as well as off chip communication tends

to be at larger Vdd (5, 3.3, 2.5 V; we assume 2.5 V for these

calculations), resulting in a higher energy computation. Such

an approach results in 31.3 pJ per bit [or 31.3 µW/(Mbit/s)]
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FIGURE 21 | Modeling of power required for transmitting an event.

(A) We consider computation between devices on a single IC, between

neighboring ICs, on a single board, and distances beyond a single board

(i.e., between two boards). Each of these steps requires considerably more

power for communicating the resulting event; the more local the

communication, the more power efficient the resulting computation. (B)

Communication power versus number of events (Gbit) communicated. We

consider the three cases of transmitting a bit on a chip (average CL = 1 pF,

Vdd = 0.5 V) , transmitting a bit to a neighboring chip (average CL = 10 pF,

Vdd = 2.5 V), and transmitting an event address of 8 bits on a board

(average CL = 80 pF, Vdd = 2.5 V). Each case requires 0.12, 31.3 pJ, and 2

nJ energy communication per bit, respectively. We would expect even

more power consumption for longer distance communication (i.e., between

boards), because of the larger capacitance for these approaches. On board

requires address communication, because when transmitting sparse

events encoding the address gives an optimal solution.

independent of the communication scheme. Such event commu-

nication schemes could transmit an event in only a single bit on

the resulting line. Further, the introduction of 3D silicon pro-

cessing (die stacking, multiple grown layers, etc.) has introduced

technologies that can reduce the effective off chip capacitance by

an order of magnitude, and therefore, such approaches should be

utilized where available in a particular technology for multichip

approaches.

When we communicate over distances longer than nearest

neighbor chips, we typically employ an Address Event communi-

cation scheme (i.e., AER), which requires sending the location of

a particular spike between chips. At least, this requires an address

for the particular line, as well as the particular chip we are consid-

ering; on a single board, an 8 bit address would be a lower limit

for such approaches. In such an approach, a communication of

an event would travel multiple minimum chip distances (i.e., 8

is a lower bound for an average number), resulting in roughly
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2 nJ per operation. As we go to longer distances, and particularly

when we go to different boards, we see a significant increase in

capacitance and addressing as well as routing infrastructure; the

goal is to minimize the number of such long distance events that

need to be communicated, while preserving the capability.

Figure 21B shows a graph of the power required for commu-

nicating a number of events for these different schemes. When

trying to reach biological efficiencies for communication, we

have significant limits even communicating single events between

neighboring ICs, not to mention longer distance communication.

For 1012 events per second results in 30 W of power consumption

(1 Tbit/s). The result requires most of the computation to be local;

fortunately, neurobiological systems use a similar approach in the

fact that over 90% of neurons in cortex project locally to nearby

neurons (i.e., nearest 1000 pyramidal cells).

For example, if the off chip (not nearest neighbor communica-

tion) to is budgeted for 1 W of power, then only 0.05% of events

can use this communication channel. Further, if we budget 1 W

for off-board events, then with the additional capacitance and bits

for selection needed, one would see 64 times more capacitance,

resulting in 0.001% events communicating off board. As addi-

tional technology becomes available, such as multiple die stacking

in a given package or three-dimensional circuit fabrication, the

resulting capacitance for communication will decrease, improv-

ing some of these numbers, but the containing concepts will still

be the same. We expect similar type issues in neurobiological sys-

tems; even though the brain can communicate over long distances

by many wires, the resulting energy to do so would be prohibitive

in its current energy budget. Such constraints keep the commu-

nication overhead for the system manageable, and therefore the

communication structure never becomes too large a burden for

the system scaling to large sizes.

The low spike rate has a similar effect for synthetic systems as

it does in biological systems; increasing spike rate by a factor of

100, typically necessary for implementations using rate encoded

approaches, increases power by at least a factor of 100, signifi-

cantly limiting where such systems can be used. Of course, most

rate encoding approaches simplify neuron elements to elementary

sigma-delta converters, eliminating most of the computational

possibilities.

Rarely is the digital communication included in power for

computation (Figure 22). For example, the computation power

to access 1 MMAC of data from a nearby memory block, requiring

two 2 Mbyte, 32 bit input data, and 1 Mbyte, 32 bit output data,

results in 3.1 mW (Vdd = 2.5 V) of power, even though one might

find a DSP chip computing at 4 MMAC(/s)/mW power efficiency

(TMS320VC5416, 2008). A memory chip or data source further

away requires even higher level of power. As another example,

using a memory element one chip away for remapping neuron

addresses, which is usually a first step to storing synaptic weights

in off-chip memory, requires sending an 8 bit address off the

chip and an 8 bit address back on the chip. Just this power alone

requires 0.5 nJ per remapping in the best case; at 1012 events/s,

we require 500 W for this simple computation. Such an expensive

computation must be used in particular targeted areas.

Figure 23 shows the tradeoffs between these systems, as well as

simple comparisons between a small network of simple neurons
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FIGURE 22 | Diagram showing typical computation models for digital

and analog approaches. For a typical digital computation, we must access

the data (as well as instructions), communicate it to the processor, perform

the computation, and communicate the results back to the memory. When

this memory is an off-chip device, the resulting power consumed for

communication is much higher than an efficient processor. The analog

approach directly computes through the memory, and therefore minimizes

the resulting issues and complexity due to communication. One could use

digital based computation and memory to achieve some advantages,

limited by the computational efficiency limits for digital techniques.

and synapses. Using external memory as the primary approach for

programmability and configurability, as is the typical use of AER

communication schemes, comes at a huge cost that makes scaling

to large systems impractical. The advantages of AER communica-

tion, which include enabling long-range, sparse interconnections,

comes with the added cost of digital communication, costs that

are very small for sparse, infrequent events, and that depend

on the distance required for communication (on-chip, off-chip,

off-board). Adding the additional cost of FPGA or other high

performance digital processing only further weakens the appli-

cability of these approaches going forward. One sees exactly the

same issue when using multiplexing of a memory with an analog

system, whether to load synaptic weights in an external memory.

This result shows the heavy energy cost of computation and mem-

ory that are not co-located; although this approach might have

advantages in initial system building, it requires communication

across sizable capacitance, and therefore requiring more power, as

well as system complexity.

ENERGY EFFICIENCY COMPARISONS FOR OTHER NEUROMORPHIC

IMPLEMENTATIONS

Many neuromorphic systems claim to be power efficient, and

compared to typical digital off-the-shelf approaches, these claims
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FIGURE 23 | Illustration of the costs of external communication for

configurability and storage. Where possible, we want data-flow

operations where memory and computation are co-located with local

routing/configurability. Moving configurability is moved off of the

processing die substantially increases computational cost because of the

power and complexity requirements for moving the data to an external

processor/memory, even if next to the IC. Moving memory away from

Processing, say for multiplexing Synaptic values, further increases the

resulting power and complexity cost, even if the original device gets

simplier and smaller. These schemes include rate encoded approaches

encoding synapse values because of the increased event rate. We include

values for a small network of 1000 neurons with 100 synapses operating

with a 1 KSPS operating speed assuming a typical ANN (i.e., Vector-matrix

multiplication) neuron structure.

are often right. In each of these approaches, the IC power effi-

ciency is between the digital and analog SP techniques, with much

lower system power efficiency due to the high-level for communi-

cation overhead (including FPGAs for routing). Many techniques

start with a power efficient neuromorphic sensor , such as the

DVS imager (Lichtsteiner et al., 2008), which compares well

to commercial cameras, making it a favorite sensor interface

for many neuromorphic platforms. Unfortunately, neuromorphic

techniques have not often improved past the analog SP effi-

ciency; often the approaches, including event-based approaches,

reduce down to Vector-Matrix Multiply operations, as sometimes

explicitly said by the authors (Serrano-Gotarredona et al., 2009).

These facts leave us with a small list of potential neuromorphic

computational models currently used; the authors believe more

efficient algorithms will be discovered/invented over the coming

years.

We will comment on a few representative neuromorphic sys-

tems, while amazing feats of engineering as platforms for neural

simulation and modeling, do not reach the desired power effi-

ciency targets. The Caviar project illustrated a heroic effort

building large-scale neuromorphic processing capabilities using

the computation from the DVS imageer (Lichtsteiner et al.,

2008). The resulting convolution IC, the primary workhorse

of the architecture, was capable of 12 GMAC, low-precision

operations in roughly 100 mW of power; these impressive num-

bers are still two orders of magnitude less power efficient than

VMM type operations, even though the core operations are sim-

ilar. The resulting system integration cost is significantly higher

(even when not using USB monitors of USB events) as well

as requiring FPGA ICs for routing (i.e., synapse mapping), as

a tradeoff for system modularity; lower event rates would fur-

ther improve the resulting system. Related algorithms using

DVS imagers, while computationally interesting including stereo

processing (Ni et al., 2012; Rogister et al., 2012), show use-

ful neuromodeling approaches considering practical algorithms,

but often computed on a standard digital computer. The pos-

sible efficient implementation being better than the analog SP

line is neither demonstrated theoretically or experimentally at

this time.

The SpiNNaker approach (Furber and Brown, 2009; Rast

et al., 2011; Furber, 2012; Painkras et al., 2012) uses efficient

event-based communication structures, but utilizes 18 standard

ARM968 integer-math processors (≈4 GIPS in 1 W) for solving

any of the neuron dynamics, and therefore will be almost as effi-

cient as the digital power-efficiency wall, far from the analog SP

computation possibilities. Further power limitations occur when

the processors require off-chip memory, typical of many cur-

rent implementations. Other resulting systems, such as Neurogrid

(Lin et al., 2006; Silver et al., 2007) and Wafer level implementa-

tions from the group centered in Heidelberg (Schemmel et al.,

2008a,b) in best cases get close to the analog VMM efficiency,

typical of an ANN.

Any practical neural implementation must make sure that the

resulting infrastructure does not overwhelm the efficient compu-

tation. Such an implementation must consider system communi-

cation of events, communication to outside processors, and other

multiplexing structures. Without architectures that can, in the

particular implementation technology scale from one to billions

of neurons, clearly has advantages over other approaches. Many

previous attempts to scale up single or small networks of neu-

rons have often slowed down development because of these issues.

The Silicon Cortex Project (SCX, from INI) spent enormous engi-

neering effort to communicate between a few neurons on a single

board in the multi board system (Deiss et al., 1999; Indiveri et al.,

1999); the Central Pattern Generator (CPG) system by Patel et al.,

faced similar issues (Patel et al., 1999, 2006). The resulting system

design for the communication, programming, and configuration

infrastructure far outweighed the neuromorphic computation

issues. Even successful multilayer model implementation are con-

strained by similar approaches, and face significant challenges to

scale past current levels, primarily due to the digital communica-

tion infrastructure (Lin et al., 2006; Silver et al., 2007; Schemmel

et al., 2008b; Serrano-Gotarredona et al., 2009).
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COMMERCIAL CONSIDERATIONS TO DRIVE THESE

SYSTEMS

Although one can discuss how to build a cortical computer on

the size of mammals and humans, the question is how will the

technology developed for these large systems impact commercial

development. The cost for ICs alone for cortex would be approxi-

mately $20 M in current prices, which although possible for large

users, would not be common to be found in individual house-

holds. Throughout the digital processor approach, commercial

market opportunities have driven the progress in the field. Getting

neuromorphic technology integrated into commercial environ-

ment allows us to ride this powerful economic “engine” rather

than pull.

In most applications, the important commercial issues include

minimization of cost, time to market, just sufficient performance

for the application, power consumed, size and weight. The cost of

a system built from ICs is, at a macro-level, a function of the area

of those ICs, which then affects the number of ICs needed system

wide, the number of components used, and the board space used.

Efficiency of design tools, testing time and programming time

also considerably affect system costs. Time to get an application to

market is affected by the ability to reuse or quickly modify existing

designs, and is reduced for a new application if existing hard-

ware can be reconfigured, adapting to changing specifications,

and a designer can utilize tools that allow rapid modifications

to the design. Performance is key for any algorithm, but for a

particular product, one only needs a solution to that particular

problem; spending time to make the solution elegant is often a

losing strategy.

The neuromorphic community has seen some early entries

into commercial spaces, but we are just at the very beginning

of the process. As the knowledge of neuromorphic engineer-

ing has progressed, which have included knowledge of sensor

interfaces and analog signal processing, there have been those

who have risen to the opportunities to commercialize these tech-

nologies. Neuromorphic research led to better understanding of

sensory processing, particularly sensory systems interacting with

other humans, enabling companies like Synaptics (touch pads),

Foveon (CMOS color imagers), and Sonic Innovation (analog–

digital hearing aids); Gilder provides a useful history of these two

companies elsewhere (Gilder, 2005). From the early progress in

analog signal processing we see companies like GTronix (acquired

by National Semiconductor, then acquired by Texas Instruments)

applying the impact of custom analog signal processing tech-

niques and programmability toward auditory signal processing

that improved sound quality requiring ultra-low power levels.

Further, we see in companies like Audience there is some success

from mapping the computational flow of the early stage audi-

tory system, and implementing part of the event based auditory

front-end to achieve useful results for improved voice quality.

But the opportunities for the neuromorphic community are just

beginning, and directly related to understanding the computa-

tional capabilities of these items. The availability of ICs that have

these capabilities, whether or not one mentions they have any

neuromorphic material, will further drive applications.

One expects that part of a cortex processing system would have

significant computational possibilities, as well as cortex struc-

tures from smaller animals, and still be able to reach price points

for commercial applications. In the following discussion, we will

consider the potential of cortical structures at different levels of

commercial applications. Figure 24 shows one typical block dia-

gram, algorithms at each stage, resulting power efficiency (say

based on current technology), as well as potential applications

of the approach. In all cases, we will be considering a single

die solution, typical for a commercial product, and will mini-

mize the resulting communication power to I/O off the chip (no

power consumed due to external memories or digital process-

ing devices). We will assume a net computational efficiency of 10

TMAC/mW, corresponding to a lower power supply (i.e., mostly

500 mV, but not 180 mV) and slightly larger load capacitances;

we make these assumptions as conservative pull back from possi-

ble applications, although we expect the more aggressive targets
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FIGURE 24 | Typical signal processing chain using configurable

analog approaches and neural based classifiers. Once the input

signal becomes established as a refined probability of low-level

symbols, through a WTA approach (Lazzaro et al., 1988), we

have a cascade of classifier layers typical of processing in

cortex.
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would be reachable. We assume the external power consumed

is set by 1 event/second/neuron average event-rate off chip to a

nearby IC. Given the input event rate is hard to predict, we don’t

include that power requirement but assume it is handled by the

input system. In all of these cases, getting the required compu-

tation using only digital techniques in a competitive size, weight,

and especially power is hard to foresee.

We expect progress in these neuromorphic systems and that

should find applications in traditional signal processing and

graphics handling approaches. We will continue to have needs

in computing that outpace our available computing resources,

particularly at a power consumption required for a particular

application. For example, the recent emphasis on cloud comput-

ing for academic/research problems shows the incredible need for

larger computing resources than those directly available, or even

projected to be available, for a portable computing platform (i.e.,

robotics). Of course a server per computing device is not a com-

puting model that scales well. Given scaling limits on computing,

both in power, area, and communication, one can expect to see

more and more of these issues going forward.

We expect that a range of different ICs and systems will be

built, all at different targets in the market. There are options for

even larger networks, or integrating these systems with other pro-

cessing elements on a chip/board. When moving to larger systems,

particularly ones with 10–300 chips (3 × 107 to 109 neurons) or

more, one can see utilization of stacking of dies, both decreas-

ing the communication capacitance as well as board complexity.

Stacking dies should roughly increase the final chip cost by the

number of dies stacked.

In the following subsections, we overview general guidelines

to consider when considering using neuromorphic ICs in the

commercial market, first for low-cost consumer electronics, and

second for a larger neuromorphic processor IC.

SMALL, HIGH-VOLUME CONSUMER ELECTRONICS ICs

In one case, we will consider a small die of 1 mm2 (10 nm pro-

cess node), typical of commodity parts say in audio devices or cell

phones components (Table 3). The cost is roughly a linear func-

tion of the die area, but also a function of packaging, testing time,

production costs, and sales cost. We might expect a chip cost of

$2 range, resulting from a die cost less than $1. In 1 mm2 area,

we could imagine a network of 60,000 cortical neurons, result-

ing in 10 TMAC equivalent computation in 1 mW of power. We

Table 3 | Table of possible specifications for commercial

Neuromorphic ICs.

Consumer IC Processor IC

Die size 1 mm2 40 mm2

Chip cost $2 $100

Neurons 60,000 3,000,000

MAC 10 TMAC 500 TMAC

Comp power 1 mW 50 mW

Out events 1000/s 10,000/s

Comm power 70 nW 8 µW

assume roughly 1000 neurons project outside of the IC per sec-

ond, therefore with addressing bits would require 4 kb/s, resulting

in 125 nW of average output communication.

Even at the price point for a high-volume commercial device

($2 range, Table 3), we have computational power rivaling most

computer clusters and arrays of graphics chips integrated as a

component on a board. Potential applications are as a word

spotting front-end, and robust speech recognition in low SNR

environments. A practical application would require some level

of analog signal processing to create the input symbols for the

computation, similar to the pathways we see leading up to cortex

from the sensory systems. Further, these systems can be operated

at frequencies higher than real time, requiring a linearly increase

in power consumed for increase in operating frequency; these

approaches could enable using these techniques for front-end

classification of baseband communication systems.

POTENTIAL OF A NEUROMORPHIC PROCESSOR IC

In another case, we will consider a large die of 400 mm2, the size

of an entire reticle, typical of the microprocessor ICs, graphics

ICs, and other higher end commercial ICs. We might expect a

chip cost of $100 range, resulting from a die cost under $50 per

die, given current pricing models. These chips would probably

exist in handheld or other electronic devices that sell above a

$350 range, which enables a wide range of commercial applica-

tions. In 40 mm2 area, we could imagine a network of 30,000,000

cortical neurons, resulting in 500 TMAC equivalent computation

in 50 mW of power. We assume roughly 10,000 neurons project

outside of the IC per second, and with addressing bits would

require roughly 256 kb/s, resulting in 8 mW of average output

communication power.

By comparison, these numbers show effectively a hand held

device having the computational power rivaling the largest of

today’s supercomputers in the power consumed by less than

most handheld devices, and at a price point that could be put

into higher end commercial devices, such as tablets or lap-

tops. Potential applications would include the speech recognition

examples for the smaller chip, as well as (or in addition to)

image processing emulation, particularly on 1 M pixel images,

including receptive field processing, image/scene classification,

and pre-attention mechanisms.

TOOLS FOR DESIGNING NEUROMORPHIC SYSTEMS

Modern system design expects a design environment to work

through all of the layers of abstraction to achieve reasonable appli-

cation performance; we should expect a similar approach for

neuromorphic systems.

In many cases, we can utilize existing tools, where they exist,

such as microcontroller programming or FPGA compilation

tools, where some even have interfaces from higher level lan-

guages like C or Simulink. Such tools even exist for analog signal

processing compilation, such as the tool suite controlled through

MATLAB (Koziol et al., 2010), using Simulink (Schlottmann

et al., 2012a) at the high level that compiles to a spice deck, which

in turn, can be compiled (Baskaya et al., 2009) to programmable

object code for the FPAA device. Higher-level tools also enable

the use of these systems in educational experiences (Twigg and
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Hasler, 2008), which will be essential to educating engineers to

design with neuromorphic concepts for system applications that

are superior to state of the art solutions.

In the literature, we find a large number of proposed tools,

typically being used by a few computational neuroscientists, each

being rewritten for a particular feature, or concept. Examples of

these tools would include PyNN (Davison et al., 2008), written

in Python, and JAER (jAER, 2011), based on Java and connects

to Python interfaces. Further, there are classic neural computa-

tion tools such as Genesis (Bower and Beeman, 1998), Neuron

(Hines and Carnevale, 1997), and Brian (Goodman and Brette,

2008) which have wide applicability, and are known to be use-

ful at different levels of abstraction/computation for the resulting

ODE solutions required.

Unfortunately, there are few approaches that attempt to bridge

across a range of approaches, in particular, tools used by multi-

ple computational groups as well as multiple hardware groups.

The notable exception is the PyNN tool, originating from the

Heidelberg group (EU FACETs program) which shows promise

for a tool to unify multiple groups through an open commu-

nity type tool used by multiple academics. PyNN is designed to

be a simulator-independent, Python-based open source language

designed for describing spiking neural network models. PyNN is

the one tool that is currently used for multiple heterogeneous neu-

ron platforms. For example, the FPAA tool flow shows initial tools

(Schlottmann et al., 2012a) that could also utilize a PyNN struc-

ture to compile to hardware. The base language we used for this

approach is PyNN (Davison et al., 2008), rather than a spice deck,

to specify the netlist level of the neuron structure. Extending PyNN

as a tool for design approaches would move further along this goal.

OVERVIEW OF ADAPTATION AND LEARNING

In this section, we give an overview considering adaptation and

learning in this hardware roadmap. Because learning function,

not to mention computation, is an open area of research, the

ability to predict potential long-term issues is challenging. We

have some visability into the device-level issues for adaptation and

learning, programming versus learning for an entire array, as well

as some development questions for learning synaptic elements;

we will consider each of these in the following subsections. We see

key issues for learning and adaptation to address going forward

• FG approaches sets the standard for a single 3-terminal device

providing integrated (non-volatile) memory, synapse density,

resolution (digital EEPROM store 4 bits/cell at 22 nm), low-

power, and local adaptation. Easy local control and mismatch

control are nice to have features.

• Development/Investigation of system level (groups of event

neurons) learning rules, including normalization of neu-

ron/synaptic activity.

• Neuron learning utilizing dendritic structure. Recent results

on dendritic computation gives hope to understand algorith-

mic issues. Circuit approach requires dense circuit models in

configurable architectures.

• Axon routing as well as slower timescale chemical changes

could further add capability, particularly once key neuron

learning aspects are stable.

DEVICE-LEVEL QUESTIONS FOR ADAPTATION AND LEARNING

Device-level neural system learning starts looking at synapse cir-

cuit models, as well as finding approaches to implement these

functions using as little additional synapse circuitry as possible

to enable tight computation. One metric of a learning model

is quantifying (and minimizing) the percentage increase in base

synapse cell size from an programmable synapse to an adap-

tive synapse. The floating-gate based learning structures, single

transistor learning synapses (STLS) (Hasler et al., 1995), the

floating-gate LMS adaptive filter (Hasler and Dugger, 2005), and

floating-gate STDP synapses (Ramakrishnan et al., 2011; Brink

et al., 2012; Nease et al., 2013), all show this overhead met-

ric is manageable and approaches zero in some cases; the cell

size is relative to EEPROM type devices, with the size, complex-

ity, IC processing, and manufacturing benefits mentioned earlier.

The LMS structure increases the cell size over a VMM structure

(Schlottmann and Hasler, 2011) by a factor of roughly 2, and

the STDP synapse structure size (Ramakrishnan et al., 2011) is

identical to the resulting floating-gate transistor-channel model

(Gordon et al., 2004). Mesh-type configurations are good for

synaptic arrays when the dendrites are considered wires even

when utilizing learning in the network, with additional circuit

control on the periphery of the array. Further, other parame-

ters such as additional power dissipation and added noise should

be low relative to the non-adapting computation, often seen in

floating-gate based approaches (Hasler et al., 1996; Hasler and

Dugger, 2005).

Some nanotechnology elements, such as memristors, also have

a clear multiple-timescale behavior that would enable potentially

adaptation and long-term storage in a single device. Widrow’s

original adaptive filter work was performed by what he called

three-terminal memristors (Widrow, 1960); enabling learning

function in two terminal memristors is a challenge because in

a mesh (crossbar) array it is hard to get desired functionality,

although some early simulation results showing the approach

might the possible (Zamarreo-Ramos et al., 2011). What is also

likely with similar nano device structures is to enable circuit ele-

ments that can modulate a conductance on a slow-timescale based

on network dynamics, in a dense structure, potentially integrated

above the Si IC. Neuroscience uses a wide range of timescales for

its computation and learning requiring we eventually need these

mechanisms (Sejnowski and Churchland, 1992).

Introduction of dendritic structure, motivated by previous

sections for its computational importance and efficiency, sig-

nificantly changes the elegant mesh array of synaptic devices.

Dendrites add complexity both in terms of required added cir-

cuitry as well as potentially additions to the learning algorithms,

such as requiring local Ca2+ and localized synaptic learning,

where the detailed biological modeling in these areas are still open

questions. A dense configurable array of adapting synapses with

dendritic reconfigurability still enables these approaches, even

with the ever improving research in this area.

WRITING/READING SYNAPSE VALUES FROM A CORTICAL MODEL

If the synapse strengths/weights are learned, this alleviates the

need for loading a large number of parameter values into a

system. Assuming we are loading a cortex of 1015 synapses,
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Table 4 | Summary table for loading synapses in a human brain (1015).

Load time 15 min 1 day 10 days

Communication

Rate 11.3 Tbit/s 116 Gbit/s 11 Gbit/s

Power 10.4 kW 109 W 11 W

this requires significant communication time and overall system

power. Table 4 shows the cost and complexity for communicating

the resulting digital values to the synapses. The computations use

10 bit accuracy for the device values, 300 pF system load capaci-

tance, and Vdd at 2.5 V. We expect to have many parallel input data

streams to load the entire array for a sustained rate of 11.3 Tbit/s,

probably coming from multiple memory sources to hold the 1000

TByte golden memory target. These issues are typical for loading

a supercomputer system (TOP500 List, 2012). We have a simi-

lar issue for reading the network; reading the entire state of the

weights (and/or all potentials) once is an expensive proposition.

Loading a single IC with 109 synapses (say 106 neurons) in

a second would require 10 Gbit/s data link into the IC requir-

ing 1.6 W for communication for a 50 pF load (minimum level

for IC test with zero-insertion force socket). The challenge of

parallel programming these number of synapses on chip is man-

agable, and the resulting power requirements are significantly less

than the data communication. These numbers directly impact the

final cost of such a system; IC testing can be a significant cost in

manufacturing of a final product; loading values in 1 s prevents

one such product limitation. For the 1015 synapse data loading

the power consumption and performance will be limited by the

system communication, not the IC complexity.

For a 20 W system, loading the weights frequently is not pos-

sible; this point further illustrates the untenable case of storing

synapse weights in one place and using them somewhere else,

even in a multiplexed system. Once a memory is programmed,

adapted, and/or learned, reloading the memory is costly; there-

fore, non-volatile memory is critical to minimize the cost of

loading a system. On the other hand, occasionally loading an

entire cortex of 1015 synapses, say on the order of once a day, is

a feasible proposition, as well as having programmed code at the

initial condition or reset condition for a commercial machine.

One might wonder if every synaptic weight, as well as every

neuron parameter, can be learned or adapted from the result-

ing environment. History developing with adaptive systems,

both non-spiking (Hasler and Dugger, 2005) and spiking (Brink

et al., 2012; Nease et al., 2013), required some precisely pro-

grammed elements, although fewer than the total number of

learned parameters. Often these programmed parameters should

be insensitive to environmental conditions, often requiring a few

precision current and voltage sources. The programming of these

few parameters often have a large effect on the resulting algorithm

behavior. This behavior leads one to speculate whether the brain

uses the precise data from the human genome, estimated to be

roughly 3.2 billion base pairs long contain 20,000–25,000 distinct

genes represented by 800 Mbytes of data (International Human

Genome Sequencing Consortium, 2004; Christley et al., 2008) to

set the behavior in a similar way the parameters of billions of

neurons and 1015 synapses.

THOUGHTS ON LEARNING AND DEVELOPMENT OF NEURON ARRAYS

One classic question for biological learning networks is how

the synapses from an array of neurons, say from one or multi-

ple layers in cortex, would converge to a system equilibrium to

investigate the resulting functions of the neuron array, and com-

pare with biological studies. Several fundamental studies exist

in this area treating neurons as an ANN type model with dif-

ferent learning rules finding patterns corresponding to Principle

Component Analysis (PCA) (e.g., Linsker, 1988; MacKay and

Miller, 1990), Independent Component Analysis (ICA) (e.g.,

Bell and Sejnowski, 1995, 1997; Hoyer and Hyvarinen, 2000),

and a range of modified approaches based on this work (Blais

et al., 1998; Zylberberg et al., 2001; Falconbridge et al., 2006;

Saxe et al., 2011). These approaches are built around fundamen-

tal continuous-time ANN algorithms on PCA algorithms (Oja,

1982; Sanger, 1989) as well as ICA built from non-linearities

(Hyvärinen and Oja, 1997), each with grounding to talk about

potential computation and applications coupled with approaches

to build such algorithms (Cohen and Andreou, 1992, 1995; Hasler

and Akers, 1992).

The fundamental issue is the difficulty of making such progress

with spiking neurons. The lack of computational models in spik-

ing networks, including representations of events and resulting

realistic sensory data, complicates the analysis of the resulting

learning network. Most learning experiments use encoding struc-

tures that reduce the network (e.g., Savin et al., 2010), although

they recognize issues of rate encoding, reducing many of the

results to ANN approaches.

The case becomes even less studied when considering realistic

dendritic structures. Development with dendrites with spike rep-

resentation is an open question, and an exciting area of research.

Early research on the wordspotting dendritic computation with

STDP learning has some similarity to HMM learning rules, but

the careful connection is yet to be understood. Further questions

come from understanding and implementing the development

axon growth/routing algorithms used in development, particu-

larly as implemented in hardware (Boerlin et al., 2009). Some

evidence exists that dendritic activity strongly affects the direc-

tions of the axonal projections (e.g., Richardson et al., 2009). We

expect wide-open opportunities as well as high-impact results

coming from investigations in this area.

CONCLUSIONS

This study concludes that useful neural computation machines

based on biological principles at the size of the human brain

seems technically within our grasp. Building a supercomputer

like structure to perform computations in human cortex is within

our technical capability, although more a question of funding

(research and development) and manpower. Figure 25 shows a

representative cortical system architecture of silicon neuron struc-

tures. The heavy emphasis on local interconnectivity dramatically

reduces the communication complexity. We show these capabil-

ities are possible in purely CMOS approaches, not necessarily

relying on novel nanotechnology devices.
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FIGURE 25 | A potential view of how one could build a brain/cortical

structure; the approaches follow constraints outlined throughout this

discussion. The approach could be integrated as a set of boards with a

large number of neural ICs, where at each level of complexity, local

communication is emphasized for power efficient computation as well as

low integration complexity. Most of the on-chip communication would be

local, most of the chip-to-chip communication would be between

neighboring ICs in an extended FPGA like fabric. The system would

Interface to typical biological sensors, like retina (vision), microphones for

audition, and chemical sensors, as well as non-biological (i.e.,

communication spectrum) inputs. A particular neuron array could be

integrated with additional FPAA structures enabling integration of analog SP

for the front-end processing (i.e., acoustic front-end processing).

Figure 26 shows the potential computational energy efficiency

in terms of computation for digital systems, analog signal pro-

cessing, and potential neuromorphic hardware-based algorithms.

Computational power efficiency for biological systems is 8–9

orders of magnitude lower than the power efficiency wall for

digital computation; analog techniques at a 10 nm node can

potentially reach the same level of computational efficiency. The

resulting tradeoffs show that a purely digital circuit approach

are less likely because of the differences in computational effi-

ciency. These approaches show huge potential for neuromorphic

systems, showing we have a lot of room left for improvement

(Feynman, 1960), as well as potential directions on how to achieve

these approaches with technology already being developed; new

technologies only improve the probability of this potential being

reached.

Figure 27 illustrates the key metrics of computational effi-

ciency, communication power, and system area. Physical com-

puting, based on neuromorphic concepts, potentially can

dramatically improve system area and computational efficiency,

as illustrated throughout this discussion. Understanding that the

nervous system is power constrained is not only a key techno-

logical parameter, but understanding its implication for com-

munication enables building systems that won’t be handicapped

by its control infrastructure. This comparison requires keep-

ing communication local and low event rate, two properties
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FIGURE 26 | A summary comparison of power efficient computational

techniques, including digital, analog Signal Processing (SP)

techniques, and the potential for neuromorphic physical algorithms.

The potential of 8–9 orders of magnitude of achievable computational

efficiency encourages a wide range of neuromorphic research going

forward.
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FIGURE 27 | Overview figure illustrating the three dimensions

(computational efficiency, communication power, and system area) to

optimize to reach large-scale neuromorphic systems. Using physical

based (i.e., analog) approaches help to decrease computational efficiency

and system area, and heavy use of local communication, integration of

memory and computation, as well as low-event architecture reduces the

communication power required.

seen in cortical structures. Communication power efficiency is

handled by minimizing long-distance communication events,

focusing architectures on local communication, and refining

data to minimize the number of long-distance events communi-

cated. These points give some metrics for successful neuromor-

phic systems, in particular how much improvement in power
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efficiency achieved compared to a standard analog signal process-

ing approach.

Probably the largest hurdle is not about what we can build,

but identifying novel, efficient computation in neurobiology and

employing these techniques in engineering applications. This

question is the fundamental open question for neuromorphic

engineering as well as neuroscience. Given that the neuromor-

phic engineering building blocks also can be accurate models

for neurobiological behavior, these questions are directly related.

We painted a picture of the potential computational models

arising from neuro-modeling, including their potential com-

putational efficiency; we expect these models are just a start

to what is possible. We expect neuroscientists are bound to

make more fundamental discoveries about the nature of the

biological computation, discoveries that most likely will further

improve the computational efficiency and other metrics of these

systems.

Finally, the research in this area will accelerate by the pull

of commercial ventures that can start utilizing these technolo-

gies to competitive commercial advantage. The pull of commer-

cial success, particularly if ICs are available, will rapidly help

advance the pace of neuromorphic engineering and computa-

tional neuroscience.
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