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Abstract 

The problem of finding a single defective item from an 

infinite binomial population is considered when the group-testing 

is possible, i.e., when we can test any number of units x 

siun.iltaneously and find out if all x are good or if at least 

1 of the x defective is present. An optimal procedure is 

obtained in the sense that it minimizes the expected number of 

tests required to find one defective. Upper and lower bounds are 

derived using information theory and the relation of our procedure 

to the Huffman algorithm and the corresponding cost is studied. 



1. Introduction. 

~group-testis a simultaneous test on a finite number x 

of units and we assume that each test has only two possible 

outcomes: i} either all the x units are satisfactory or ii) at 

least one of the x units is defective (we don't know which one 

or how many are defective}. Using· a binomial formulation we 

assume that each unit is defective:with known probability p > O 

and satisfactory with probability -q = 1 - p and that the units 

are independent. 

Our goal is simply to find a single defective unit by means 

of group-testing. The total number of units (or population size} 

is assumed to be countably infinite; this occurs, for example, in 

an assembly line production. This;problem is related to the 

binomial group-testing problem ~isfussed in [2] and (3] where 

all the units are classified. It is interesting to point out that 

although the procedure called R
1 

in [2] is not optimal for all 

q-values, a related procedure R01 defined for the problem of 

this paper is optimal uniformly in q. 
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Regarding terminology, a defective set is a set of units 

known to contain at least one defective unit. If we have no 

such set at hand, we say that we have an H-situation. 

In section 2 we define a procedure R91 and we prove certain 

properties for it in section 3. Upper bounds on the expected number 

of tests F(m) required to "break up" a defective set of size m 

.. 
are obtained in section 4. Another procedure R21 is introduced 

in section 5 which is shown to be equivalent to &01 for q 

close to one. Lower bounds for any procedure that finds a single 

defective are derived in section 6: Section 7 contains a discussion 

on the optimality of the procedure:. R()l and the relation of the 

breakup of the defective set under.· this procedure to the corresponding 

Huffman coding problem. 

2. Procedure &01 for Known q. 

I 

For any procedure R let E{TIR} and F{mlR}, respectively, 
L.. 

denote the expected number of tests required to find one defective 
.... 

unit if we start with an H-situation and if we start with a defective 



·- set of size m. If we start with-a test on m units and use 

the fact that N is large (or infinite), then we obtain 

or, equivalently, 

E{TfR) 
= 1 + (1-qm)F{mjR) 

1 - qm 

(1) 

(2) 

For the particular procedure R01 (in which we simply write E{T} 

and F(m)), we choose the test group size m for any H-situation 

to be such that 
(3) 

E{T} = min [1 + (1-qm~(m)l = 

m::1,2, ••• t 1 - q J { * 1 . 1 + pF (m) 
uu.n --=-- , 

m=l,2,... 1 - qm 

where, by definition, 

* F (m) = (1-qm) F(m) • 
1 - q 

If we start with a defective set of size m ~ 2, then the 

sample size x (to be taken exclusively from the defective set) 

is determined by 

F(m) 
= 1 + min { qx(l-qm-x)F(m-x) + (1-qx)F(x)) 

l~<m · 1 - qm 

- 3 -
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* or, equivalently using F {m), 

* F {m) = 

m 
1 - q 
1 - q 

* . * 
+ min {qxF (m-x) + F (x)} 

l~<m 

the boundary conditions for this recursion are 

* F(l) = F (1) = 0 for all _q. 

* The values of F (m) were computed in Table IVA of [2] for 

m = 2(1)16 for all q. For convenience let x = x{q) denote 

(6) 

(7) 

* X them-value that attains the minimum in (3) and let E {T) = (1-q )E{T). 

By direct computation we find that the expression in square brackets 

in (3) for m = 1 is less than that for m = 2 when 

1 - q - q
2 > 0 (8) 

or when q < (J5 - 1)/2 = .618 •..• Proceeding in a similar manner 

we obtain the results given Table 1. 

Thus, for example if q = .95 then by Table I we take x = 14 

units for the first test group. If the test is successful they 

are all good and we never use them again. Then we take another 

group of size 14 and repeat the process. If a test is not successful 

- 4 -
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then by Table IVA of [2] we test 6 of the 14 units and proceed 

with F(8) if the 6 are all good or with F(6) if the 6 contain 

at least one defective. Using Table I, the value of E{T) 

required to find a defective is 5.761. 

For any integer x let a .
1 

denote the {unique) root 
~ ,x+ 

in the unit interval of 

1 
X x+l 

- q - q = o, (9) 

so that q
0

, 
1 

= 0, q
1

,,
2 

= .618 ••• , etc. Then we make the 

Conjecture: 

For all q in the interval [a a ] the integer x 
~-1,x' ~,x+l 

which is the root of (9) achieves the minimum in (3) and the 

* value of E {T) in this interval is given by 

(10) 

where a= a(x) and ~ = ~(x) are uniquely defined by 

- 5 --



This conjecture is essen~ially a conjecture that the last 

* dividing point for F
1

{x) before q = 1 {see Table IVA in [2]) 

is less than the corresponding dividing point 
~-1,x 

between 

x - 1 and x; these q-values are given in Table VII (H-situation) 

in [2]. If this inequality holds then we can use equation (23) 

in [2] (given also in (5.5) below) to show that for q in the 

interval [a a ] the mininrum in (3) above is attained 
-x-1,x' "'X ,x+l 

at m = x; this is carried out in section 3. Furthermore we can 

then substitute (23) of [2] into (3) and we easily obtain (10). 

This conjecture has been verified by the computations in Table I 

for x = 2(1)15. 

3. A Property of F(m). 

In this section we wish to show that if we start with F(m) 

the next group test size x will:always be at most· m/2; this 

is related to the discussion in Section VI and in particular to 

(21) in [2]. To show this we first prove with the help of lenuna 1 

below that F{m) is a nondecreasing function of m for any q. 

i 

~ 

I 

~ 

.... 

i 

~ 

I 

laai 

/ 



-

... 

-

-

We first note from (2.4) th~t the inequality F(m) ~ F(m+l) 

is equivalent to 

* * DL F (m) ~ F (m+l) - q F(m). (12) 

This is proved by noting that 

m+l . 1 * * 
0 < ~ q

1
- {F(m+l) - F(m) J = F (m+l) - F (m) - q~(m). 

- i=l 
( 13) 

For the F(m+l)-situation we use y to denote a possible 

size for the next group test. 

Lennna 1: 

If F(l) ~ F(2) ~ ••• ~ F(m), and y ~ (m+l)/2 then, for 

the F(m+-1)-situation, y is preferable to m + 1 - y. 

Proof: 

Consider the quantity in braces on the right side of (5) with 

x = y and x = m + 1 - y and denote these by F
1 

and F
2

, 

respectively. Then after algebraic simplification we obtain 

F2 - Fl= (1-qY)(l-qm+-1-y) (F(m+-1-y) - F(y)). 

1 
m+l 

- q 

- 7 -
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Since 1 ~ y ~ {m+l)/2 it follows from the hypothesis that 

the last factor in (14) is nonnegative and this proves lemma 1. 

Theorem 1: 

For all q and any m > 2 

F{m) ~ F(m+l). (15) 

Proof: 

Since O = F(l) < F(2) = 1, it suffices to show by induction 

that if F(l) ~ F(2) ~ ~ F{m) ·. then F{m) ~ F(m+l). From 

(4) and (5) we have 

* F {m) 
m 

1 - q 
= -----p 

+ Min {qxF:*(m-x) + F*(xH 
1~~,2 

(16) 

since by lemma 1 we can restrict x to at most m/2. Using (12) 

* with m replaced by m - x, we replace F (m-x) by an upper 

bound and obtain 

- qllp{m) + X * * Min lq F {m+l-x) + F (x) 
l~~m/2 

+ qm{F{m) - F(m-x) - l}j (17) 

- 8 - ' 
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We now consider separately the cases for m odd and m even. 

Case 1: m = 2n 

We note that 
m m+l [
2

] = [ 
2 

] where [x] is the largest integer 

< x. Furthermore, since 
·m 

1 ~ x =:: 2 we have x < 2n - x and, 

by hypothesis, F{x) ~ F{2n-x). Then by (5) for any x with 

l<x<n 

F{2n) ~ 1 + PF{x) + (l-P)F{2n-x) ~ 1 + F{2n-x), (18) 

where O < P < 1. Hence the expression in braces in (17) is 

nonpositive and can be dropped. This gives the inequality 

r*{m) < 1 - qm+l + Min 
1 

(q~*{m+l-x) + F*{x)J - q~{m) 
p lg~ ! • 

2 

(19) 

which, by (12), is what we need to· prove (15). 

Case 2 : m = 2n + 1 

Clearly we can write x < (m+~)/2 under the Min sign in 

(17) since the minimum is attained for some x < m/2. If the 

expression in braces in (17) is ndnpositive, then the proof is 

- 9 



I 

i.., 

the same as Case 1. We now consider 2 subcases 

Case 2A: F(2n+l) - F{n) - 1 > 0 and for F(2n+2) the optimal 

integer x < n. Since n + 1 does not minimize X * * q F (m+l-x) + F (x) 

and the expression in braces in (17) is positive, it follows that 

the minimum in (17) DU.1st be attained for some x < n. For 

x ~ n, by (18) the expression in braces is nonpositive and the 

I 

1-i 

same proof goes through. 

Case 2B: F(2n+l) - F{n) - 1 > 0 and for F(2n+2) the 

optimal integer x = n + 1. Clearly 

F(2n+2) = 1 + F{n+l) (20) 

Moreover for some P(O ~ P ~ 1) if we take x = n and use the 

hypothesis 

F(2n+l) < 1 + PF(n+l) + (1-P)F{n) ~ 1 + F(n+l). (21) 
I I 

L-

From (20) and (21) we get the desired result 

F(2n+l) ~ F{2n+2), (22) 

which completes the proof of the theorem. 

- 10 -



Corollary: 

Starting with any defective set of size m ~ 2, the optimal 

x for the size of the next group test is at most [m/2]. 

Since the hypothesis of the lemma above is now proved, the 

conclusion that x is preferable to m - x is equivalent to this 

corollary. 

- 4. Upper Bounds on F(m) under Procedure R01 . 

In this section we describe useful bounds that hold only 

for procedure R01; later in section 6 we describe general lower 

bounds on F{m) that hold for any group-testing procedure. 

Lemma 2: 

If y = y{m) is defined by 2y-l < m ~ 2Y, then 

F(m) ~ y. (23) 

Proof: 

Add "fictitious" good units to the "real" units so that the 

total is 2Y. Then, by taking x - m/2 = 2Y-l in (5), we 

obtain for m = 2Y 

- il -



Repeating this inequality and using the fact that F(2) = 1, 

we obtain 

F(2Y) ~ y - 1 + F(2) = y. 

We impose the condition that no test should be carried out on 

fictitious units alone. Since this can only reduce the number 

of tests, it follows that y is still an upper bound and this 

proves the lemma. 

The above bound does not depend on q. It is possible to 

obtain an improved upper bound on F(m) that depends on q. 

For this purpose we write m in its binary expansion form 

rl 
and Y1 = 2 xl = 

at the last step ys 

r 
+ 2 s 

> r > 0 and s > 0 are integers~ Let 
s 

m - yl; let Y2 = 2 
r2 

and x2 = xl - Y2, 

r 

= 2 s :and X· = o. Using the right side 
s 

(24) 

(25) 

(26) 

etc.; 

of (5) with x = x
1 

instead of ta~ing the mininum,we obtain an 

- 12 -
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upper bound for F{m}. Similarly with m replaced by m - y
1

, 

we use the right side of (5) with x = x
2 

to get an upper bound 

for F{m-y
1

). Repeating this and using Lemma 2, we obtain 

xl Y1 

F{m) < q (l-q ) F{y) + 
- m 1 

1 - q 

xl 

1 - q m F{xl) 
1 - q 

xl f x2 Y2 
(1-q ) 1 + q (1-q ) F{y) 

1 
_ m x

1 
2 

q 1 - q 

For example, if m = 21 we have so that 

(27) 

s = 3, y
1 

= 16, x
1 

= 5, y
2 

= 4, x
2 

= 1, y
3 

= 1 and x
3 

= O. Then 

the last term vanishes and we obtain 

For q ~ 1 this leads to the upper bound 4 + L for all q, 
7 

which is less than the result y =: 5 obtained by Lemma 4.1. 

5. Procedure R21 . 

In this section we discuss an alternate procedure R21 for 

- 13 -
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the H-situation that is based on information theory; this procedure 

is used· in [2] and [3) as an alternate procedure for classifying 

all the units in a binomial sample. When starting with a defective 

set of any size m > 2 the new procedure R21 is defined 

exactly the same as procedure R01 . By the computation in Table I 

and the theorem below, it follows that these 2 procedures are 

identical for q < .9563 (corresponding to x < 15) and also 

for q sufficiently close to one; it is conjectured that they 

are identical for all q, but this has not been proved. 

For the H-situation we take a sample of size x where 

x is the integer that maximizes 

(29) 

The dividing point 4x,x+l between x and x + 1 is shown 

in [2) to be the unique real root (in the unit interval) of 

X x+l 
1 - q - q = 0 • (30) 

For the case of a defective set of size m the recursion (5) 

and the boundary condition (7) are again used. 

- 14 -
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... 

Theorem 2: 

For q close to 1, the procedures R~
1 

and R01 are 

equivalent. 

Proof: 

We need only prove the equivalence for the H-situation since 

the two procedures are defined to be equivalent for the case of 

a defective set of size m > 2. For procedure R01 the dividing 

point between x and x + 1 

* 1 + pF (x) * = 1 + pF (x+l) 

1 
x+l 

- q 
X 

1 - q 

or, equivalently, 

is determined by the root of 

For q close to 1 we have by (23) of [2] that 

* X X-2a 2a 
pF {x) = a(l-q) + q (1-q ), 

where a= a(x} and a= a{x) are defined in (11). Using this 

in (32), we obtain 

- 15 -
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I 

w 

pqx = (1-qx)(l-qx+l){a{x+l) - a{x)) + (l-qx){qx+1-2a(x+1)_qx+l) ~ 

( 1 x+l){ x-2S{x) x) - -q q - q • 

To simplify this we consider two cases according as x + 1 is 

not or is a power of 2. 

Case 1: a(x+l) = a(x) 

Then a(x+l) = 1 + S{x) and (34) becomes 

X (l X)( X-2a(x)-1 x+l) (l X+l)( X-2a(x) X) pq = -q q -q - -q q -q 

and, after simplification, this reduces to 1 - qx x+l _ o, 
- q -

which gives rise to exactly the same dividing point between x 

and x + 1 as for procedure R21. 

Case 2: a{x+l) = 1 + a{x) 

Then a{x) = 2a(x)_ 1, S(x+l) = 0 and hence 

X - 2S{x) = 2a(x+l)_ 1 - 2(2a(x)_ l} = 1. 

Hence (34) becomes 

x ( x)( x+l) ( x+l)( x) ( x+l) pq = 1-q 1-q - 1-q q-q = p 1-q 

- i6 -
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and this again reduces to 
X x+l 

1 - q - q = o. Since the dividing 

point is the same as for procedure ~l' the procedures are 

identical for q sufficiently close to 1. 

6. Lower Bounds on F(m!R) and E{T!R} for any procedure R. 

A lower bound on F(mlR) for any procedure that accomplishes 

the goal of finding a single defective is obtained from information 

theory. The total entropy associated with a defective set of 

size m is 

... m i-1 m 
~ pq log ( 1 : q ) 

i=l 1 _ qm 2 pqi-1 
(38) 

This entropy (or uncertainty) is reduced to zero in F(mjR) tests. 

Since the maximum reduction per test is one,it follows that 

m i-1 m 

F(mjR) ~ ~ pq m log
2

(
1 ~-i ) 

i=l 1 - q pq ; 
(39) 

and after algebraic simplification 

F(mjR) ,2:: ½ I(p) - l m I(l-qm), 
. 1 - q 

(40) 

1 1 
where I(p) = p log

2 
p + q log

2 
q. It is easily shown by 

- 17 -



differentiation that l(p)/p is strictly decreasing in p and, 

si~ce 
m 

p > 1 - q, the lower bound in (40) is positive. 

We can also obtain a lower bound on E{TjR) for any procedure 

that finds a single defective; we actually obtain 2 lower bounds 

and show that the one that makes use of (40) and is based on 

procedure R01 is the better one. 

Using the same argument as above with the disjoint, exhaustive 

i-1 ( ) set of probabilities pq i = 1, 2,... we easily obtain 

I 
00 

i-1 i-1 1 ( ) 
E {T R) > - ~ pq log

2
pq = -p I p • 

i=l 

The result (40) can be applied to F(m) in (3) to yield 

another lower bound on E{T} for procedure R01 . We obtain 

E{T) = min 
m=l,2, ••• 

1 
> - I(p) + -p 

{ 1 m + F(m}} 

1 - q 

min { 
1 :i. I(l-qm) } 

m • 
m=l,2,... 1 - q 

Since I(p) has a maximum of one, it follows that 1(1-qm) ~ 1 

and hence the lower bound in (42) is at least as large as that 

in (41). Since these lower bounds ·are generally not attainable, 

- 18 -
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it should not be assumed that there exist procedures R with 

E{TIR) between the right members of (41) and (42). In fact the 

construction of the procedure R01 leads us to assert that the 

right side of (42) is also a lower bound for any procedure R that 

finds a single defective; this point is also discussed below in 

connection with optimality properties. 

7. Optimality Discussion. 

For the case of the so-called F{m)-situation we have used 

the principle of "backward optimization" to define the procedure 

R01 . For this subproblem with the given value of q this 

procedure R01 is therefore optimal regardless of the value of 

m that·we start with. Thus we have a cost function E{Tlm) for 

each value of m. For the H-situation what we do under procedure 

R01 is simply to find them-value that minimizes this cost 

function. Thus R01 is an optimal procedure for the overall 

problem of finding a single defective. This explains why the 

right side of (42) must be an improved lower bound for all 

procedures that find a single defective. 

- 19 -



In this connection we should point out that another lower 

bound for t(m) is obtained from'a consideration of the cost of 

the Huffman code when we have m states of nature w.ith probabilities 

proportional to i-1( 
.pq i = 1, 2, ••• , m). The relation of the 

Huffman code to the group-testing procedure is described in [3] 

(see section 14) and the Huffman algorithm is given in [1]. The 

discussion in [3] indicates that for F(m) the Huffman algorithm 

of adding the two smallest probabilities, reordering the resulting 

set, adding the two smallest again, reordering again, etc. will 

yield exactly the same F(m)-values as we obtain for the procedure 

R01. This result has been verified for small values of m, but 

has not been proved in general. If true, it provides an alternate 

way of computing F(m) for procedure R01 for any particular 

values of q and for all values of m; for m = 2(1)16 the 

results are given in [2]. The details for obtaining the value of 

F(m), which is the same as the Huffman cost, are described at the 

end of section 12 in [3] and we need only give a brief illustration 

of this. Suppose, for example m = 5 and q = .9 so that the' 

- 20 -
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5 states of nature have probabilities proportional to 

i-1(. ) {pq i = 1, 2, 3, 4, 5} = 

The Huffman algorithm yields 

Col. 1 

p = .1 

p\ = .09 } 

pq = .081 

pq
3 

= .07291 

pq 
4 

= .0656:f 

Col. 2 Col. 

.171 

I 
.13851} 

3 

{ .1, .09, .081, .0729, .06561} 

Col. 4 Col. 5 

.23851} 
.-40951 

The Huffman cost is obtained by summing the four numbers 

(43) 

appearing in columns 2 through 5 and dividing by 1 - q5 = .40951; 

this gives a Huffman cost of .95753/.40951 = 2.33823. The 

polynomial ratio corresponding to ;this calculation is 

q3(1-q2) + q(l-q2) + {q3(1-q~)+p} + {q3(1-q2)+q(l-q2)+p} 

1 - q5 

2 3 ·. 4 5 
= p(2 + 2q + 2q + 3q + 3q )/(1-q ), 

- 21 -
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which agrees with the result for F(m) for q = .90 obtainable 

from Table IVA of [2]. Since the Huffman cost represents a lower 

bound for the expected number of tests, this shows that our procedure 

for breaking up the set of 5 defectives is optimal. 
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,r 

.... 

X 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Remark: 

* E {T} 

1 

2 - q2 

2 + q - 2q3 

4 
3 - 2q 

3 + q~ - 3q
5 

2 6 
3 + q - 3q 

3 + q - 3q7 

8 
4 - 3q 

4 + q7 - 4q9 

4 + q6 _ 4ql0 

4 + q5 _ 4qll 

4 + q4 _ 4ql2 

4 + q3 _ 4q13 

4 + q2 _ 4q14 

4 + q - 4ql5 

Table I 

for q-values in 

the interval 

[O, .6180] 

[ .6180, .7549] 

[. 7549, .8192] 

[.8192, .8567] 

[ .8567, .8813] 

[ .8813, .8987] 

[ .8987, .9116) 

[ .9116, .9216] 

[ .9216, .9296] 

[ .9296, .9361] 

[ .9361, .9415] 

[. 9415, .9460) 

[ .9460, .9499] 

[ .9499, .9533) 

[. 9533, .9563] 

Under the conjecture in Section 2 the general result for all 

X is 

* X X-213 
E {T} = (l-1-a)(l-q) + q 

and the appropriate dividing points for these polynomials are 

given in Table VII of [2] for x = 1(1)100. 
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