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Abstract. We show how to solve a polynomial equation (mod N )  of 
degree k in a single variable z, as long as there is a solution smaller 
than “Ik. We give two applications to  RSA encryption with exponent 
3. First, knowledge of all the ciphertext and 2/3 of the plaintext bits for 
a single message reveals that message. Second, if messages are padded 
with truly random padding and then encrypted with an exponent 3, then 
two encryptions of the same message (with different padding) will reveal 
the message, as long as the padding is less than 1/9 of the length of N .  
With several encryptions, another technique can (heuristically) tolerate 
padding up to about 1/6 of the length of N .  

1 Introduction 

Let N be a large composite integer of unknown factorization. Let 

be an integer polynomial of degree k in a single variable 2, which we may assume 
to be monic. Suppose there is an integer solution 20 to 

p ( z 0 )  = 0 (mod N )  

satisfying 
lzol < W k  . 

We show how to  find such a solution 20, using lattice basis reduction techniques, 
in time polynomial in logN and k. 

An immediate application is to RSA encryption of stereotyped messages with 
small exponents. If we know the high order f logz(N) bits B of a plaintext, and 
the ciphertext c resulting from RSA encryption with exponent 3, then we can 
recover the unknown bits ;co of the plaintext by solving the equation p ( z )  = 
( B  + z)3 - c = O 

Another important application is to  RSA encryption with small exponents 
and random padding. Suppose a message rn is padded with a random value t 
before encryption with a small exponent such as e = 3, so that the ciphertext is 

(mod N ) .  

c = ( v ~ + t ) ~  (mod N )  . 
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Suppose it happens that a single message is encrypted twice, using different 
values of the random padding: 

c1 = (m + t ~ ) ~  

c2 = ( m +  t 2 ) 3  

(mod N )  , 
(mod N )  . 

From these two ciphertexts we can recover an equation of degree 9 in the quantity 
t 2  - t l  (using the resultant), and if t l  and tz are small - less than 1/9 of the 
length of N - then we can solve that equation for t 2  - t l .  Then, using techniques 
developed by Franklin and Reiter [2], we recover the original message m + t l .  

This can be viewed as a warning that, when using RSA with small exponents, 
the use of random padding might not be helpful and might even be dangerous. 

2 Solving a univariate polynomial 

We show first how to find solutions 20 to p(z) = 0 (mod N )  satisfying the 
tighter restriction 1zo( < iN(l/k)-E in time polynomial in logN, k and l/t. 
Then by setting E = 1/ log N and exhaustively searching the few unknown high 
bits of zo we can extend the range to I Z O )  < 

Begin by selecting an integer h 2 max{7/k, ( b  + tk - l ) / ( cb2) )  z 1 / ( k ~ )  so 
that 

h -  13 (hlc - 1) - - and hk 2 7 . c 4 
For each pair of integers i , j  satisfying 0 5 i < k ,  1 5 j < h, we set 

qZj(z) = z ip(z ) j  

and remark that, for the desired solution 20, we know 

qij(z0) = 0 (mod N j )  . 

Indeed, setting 

and noting that yo is an integer, we see that 

We build a rational matrix M of size (2hb - k )  x (2hb - I c ) ,  using the coeffi- 
cients of the polynomials qaj(z) ,  in such a way that an integer linear combination 
of the rows of M corresponding to powers of zo will give a vector with relatively 
small Euclidean norm. Further, all such short vectors will satisfy a certain linear 
relation which we will discover by lattice basis reduction techniques [3]; th '  is re- 
lation will translate to a polynomial relation on zo over Z (not mod N ) ,  which 
we can solve over Z to discover 2 0 .  

The matrix M is broken into blocks. The upper right block, of size ( h k )  x 
(hk - k ) ,  has rows indexed by the integer g with 0 5 g < hk, and columns 
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indexed by y ( z , j )  = hk + i + ( j  - 1 ) k  with 0 5 i < k and 1 5 j < h, so that 
hk < - y ( i , j )  < 2hk - h .  The entry at  [ g , y ( i , j ) ]  is the coefficient of zg in the 
polynomial qi j  (z). 

The lower right (hk - k )  x (hk - k) block is a diagonal matrix, with the value 
N j  in each column y(i, j ) .  

The upper left (hk )  x (hk)  block is a diagonal matrix, whose value in row 
g is a rational approximation to X - g / m ,  where X = i N ( l / k ) - E  is an upper 
bound to  the solutions IcoI of interest. 

The lower left (hk - k )  x ( h k )  block is zero. 
We illustrate the matrix M in the case h = 3, k = 2. (For this illustration 

we ignore the condition hk 2 7.) Assume that p ( z )  = z2 + uz + b and p(z) '  = 
z4 + cz3 + dz2 + ez + f .  For simplicity we write 6 instead of 1/&. 

M =  

5 0  0 0 0 0 b O f 0  
06X-1 0 0 0 0 a b e f 
0 0 6 X - 2  0 0 0 l a d  e 
0 0 0 6 X w 3  0 0 O l c  d 
0 0 0 0 6X-4  0 0 0  1 c 
0 0 0 0 0 6x-500 0 1 
0 0  0 0 0 O N O O O  
0 0  0 0 0 O O N O O  
0 0 0 0 0 0 O O N Z O  
0 0 0 0 0 0 O O O N 2  

We will need to estimate det(M), which is easy because M is upper triangu- 
lar. Its determinant is 
det(&f) = N k ' " ( h - 1 ) / 2 X - ( h k ) ( h k - 1 ) / 2 / ~ h k  = (N"lX- (hk- l ) (hk) - ' )  h k / 2  . 

Because hk  2 7, a calculation shows %at hk < 2 ( h k - 1 ) / 2 .  This implies 
/ .  

Then from our choice of X we calculate 

and the condition h - 1 2 (hk - 1) (i - c )  gives 

det(&f) > 2 ( h k ) ( h k - 1 ) / 4  . 

We will do lattice basis reduction on the rows of M to find an expression 
for those integer linear combinations of rows of M with small Euclidean norm 
("short" vectors). 

One such short vector is related to  the unknown solution 20. Consider a row 
vector r whose left-hand elements are powers of the unknown ZO: 

Pg = xi 
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and whose right-hand elements are the negatives of powers of 20 and yo: 

Tr(2,j) = -&Id 
2 hk-1  k - 1  2 2 k - 1  h-1 r = (1, Lo,  Lo, . . * 120 1 -yo, --2oyo,. * .  > -So ?lo, -Yo9 -LoYo1* * - 1  -20 Yo ) 

The product s = rM is a row vector with left-hand elements given by 

sg = ( z o / x ) g / m  

Sr(2,j) = Q i j ( L 0 )  - -2bdNj = 0 . 
and right-hand elements by 

The Euclidean norm of s is estimated by: 

112 
Is1 = [p.] lI2 < [7il/rn)2] = 1 

Because p ( z )  and hence qaj(z) are monk polynomials, the submatrix of M 
formed by rows k through hk - 1 and the right-hand hk - k columns is an 
upper triangular matrix with 1 on the diagonal. This implies that we can do 
elementary row operations on M to produce a block matrix ik whose lower 
right (hk - k) x (hk - k) block is the identity matrix and whose upper right 
( h k )  _X (hk - k)  block is zero. The upper left (hk) x (hk) block M satisfies 
det(M) = det(M) > Z(hk)(hk-1)/4. 

We now restrict our attention to  the upper hk rows of a, or equivalently on 
A?: the lattice elements represented by vectors whose right-hand side is 0. 

Let n = hk = dim(@. Perform lattice basis reduction on k, using the 
procedure in [3]. Let bl, bz, . . . , b, be the resulting row basis of A?, and let bi  
denote the component of b, ort,hogonal to the span of bl, bz, . . ., bn-l .  From 
the discussion in [3] we know that the last basis element b, satisfies 

the latter estimate coming from our lower bound on d e t ( k ) .  
The Euclidean norm of any element x c i b i  of the lattice of M is a t  least 

Ic,I x lbil > Ic,~. So any lattice element with norm less than 1 must have 
c, = 0; it lies in the subspace spanned by bl, b2,. . . , b,-1. In particular, s @ 
such a lattice element: it has norm less than 1, and it lies in the lattice of M 
because its right-hand entries are 0. 

In terms of the original matrix M ,  let an arbitrary short lattice element (with 
0 in the right-hand side and length less than 1) be given by 

(do, dl, - a  . i dhk-1, er(0,l)r ., e,(k-l,h-l))M . 
Because these short rows span a vector space of dimension at  most n- 1 = hk - 1, 
simple linear algebra can produce a collection of integers fo, f1,. . . , fhk -1  (not 
all zero) satisfying 

Cf,d, = 0 
9 
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for each short row; this equation holds over Z. (Notice that the e7( i , j )  are not 
involved. ) 

Our unknown solution row s = rM is such a short row, with d ,  = T ,  = x;. 
So it must be true that 

9 9 

This is a polynomial equation in 20 which holds in Z, not just mod N .  We 
can solve this for 20 in polynomial time, using known techniques for solving 
univariate polynomial equations over Z. Thus we have produced the desired 
solution 20. 

Theoreml. Le t  p ( x )  be a m o n i c  integer polynomial  of degree k ,  N a posit ive 
integer of  u n k n o w n  factorizat ion,  and e > 0 .  In t i m e  polynomial  in log N ,  k and 
1 / ~ ,  w e  can find all integer solut ions xo t o  p(x0) = 0 (mod N )  with 1501 < 
L"Uk1-E. 

Proof .  The lattice basis reduction algorithm from [3] operates in time polynomial 
in the dimension and the logarithms of the numerators and denominators of the 
matrix entries; the dimension is polynomial in k and 1 / ~ ,  and the numbers of 

0 

Corollary2. Le t  p(x) be a m o n i c  integer polynomial  of degree k and N a pos- 
i t ive  integer of u n k n o w n  factorizat ion.  In t i m e  polynomial  in log N and k, w e  
can f ind all integer solutions zo t o  p(z0) = 0 

Proof .  Set E = 11 log2 N and do exhaustive search on O( 1) unknown high order 
bits of z. 0 

2 

bits in the matrix entries are polynomial in log N ,  k and 1/e. 

(mod N )  wi th  l zo l  < N 1 / k .  

R e m a r k :  We have not attempted to find the shortest vector(s) of the lattice, 
but rather to confine all sufficiently short vectors to a subspace. This appears to 
be a novel use of lattice basis reduction techniques. It is fortunate, because our 
desired vector need not be the shortest one. The technique allows us to claim 
that we will always find the solution, not just with high probability. 

R e m a r k :  If there are several short solutions 50, this procedure will find all of 
them simultaneously. 

2.1 Comparison to Previous Work 

VallCe et al. [4] apply an LLL-based solution to  solving p(y) = 0 (mod N ) ,  but 
require y < N2/[k(k+1)1  where k = deg(p). Our methods are similar to  theirs, 
except that they use only one polynomial qol(y) = p(y) where we use several. 

Considering our requirement that det(M) > 2(")(("k-1)/4: Each equation 
qij(z) = 0 (mod N j )  gives a factor of N j  to det(M), while each unknown c9 
costs a factor of about X-9. We must balance the two contributions in order to  
achieve det(M) > 2 ( h k ) ( h k j - 1 ) / 4 .  In the present paper we are able to amortize 
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the cost of the variables over several equations, and this yields the improvement 
in the bound from N2/[’”(”’)1 to N 1 / k .  

Another difference is that, because of our technique of confining all small 
lattice elements to a subspace, we always find the solution if it exists, while 
VallCe et al., searching for the smallest lattice elements themselves, will succeed 
with high probability but not always. 

3 Extension to Multivariate Polynomials 

We encountered some technical difficulties trying to extend this procedure to 
multivariate polynomials. The guarantee breaks down at  a crucial step, so this 
extension is heuristic. Our sketch is brief because this is irrelevant t o  the present 
application. 

(mod N )  of total degree k, and 
we know there is a solution zi  = yi with lyil < N * * ,  we hope to  find this solution 
as long as Ccri < ( I /b )  - E .  

If we are given a polynomialp(zl,, . . , z m )  

Define 

2 = P(Y1, ... . I  Ym)lN 
Qi i...i,j ( Z l , .  . . , z m )  = c? . . . z k P ( z l , .  . . , % ) j  , 

and notice that qil...imj (y l ,  . . . , y,) is divisible by N j .  Set a limit T and develop 
the modular equations qi1...imj(y1,. . . , ym) = 0 (mod N j )  for all nonnegative 
integer indices (21,. . . , i,, j )  with i, < Ic and il + iz + . . . + i, + kj 5 T.  

Build the matrix M analogous to that of Section 2. The vector r contains 
all monomials of total degree at  most TI so the sum of the total degrees of 

+ m  , and the sum of the degrees in each zi, i = these monomials is m 

1 , 2  ,..., m - 1 , i s  (>+y). These appear as negative exponents of cyi in the 

diagonal entries of the upper left block of M .  
The powers of N appearing in the lower right of M (the moduli) add to 

( m + J  

(asymptotically for large T ) .  With the requirement Ccyi < (l/Ic) - E ,  we will 
have det(M) > 1. 

The vector s will be shorter than 1, so it will be among the shorter vectors 
in the lattice. By the methods of Section 2 we can get at  least one polynomial 
equation satisfied by the yi over Z. But to solve for yj over Z we would need m 
independent equations. We might or might not get the required equations; if we 
get m equations, they might not be independent. So the procedure might work 
or might fail in a particular application. Much work needs to be done in this 
area. 
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4 RSA with Stereotyped Messages 

An easy application is to  RSA encryption with low exponent where most of the 
message is fixed or “stereotyped”. 

Suppose we use an RSA exponent of 3 to encrypt a plaintext consisting of 
two pieces: 

(1) A known piece B = 2‘b, such as the ASCII representation of “May 14, 
1996. The secret key for the day is ” 

(2) An unknown piece m, such as “Squeamish Ossifrage”. 
If we know B and the ciphertext c = ( B  + m)3 (mod N ) ,  then we can 

recover m as long as Iml < N1/3. Here p(m) = ( B  + m)3 - c = 0 
This is obvious when B = 0, but the present paper makes it possible for 

nonzero B as well. 

(mod N ) .  

5 

The present work was motivated by the following result of Franklin and Re- 
iter [2]; see also [l]. Suppose two messages m and m’ satisfy a known affine 
relation, say 

m’=m+t  
with t known. Suppose we know the RSA-encryptions of the two messages with 
an exponent of 3: 

c = m3 (mod N )  
c‘ = (~n ’ )~  = m3 + 3m2t + 3mt2 + t3 (mod N )  

Application to RSA with Random Padding 

Then we can recover m from c ,  c’,  t and N :  

t(c’ + 2c - t 3 )  t(3m3 + 3m2t + 3mt2) 
m=--- - (mod N )  

c’ - + 2t3 3m2t + 3mt2 + 3t3 
What if we do not know the exact relation between m and m’, but we do 

know that t is small, say 
m‘ = m+t 
It1 < N1I9 

Can we still find m? 
One can imagine a protocol in which messages M are subjected to  random 

padding before being RSA-encrypted with an exponent of 3. Perhaps M is left- 
shifted by k bits, and a random k-bit quantity T is added, to form a plaintext 
m; the ciphertext c is then the cube of m (mod N ) :  

c = m3 = (2’M + T ) 3  (mod N )  

Now suppose the same message is encrypted twice, but with a different ran- 
dom pad each time. Let the second random pad be T‘ = T+t so that the second 
plaintext is m’ = m + t .  Then we see the two ciphertexts 

c 1 m3 = ( P A ~ + T ) ~  (mod N )  
c’ = (m’)3 = ( 2 k M  + T‘)3 = ( m  + t)3 (mod N )  
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Can we recover t and m? 
We can eliminate m from the two equations above by taking their resultant: 

Resultant,(m3 - c, (m  + t )3  - c’) = 
= t9 + (3c - 3c’)t6 + (3c2 + 21cc’ -+ 3 ( ~ ‘ ) ~ ) t ~  + ( c  - c’)~ = 0 (mod N )  

This is a univariate polynomial in t of degree 9 (mod N ) .  If JtJ < N1/’, we can 
apply the present work to recover t. We can then apply Franklin and Reiter’s 
result to recover m, and strip off the padding to get M. 

This works just as well if the padding goes in the high order bits, or in the 
middle; just divide each ciphertext by the appropriate power of 2, in order to  
divide each plaintext by another power of 2, to move the random bits to the low 
order bits. 

The warning is clear: If the message is subject to random padding of length 
less than 1/9 the length of N ,  and then encrypted with an exponent of 3, multiple 
encryptions of the same message will reveal the message. 

Notice that for a 1024-bit RSA key, this attack tolerates 100 bits of padding 
fairly easily. 

Some possible steps to  avoid this attack: 
(1) Spread the random padding into several blocks (not one contiguous 

block). Then the present attack needs to be modified, and apparently will tolerate 
only a smaller total amount of padding. The padding could be two small blocks 
t and u, positioned so that the encryption is c = (2‘t + 2km + 1 4 ) ~  (mod N ) .  
Two encryptions of the same message would yield a resultant which is a sin- 
gle equation in two small integer variables t and u. The generalized attack of 
Section 3 might work, provided that It[ and Iu( are subject to bounds T and 
U with T U  < N1I9. The computation is more complicated and results are not 
guaranteed. 

(2)  Spread the padding throughout the message: two bits out of each eight- 
bit byte, for example. This seems to be a much more effective defense against 
the present attack. 

(3) Increase the amount of padding. This decreases efficiency; also if the 
padding is less than 1/6 the length of N ,  the alternate solution shown in Section 6 
might still recover the message if multiple encryptions have been done. 

(4) Make the “random” padding depend on the message deterministically. For 
example we could subject the message to a hashing function, and append that 
hash value as the random padding. Then two encryptions would be identical, 
because the random padding would be identical. A possible weakness still exists: 
suppose a time-stamp is included in each message, and this time-stamp occupies 
the low order bits, next to the padding. Then two plaintexts for the same message 
(with different time stamps) will differ in the time-stamp and (possibly) the pad; 
just let t combine these two fields and proceed as before. 

(5) Use larger exponents for RSA encryption. If the exponent is e ,  the attack 
apparently tolerates random padding of length up to  l /e2 times the length of N .  
So already for e = 7 the attack is useless: on a 1024-bit RSA key with e = 7, the 
attack would tolerate only 21  bits of padding, and this would be better treated 
by exhaustion. 
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6 Another Solution for Multiple Encryptions 

If instead of two encryptions of the same message we have several, say k + 1, 
then we can mount other attacks which might tolerate larger fields of random 
padding. We sketch here an attack which (heuristically) seems to tolerate random 
padding up to  a! times the length of N where 

k - 2  1 
a<- < - .  

6 k - 3  6 
We begin with 

A0 = m3 (mod N )  
Ai = (m+ t i ) 3  (mod N )  

ca = A; - A0 = 3m2t i  + 3 m t l +  t: (mod N )  

where we know Ao, Ail ci and N ,  but not m or ti. We assume the padding is 
small: 

1 
2 

For indices i < j < 1 define dij = titj(t; - t j )  and e;je = -t;tjtl(ti - t j ) ( t j  - 

t ~ ) ( t ~  - t i) .  The C(k,  2) = ( t  ) linearly independent quantities dij  each satisfy 

)dijl < N3al  and the C(k,  3) linearly independent quantities e i j f  each satisfy 
leijfl < Pa.  One can check the following identity: 

It21 5 -N" .  

dijcl + djLc; - dilcj = eijl (mod N )  . 
This suggests lattice basis reduction on the row basis of the following matrix. 

M is a square upper triangular integer matrixof dimension (C(k ,  2)+C(k ,  3)). Its 
upper left C ( k ,  2) x C(k ,  2) block is the identity times an integer approximation 
to  N3". Its lower left C ( k ,  3) x C(k ,  2) block is 0. Its lower right C(k,  3) x C(k ,  3) 
block is N times the identity. Its upper right C(k12) x C(k,3)  block has rows 
indexed by pairs of indices (i, j ) ,  i < j ,  and columns indexed by triples of indices 
(2, j, !), i < j < !. Column (i, j ,  l )  has three nonzero entries: cl at row (i, j), ci 
a t  row ( j ,  !), and -cj at row (i,!). 

We illustrate the matrix M for the case k = 4. The first C(k ,2)  = 6 rows 
are indexed by (1)2), (1,3), (1,4)) (2,3), (2,4) and (3,4). The last C(lc,3) = 4 
columns are indexed by (1,2,3), (1)2,4), (1,3,4) and (2,3,4).  

M =  

-N3" 0 0 0 0 0 c3 c4 0 0 
0 N3a 0 0 0 0 -c2 0 c4 0 
0 0 N3" 0 0 0 0 -c2 -c3 0 
0 0 O N 3 " 0  0 c1 0 0 c4 

0 0 0 0 N3" 0 0 c1 0 -c3 

0 0 0 0 O N 3 " 0  0 c1 c2 

O O O O O O N O O O  
0 0 0 0 0 0 O N 0 0  
0 0 0 0 0 0 O O N O  
0 0 0 0 0 0 O O O N  
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Consider the integer row vector r whose first C(k,  2) entries are d i j ,  and 
whose last C ( k ,  3) entries are the integers (e i l l  - (dijcc + dj lc i  - & c j ) ) / N .  The 
product r M  = s has left-hand elements dijN3a and right-hand elements e i j l ;  all 
its entries are bounded by N6". We hope that lattice basis reduction will find 
this row. 

The determinant of M is N3aC(k12)+C(k33). Because of our choice of a, this is 
larger than (N6")C(k>2)+C(k13) .  So s is among the shorter elements of the lattice 
generated by the rows of M .  

The difficulty in finding s depends on its rank among the short elements. If 
ItiI are much smaller than N a  then we can hope that s is the shortest lattice 
element, and that lattice basis reduction methods can recover it efficiently. We 
do not here supply efficiency estimates or probabilities of success; we treat this 
as a heuristic attack. 

Assuming that we can actually find s, we will be able to recover the values 
ti by taking g.c.d. of elements of r = sM- ' :  

g-c.d*{dl,Z, d1,3,. . . 1 dl ,k}  zz g*c*d.{tltZ(tl - t 2 ) ,  t l t 3 ( t l  - t3)r * . * t l tk(t1 - tk)} 
= tl x g.c.d.(t;(t1 - t z ) ,  t3(t l  - t 3 ) ,  . . . , t k ( t l  - t k ) }  , 

and hopefully the latter g.c.d. will be small enough to  discover by exhaustive 
search. Having found t i ,  we can recover n~ by Franklin and Reiter's technique. 

If we have 14 encryptions of the same message ( I c  = 13), then we can tolerate 
a random padding of about 150 bits in a 1024-bit RSA message. 

7 Conclusions and Open Problems 

We have shown how to solve a univariate polynomial equation (mod N )  of degree 
Ic if there is a solution smaller than N1/ '" .  We have applied this to  stereotyped 
RSA messages with small encryption exponent. We have also applied it to the 
case of RSA encryption with exponent 3 with random padding of less than 1/9 
(resp. 1/6) of the length of N ,  to recover a message which has been enciphered 
twice (resp. several times) with different random padding each time. 

We warn against RSA encryption with exponent 3 and with random padding 
of such length, in the case where a protocol allows a message to  be enciphered 
several times with different values of the padding. 

An important open problem is to  find conditions under which the multivariate 
case works. In particular, how effectively does it work for the case of two messages 
with random padding in two blocks? 
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