Finding all Bessel type solutions for Linear Differential Equations with Rational Function Coefficients

Quan Yuan

March 19, 2012

Main Question

- Given a second order homogeneous differential equation $a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0}=0$, where a_{i} 's are rational functions, can we find solutions in terms of Bessel functions?
- A homogeneous equation corresponds a second order differential operator $L:=a_{2} \partial^{2}+a_{1} \partial+a_{0}$.

An Analogy

- $\frac{I_{\nu}(x) \sqrt{x}}{e^{x}}$ converges when $x \rightarrow+\infty$.
$I_{\nu}(x)$ and e^{x} have similar asymptotic behavior when $x \rightarrow+\infty$.
- The idea behind finding closed form solutions is to reconstruct them from the asymptotic behavior at the singular points.
- Before studying how to find Bessel type solutions, let's see how this strategy works for exponential solutions $e^{f(x)}$.

Generalized Exponents

- To find exponential solutions $y=e^{f(x)}$, we need to know the asymptotic behavior of y at each singularity.
- Generalized exponents (up to equivalence) effectively determine asymptotic behavior up to a meromorphic function.

Finding Exponential Solutions

Let $L \in \mathbb{C}(x)[\partial]$. Suppose $y=e^{f(x)}$ is a solution of L, where $f \in \mathbb{C}(x)$. Question: How to find f ?

Poles of f
Let $p \in \mathbb{C} \cup\{\infty\}$.
p is a pole of $f \Longrightarrow p$ is an essential singularity of y
$\Longrightarrow \quad p$ is an irregular singularity of L.

introduction

Finding Exponential Solutions

Suppose L has order n and p is an irregular singularity of L (notation $p \in S_{i r r}$).

- L has n generalized exponents at p, one of which gives the polar part of f at $x=p$.
- There are finitely many combinations of generalized exponents at all irregular singularities. Each combination give us a candidate for f.
- Try all candidate f's will give us the exponential solutions.

Finding Bessel type Solutions

(1) The same process as finding $e^{f(x)}$ will give us all solutions of the form $I_{\nu}(f), f \in \mathbb{C}(x)$.
(2) We want to find all solutions of L that can be expressed in terms of Bessel functions.
(3) As we shall see, $(1) \nRightarrow(2)$.

Finding Bessel Type Solutions-Challenges

(1) Let $g \in \mathbb{C}(x)$ and $f=\sqrt{g}$. Then $I_{\nu}(f)$ satisfies an equation in $\mathbb{C}(x)[\partial]$.
(2) So it is not sufficient to only consider $f \in \mathbb{C}(x)$. We need to allow for f^{\prime} s with $f^{2} \in \mathbb{C}(x)$.
(3) As for $e^{f(x)}$ solutions, we find at each $p \in S_{i r r}$:

Polar part of $f \Longrightarrow$ half of polar part of g
$\Longrightarrow \quad$ half of g (half of $f)$.

An Example

If

$$
f=1 x^{-3}+2 x^{-2}+3 x^{-1}+O\left(x^{0}\right)
$$

then

$$
g=x^{-6}+4 x^{-5}+10 x^{-4}+? x^{-3}+O\left(x^{-2}\right) .
$$

introduction

Find Bessel type Solutions-Challenges

- Let $r \in \mathbb{C}(x)$, then $\exp \left(\int r\right) I_{\nu}(\sqrt{g(x)})$ also satisfies an equation in $\mathbb{C}(x)[\partial]$.
- Let $r_{0}, r_{1} \in \mathbb{C}(x)$, then $r_{0} I_{\nu}(\sqrt{g(x)})+r_{1}\left(I_{\nu}(\sqrt{g(x)})\right)^{\prime}$ satisfies an equation in $\mathbb{C}(x)[\partial]$ too.
- So to solve L "in terms of" Bessel functions, we also need to allow sums, products, differentiations, exponential integrals.
- Note: our "in terms of" is the same as that in Singer's (1985) definition. (more on that later.)

introduction

Find Bessel type Solutions

To summarize the three cases, when we say solve equations in terms of Bessel Functions we mean find solutions which have the form

$$
e^{\int r d x}\left(r_{0} B_{\nu}(\sqrt{g})+r_{1}\left(B_{\nu}(\sqrt{g})\right)^{\prime}\right)
$$

where $B_{\nu}(x)$ is one of the Bessel functions, and $r, r_{0}, r_{1}, g \in \mathbb{C}(x)$. (Later in the talk: completeness theorem regarding this form.)

Differential Fields

- Let C_{K} be a number field with characteristic 0 .
- Let $K=C_{K}(x)$ be the rational function field over C_{K}.
- Let $\partial=\frac{d}{d x}$.
- Then K is a differential field with derivative ∂ and $C_{K}:=\{c \in K \mid \partial(c)=0\}$ is the constant field of K.

Notation

Differential Operators

- $L:=\sum_{i=0}^{n} a_{i} \partial^{i}$ is a differential operator over K, where $a_{i} \in K$.
- $K[\partial]$ is the ring of all differential operators over K.
- L corresponds to a homogeneous differential equation $L y=0$.
- We say y is a solution of L, if $L y=0$.
- Denote $V(L)$ as the vector space of solutions. (Defined inside a so-called universal extension).
- p is a singularity of L, if p is a root of a_{n} or p is a pole of $a_{i}, i \neq n$.

Bessel Functions

- The two linearly independent solutions $J_{\nu}(x)$ and $Y_{\nu}(x)$ of $L_{B 1}=x^{2} \partial^{2}+x \partial+\left(x^{2}-\nu^{2}\right)$ are called Bessel functions of first and second kind, respectively.
- Solutions $I_{\nu}(x)$ and $K_{\nu}(x)$ of $L_{B 2}=x^{2} \partial^{2}+x \partial-\left(x^{2}+\nu^{2}\right)$ are called the modified Bessel functions of first and second kind, respectively.
- The change of variables $x \rightarrow x \sqrt{-1}$ sends $V\left(L_{B 1}\right)$ to $V\left(L_{B 2}\right)$ and vice versa. So we can start our algorithm with $L_{B}:=L_{B 2}$. And let $B_{\nu}(x)$ refer to one of the Bessel functions.
- If $\nu \in \frac{1}{2}+\mathbb{Z}$, then L_{B} is reducible.

Questions

- Given an irreducible second order differential operator $L=a_{2} \partial^{2}+a_{1} \partial+a_{0}$, with $a_{0}, a_{1}, a_{2} \in K$. Can we solve it in terms of Bessel Functions?
- More precisely can we find solutions which have the form

$$
e^{\int r d x}\left(r_{0} B_{\nu}(\sqrt{g})+r_{1}\left(B_{\nu}(\sqrt{g})\right)^{\prime}\right)
$$

where $B_{\nu}(x)$ is one of the Bessel functions.

Why Second Order?

Why Second Order?

- Definition (Singer 1985): $L \in \mathbb{C}(x)[\partial]$, and if a solution y can be expressed in terms of solutions of second order equations, then y is a eulerian solution.
- Note: any solution of $L \in \mathbb{C}(x)[\partial]$ that can be expressed in terms of Bessel functions is a eulerian solution.

Why Second Order?

- Definition (Singer 1985): $L \in \mathbb{C}(x)[\partial]$, and if a solution y can be expressed in terms of solutions of second order equations, then y is a eulerian solution.
- Note: any solution of $L \in \mathbb{C}(x)[\partial]$ that can be expressed in terms of Bessel functions is a eulerian solution.
- Singer proved that solving such L can be reduced to solving second order L's
- van Hoeij developed an algorithm that reduces to order 2.

Why Second Order?

- Definition (Singer 1985): $L \in \mathbb{C}(x)[\partial]$, and if a solution y can be expressed in terms of solutions of second order equations, then y is a eulerian solution.
- Note: any solution of $L \in \mathbb{C}(x)[\partial]$ that can be expressed in terms of Bessel functions is a eulerian solution.
- Singer proved that solving such L can be reduced to solving second order L's
- van Hoeij developed an algorithm that reduces to order 2.
- such reduction to order 2 is valuable, if we can actually solve such second order equations.
- In summary, to solve n's order equation in terms of Bessel, we need an algorithm that solve 2nd order equations in terms of Bessel functions.

Questions

Why Bessel?

Questions

Why Bessel?

If we can find a Bessel Solver, then we can find all ${ }_{p} F_{q}$ type solutions of second order equations excepts $(p, q)=(2,1)$

- ${ }_{0} F_{1}$ and ${ }_{1} F_{1}$ functions can be written in terms of either Whittaker functions or Bessel functions.
- Whittaker functions has already been handled. (Debeerst, van Hoeij, and Koepf)
- T. Fang and V. Kunwar are working on ${ }_{2} F_{1}$ solver.

Questions

Why Bessel?

If we can find a Bessel Solver, then we can find all ${ }_{p} F_{q}$ type solutions of second order equations excepts $(p, q)=(2,1)$

- ${ }_{0} F_{1}$ and ${ }_{1} F_{1}$ functions can be written in terms of either Whittaker functions or Bessel functions.
- Whittaker functions has already been handled. (Debeerst, van Hoeij, and Koepf)
- T. Fang and V. Kunwar are working on ${ }_{2} F_{1}$ solver.

Why Irreducible?

Questions

Why Bessel?

If we can find a Bessel Solver, then we can find all ${ }_{p} F_{q}$ type solutions of second order equations excepts $(p, q)=(2,1)$

- ${ }_{0} F_{1}$ and ${ }_{1} F_{1}$ functions can be written in terms of either Whittaker functions or Bessel functions.
- Whittaker functions has already been handled. (Debeerst, van Hoeij, and Koepf)
- T. Fang and V. Kunwar are working on ${ }_{2} F_{1}$ solver.

Why Irreducible?

If the second order operator is reducible, it has Liouvillian solutions. Kovacic's algorithm can find such solutions.

Completeness

Questions

For Bessel type solutions, is it sufficient to consider solutions with form

$$
e^{\int r d x}\left(r_{0} B_{\nu}(\sqrt{g})+r_{1}\left(B_{\nu}(\sqrt{g})\right)^{\prime}\right)
$$

where $B_{\nu}(x)$ is one of the Bessel functions, and $r, r_{0}, r_{1}, g \in K$?
To answer that, we need to answer:
(1) what about $B_{\nu}^{\prime \prime}, B_{\nu}^{\prime \prime \prime}, \ldots$?
(2) what about sums, products, derivatives, exponential integrals?
(3) what about $r, r_{0}, r_{1}, g \in \bar{K}$?

Completeness

Theorem of Completeness

Let $K=C_{K}(x) \subseteq \mathbb{C}(x)$. Let $L \in K[\partial]$. Let $r, f, r_{0}, r_{1} \in \overline{\mathbb{C}(x)}$ and

$$
e^{\int r d x}\left(r_{0} B_{\nu}(f)+r_{1}\left(B_{\nu}(f)\right)^{\prime}\right)
$$

be a non-zero solution of f. Then $\exists \widetilde{r}, \widetilde{r_{0}}, \widetilde{r_{1}}, \widetilde{f}, \widetilde{\nu}$ with $\widetilde{f}^{2} \in K$ such that

$$
e^{\int \widetilde{r} d x}\left(\widetilde{r}_{0} B_{\widetilde{\nu}}(\widetilde{f})+\widetilde{r}_{1}\left(B_{\widetilde{\nu}}(\widetilde{f})\right)^{\prime}\right)
$$

is a non-zero solution of L.
Moreover, $\left(\nu-\frac{n}{2}\right)^{2} \in C_{K}$ for some $n \in \mathbb{Z}$, and $\widetilde{r}, \widetilde{r_{0}}, \widetilde{r_{1}} \in K\left(\nu^{2}\right)$. (If $n \in 2 \mathbb{Z}$, we may assume $\nu^{2} \in C_{K}$)

Transformations

There are three types of transformations that preserve order 2:
(1) change of variables $\xrightarrow{f} C: y(x) \mapsto y(f(x)), \quad f(x) \in K$. (for $L_{B}, f^{2} \in K$)
(2) exp-product $\longrightarrow_{E}: y \mapsto \exp \left(\int r d x\right) \cdot y, \quad r \in K$.
(3) gauge transformation $\longrightarrow G: y \mapsto r_{0} y+r_{1} y^{\prime}, \quad r_{0}, r_{1} \in K$.
L can be solved in terms of Bessel functions when $L_{B} \longrightarrow C E G L$.
Where $\longrightarrow C E G$ is any combination of $\longrightarrow C, \longrightarrow E, \longrightarrow_{G}$.

Transformations

There are three types of transformations that preserve order 2 :
(1) change of variables $\xrightarrow{f} C: y(x) \mapsto y(f(x)), \quad f(x) \in K$. (for $L_{B}, f^{2} \in K$)
(2) exp-product $\longrightarrow_{E}: y \mapsto \exp \left(\int r d x\right) \cdot y, \quad r \in K$.
(3) gauge transformation $\longrightarrow G: y \mapsto r_{0} y+r_{1} y^{\prime}, \quad r_{0}, r_{1} \in K$.
L can be solved in terms of Bessel functions when $L_{B} \longrightarrow C E G L$.
Where $\longrightarrow C E G$ is any combination of $\longrightarrow C, \longrightarrow E, \longrightarrow G$.

Note

- The composition of $2 \& 3$ is an equivalence relation $\left(\sim_{E G}\right)$. And there exist some algorithms to find such relations.
- If $L_{1} \longrightarrow C E G L_{2}$, then there exist an operator $M \in K[\partial]$ such that $L_{1} \xrightarrow{f} C M \sim_{E G} L$.

Main Problem

Main Problem

Given an irreducible second order differential operator $L \in K[\partial]$, can we find solutions with the form:

$$
e^{\int r d x}\left(r_{0} B_{\nu}(f)+r_{1}\left(B_{\nu}(f)\right)^{\prime}\right)
$$

Where $f^{2} \in K$ and $r, r_{0}, r_{1} \in K\left(\nu^{2}\right)$.

Main Problem

Main Problem

Given an irreducible second order differential operator $L \in K[\partial]$, can we find solutions with the form:

$$
e^{\int r d x}\left(r_{0} B_{\nu}(f)+r_{1}\left(B_{\nu}(f)\right)^{\prime}\right)
$$

Where $f^{2} \in K$ and $r, r_{0}, r_{1} \in K\left(\nu^{2}\right)$.

Rephrase the Main Problem

Given an irreducible second linear order differential operator $L \in K[\partial]$, find f and ν with $f^{2} \in K$ and $\left(\nu+\frac{n}{2}\right)^{2} \in C_{K}$ s.t there exist M and $L_{B} \xrightarrow{f} C M \sim_{E G} L$

Transformation

Related Work

\square

- Bronstein, M., and Lafaille, S. (ISSAC 2002) solve using only $\longrightarrow C$ and $\longrightarrow E$. An analogy about $\longrightarrow C$ and $\longrightarrow E:$ Suppose you solve
polynomial equations using only $x \mapsto c \cdot x$ and $x \mapsto x+c$.
then $x^{6}-24 x^{3}-108 x^{2}-72 x+132$ will not be solved in
terms of solutions of $x^{6}-12$, even though it does have a
solution in $\mathbb{Q}(\sqrt[6]{12})$. Likewise omitting $\longrightarrow G$ means not solving the non-trivial case!

Related Work

\square

- Bronstein, M., and Lafaille, S. (ISSAC 2002) solve using only $\longrightarrow C$ and $\longrightarrow E$.
- An analogy about $\longrightarrow C$ and \longrightarrow_{E} : Suppose you solve polynomial equations using only $x \mapsto c \cdot x$ and $x \mapsto x+c$. then $x^{6}-24 x^{3}-108 x^{2}-72 x+132$ will not be solved in terms of solutions of $x^{6}-12$, even though it does have a solution in $\mathbb{Q}(\sqrt[6]{12})$. Likewise omitting $\longrightarrow G$ means not solving the non-trivial case!

Transformation

Related Work

No Square Root

- Debeerst, R, van Hoeij, M, and Koepf. W. (ISSAC 2008) solve under \longrightarrow CEG without dealing with square root case.

Related Work

No Square Root

- Debeerst, R, van Hoeij, M, and Koepf. W. (ISSAC 2008) solve under \longrightarrow CEG without dealing with square root case.
- Note for square root case, we only have half information of non-square-root case.

Exponent Differences

Invariant Under $\sim_{E G}$

Assume the input is L, and $L_{B} \xrightarrow{f} C M \sim_{E G} L$:
If M were known, it would be easy to compute f from M. However, the input is not M, but an operator $L \sim_{E G} M$. So we must compute f not from M, but only from the portion of M that is invariant under $\sim_{E G}$. The portion is exponent difference $(\bmod \mathbb{Z})$.

Generalized Exponents

Assume $L \in K[\partial]$ with order 2 :

- Define

$$
t_{p}:=\left\{\begin{array}{cc}
x-p & \text { if } p \neq \infty \\
\frac{1}{x} & \text { if } p=\infty
\end{array}\right.
$$

- there are two generalized exponents $e_{1}, e_{2} \in \mathbb{C}\left[t_{p}^{-\frac{1}{2}}\right]$ at each point $x=p$.
- We can think of e_{1}, e_{2} as truncated Puiseux series. They determine the asymptotic behavior of solutions.
- If a solution contains $\ln \left(t_{p}\right)$, then we say L is logarithmic at $x=p$. (only occurs when $e_{1}-e_{2} \in \mathbb{Z}$)
- $\Delta(L, p):= \pm\left(e_{1}-e_{2}\right)$ is the exponent difference.

Exponent Differences

Singularities

A singularity p of $L \in K[\partial]$ is:

- removable singularity if and only if $\Delta(L, p) \in \mathbb{Z}$ and L is not logarithmic at $x=p$.
- non-removable regular singularity (denoted by $S_{\text {reg }}$) if and only if $\Delta(L, p) \in \mathbb{C} \backslash \mathbb{Z}$ or L is logarithmic at $x=p$.
- irregular singularity (denoted by $S_{i r r}$) if and only if $\Delta(L, p) \in \mathbb{C}\left[t_{p}^{-\frac{1}{2}}\right] \backslash \mathbb{C}$.

Exponent Difference

- $L_{B} \xrightarrow{f} c M$ then:

Exponent Differences

Exponent Difference

- $L_{B} \xrightarrow{f} C M$ then:
(1) if p is a zero of f with multiplicity $m_{p} \in \frac{1}{2} \mathbb{Z}^{+}$, then p is an removable singularity or $p \in S_{\text {reg }}$, and $\Delta(M, p)=m_{p} \cdot 2 \nu$.

Exponent Differences

Exponent Difference

- $L_{B} \xrightarrow{f} c M$ then:
(1) if p is a zero of f with multiplicity $m_{p} \in \frac{1}{2} \mathbb{Z}^{+}$, then p is an removable singularity or $p \in S_{\text {reg }}$, and $\Delta(M, p)=m_{p} \cdot 2 \nu$.
(2) p is a pole of f with pole order $m_{p} \in \frac{1}{2} \mathbb{Z}^{+}$such that $f=\sum_{i=-m_{p}}^{\infty} f_{i} t_{p}^{i}$, if and only if $p \in S_{i r r}^{2}$ and $\Delta(M, p)=2 \sum_{i<0} i \cdot f_{i} t_{p}^{i}$.

Exponent Differences

Exponent Difference

- $L_{B} \xrightarrow{f} c M$ then:
(1) if p is a zero of f with multiplicity $m_{p} \in \frac{1}{2} \mathbb{Z}^{+}$, then p is an removable singularity or $p \in S_{\text {reg }}$, and $\Delta(M, p)=m_{p} \cdot 2 \nu$.
(2) p is a pole of f with pole order $m_{p} \in \frac{1}{2} \mathbb{Z}^{+}$such that $f=\sum_{i=-m_{p}}^{\infty} f_{i} t_{p}^{i}$, if and only if $p \in S_{i r r}^{2}$ and $\Delta(M, p)=2 \sum_{i<0} i \cdot f_{i} t_{p}^{i}$.
- $\Delta(L, p)$ is invariant under \longrightarrow_{E}.

Exponent Differences

Exponent Difference

- $L_{B} \xrightarrow{f} C M$ then:
(1) if p is a zero of f with multiplicity $m_{p} \in \frac{1}{2} \mathbb{Z}^{+}$, then p is an removable singularity or $p \in S_{\text {reg }}$, and $\Delta(M, p)=m_{p} \cdot 2 \nu$.
(2) p is a pole of f with pole order $m_{p} \in \frac{1}{2} \mathbb{Z}^{+}$such that $f=\sum_{i=-m_{p}}^{\infty} f_{i} t_{p}^{i}$, if and only if $p \in S_{i r r}$ and $\Delta(M, p)=2 \sum_{i<0} i \cdot f_{i} t_{p}^{i}$.
- $\Delta(L, p)$ is invariant under $\longrightarrow E$.
- $\longrightarrow G$ shifts $\Delta(L, p)$ by integers.

Exponent Difference

- $L_{B} \xrightarrow{f} C M$ then:
(1) if p is a zero of f with multiplicity $m_{p} \in \frac{1}{2} \mathbb{Z}^{+}$, then p is an removable singularity or $p \in S_{\text {reg }}$, and $\Delta(M, p)=m_{p} \cdot 2 \nu$.
(2) p is a pole of f with pole order $m_{p} \in \frac{1}{2} \mathbb{Z}^{+}$such that $f=\sum_{i=-m_{p}}^{\infty} f_{i} t_{p}^{i}$, if and only if $p \in S_{i r r}^{2}$ and $\Delta(M, p)=2 \sum_{i<0} i \cdot f_{i} t_{p}^{i}$.
- $\Delta(L, p)$ is invariant under $\longrightarrow E$.
- $\longrightarrow G$ shifts $\Delta(L, p)$ by integers.
- removable singularity can disappear under $\sim_{E G}$.

Exponent Difference

- $L_{B} \xrightarrow{f} C M$ then:
(1) if p is a zero of f with multiplicity $m_{p} \in \frac{1}{2} \mathbb{Z}^{+}$, then p is an removable singularity or $p \in S_{\text {reg }}$, and $\Delta(M, p)=m_{p} \cdot 2 \nu$.
(2) p is a pole of f with pole order $m_{p} \in \frac{1}{2} \mathbb{Z}^{+}$such that $f=\sum_{i=-m_{p}}^{\infty} f_{i} t_{p}^{i}$, if and only if $p \in S_{i r r}^{2}$ and $\Delta(M, p)=2 \sum_{i<0} i \cdot f_{i} t_{p}^{i}$.
- $\Delta(L, p)$ is invariant under $\longrightarrow E$.
- $\longrightarrow G$ shifts $\Delta(L, p)$ by integers.
- removable singularity can disappear under $\sim_{E G}$.
- $\sim_{E G}$ preserve $S_{\text {reg }}$ and $S_{i r r}$.

Local Information

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$ and $g=f^{2}=\frac{A}{B}$, where A, B are polynomials. Exponent difference will give us the following information:

- some (not necessarily all!) zeroes of A from $S_{\text {reg }}$.

Local Information

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$ and $g=f^{2}=\frac{A}{B}$, where A, B are polynomials. Exponent difference will give us the following information:

- some (not necessarily all!) zeroes of A from $S_{\text {reg }}$.
- the polar parts of f (from $S_{i r r}$), then by squaring that we know the polar parts of g partially. (as a truncated Laurent series at each irregular singularity).

Local Information

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$ and $g=f^{2}=\frac{A}{B}$, where A, B are polynomials. Exponent difference will give us the following information:

- some (not necessarily all!) zeroes of A from $S_{\text {reg }}$.
- the polar parts of f (from $S_{i r r}$), then by squaring that we know the polar parts of g partially. (as a truncated Laurent series at each irregular singularity).
- B

Local Information

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$ and $g=f^{2}=\frac{A}{B}$, where A, B are polynomials. Exponent difference will give us the following information:

- some (not necessarily all!) zeroes of A from $S_{\text {reg }}$.
- the polar parts of f (from $S_{i r r}$), then by squaring that we know the polar parts of g partially. (as a truncated Laurent series at each irregular singularity).
- B
- an upper bound for the degree of A (denoted by $\left.d_{A}\right)$.

Local Information

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$ and $g=f^{2}=\frac{A}{B}$, where A, B are polynomials. Exponent difference will give us the following information:

- some (not necessarily all!) zeroes of A from $S_{\text {reg }}$.
- the polar parts of f (from $S_{i r r}$), then by squaring that we know the polar parts of g partially. (as a truncated Laurent series at each irregular singularity).
- B
- an upper bound for the degree of A (denoted by $\left.d_{A}\right)$.
- Now we need to compute A.

Exponent Differences

Bessel Parameter ν

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$.

- The exponent differences of L give us whether $\nu \in \mathbb{Z}$, $\nu \in \mathbb{Q} \backslash \mathbb{Z}, \nu \in C_{K} \backslash \mathbb{Q}$ or $\nu \notin C_{K}$.

Bessel Parameter ν

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$.

- The exponent differences of L give us whether $\nu \in \mathbb{Z}$, $\nu \in \mathbb{Q} \backslash \mathbb{Z}, \nu \in C_{K} \backslash \mathbb{Q}$ or $\nu \notin C_{K}$.
- if $\nu \notin \mathbb{Q}$, we first compute candidates for f, and use them to compute candidates for ν.

Bessel Parameter ν

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$.

- The exponent differences of L give us whether $\nu \in \mathbb{Z}$, $\nu \in \mathbb{Q} \backslash \mathbb{Z}, \nu \in C_{K} \backslash \mathbb{Q}$ or $\nu \notin C_{K}$.
- if $\nu \notin \mathbb{Q}$, we first compute candidates for f, and use them to compute candidates for ν.
- If $\nu \in \mathbb{Q}$, then exponent differences give a list of the candidates for the denominator of ν.

Bessel Parameter ν

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$.

- The exponent differences of L give us whether $\nu \in \mathbb{Z}$, $\nu \in \mathbb{Q} \backslash \mathbb{Z}, \nu \in C_{K} \backslash \mathbb{Q}$ or $\nu \notin C_{K}$.
- if $\nu \notin \mathbb{Q}$, we first compute candidates for f, and use them to compute candidates for ν.
- If $\nu \in \mathbb{Q}$, then exponent differences give a list of the candidates for the denominator of ν.
- It is sufficient to consider only $\operatorname{Re}(\nu) \in\left[0, \frac{1}{2}\right]$, because $\nu \mapsto \nu+1$ and $\nu \mapsto 1-\nu$ are special case of $\longrightarrow G$

An Example

An Example

$$
L:=\partial^{2}-\frac{1}{x-1} \partial+\frac{1}{18} \frac{18-23 x+4 x^{2}-20 x^{3}+12 x^{4}}{(x-1)^{4} x^{3}}
$$

From generalized exponent, we can obtain the following:

An Example

An Example

$$
L:=\partial^{2}-\frac{1}{x-1} \partial+\frac{1}{18} \frac{18-23 x+4 x^{2}-20 x^{3}+12 x^{4}}{(x-1)^{4} x^{3}}
$$

From generalized exponent, we can obtain the following:

- $S_{r e g}=\emptyset$, so no known zeroes.
- the polar part of f is $\frac{ \pm 2 i}{\sqrt{t_{0}}}$ at $x=0$, and $\frac{ \pm 1}{\sqrt{2} \cdot t_{1}}$ at $x=1$.
- the polar part of g is $\frac{-4}{t_{0}}$ at $x=0$, and $\frac{1}{2 t_{1}^{2}}+\frac{?}{t_{1}}$ at $x=1$
- $B=x(x-1)^{2}, d_{A}=3$.
- $\nu \in\left\{\frac{1}{3}\right\}$

How to compute A ?

Linear Equations

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$ and $g=f^{2}=\frac{A}{B}$ and $A=\sum_{i=0}^{d_{A}} a_{i} x^{i}$.

Roots

$$
\begin{aligned}
p \in S_{r e g} & \Longrightarrow p \text { is a root of } A \\
& \Longrightarrow \text { one linear equation of } a_{i} ' s .
\end{aligned}
$$

Poles

If $p \in S_{i r r} \Longrightarrow p$ is a pole of g (assume m_{p} is the pole order) $\Longrightarrow \quad\left\lceil\frac{m_{p}}{2}\right\rceil$ linear equations of a_{i} 's.

We get at least $\# S_{\text {reg }}+\frac{1}{2} d_{A}$ linear equations in total.

Continuation of the Example

In our example we can assume

$$
g=\frac{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}}{x(x-1)^{2}}
$$

Roots

$S_{\text {reg }}=\emptyset \Longrightarrow$ no linear equations from regular singularities.

Poles

- polar part of g at $x=0$ is $\frac{a_{0}}{t_{0}}+O\left(t_{0}^{0}\right) \Longrightarrow a_{0}=-4$.
- polar part of g at $x=1$ is

$$
\frac{a_{0}+a_{1}+a_{2}+a_{3}}{t_{1}^{2}}+O\left(t_{1}^{-1}\right) \Longrightarrow a_{0}+a_{1}+a_{2}+a_{3}=\frac{1}{2} .
$$

Difficulties

The First Difficulty

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L, g=f^{2}=\frac{A}{B}$.
Not enough equations to compute A

- Only know about half of polar parts of g

Difficulties

The First Difficulty

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L, g=f^{2}=\frac{A}{B}$.
Not enough equations to compute A

- Only know about half of polar parts of g
- Only have about $\frac{1}{2} d_{A}$ linear equations from irregular singularities to get A.

Difficulties

The First Difficulty

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L, g=f^{2}=\frac{A}{B}$.
Not enough equations to compute A

- Only know about half of polar parts of g
- Only have about $\frac{1}{2} d_{A}$ linear equations from irregular singularities to get A.
- With disappearing singularities, we do not have enough equations to get A.

Difficulties

the Reason for the First difficulty

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$, where $g=f^{2}=\frac{A}{B}$ and $\nu \in \mathbb{Q} \backslash \mathbb{Z}$.

- $S_{\text {irr }}=\{$ Poles of $f\}$.
- $S_{\text {reg }} \subseteq\{$ Roots of $f\}$

Difficulties

the Reason for the First difficulty

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$, where $g=f^{2}=\frac{A}{B}$ and $\nu \in \mathbb{Q} \backslash \mathbb{Z}$.

- $S_{\text {irr }}=\{$ Poles of $f\}$.
- $S_{\text {reg }} \subseteq\{$ Roots of $f\}$

Problem: \subseteq is not $=$

the Reason for the First difficulty

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$, where $g=f^{2}=\frac{A}{B}$ and $\nu \in \mathbb{Q} \backslash \mathbb{Z}$.

- $S_{\text {irr }}=\{$ Poles of $f\}$.
- $S_{\text {reg }} \subseteq\{$ Roots of $f\}$

Problem: \subseteq is not $=$

Reason: Regular singularities may become removable under $\xrightarrow{f} C$, thus may disappear under $\sim_{E G}$
Note: If $f \in K$, this is not a problem, because we do not need as many equations in that case.

Difficulties

the Solution for the First Difficulty

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$, where $g=f^{2}=\frac{A}{B}$.
Let d be the denominator of ν and m_{p} be the multiplicity of f at p.

Solution:

- Singularity p disappears only if $\nu \in \mathbb{Q} \backslash \mathbb{Z}$ and $d \mid 2 m_{p}$.

Difficulties

the Solution for the First Difficulty

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$, where $g=f^{2}=\frac{A}{B}$.
Let d be the denominator of ν and m_{p} be the multiplicity of f at p.

Solution:

- Singularity p disappears only if $\nu \in \mathbb{Q} \backslash \mathbb{Z}$ and $d \mid 2 m_{p}$.
- We can write $A=C \cdot A_{1} \cdot A_{2}^{d}$. Here A_{1} contains all known roots, A_{2} is the disappeared part.

Difficulties

the Solution for the First Difficulty

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$, where $g=f^{2}=\frac{A}{B}$.
Let d be the denominator of ν and m_{p} be the multiplicity of f at p.

Solution:

- Singularity p disappears only if $\nu \in \mathbb{Q} \backslash \mathbb{Z}$ and $d \mid 2 m_{p}$.
- We can write $A=C \cdot A_{1} \cdot A_{2}^{d}$. Here A_{1} contains all known roots, A_{2} is the disappeared part.
- Now we need to compute A_{2}.

Difficulties

the Solution for the First Difficulty

Assume $L_{B} \xrightarrow{f} C M \sim_{E G} L$, where $g=f^{2}=\frac{A}{B}$.
Let d be the denominator of ν and m_{p} be the multiplicity of f at p.

Solution:

- Singularity p disappears only if $\nu \in \mathbb{Q} \backslash \mathbb{Z}$ and $d \mid 2 m_{p}$.
- We can write $A=C \cdot A_{1} \cdot A_{2}^{d}$. Here A_{1} contains all known roots, A_{2} is the disappeared part.
- Now we need to compute A_{2}.
- Since $d \geq 3$, so we only need roughly $\frac{1}{3} d_{A}$ equations to get A_{2}.

Difficulties

Continuation of the Example

In our example: assume $A=C \cdot A_{1} \cdot A_{2}^{3}$

- $S_{\text {reg }}=\emptyset \Longrightarrow A_{1}=1$;
- Fix $C=-4$. (We will discuss how to find C later.)
- Assume $A_{2}=a_{0}+a_{1} x$.

Now we get

$$
g=\frac{-4\left(a_{0}+a_{1} x\right)^{3}}{x(x-1)^{2}}
$$

- polar part of g at $x=0$ is $\frac{-4 a_{0}^{3}}{t_{0}}+O\left(t_{0}^{0}\right) \Longrightarrow-4 a_{0}^{3}=-4$.

Difficulties

Continuation of the Example

In our example: assume $A=C \cdot A_{1} \cdot A_{2}^{3}$

- $S_{\text {reg }}=\emptyset \Longrightarrow A_{1}=1$;
- Fix $C=-4$. (We will discuss how to find C later.)
- Assume $A_{2}=a_{0}+a_{1} x$.

Now we get

$$
g=\frac{-4\left(a_{0}+a_{1} x\right)^{3}}{x(x-1)^{2}}
$$

- polar part of g at $x=0$ is $\frac{-4 a_{0}^{3}}{t_{0}}+O\left(t_{0}^{0}\right) \Longrightarrow-4 a_{0}^{3}=-4$.
- polar part of g at $x=1$ is

$$
\frac{-4\left(a_{0}+a_{1}\right)^{3}}{t_{1}^{2}}+O\left(t_{1}^{-1}\right) \Longrightarrow-4\left(a_{0}+a_{1}\right)^{3}=\frac{1}{2} .
$$

Difficulties

Continuation of the Example

In our example: assume $A=C \cdot A_{1} \cdot A_{2}^{3}$

- $S_{\text {reg }}=\emptyset \Longrightarrow A_{1}=1$;
- Fix $C=-4$. (We will discuss how to find C later.)
- Assume $A_{2}=a_{0}+a_{1} x$.

Now we get

$$
g=\frac{-4\left(a_{0}+a_{1} x\right)^{3}}{x(x-1)^{2}}
$$

- polar part of g at $x=0$ is $\frac{-4 a_{0}^{3}}{t_{0}}+O\left(t_{0}^{0}\right) \Longrightarrow-4 a_{0}^{3}=-4$.
- polar part of g at $x=1$ is $\frac{-4\left(a_{0}+a_{1}\right)^{3}}{t_{1}^{2}}+O\left(t_{1}^{-1}\right) \Longrightarrow-4\left(a_{0}+a_{1}\right)^{3}=\frac{1}{2}$.
- The equations are not linear. (In this case, the equations are easy to solve because there is only one term in each power series. But in general, it is hard.)

The Second Difficulty

Non-linear equations

- To get enough equations, we write $A=C \cdot A_{1} \cdot A_{2}^{d}$.

But the approach on the previous slide provides non-linear equations, that can be solved with Gröbner basis. (Problem doubly-exponential complexity)

The Second Difficulty

Non-linear equations

- To get enough equations, we write $A=C \cdot A_{1} \cdot A_{2}^{d}$.
- But the approach on the previous slide provides non-linear equations, that can be solved with Gröbner basis. (Problem: doubly-exponential complexity).

The Second Difficulty

Non-linear equations

- To get enough equations, we write $A=C \cdot A_{1} \cdot A_{2}^{d}$.
- But the approach on the previous slide provides non-linear equations, that can be solved with Gröbner basis. (Problem: doubly-exponential complexity).

the Solution:

From power series of A_{2}^{d}, try to get a power series of A_{2}, then we will have linear equations.

Difficulties

Continuation of the Example

Assume $A=-4\left(a_{0}+a_{1} x\right)^{3}, \mu_{3}=-\frac{1}{2}+\frac{\sqrt{-3}}{2}$.

- the power series of $g=\frac{C A_{2}^{3}}{B}$ at 0 is $\frac{-4}{t_{0}}+O\left(t_{0}^{0}\right)$.

Difficulties

Continuation of the Example

Assume $A=-4\left(a_{0}+a_{1} x\right)^{3}, \mu_{3}=-\frac{1}{2}+\frac{\sqrt{-3}}{2}$.

- the power series of $g=\frac{C A_{2}^{3}}{B}$ at 0 is $\frac{-4}{t_{0}}+O\left(t_{0}^{0}\right)$.
- The series of A_{2}^{3} is $1+O\left(t_{0}\right)$.

Difficulties

Continuation of the Example

Assume $A=-4\left(a_{0}+a_{1} x\right)^{3}, \mu_{3}=-\frac{1}{2}+\frac{\sqrt{-3}}{2}$.

- the power series of $g=\frac{C A_{2}^{3}}{B}$ at 0 is $\frac{-4}{t_{0}}+O\left(t_{0}^{0}\right)$.
- The series of A_{2}^{3} is $1+O\left(t_{0}\right)$.
- The series of A_{2} is $1+O\left(t_{0}\right) . \quad\left(\mu_{3}+O\left(t_{0}\right)\right.$, or $\left.\mu_{3}^{2}+O\left(t_{0}\right)\right)$.

Difficulties

Continuation of the Example

Assume $A=-4\left(a_{0}+a_{1} x\right)^{3}, \mu_{3}=-\frac{1}{2}+\frac{\sqrt{-3}}{2}$.

- the power series of $g=\frac{C A_{2}^{3}}{B}$ at 0 is $\frac{-4}{t_{0}}+O\left(t_{0}^{0}\right)$.
- The series of A_{2}^{3} is $1+O\left(t_{0}\right)$.
- The series of A_{2} is $1+O\left(t_{0}\right) . \quad\left(\mu_{3}+O\left(t_{0}\right)\right.$, or $\left.\mu_{3}^{2}+O\left(t_{0}\right)\right)$.
- We get $a_{0}=1$. (uniqueness theorem)

Difficulties

Continuation of the Example

Assume $A=-4\left(a_{0}+a_{1} x\right)^{3}, \mu_{3}=-\frac{1}{2}+\frac{\sqrt{-3}}{2}$.

- the power series of $g=\frac{C A_{2}^{3}}{B}$ at 0 is $\frac{-4}{t_{0}}+O\left(t_{0}^{0}\right)$.
- The series of A_{2}^{3} is $1+O\left(t_{0}\right)$.
- The series of A_{2} is $1+O\left(t_{0}\right) . \quad\left(\mu_{3}+O\left(t_{0}\right)\right.$, or $\left.\mu_{3}^{2}+O\left(t_{0}\right)\right)$.
- We get $a_{0}=1$. (uniqueness theorem)
- the power series of $g=\frac{C A_{2}^{3}}{B}$ at 1 is $\frac{1}{2 t_{1}^{2}}+O\left(t_{1}^{-1}\right)$.
- the series of A_{2}^{3} is $-\frac{1}{8}+O\left(t_{1}\right)$.
- The series of A_{2} is $S=-\frac{1}{2}+O\left(t_{1}\right)$. $\quad\left(\mu_{3} S\right.$ or $\left.\mu_{3}^{2} S\right)$.
- We get $a_{0}+a_{1}=-\frac{1}{2}$.

Difficulties

Continuation of the Example

Assume $A=-4\left(a_{0}+a_{1} x\right)^{3}, \mu_{3}=-\frac{1}{2}+\frac{\sqrt{-3}}{2}$.

- the power series of $g=\frac{C A_{2}^{3}}{B}$ at 0 is $\frac{-4}{t_{0}}+O\left(t_{0}^{0}\right)$.
- The series of A_{2}^{3} is $1+O\left(t_{0}\right)$.
- The series of A_{2} is $1+O\left(t_{0}\right) . \quad\left(\mu_{3}+O\left(t_{0}\right)\right.$, or $\left.\mu_{3}^{2}+O\left(t_{0}\right)\right)$.
- We get $a_{0}=1$. (uniqueness theorem)
- the power series of $g=\frac{C A_{2}^{3}}{B}$ at 1 is $\frac{1}{2 t_{1}^{2}}+O\left(t_{1}^{-1}\right)$.
- the series of A_{2}^{3} is $-\frac{1}{8}+O\left(t_{1}\right)$.
- The series of A_{2} is $S=-\frac{1}{2}+O\left(t_{1}\right)$. ($\mu_{3} S$ or $\left.\mu_{3}^{2} S\right)$.
- We get $a_{0}+a_{1}=-\frac{1}{2}$.
- solve both equations we get $A_{2}=1-\frac{3}{2} x$.

Difficulties

Solution

By computing the relation under $\sim_{E G}$, we find two independent solutions:

$$
\sqrt{x(3 x-2)}(x-1) \mu_{\frac{1}{3}}\left(\sqrt{\frac{(3 x-2)^{3}}{2 x(x-1)^{2}}}\right)
$$

and

$$
\sqrt{x(3 x-2)}(x-1) K_{\frac{1}{3}}\left(\sqrt{\frac{(3 x-2)^{3}}{2 x(x-1)^{2}}}\right)
$$

Technique Details

Fix A_{1}

$\nu \in \mathbb{Q}, A=C \cdot A_{1} \cdot A_{2}^{d}$.
We can fix A_{1} this way:

- If we don't have regular singularities, then $A_{1}=1$

Technique Details

Fix A_{1}

$\nu \in \mathbb{Q}, A=C \cdot A_{1} \cdot A_{2}^{d}$.
We can fix A_{1} this way:

- If we don't have regular singularities, then $A_{1}=1$
- Each $p \in S_{r e g}$ corresponds to each root of A_{1}.

Fix A_{1}

$\nu \in \mathbb{Q}, A=C \cdot A_{1} \cdot A_{2}^{d}$.
We can fix A_{1} this way:

- If we don't have regular singularities, then $A_{1}=1$
- Each $p \in S_{\text {reg }}$ corresponds to each root of A_{1}.
- Exponent differences and d will give a set of candidates for the multiplicities. (Diophantine equations)

Fix A_{1}

$\nu \in \mathbb{Q}, A=C \cdot A_{1} \cdot A_{2}^{d}$.
We can fix A_{1} this way:

- If we don't have regular singularities, then $A_{1}=1$
- Each $p \in S_{r e g}$ corresponds to each root of A_{1}.
- Exponent differences and d will give a set of candidates for the multiplicities. (Diophantine equations)
- Try all candidates.

Fix A_{1}

$\nu \in \mathbb{Q}, A=C \cdot A_{1} \cdot A_{2}^{d}$.
We can fix A_{1} this way:

- If we don't have regular singularities, then $A_{1}=1$
- Each $p \in S_{r e g}$ corresponds to each root of A_{1}.
- Exponent differences and d will give a set of candidates for the multiplicities. (Diophantine equations)
- Try all candidates.

For our example, $S_{\text {reg }}=\emptyset$, so $A_{1}=1$.

About C

- We know that no algebraic extension of C_{K} is needed for g.
- However without the right value for C in $g=\frac{C A_{1} A_{2}^{d}}{B}$, an algebraic extension of C_{K} will be needed in A_{2}.
- Define $C_{1} \sim C_{2}$ if $C_{1}=c^{d} \cdot C_{2}$, where $c \in C_{K}$.
- C is unique (up to \sim) if there exist $p \in S_{\text {irr }}$ such that $p \in C_{K} \cup\{\infty\}$.
- If $p \in \overline{C_{K}} \backslash C_{K}$ then finding all C 's up to \sim involves a number theoretical problem.

Technique Details

Fix C

Pick $p \in S_{\text {irr }}$ such that $p \in C_{K} \cup\{\infty\}$. If no such p exists, pick any $p \in S_{i r r}$ and consider everything over $C_{K}(p)$

Technique Details

Fix C

Pick $p \in S_{\text {irr }}$ such that $p \in C_{K} \cup\{\infty\}$. If no such p exists, pick any $p \in S_{i r r}$ and consider everything over $C_{K}(p)$
We know the power series of $g=\frac{C A_{1} A_{2}^{d}}{B}$ at $p .(\Delta(L, p))$

Fix C

Pick $p \in S_{\text {irr }}$ such that $p \in C_{K} \cup\{\infty\}$. If no such p exists, pick any $p \in S_{i r r}$ and consider everything over $C_{K}(p)$
We know the power series of $g=\frac{C A_{1} A_{2}^{d}}{B}$ at $p .(\Delta(L, p))$
\Rightarrow the series of $C A_{2}^{d}=\frac{g B}{A_{1}}$.

Fix C

Pick $p \in S_{\text {irr }}$ such that $p \in C_{K} \cup\{\infty\}$. If no such p exists, pick any $p \in S_{i r r}$ and consider everything over $C_{K}(p)$
We know the power series of $g=\frac{C A_{1} A_{2}^{d}}{B}$ at $p .(\Delta(L, p))$
\Rightarrow the series of $C A_{2}^{d}=\frac{g B}{A_{1}}$.
\Rightarrow Let C equal the coefficient of the first term of this series.

Fix C

Pick $p \in S_{\text {irr }}$ such that $p \in C_{K} \cup\{\infty\}$. If no such p exists, pick any $p \in S_{i r r}$ and consider everything over $C_{K}(p)$
We know the power series of $g=\frac{C A_{1} A_{2}^{d}}{B}$ at $p .(\Delta(L, p))$
\Rightarrow the series of $C A_{2}^{d}=\frac{g B}{A_{1}}$.
\Rightarrow Let C equal the coefficient of the first term of this series.
For our examples, we can fix $C=-4$ (if we start with $p=0$) or $\frac{1}{2}$ (if we start with $p=1$). There are equivalent, since $-4=\frac{1}{2} \cdot(-2)^{3}$.

Uniqueness

Theorem 1

If L has a solution $\exp \left(\int r\right)\left(r_{0} B_{\nu}\left(f_{1}\right)+r_{1}\left(B_{\nu}\left(f_{1}\right)\right)^{\prime}\right)$ and $\exp \left(\int \hat{r}\right)\left(\hat{r}_{0} B_{\nu}\left(f_{2}\right)+\hat{r}_{1}\left(B_{\nu}\left(f_{2}\right)\right)^{\prime}\right)$ where $r, r_{0}, r_{1}, \hat{r}, \hat{r}_{0}, \hat{r}_{1}, f_{1}, f_{2} \in \overline{\mathbb{Q}(x)}$, then $f_{1}= \pm f_{2}$.

Uniqueness

Theorem 1

If L has a solution $\exp \left(\int r\right)\left(r_{0} B_{\nu}\left(f_{1}\right)+r_{1}\left(B_{\nu}\left(f_{1}\right)\right)^{\prime}\right)$ and $\exp \left(\int \hat{r}\right)\left(\hat{r}_{0} B_{\nu}\left(f_{2}\right)+\hat{r}_{1}\left(B_{\nu}\left(f_{2}\right)\right)^{\prime}\right)$ where $r, r_{0}, r_{1}, \hat{r}, \hat{r}_{0}, \hat{r}_{1}, f_{1}, f_{2} \in \overline{\mathbb{Q}(x)}$, then $f_{1}= \pm f_{2}$.

Why Need Uniqueness

- Theoretically, it to prove the completeness of our algorithm.
- Practically, if we get a candidate of f and $f^{2} \notin K$, we can discard f without further computation, which increases the speed of algorithm significantly.
(Note: In our example, it reduced the number of combinations from 9 to 1.)

Theory Requirement

To prove the theorem, we need to use

- Classification of differential operators $\bmod p$ (p-curvature).
- Number theory (Chebotarev's density theorem).
- Differential Galois theory.

the Sketch of the proof

- If $\nu \in \frac{1}{2}+\mathbb{Z}$ (non-interesting case in algorithm), then L_{B} has exponential solutions.
- Use Chebotarev's density theorem, there are infinitely many p, for which ν reduces to an element in \mathbb{F}_{p}.
- Thus $\nu \equiv \frac{1}{2} \bmod p$.
- So we know the solutions mod such p in these cases.
- by classification theory (p-curvature), we get $\pm f^{\prime} \equiv 1 \bmod p$.
- Since there exist infinity many such p, we get $\pm f$ is unique up to a constant.
- The rest of the proof is based on the differential Galois theory.

Conclusions

Conclusions

Our contribution in the thesis:

- Developed a complete Bessel solver for second order differential equations.
- Combine Bessel Solver with Whittaker/Kummer solver to get a solver for ${ }_{0} F_{1},{ }_{1} F_{1}$ functions.
- Proved the completeness of our algorithm.
- As an application, found relations between Heun functions and Bessel functions.

Acknowledgement

- Thanks to my advisor Mark van Hoeij for his support, patience, and friendship.
- Thanks to the members of my committee for their time and efforts.
- Thanks to my family and friends for their support.

