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Abstract

We address the problem of action detection in videos.

Driven by the latest progress in object detection from 2D

images, we build action models using rich feature hierar-

chies derived from shape and kinematic cues. We incor-

porate appearance and motion in two ways. First, starting

from image region proposals we select those that are motion

salient and thus are more likely to contain the action. This

leads to a significant reduction in the number of regions be-

ing processed and allows for faster computations. Second,

we extract spatio-temporal feature representations to build

strong classifiers using Convolutional Neural Networks. We

link our predictions to produce detections consistent in time,

which we call action tubes. We show that our approach out-

performs other techniques in the task of action detection.

1. Introduction

In object recognition, there are two traditional problems:

whole image classification, “is there a chair in the image?”,

and object detection, “is there a chair and where is it in

the image?”. The two problems have been quantified by

the PASCAL Visual Object Challenge [11, 10] and more

recently the ImageNet Challenge [8, 7]. The focus has been

on the object detection task due to its direct relationship to

practical, real world applications. When we turn to the field

of action recognition in videos, we find that most work is

focused on video classification,“is there an action present

in the video”, with leading approaches [40, 41, 35] trying to

classify the video as a whole. In this work, we address the

problem of action detection, “is there an action and where

is it in the video”.

Our goal is to build models which can localize and clas-

sify actions in video. Figure 1 outlines our approach. In-

spired by the recent advances in the field of object detection

in images [13], we start by selecting candidate regions and

use convolutional networks (CNNs) to classify them. Mo-

tion is a valuable cue for action recognition and we utilize

it in two ways. We use motion saliency to eliminate re-

gions that are not likely to contain the action. This leads

to a big reduction in the number of regions being processed

and subsequently in compute time. Additionally, we incor-

porate kinematic cues to build powerful models for action

detection. Figure 2 shows the design of our action mod-

els. Given a region, appearance and motion cues are used

with the aid of convolutional neural networks to make a pre-

diction. Our experiments indicate that appearance and mo-

tion are complementary sources of information and using

both leads to significant improvement in performance (Sec-

tion 4). Predictions from all the frames of the video are

linked to produce consistent detections in time. We call the

linked predictions in time action tubes.

Our detection pipeline is inspired by the human vision

system and, in particular, the two-streams hypothesis [14].

The ventral pathway (“what pathway”) in the visual cortex

responds to shape, color and texture while the dorsal path-

way (“where pathway”) responds to spatial transformations

and movement. We use convolutional neural networks to

computationally simulate the two pathways. The first net-

work, spatial-CNN, operates on static cues and captures the

appearance of the actor and the environment. The second

network, motion-CNN, operates on motion cues and cap-

tures patterns of movement of the actor and the object (if

any) involved in the action. Both networks are trained to

discriminate between the actors and the background as well

as between actors performing different actions.

We show results on the task of action detection on two

publicly available datasets, that contain actions in real world

scenarios, UCF Sports [33] and J-HMDB [17]. These are

the only datasets suitable for this task, unlike the task of ac-

tion classification, where more datasets and of bigger size

(up to 1M videos) exist. Our approach outperforms all

other approaches ([15, 42, 38, 25]) on UCF sports, with the

biggest gain observed for high overlap thresholds. In par-

ticular, for an overlap threshold of 0.6 our approach shows

a relative improvement of 87.3%, achieving mean AUC of

41.2% compared to 22.0% reported by [42]. On the larger

J-HMDB, we present an ablation study and show the effect

of each component when considered separately. Unfortu-

nately, no other approaches report numbers on this dataset.
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Additionally, we show that action tubes yield improved re-

sults on action classification on J-HMDB. Using our action

detections we are able to achieve an accuracy of 62.5% on

J-HMDB, compared to 56.6% reported by [40] and 56.5%

achieved by a whole frame video classification technique

with CNNs.

The rest of the paper is organized as follows. In Section 2

we mention related work on action classification and action

detection in videos. In Section 3 we describe the details of

our approach. In Section 4 we report our results on the two

datasets.

2. Related Work

There has been a fair amount of research on action recog-

nition. We refer to [1, 30, 43] for recent surveys in the field.

For the task of action classification, recent approaches use

features based on shape (e.g. HOG [5], SIFT [28]) and mo-

tion (e.g. optical flow, MBH [6]) with high order encod-

ings (e.g. Bag of Words, Fischer vectors) and train classi-

fiers (e.g. SVM, decision forests) to make action predic-

tions. More specifically, Laptev et al. [26] extract local fea-

tures at spatio-temporal interest points which they encode

using Bag of Words and train SVM classifiers. Wang et

al. [40] use dense point trajectories, where features are ex-

tracted from regions which are being tracked using optical

flow across the frames, instead of fixed locations on a grid

space. Recently, the authors improved their approach [41]

using camera motion to correct the trajectories. They es-

timate the camera movement by matching points between

frames using shape and motion cues after discarding those

that belong to the humans in the frame. The big relative

improvement of their approach shows that camera motion

has a significant impact on the final predictions, especially

when dealing with real world video data. Jain et al. [16]

make a similar observation.

Following the impressive results of deep architectures,

such as CNNs, on the task of handwritten digit recogni-

tion [27] and more recently image classification [23] and

object detection in images [13], attempts have been made

to train deep networks for the task of action classification.

Jhuang et al. [18] build a feedforward network which con-

sists of a hierarchy of spatio-temporal feature detectors of

predesigned motion and shape filters, inspired by the dorsal

stream of the visual cortex. Taylor et al. [37] use convo-

lutional gated RBMs to learn features for video data in an

unsupervised manner and apply them for the task of action

classification. More recently, Ji et al. [19] build 3D CNNs,

where convolutions are performed in 3D feature maps from

both spatial and temporal dimensions. Karpathy et al. [21]

explore a variety of network architectures to tackle the task

of action classification on 1M videos. They show that op-

erating on single frames performs equally well than when

considering sequences of frames. Simonyan & Zisserman

[35] train two separate CNNs to explicitly capture spatial

and temporal features. The spatial stream operates on the

RGB image while the temporal stream on the optical flow

signal. The two stream structure in our network for action

detection is similar to their work, but the crucial difference

is that their network is for full image classification while

our system works on candidate regions and can thus local-

ize the action. Also, the way we do temporal integration is

quite different since our work tackles a different problem.

Approaches designed for the task of action classification

use feature representations that discard any information re-

garding the location of the action. However, there are older

approaches which are figure centric. Efros et al. [9] com-

bine shape and motion features to build detectors suitable

for action recognition at low resolution and predict the ac-

tion using nearest neighbor techniques, but they assume that

the actor has already been localized. Schüldt et al. [34]

build local space-time features to recognize action patters

using SVM classifiers. Blank et al. [3] use spatio-temporal

volume silhouettes to describe an action assuming in addi-

tion known background. More recently, per-frame human

detectors have been used. Prest et al. [31] propose to de-

tect humans and objects and then model their interaction.

Lan et al. [25] learn spatio-temporal models for actions us-

ing figure-centric visual word representation, where the lo-

cation of the subject is treated as a latent variable and is

inferred jointly with the action label. Raptis et al. [32] ex-

tract clusters of trajectories and group them to predict an

action class using a graphical model. Tian et al. [38] ex-

tend the deformable parts model, introduced by [12] for ob-

ject detection in 2D images, to video using HOG3D feature

descriptors [22]. Ma et al. extract segments of the human

body and its parts based on color cues, which they prune us-

ing motion and shape cues. These parts serve as regions of

interest from which features are extracted and subsequently

are encoded using Bag of Words. Jain et al. [15] produce

space-time bounding boxes, starting from super-voxels, and

use motion features with Bag of Words to classify the action

within each candidate. Wang et al. [42] propose a unified

approach to discover effective action parts using dynamical

poselets and model their relations.

3. Building action detection models

Figure 1 outlines our approach. We classify region pro-

posals using static and kinematic cues (stage a). The classi-

fiers are comprised of two Convolutional Neural Networks

(CNNs) which operate on the RGB and flow signal respec-

tively. We make a prediction after using action specific

SVM classifiers trained on the spatio-temporal representa-

tions produced by the two CNNs. We link the outputs of

the classifiers across the frames of the videos (stage b) to

produce action tubes.



Figure 1: An outline of our approach. (a) Candidate regions are fed into action specific classifiers, which make predictions using static and

motion cues. (b) The regions are linked across frames based on the action predictions and their spatial overlap. Action tubes are produced

for each action and each video.

3.1. Regions of interest

Given a frame, the number of possible regions that con-

tain the action is enormous. However, the majority of these

candidates are not descriptive and can be eliminated without

loss in performance. There has been a lot of work on gener-

ating useful region proposals based on color, texture, edge

cues ([39, 2]). We use selective search [39] on the RGB

frames to generate approximately 2K regions per frame.

Given that our task is to localize the actor, we discard the re-

gions that are void of motion, using the optical flow signal.

As a result, the final regions we consider are those that are

salient in shape and motion. One could use more compli-

cated techniques, such as action saliency detectors trained

on human eye fixations and low level cues [29].

Our motion saliency algorithm is extremely simple. We

view the normalized magnitude of the optical flow signal

fm as a heat map at the pixel level. If R is a region, then

fm(R) = 1

|R|

∑
i∈R

fm(i) is a measure of how motion

salient R is. R is discarded if fm(R) < α.

For α = 0.3, approximately 85% of boxes are discarded,

with a loss of only 4% in recall on J-HMDB, for an overlap

threshold of 0.5. Despite the small loss in recall, this step is

of great importance for the algorithm’s time complexity. It

takes approximately 11s to process an image with 2K boxes,

with the majority of the time being consumed in extract-

ing features for the boxes (for more details see [13]). This

means that a video of 100 frames would require 18min to

process! This is prohibitive, especially for a dataset of thou-

sands of videos. Eliminating regions which are unlikely to

Figure 2: We use action specific SVM classifiers on spatio-

temporal features. The features are extracted from the fc7 layer

of two CNNs, spatial-CNN and motion-CNN, which were trained

to detect actions using static and motion cues, respectively.

contain the action reduces the compute time significantly.

3.2. Action specific classifiers

We use discriminative action classifiers on spatio-

temporal features to make predictions for each region. The

features are extracted from the final layer of the CNNs

which are trained to discriminate among different actions

as well as between actions and the background. We use

a linear SVM with hard negative mining to train the final

classifiers. Figure 2 shows how spatial and motion cues are

combined and fed into the SVM classifier.

3.2.1 CNNs for action detection

We train two Convolutional Neural Networks for the task of

action detection. The first network, spatial-CNN, takes as



input RGB frames and captures the appearance of the ac-

tor as well as cues from the scene. The second network,

motion-CNN, operates on the optical flow signal and cap-

tures the movement of the actor. Spatio-temporal features

are extracted by combining the output from the intermediate

layers of the two networks. Action specific SVM classifiers

are trained on the spatio-temporal features and are used to

make predictions at the frame level. Figure 2 schematically

outlines the procedure. Subsequently, we link the detections

in time to produce temporarily consistent action predictions,

which we call action tubes.

We train spatial-CNN and motion-CNN similar to R-

CNN [13]. Regions of interest are computed at every frame

of the video, as described above. At train time, the regions

which overlap more than 50% with the ground truth are con-

sidered as positive examples, and the rest are negatives. The

networks are carefully initialized to avoid overfitting.

The architecture of spatial-CNN and motion-CNN is

identical and follows [23] and [44]. Assume C(k, n, s) is

a convolutional layer with kernel size k × k, n filters and a

stride of s, P (k, s) a max pooling layer of kernel size k× k

and stride s, N a normalization layer, RL a rectified lin-

ear unit, FC(n) a fully connected layer with n filters and

D(r) a dropout layer with dropout ratio r. The architec-

ture of our networks follows: C(7, 96, 2)−RL−P (3, 2)−
N − C(5, 384, 2) − RL − P (3, 2) − N − C(3, 512, 1) −
RL−C(3, 512, 1)−RL−C(3, 384, 1)−RL−P (3, 2)−
FC(4096)−D(0.5)−FC(4096)−D(0.5)−FC(|A|+1).
The final fully connected layer has number of outputs as

many as the action classes plus one for the background

class. During training a softmax loss layer is added at the

end of the network.

Network details The architecture of our CNNs is inspired

by two different network designs, [23] and [44]. Our net-

work achieves 17% top-5 error on the ILSVRC-2012 vali-

dation set for the task of classification.

Weight initialization Proper initialization is a key for

training CNNs, especially in the absence of data.

spatial-CNN: We want spatial-CNN to accurately local-

ize people performing actions in 2D frames. We initialize

spatial-CNN with a model that was trained on the PASCAL

VOC 2012 detection task, similar to [13]. This model has

learned feature representations necessary for accurately de-

tecting people under various appearance and occlusion pat-

terns, as proven by the high person detection AP reported

on the VOC2012 test set.

motion-CNN: We want motion-CNN to capture motion

patterns. We train a network on single frame optical flow

images for the task of action classification. We use the

UCF101 dataset (split 1) [36], which contains 13320 videos

of 101 different actions. Our single frame optical flow

model achieves an accuracy of 72.2% on split 1, similar to

73.9% reported by [35]. The 1.7% difference can be at-

tributed to the differences in the network’s architectures.

Indeed, the network used in [35] yields 13.5% top-5 error

on the ILSVRC-2012 validation set, compared to the 17%

top-5 error achieved by our network. This model is used

to initialize motion-CNN when trained on smaller datasets,

such as UCF Sports and J-HMDB.

Processing of input data We preprocess the input for each

of the networks as follows

spatial-CNN: The RGB frames are cropped to the bounds

of the regions of interest, with a padding of 16 pixels, which

is added in each dimension. The average RGB values are

subtracted from the patches. During training, the patches

are randomly cropped to 227 × 227 size, and are flipped

horizontally with a probability of 0.5.

motion-CNN: We compute the optical flow signal for each

frame, according to [4]. We stack the flow in the x-, y-

direction and the magnitude to form a 3-dimensional image,

and scale it by a constant (s = 16). During training, the

patches are randomly cropped and flipped.

Parameters We train spatial-CNN and motion-CNN with

backpropagation, using Caffe [20]. We use a learning rate

of 0.001, a momentum of 0.9 and a weight decay of 0.0005.

We train the networks for 2K iterations. We observed more

iterations were unnecessary, due to the good initialization

of the networks.

3.2.2 Training action specific SVM classifiers

We train action specific SVM classifiers on spatio-temporal

features, which are extracted from an intermediate layer of

the two networks. More precisely, given a region R, let

φs(R) and φm(R) be the feature vectors computed after

the 7th fully connected layer in spatial-CNN and motion-

CNN respectively. We combine the two feature vectors

φ(R) = [φs(R)T φm(R)T ]T to obtain a spatio-temporal

feature representation for R. We train SVM classifiers wα

for each action α ∈ A, where ground truth regions for α

are considered as positive examples and regions that over-

lap less than 0.3 with the ground truth as negative. During

training, we use hard negative mining.

At test time, each region R is a associated with a score

vector score(R) = {wT
αφ(R) : α ∈ A}, where each entry

is a measure of confidence that action α is performed within

the region.

3.3. Linking action detections

Actions in videos are being performed over a period of

time. Our approach makes decisions on a single frame level.

In order to create temporally coherent detections, we link

the results from our single frame approach into unified de-

tections along time.



Assume two consecutive frames at times t and t + 1,

respectively, and assume Rt is a region at t and Rt+1 at

t+ 1. For an action α, we define the linking score between

those regions to be

sα(Rt, Rt+1) = w
T

αφ(Rt)+w
T

αφ(Rt+1)+λ·ov(Rt, Rt+1)
(1)

where ov(R, R̂) is the intersection-over-union of two re-

gions R and R̂ and λ is a scalar. In other words, two re-

gions are strongly linked if their spatial extent significantly

overlaps and if they score high under the action model.

For each action in the video, we seek the optimal path

R̄∗
α = argmax

R̄

1

T

T−1∑

t=1

sα(Rt, Rt+1) (2)

where R̄α = [R1, R2, ..., RT ] is the sequence of linked re-

gions for action α. We solve the above optimization prob-

lem using the Viterbi algorithm. After the optimal path is

found, the regions in R̄∗
α are removed from the set of re-

gions and Eq. 2 is solved again. This is repeated until the

set of regions is empty. Each path from Eq. 2 is called an

action tube. The score of an action tube R̄α is defined as

Sα(R̄α) =
1

T

∑T−1

t=1
sα(Rt, Rt+1).

4. Results

We evaluate our approach on two widely used datasets,

namely UCF Sports [33] and J-HMDB [17]. On UCF sports

we compare against other techniques and show substantial

improvement from state-of-the-art approaches. We present

an ablation study of our CNN-based approach and show re-

sults on action classification using our action tubes on J-

HMDB, which is a substantially larger dataset than UCF

Sports.

Datasets UCF Sports consists of 150 videos with 10 dif-

ferent actions. There are on average 10.3 videos per action

for training, and 4.7 for testing 1. J-HMDB contains about

900 videos of 21 different actions. The videos are extracted

from the larger HMDB dataset [24], consisting of 51 ac-

tions. Contrary to J-HMDB, UCF Sports has been widely

used by scientists for evaluation purposes. J-HMDB is more

interesting and should receive much more attention than it

has in the past.

Metrics. To quantify our results, we report Average-

Precision at a frame level, frame-AP, and at the video level,

video-AP. We also plot ROC curves and measure AUC, a

metric commonly used by other approaches. None of the

AP metrics have been used by other methods on this task.

However, we feel they are informative and provide a direct

1The split was proposed by [25]

link between the tasks of action detection and object detec-

tion in images.

• frame-AP measures the area under the precision-recall

curve of the detections for each frame (similar to the

PASCAL VOC detection challenge [11]). A detec-

tion is correct if the intersection-over-union with the

ground truth at that frame is greater than σ and the ac-

tion label is correctly predicted.

• video-AP measures the area under the precision-recall

curve of the action tubes predictions. A tube is correct

if the mean per frame intersection-over-union with the

ground truth across the frames of the video is greater

than σ and the action label is correctly predicted.

• AUC measures the area under the ROC curve, a metric

previously used on this task. An action tube is correct

under the same conditions as in video-AP. Following

[38], the ROC curve is plotted until a false positive rate

of 0.6, while keeping the top-3 detections per class and

per video. Consequently, the best possible AUC score

is 60%.

4.1. Results on UCF sports

In Figure 3, we plot the ROC curve for σ = 0.2 (red).

In Figure 4 we plot the average AUC for different values of

σ. We plot the curves as produced by the recent state-of-

the-art approaches, Jain et al. [15], Wang et al. [42], Tian et

al. [38] and Lan et al. [25]. Our approach outperforms all

other techniques by a significant margin for all values of σ,

showing the most improvement for high values of overlap,

where other approaches tend to perform poorly. In particu-

lar, for σ = 0.6, our approach achieves an average AUC of

41.2% compared to 22.0% by [42].

Table 1 shows frame-AP (second row) and video-AP

(third row) for an interestion-over-union threshold of σ =
0.5. Our approach achieves a mean AP of 68.1% at the

frame level and 75.8% at the video level, with excellent

performance for most categories. Running is the only ac-

tion for which the action tubes fail to detect the actors (11.7

% video-AP) , even though our approach is able to local-

ize them at the frame level (54.9% frame-AP). This is due

to the fact that the test videos for Running contain multiple

actors next to each other and our simple linking algorithm

fails to consistently associate the detections with the cor-

rect actors, because of the proximity of the subjects and the

presence of camera motion. In other words, the action tubes

for Running contain the action but the detections do not al-

ways correspond to the same person. Indeed, if we make

our evaluation agnostic to the instance, video-AP for Run-

ning is 83.8%. Tracking objects in a video is a very inter-

esting but rather orthogonal problem to action localization

and is beyond the scope of this work.
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Figure 3: ROC curves on UCF Sports for an intersection-over-

union threshold of σ = 0.2. Red shows our approach. We manage

to reach a high true positive rate at a much smaller false positive

rate, compared to the other approaches shown on the plot.
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Figure 4: AUC on UCF Sports for various values of intersection-

over-union threshold of σ (x-axis). Red shows our approach. We

consistently outperform other approaches, with the biggest im-

provement being achieved at high values of overlap (σ ≥ 0.4).

AP (%) Diving Golf Kicking Lifting Riding Running Skateboarding Swing1 Swing2 Walking mAP

frame-AP 75.8 69.3 54.6 99.1 89.6 54.9 29.8 88.7 74.5 44.7 68.1

video-AP 100 91.7 66.7 100 100 11.7 41.7 100 100 45.8 75.8

Table 1: AP on the UCF Sports dataset for an intersection-over-

union threshold of σ = 0.5. frame-AP measures AP of the action

detections at the frame level, while video-AP measures AP of the

predicted action tubes.

Figure 7 shows examples of detected action tubes on

UCF sports. Each block corresponds to a different video.

The videos were selected from the test set. We show the

highest scoring action tube for each video. Red boxes in-

dicate the detections in the corresponding frames. The pre-

dicted label is overlaid.
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Figure 5: AUC on J-HMDB for different values of intersection-

over-union threshold (averaged over the three splits).

4.2. Results on J­HMDB

We report frame-AP and video-AP for the 21 actions of

J-HMDB. We present an ablation study of our approach by

evaluating the performance of the two networks, spatial-

CNN and motion-CNN. Table 2 shows the results for each

method and for each action category.

As shown in the ablation study, it is apparent that the

combination of spatial and motion-CNN performs signif-

icantly better for almost all actions. In addition, we can

make some very useful observations. There are specific cat-

egories for which one signal matters more than the other.

In particular, motion seems to be the most important for ac-

tions such as Clap, Climb Stairs, Sit, Stand and Swing Base-

ball, while appearance contributes more for actions such as

Catch, Shoot Gun and Throw. Also, we notice that even

though motion-CNN performs on average a bit worse than

spatial-CNN at the frame level (24.3% vs. 27.0% respec-

tively), it performs significantly better at the video level

(45.7% vs. 37.9% respectively). This is due to the fact that

the flow frames are not very informative when considered

separately, however they produce a stronger overall predic-

tion after the temporal smoothing provided by our linking

algorithm.

Figure 5 shows the AUC for different values of the

intersection-over-union threshold, averaged over the three

splits on J-HMDB. Unfortunately, comparison with other

approaches is not possible on this dataset, since no other

approaches report numbers or have source code available.

Figure 8 shows examples of action tubes on J-HMDB.

Each block corresponds to a different video. The videos

are selected from the split 1 test set. We show the highest

scoring action tube for each video. Red boxes indicate the

detections in the corresponding frames. The predicted label

is overlaid.



frame-AP (%) brush hair catch clap climb stairs golf jump kick ball pick pour pullup push run shoot ball shoot bow shoot gun sit stand swing baseball throw walk wave mAP

spatial-CNN 55.8 25.5 25.1 24.0 77.5 1.9 5.3 21.4 68.6 71.0 15.4 6.3 4.6 41.1 28.0 9.4 8.2 19.9 17.8 29.2 11.5 27.0

motion-CNN 32.3 5.0 35.6 30.1 58.0 7.8 2.6 16.4 55.0 72.3 8.5 6.1 3.9 47.8 7.3 24.9 26.3 36.3 4.5 22.1 7.6 24.3

full 65.2 18.3 38.1 39.0 79.4 7.3 9.4 25.2 80.2 82.8 33.6 11.6 5.6 66.8 27.0 32.1 34.2 33.6 15.5 34.0 21.9 36.2

video-AP (%)

spatial-CNN 67.1 34.4 37.2 36.3 93.8 7.3 14.4 29.6 80.2 93.9 17.4 10.0 8.8 71.2 45.8 17.7 11.6 38.5 20.4 40.5 19.4 37.9

motion-CNN 66.3 16.0 60.0 51.6 88.6 18.9 10.8 23.9 83.4 96.7 18.2 17.2 14.0 84.4 19.3 72.6 61.8 76.8 17.3 46.7 14.3 45.7

full 79.1 33.4 53.9 60.3 99.3 18.4 26.2 42.0 92.8 98.1 29.6 24.6 13.7 92.9 42.3 67.2 57.6 66.5 27.9 58.9 35.8 53.3

Table 2: Results and ablation study on J-HMDB (averaged over the three splits). We report frame-AP (top) and video-AP (bottom) for the

spatial and motion component and their combination (full). The combination of the spatial- and motion-CNN performs significantly better

under both metrics, showing the significance of static and motion cues for the task of action recognition.

Figure 6: The confusion matrix on J-HMDB for the classification

task, when using action tubes to predict a label for each video.

Action Classification Our approach is not limited to action

detection. We can use the action tubes to predict an action

label for the whole video. In particular, we can predict the

label l for a video by picking the action with the maximum

action tube score

l = argmax
α∈A

max
R̄∈{R̄α}

Sα(R̄) (3)

where Sα(R̄) is the score of the action tube R̄ as defined by

Eq. 2.

If we use Eq. 3 as the prediction, our approach yields

an accuracy of 62.5%, averaged over the three splits of J-

HMDB. Figure 6 shows the confusion matrix.

In order to show the impact of the action tubes in the

above result, we create a baseline model for action classi-

fication, similar to [35]. We use spatial and motion-CNNs

in a classification setting, where full frames are used as in-

put instead of regions. The weights of the CNNs are ini-

tialized from networks trained on UCF 101 (split1) for the

Accuracy (%) Wang et al. [40] CNN (1/3 spatial, 2/3 motion) Action Tubes

J-HMDB 56.6 56.5 62.5

Table 3: Classification accuracy on J-HMDB (averaged over the

three splits). CNN (third column) shows the result of the weighted

average of spatial and motion-CNN on the whole frames, while

Action Tubes (fourth column) shows the result after using the

scores of the predicted action tubes to make decisions for the

video’s label.

task of action classification. We average the class probabili-

ties as produced by the softmax layers of the CNNs, instead

of training SVM classifiers (We observed major overfitting

problems when training SVM classifiers on top of the com-

bined fc7 features). We average the outputs of spatial- and

motion-CNNs, with weights 1/3 and 2/3 respectively, and

pick the action label with the maximum score after averag-

ing the frames of the videos. This approach yields an ac-

curacy of 56.5% averaged over the three splits of J-HMDB.

This compares to 56.6% achieved by [40]. Table 3 summa-

rizes the results for action classification on J-HMDB. It is

quite evident that focusing on the actor is beneficial for the

task of video classification, while a lot of information is be-

ing lost when the whole scene is analyzed in an orderless

fashion.

5. Conclusions

We propose an approach to action detection using convo-

lutional neural networks on static and kinematic cues. We

experimentally show that our action models perform state-

of-the-art on the task of action localization. From our ab-

lation study it is evident that appearance and motion cues

are complementary and their combination is mandatory for

accurate predictions across the board.

However, there are two problems closely related to ac-

tion detection that we did not tackle. One is, as we men-

tion in Section 4, the problem of tracking. For example,

in a track field it is important to recognize that the athletes

are running but also to be able to follow each one through-

out the race. For this problem to be addressed, we need

compelling datasets that contain videos of multiple actors,

unlike the existing ones where the focus is on one or two

actors. Second, camera motion is a factor which we did



Figure 7: Examples from UCF Sports. Each block corresponds to a different video. We show the highest scoring action tube detected in

the video. The red box indicates the region and the predicted label is overlaid. We show 4 frames from each video. The top example on

the right shows the problem of tracking, while the 4th example on the right is a wrong prediction, with the true label being Skate Boarding.

Figure 8: Examples from J-HMDB. Each block corresponds to a different video. We show the highest scoring action tube detected in the

video. The red box indicates the region and the predicted label is overlaid. We show 4 frames from each video. The 2nd example on the

left and the two bottom ones on the right are wrong predictions, with true labels being catch, sit and run respectively.

not examine, despite strong evidence that it has a signifi-

cant impact on performance [41, 16]. Efforts to eliminate

the effect of camera movement, such as the one proposed

by [41], might further improve our results.
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