
HAL Id: hal-01228488
https://inria.hal.science/hal-01228488

Submitted on 19 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding and Characterizing Repeats in Plant Genomes
Jacques Nicolas, Pierre Peterlongo, Sébastien Tempel

To cite this version:
Jacques Nicolas, Pierre Peterlongo, Sébastien Tempel. Finding and Characterizing Repeats in Plant
Genomes. David Edwards. Plant Bioinformatics: Methods and Protocols, 1374, Humana Press -
Springer Science+Business Media, pp.365, 2015, Methods in Molecular Biology, 978-1-4939-3166-8.
�10.1007/978-1-4939-3167-5_17�. �hal-01228488�

https://inria.hal.science/hal-01228488
https://hal.archives-ouvertes.fr

Author version 2015

1

Finding and characterizing repeats in plant genomes

Jacques Nicolas1 1 , Pierre Peterlongo1 and Sébastien Tempel2

1 Irisa/Inria Centre de Rennes Bretagne Atlantique,

Campus de Beaulieu, 35510 Rennes cedex, France

2LCB, CNRS UMR 7283

31 Chemin Joseph Aiguier - 13402 Marseille cedex 20, France

Abstract: Plant genomes contain a particularly high proportion of repeated structures of

various types. This chapter proposes a guided tour of available software that can help

biologists to look for these repeats and check some hypothetical models intended to

characterize their structures. Since transposable elements are a major source of repeats

in plants, many methods have been used or developed for this large class of sequences.

They are representative of the range of tools available for other classes of repeats and

we have provided a whole section on this topic as well as a selection of the main

existing software. In order to better understand how they work and how repeats may

be efficiently found in genomes, it is necessary to look at the technical issues involved in

Author version 2015

2

the large--scale search of these structures. Indeed, it may be hard to keep up with the

profusion of proposals in this dynamic field and the rest of the chapter is devoted to the

foundations of the search for repeats and more complex patterns. The second section

introduces the key concepts that are useful for understanding the current state of the art

in playing with words, applied to genomic sequences. This can be seen as the first stage

of a very general approach called linguistic analysis that is interested in the analysis of

natural or artificial texts. Words, the lexical level, correspond to simple repeated entities

in texts or strings. In fact, biologists need to represent more complex entities where a

repeat family is built on more abstract structures, including direct or inverted small

repeats, motifs, composition constraints as well as ordering and distance constraints

between these elementary blocks. In terms of linguistics, this corresponds to the

syntactic level of a language. The last section introduces concepts and practical tools

that can be used to reach this syntactic level in biological sequence analysis.

Keywords: Repeats, Transposon, Indexing, Algorithmics on words, Pattern matching.

1. Introduction

A salient feature of eukaryotic genomes is the number of repeated sequences that

they contain. Many processes contribute to this accumulation of genomic material. Even

if the polyploidy speciation mechanism were not taken into account, plant genomes are

particularly rich in copy events that explain the remarkable range of their size variation

and may considerably increase this size. Indeed, the genome length world record,

Author version 2015

3

1.5x1011 DNA base pairs, is currently held by a plant, Paris japonica, an octoploid native

to sub-alpine regions of Japan. The aim of this chapter is to propose several methods

that help identify the various repeats that populate DNA sequences. The objective is

more to collect and explain key concepts rather than to present an exhaustive and

somewhat tedious study of the search for the various known repeat types, which may

quickly have become obsolete.

In fact, due to its importance, we will describe in detail only the exploration of the

major source of repeats, the transposable element (TE) super-class. Transposable

elements often account for up to 40% of plant genomes and, for example, account for

about 60% of Solanum lycopersicum and Sorgum bicolor, and 80% of the Triticum aestivum

or the Zea mays genome sizes. A whole section is devoted to practical methods that have

been developed to extract TEs. This includes both generic tools and tools tailored for a

particular class of RNA or DNA transposons. Another important class of repeats in

some plants, such as Olea europaea (1), the tandem (or satellite) repeats, are not treated

specifically, although some pointers to ab initio methods for transposable elements, such

as RepeatExplorer (2), may be useful for the search of tandem repeats on reduced sets of

genomic reads. We refer the interested reader to a fine review on this topic in (3).

We then propose a more advanced section on the algorithmic basis of the detection of

copies. This will help the reader to gain a better understanding of the technical terms

often used in the description of the previous tools. All these software solutions derive

much of their power from a crucial step, which finds all exact multiple occurrences of

Author version 2015

4

words in a sequence. We introduce the state -of -the -art data structures that are used

for this task and describe how approximated repeats can be searched for efficiently

from these. In all cases, we provide pointers to free available software. Next Generation

Sequencing (NGS) data are tending to predominate the current technology and need to

be addressed specifically. Even if NGS avoids some issues with repeat cloning in BACs,

sequencers have a certain bias that can affect the search for repeats. For instance,

Illumina GA sequencers have some difficulties with GGC repeats and long inverted

repeats (4) and Roche 454 sequencers have a higher error rate on long A or T

homopolymers (5). Moreover, assembly is error-prone with respect to repeats, and we

discuss to what extent it is possible to work directly at the read level without requiring

an assembly step. The study of repeat variations is certainly the most important

challenge that is currently addressed in advanced research on repeats by using NGS

data, and the section ends with a small discussion on this subject.

We end the chapter with a more prospective section, which emphasizes a global and

long-term approach that may be very useful in the systematic study or the discovery of

particular repeat classes. It is motivated by the fact that as knowledge on repeat families

grows, software solutions have to be adapted to take into account such knowledge, at

an increasing cost. The linguistic approach is based on the design of some specific

language for the description and search of complex chaining structures, which may

occur in nucleic acid sequences as well as in protein sequences. In this paradigm, the

description of the state-of-the-art knowledge is left to the biologist acting as modeler.

Author version 2015

5

Each model written in the representation language can then be searched in a systematic

way in the input data, using generic software, a parser, which is able to recognize the

occurrences of any pattern written in the language. Of course, the more expressive

languages are more desirable but this has a computational cost, which may even be

beyond the reach of any computing system if the language and models are not designed

carefully. A first subsection recalls the basic aspects of the theory of languages that

clarify these computational limitations. A second subsection introduces some practical

tools that may be experimented with for this modeling approach.

Author version 2015

6

2. Detecting transposable elements in plant genomes

Many tools have been developed to search for transposable elements, forming a

representative set illustrating the variety of techniques that can be applied for the search

of genomic repeats in general.

The most common approach used to detect TEs is by homology to already-known TE

sequences. This means that the search starts from an existing database of identified TE

families and new elements are classified in the family containing the most similar

sequence. In practice, this is often done on protein coding sequences (e.g. reverse

transcriptase) since reaching a significant level of similarity requires a sufficient

conservation level throughout evolution. In all cases, it assumes that a database of

known TEs is available. A well-known generic database for eukaryotic consensus

repeated sequence models is Repbase Update (6), maintained by the Genetic

Information Research Institute (GIRI, Mountain View, CA). The current version, at the

date of this publication (Jul. 2014), contained 8,300 loci related to the Viridiplantae

clade. Some more specific databases exist. In Table 1, we list a few plant transposable

element databases that cover several plant genera. Two of them cover all kinds of

repeats that can appear in genomes, the most complete to date being mips-REdat.

A second approach for detecting TEs, called structure-based (7), tries to be less

dependent on known sequences by taking advantage of a priori knowledge of

Author version 2015

7

characteristic features of transposon families. For instance, LTR sequences have been

analyzed for more than twenty years and a number of common elements have been

discovered in their architecture: a short direct repeat string marking the insertion and

flanking the 5' and 3' extremities of the LTR, a similar TG..CA box at each extremity, a

polypurine tract about 12 bp in length, and various protein domains. All these features

can serve as specific constraints enabling the detection of new elements in genomes.

They usually form the basis of specific programs or scripts. We will see in the last

section that this constrain solving problem may also be seen as an instance of a general

pattern-matching issue, which could be treated by generic programs (parsers).

The most complex approach for detecting TEs is ab initio, without any assumption of

the type of transposon being looked for. Typically, this is used at large scale to annotate

new genomes. For this reason, ab initio methods make use of the most advanced data

structures and string algorithms.

Of course, it is sometimes difficult to clearly state the status of a particular method,

which may incorporate several steps belonging to different approaches, for instance, ab

initio and by homology. We have created a fourth category, pipeline, to account for

these more complex frameworks which implement a workflow combining existing

software components with their own specific glue code and possibly new contributions.

Author version 2015

8

Most detection methods are listed on the Bergman website1. Previous reviews

classified the software according to the detection method (7) rather than detected

transposable element superfamilies. This is a valuable approach for Bioinformatics and

for whole-genome annotation and we start with a comprehensive subsection on this

issue of systematic TE search in a newly-sequenced genome. Since biologists are often

primarily interested in certain TE superfamilies, looking at methods as a second step,

we propose, in the remaining subsections, different algorithms targeting specific

transposable element (TE) families and then subdividing their presentation by the

method itself (ab initio, homology-based, structured and pipeline methods). Our chapter

focuses on software that is currently available via code downloading, a website or by

email. For each TE class and each type of method, a table summarizes the

corresponding list of software and provides for each a reference, a download site and

installation requirements.

1 http://bergmanlab.smith.man.ac.uk/?page_id=295

Author version 2015

9

2.1. Large-scale search of transposable elements

First, we present tools that detect all TE superfamilies. These methods correspond to

the majority of the TE detection tools. They generally use sophisticated algorithms to

ensure an efficient search of elements and the interested reader is referred to Section 3

for having more details on the way it works on computers and having the possibility to

compare related techniques.

All TEs; ab initio methods

Available ab initio methods are listed in Table 2. They can be roughly split into two

categories: methods that detect exact repeats of fixed size and assemble or extend them,

and methods that directly detect non-exact repeats.

Except for Tallymer (8) and RepARK which detect a range of exact repeats, all

methods in the first group detect exact repeats of length k called k-mers. These repeats

are stored in various data structures offering a tradeoff between the required amount of

memory and the amount of computation. These repeats are stored in various data

structures offering a tradeoff between the needed amount of memory and the amount

of computation. Reputer (9) and RepeatFinder (10) use the suffix tree data structure for

storing and retrieving k-mers, while Tallymer (8) uses the more compact suffix array

Author version 2015

10

data structure. A number of methods such as WindowMasker (11) use a structure that

does use the fact that elements are strings, a hash index (not to be confused with h-

index… !). RepARK counts k-mers up to k=31, making use of the Jellyfish software (12),

which is based on a multithreaded, lock-free hash index. PClouds (13) uses a bit array

and a hash index. A software such as RepSeek (14) uses a lower and an upper bound for

k and keeps only the maximal repeats, those that cannot be extended without losing an

occurrence.

Available software solutions offer various alternatives regarding the choice of k,

some more practical than others depending on the data set: it is most often a parameter

whose value has to be user-provided (ReAS, Repseek, REPuter and RepeatScout); it

equals log4(n)+1 for PClouds (where n is the sequence size); it is the smallest integer that

satisfies the equation n/4k < 5 for WindowMasker. In the case of Tallymer, it is an

optimal value calculated from a user-provided range fixing the minimal and maximal

values. To be more precise, Tallymer calculates this value from the uniqueness ratio,

which is the ratio of k-mers occurring exactly once relative to the total number of k-mers

in the genomic sequence. Then the selected k corresponds to the least value where the

ratio does not increase significantly with the increase of k (inflection point in the

uniqueness ratio graph). All repeats greater than k are written out by Tallymer.

RepARK assumes a Poisson distribution for the k-mers unique in the whole genome

Author version 2015

11

and thus determines a frequency threshold to filter significant k-mers that occur at least

twice in the genome.

Unlike other methods that detect repeats on genomic sequences, ReAS and RBR work

on Whole Genome Shotgun (WGS) and Expressed Sequence Tags (EST) data

respectively. ReAS selects WGS that contains k-mers with a high copy number and

divides them into 100-bp segments centered on that k-mer. ReAS clusters the WGS

containing the same k-mers and creates the consensus sequence of the 100-bp segments.

In the RBR method, k-mers are considered as repeats if their frequency is higher than a

calculated threshold based on a binomial distribution model.

The next important feature for comparing these tools is the way they build

approximated repeats from exact ones. Dynamic programming is a widely used method

for this purpose, although it is not the only one and the way it is applied may vary.

Tools such as REPuter, RepSeek and RepeatScout use k-mers as seeds and try to

extend them on both sides. REPuter allows a fixed number of mismatches and uses a

dynamic programming algorithm. For each repeat found, an E-value score is computed

using the Kurtz and Myers procedure (15) which corresponds to the significance of

mismatch repeats. REPuter also possesses a graphical interface to display the position of

copy pairs along the genome, something that may help provide a global view of

Author version 2015

12

duplicated material between chromosomes. RepSeek also extends the k-mer seeds by a

dynamic programming approach but accepts more errors (substitutions or indels).

Finally, RepSeek calculates for each extended repeat a score based on its length and

nucleotide composition. The probability for a given repeat score is computed by

estimating the probability P(Sbest_repeat ≥ S) that the score of the best local alignment

observed between two random sequences of fixed size is larger than a given score S and

is expressed as a function of the sequence length and the GC ratio. A minimum

threshold score is derived from this probability above which no repeats are expected to

be found in random sequences and only repeats with a score higher than this threshold

are kept. RepeatScout uses a greedy algorithm to extend the exact repeat to the right

and to the left and build a consensus. For each extended nucleotide, the algorithm

calculates a score that is computed by summing up local similarities of each sequence

with the consensus and uses an incomplete-fit penalty for sequences that partially

match the consensus. The extension is stopped when the algorithm finds a locally

optimal value value that does not increase after a fixed number of steps (100 by default).

RepARK uses a de Bruijn graph assembler for NGS data, Velvet (16), to get the repeat

library.

The previous strategy can be enhanced by specific preprocessing treatments.

PClouds first excludes tandem repeats. It then clusters similar k-mers (called 'P-cloud

core') and extends them according to empirical user thresholds (13).

Author version 2015

13

Another approach considers that every relevant approximate repeat is made of a

mosaic of exact repeats. RepeatFinder merges exact repeat pairs if the gap distance

between the repeats is smaller than the maximal allowed gap size (a user parameter to

be defined in the command line), or if one repeat overlaps another by more than 75%.

RepeatFinder then clusters the merged repeats that have a same maximal repeat or a

common hit with an E-value lower than a user-specified parameter, using WU-BLAST

(17).

ReAS starts from the consensus sequence of 100-bp segments built on WGS clusters

containing the same k-mers. The ReAS algorithm recursively extends the consensus

sequence to the left or/and to the right if another 100-bp consensus sequence overlaps

it.

Finally, WindowMasker (11) aims solely to mask low complexity regions and repeats in

genomic sequences and it does not attempt to annotate or classify them.

WindowMasker screens the sequence twice for processing repeats: the first screen

computes the frequency of each k-mer (for the direct and reverse strands) and defines

several thresholds corresponding to various percentiles of the empirical cumulative

distribution of repeat occurrences; the second screen uses a frequency-based score and

masks k-mers whose score exceeds the 99.5% percentile or is between two masked k-

mers and has a score exceeding the 99% percentile.

Author version 2015

14

In the second group of ab initio methods, no index is built and repeats are directly

detected through the self-alignment of genomic sequences. These methods are thus

heavily reliant on dynamic programming and their sensitivity depends on the way in

which significant aligned pairs are filtered. PILER (18) and RECON (19) proceed by first

aligning each sequence against itself and then, in a second step, selecting repeats that

present a high copy number or a score higher than a fixed threshold.

In more detail, RECON 1) creates a graph G(V,E) such that vertices V correspond to

subsequences involved in WU-BLAST pairwise alignments and edges E represent

overlapping vertices in a global alignment; 2) removes from this graph sequences that

do not overlap a significant number of times with sequences belonging to the same

cluster of sequences; 3) groups elements that belong to the same repeat family. RECON

then creates a new graph H(V',E') for each family such that a vertex V' corresponds to a

RECON element and each edge E' corresponds to the overlap between two elements in

a global alignment. A RECON repeat family is attributed to each repeat position in

genomic sequences.

From the alignment, PILER defines a pile as a list of pairwise hits covering a

contiguous region in sequences. PILER saves only hits that cluster with more than p

instances (p is a user-defined parameter). An interesting original feature of PILER is that

it distinguishes different categories of repeats that correspond to different pairwise hit

definitions (or repeat builds) and implements a specific method for each category. Thus,

Author version 2015

15

PILER-DF looks for intact transposable elements and aligns at least three similar piles (not

hits) to create a repeat, with this pile alignment avoiding generating fragmented

sequences. PILER-TR searches TEs with terminal repeats (LTR retrotransposon) and

aligns banded hits (i.e. hits separated by a maximum distance) to create the repeats.

AAARF (Assisted Automated Assembler of Repeat Families (20)) is a simple Perl

script (downloadable at aaarf.sourceforge.net/) that is representative of methods oriented

towards the use of incomplete genomic information collected through large sets of

reads. It has been tested with success on the maize genome, either with a sample of the

TIGR Sanger reads (780 bp on average) or with simulated 454 reads (100 bp on average).

It is most useful for trying to detect repeats from the short 454 reads, a widespread

situation for biological labs. It is possible to tune a number of parameters using BLAST

(21) and ClustalW. Of course, it has some limitations since it is a purely de novo method

working on highly fragmented data and it should be used with care particularly when

discriminating families of degenerated repeats, such as a series of tandem repeats or a

mix of non-autonomous and autonomous transposable elements.

All TEs; Homology-based methods

Available homology-based methods are listed in Table 3. Most of them make direct use

of the BLAST software (Altschul et al., 1990) and a BLAST-parser. Currently, these

Author version 2015

16

methods used three BLAST versions: AB-BLAST (22), NCBI-BLAST (21) and PSI-BLAST

(23). The BLAST method is a famous and widely-used seed-based approach that looks

for the presence of a query from its k-mers and estimates a E-value for the significance

of matches. Its principles are recapped in Section 3. For all homology-based methods,

the query sequence is a library of consensus sequences from TE copies.

AB-BLAST is the new and commercial version of WU-BLAST (no longer supported)

and is only free in a limited version available to academic users. The input and output

files and the binary names are identical to WU-BLAST. Because there are so far no

papers published and no source code, it is not possible to describe the algorithm of this

new version in further detail. NCBI-BLAST is a widely-used BLAST algorithm variation.

By default, k is set to 11 for the DNA (or RNA) and to 3 for the proteins. PSI-BLAST is

another version from the NCBI laboratory which is much more sensitive in picking up

distant evolutionary relationships than a standard protein-protein BLAST (23).

A BLAST parser is a method that reads the BLAST hits and tries to assemble them to

obtain summarized results. Since large scale analysis may produce an amount of results

that can reach the amount of input sequences, such a component has a decisive role in

practice. It determines the type of annotations that can be expected as a result. The

language used to program the parser is an indication of its type of usage: Censor (24),

RepeatMasker (25; 26), TESeeker (27), TransposonPSI (28) and RelocaTE (29) are written

in Perl and are routines that can be included in more complex workflows; TARGeT (30)

Author version 2015

17

is written in PHP as is intended for use only via a website. Note that, independently of

languages, and perhaps because it may be a tedious task for biologists, some authors

give only a very brief account or do not write out their algorithm in the corresponding

paper, something that is not favorable for the interpretation of results and rational

improvement of software by the community. For example, the authors of RepeatMasker

did not write a paper about it, although it is possibly the most widely-used software for

TE detection. TransposonPSI includes a library of ORFs coding for transposon proteins

and uses PSI-BLAST to detect intact coding TEs and TBLAST for slightly degenerated

coding TEs.

To be more precise, TARGeT (Tree Analysis of Related Genes and Transposons) is a

webserver that does not only detect TEs in genomic sequences but also establishes a

phylogeny of these elements. It first uses NCBI-BLAST to find the TE copies, aligns

them with MUSCLE (31) and determines consensus with the TE family. Finally, it

launches FastTree (32) to create the phylogenetic tree of the TE copies. Censor is a

BLAST-parser that can use AB-BLAST or NCBI-BLAST. Censor first launches DUST and

NSEQ to remove the micro- and mini-satellites from the genomic sequences. From the

BLAST hit positions, it tries to assemble them based on the TE consensus families

available in the RepBase database. Censor finally calculates for each match the new

similarity score and a hit score. The software TESeeker detects preferentially

autonomous and complete transposable elements, in three steps. In the first step,

Author version 2015

18

TESeeker uses NCBI-BLAST to find the partial hits of the transposable element copies,

assembles them using CAP3 (33) and creates new consensus using ClustalW (34). Hits

with E-values higher than 1x10-20 are eliminated. In the second and third steps,

TESeeker iterates the same method with NCBI-BLAST, CAP3 and ClustalW, but

starting from the TE consensus library created during the previous step. RelocaTE is a

list of Perl scripts aiming at the identification of given reference TE in NGS short reads

(paired or unpaired). It produces the locations of TE insertions that are either

polymorphic or shared between the reference and short reads. The identification is

based on three tools, BLAT, Bowtie and SAMtools. RelocaTE has been used to

characterize the amplification of mPing in Oryza sativa (29).

Like Censor, RepeatMasker first detects and removes the micro- and mini-satellites, by

applying Tandem Repeat Finder (TRF) (35). RepeatMasker is very flexible and can

launch many BLAST-like software solutions: cross-match (36), NCBI-BLAST (21), AB-

BLAST (22), or Decypher (37). The NCBI laboratory has made available a special BLAST

version for RepeatMasker called RM-BLAST (38). RepeatMasker identifies the TE

superfamily of the fragmented BLAST-like hits and assembles them using methods

tailored to each superfamily.

RepeatMasker is a base component used in many applications. There are (at least)

four other methods that read the RepeatMasker hit outputs and re-assemble them:

Process_hits (39), REannotate (40), RepeatRunner (41) and One code to find them all

Author version 2015

19

(42). Process_hits, a Perl script that can also read a BLAST output, processes a refined

output using various formats depending on the user parameters. REannotate

defragments RepeatMasker outputs following certain rules: the two fragmented hits

have the same orientation; the distance between the first and the last fragment must not

exceed a user-specified parameter (default 40kb), and the overlap between two

fragmented hits must exceed 10% of the reference length sequence. RepeatRunner,

written in Perl, mainly detects the autonomous transposable elements (those that

contain an ORF). RepeatRunner first launches BLASTX (22) and RepeatMasker, merges

the results of both in a XML-based output and eventually masks the repeats in the input

genomic sequence (like RepeatMasker). One code to find them all assemble RepeatMasker

hits into complete copies, retrieve corresponding TE sequences and flanking sequences,

and compute summary statistics for each TE family.

We end with three other methods that do not use BLAST-like output to detect

transposable elements but can nevertheless be related to the homology-based methods,

RetroSeq, T-lex and HMMER.

RetroSeq (43) and T-lex (44) detect TEs in next-generation sequencing (NGS) reads and

are described for this reason in Subsection 3.3. HMMER (45) is a widely-used pattern-

matching and discovery software package which creates and searches profile Hidden

Markov Models (profile HMMs) against a sequence. It was not specifically designed for

Author version 2015

20

TE detection. Three steps are involved in looking for a transposable element belonging

to a fixed family using HMMER. One must first align the known copies of the TE family

(HMMalign) and then create the HMM profile of this family (HMMbuild and

HMMcalibrate). The final step consists in scanning the genomic sequence with the

HMM profile as a model (HMMsearch).

All TEs; Structured methods

To our knowledge, three structured methods have been applied to detect transposable

elements, SMaRTFinder and SMOTIF for the Copia retrotransposons in A. thaliana (also

with SMaRTFinder) and STAN used for Helitrons in A. thaliana. This is the reason for

citing them here although these methods are not dedicated to the recognition of

transposable elements. The corresponding tools are listed in Table 4. They are generic

and can be used to detect any biological pattern. This is the subject of Section 4.2, where

more complete parsers such as Vmatch are described.

Apart from SMOTIF (46) , SMaRTFinder (47) and Stan (48) use the suffix-tree data

structure. SMaRTFinder and SMOTIF first detect all positions of each element of the

motif and join the positions that satisfy the distance between the elements of the motif.

STAN, on the other hand, creates a list of the possible sequences from the user motif

and looks for each of them. Only STAN can detect motifs with substitution errors and

Author version 2015

21

non-fixed gaps. STAN is no longer maintained and a more expressive tool, Logol, can

be used instead. It is also described in Section 4.2.

All TEs; Pipeline methods

We end this section with the most elaborate tools, which chain several methods to

enhance the repeat annotations and are listed in Table 5. Apart from DAWGPAWS (49),

which uses the three kinds of method, RepeatModeler (25), REPET (50), TriAnnot (51)

and RISCI (52) use de novo and homology-based methods to detect TEs. All these

programs are meta-tools: they launch other software and assemble and rewrite their

results. Among TE detection software, only RepeatMasker (26) is used by all these

pipelines.

In more detail, DAWGPAWS, written in PERL, launches LTR_STRUCT (53), LTR_seq

(54), LTR_FINDER (55), FINDMITE (56), Find_LTR (57), TRF (35), Repseek (14),

RepeatMasker, HMMER, TE_Nest (58), and BLAST. DAWGPAWS assembles and

rewrites the output of these tools. After removing the tandem repeats with TRF (35),

RepeatModeler, also written in PERL, uses first RECON (19) and RepeatScout (59).

Finally, RepeatModeler launches after RepeatMasker with a library of consensus

sequences to identify and assembles the previously detected hits. REPET is a

sophisticated method composed of two main pipelines. The first pipeline (de novo)

compares the genome against itself using BLASTER (a BLAST-like method written by

Author version 2015

22

the authors (60)). Then, hits are clustered with RECON, PILER (18) and GROUPER (also

written by these authors (60)). A consensus sequence is created by multiple alignment

[MAFFT (61) and MAP (62)] and then classified. The second pipeline (homology-based)

looks for repeats using a library of sequences, for example the created consensus, with

RepeatMasker, CENSOR (24) or BLASTER (60). This pipeline also uses TRF and mreps

(63) to detect micro- and mini-satellites. TriAnnot (51) is an annotation pipeline which

first detects transposable elements and then predicts the other genetic elements. It

launches BLASTX (21), RepeatMasker, TEAnnot (50) (homology-based), and Tallymer (8)

(ab initio method). Finally, RISCI (Repeat Induced Sequence Changes Identifier) is a set

of Perl scripts specialized in the comparative genomics of transposons. Starting from a

reference genome and comparative genomes, it is able to infer intra-species and inter-

species structural variations introduced by transposons (e.g. Target Site duplication,

inversion and truncation of repeat sequence or post insertion modifications like

disruption) . This pipeline uses RepeatMasker, Blast and the EMBOSS module and the

Genbank annotation file if made available.

2.2. LTR retrotransposons

Concerning the search and analysis of specific transposable elements, LTR

retrotransposons (LTRR) form a large family and offer a rich structure that justifies the

Author version 2015

23

existence of several dedicated tools. An overview of the most interesting ones is

provided in Table 6.

Homology-based methods

LTR_MINER (64), written in Perl, is the only homology-based method specialized in

LTR retrotransposon detection. It launches first RepeatMasker and WU-BLAST, and

then assembles the multiple hits of the Long Terminal Repeat (LTR) (e.g. the extremities

of the retrotransposon) under some constraints: a maximal distance between hits (550

bp), a common orientation, a same LTRR family, and a combined length no larger than

a complete LTRR. LTR_MINER also gives information about the probable age of the

LTR retrotransposon insertion.

Structure-based methods

LTR_FINDER (55) and LTRharvest (65) detect only full length LTR retrotransposons

while LTR_STRUC (53) and MGEScan-LTR (57) detect all LTRs. Aside from

LTR_STRUC, LTR_FINDER, LTRharvest and MGEScan-LTR use the suffix-array data

structure to find the exact maximal repeats in the genome, and extend/merge them into

non-exact repeats. The three methods look also for LTRR signals such as Target Site

Duplication (TSD) and PBS and PPT retrotransposon motifs.

Author version 2015

24

In more detail, LTR_FINDER (55) is a web server that merges exact repeat pairs with

a similarity score higher than a minimum extension threshold. LTR_FINDER combines

dynamic programming (Smith-Waterman algorithm) and the search of structured

motifs like the TG..CA box and TSD, in order to adjust LTRR candidate extremities.

Next, LTR_FINDER looks for LTRR motifs such as the PBS and PPT signals (by aligning

the LTR retrotransposon candidate with the 3' tail of tRNAs) or LTRR protein motifs

(using ScanProsite on protein domains such as IN and RH). LTRharvest first builds the

suffix array of the genomic sequence using GenomeTools (66) and stores all maximal

repeats that are longer than a user-defined threshold. Optionally, LTRharvest looks for

motifs such as the TSDs, which can be derived from the maximal repeat occurrences,

and the palindromic LTR motif, which corresponds to the dinucleotide palindrome in

the LTR extremities (often TG with CA). Finally, LTRharvest checks candidates that

have the TSD site, together with some constraints on the size and similarity of the two

LTRs and the distance between them. LTR_STRUC, written in C++, first identifies

similar pairs subject to a set of constraints: common matching size (larger than 40 bp),

similarity (higher than 70%), and distance (lower than a user-defined parameter value).

In a second step, LTR_STRUC tries to extend from the initial pair to a second pair in the

3' direction, then the 5’ direction. The extension proceeds by looking in neighboring

regions of fixed size (100 bp) for a largest match pair that can be aligned at similar

distances from the previous ones and greedily produces the alignment of the whole

region by filling the gap by largest matches. This extension process continues until the

Author version 2015

25

similarity falls consistently below the 70% threshold. A last step determines

progressively the exact termini of the LTR retrotransposon by calculating the number of

matches in a sliding window. Finally, MGEScan-LTR (57), written in C++ and Perl, uses

an algorithm similar to LTR_seq (54) (not available) and LTR_STRUC. In a first step,

MGEScan-LTR finds all maximal repeat pairs longer than 40 bp and within a range of

distances (between 1000 and 20000 bp). Two exact pairs are merged if they are close

(less than 20 bp) and share a similarity greater than 80%. In a second step, the method

scans the ORFs inside the LTR candidates using HMMER (45), and removes the

candidates that match with DNA transposons. In the third step, MGEScan-LTR looks

for solo LTRs. It clusters the LTR discovered previously and aligns them to create a

profile HMM of each cluster. HMMsearch, a procedure of HMMER, is used to discover

these solo LTR retrotransposons.

 Pipeline methods

MASiVE (67), written in Perl, is typical of the methods based on carefully designed

specific models: it only detects full autonomous LTR of the plant-specific Sireviruses

and takes advantage of the highly conserved motifs they share for a sensitive and

accurate search. It uses Vmatch (68) - see Section 4.2 - to detect clusters of Sirevirus-

specific PPT motifs, and LTRharvest (65) - see Structured methods - to detect complete

LTR retrotransposons. Only candidates that possess both hits, the right PBS site, an

Author version 2015

26

admissible distance between the different elements and include LTRS and an internal

sequence longer than 500 bp are retained. Wise2 (69) – see Homology-based methods - is

used to detect the reverse transcriptase (RT) present in almost intact LTR

retrotransposon.

2.3. Non-LTR retrotransposons

The two methods that detect non-LTR retrotransposons first launch homology-based

tools, via Perl language scripts, and also look for non-LTR motifs to confirm the TE

candidates. They are listed in Table 7.

MGEScan-nonLTR (70) uses dedicated HMM profiles and the pHMM module from

the HMMER package (45) to detect autonomous non-LTR retrotransposons. These

profiles correspond to the apurinic/apyrimidinic endonuclease APE, the linker and the

Reverse Transcriptase protein domains. MGEScan-nonLTR then classifies the

candidates into one of the 12 known non-LTR clades.

RTAnalyzer (71) launches BLAST to detect all non-LTR matches (autonomous and

non-autonomous). From the hits, RTAnalyzer launches Matcher (72), which determines

precisely the 5' extremity of the non-LTR retrotransposon. From the corresponding 5'

Target Site Duplication (TSD), the algorithm extracts the 3' TSD. Finally, RTAnalyzer

Author version 2015

27

determines the polyA tail, calculates a score from all these motifs and saves the non-

LTR candidates that have a score higher than a threshold.

2.4. DNA transposons

DNA transposons are made of a transposase gene flanked by Terminal Inverted

Repeats (TIRs) that make structure-based methods the best adapted for an efficient

search. The main difference between methods is the way in which TIRs are selected. All

methods are listed in Table 8.

Homology-based methods

To our knowledge, there exists only one method specialized in homology-based

detection of DNA transposons : TRANSPO (73). It implements a fast bit-vector dynamic

programming algorithm (74) that finds the position of all matches similar to a given

sequence in a library. The set of matches are then clustered using the SPAT program

(75).

Structure-based methods

Five methods use the palindromic structure of their 5' and 3' extremities to detect

DNA transposons: Inverted Repeats Finder (IRF) (76), MITE Uncovering SysTem

Author version 2015

28

(MUST) (77), Repetitive Sequence with Precise Boundaries (RSPB) (78), MITE-HUNTER

(79) and MITE Digger (80). They all look first for the Terminal Inverted Repeat (TIR),

and all but IRF also look for the TSDs that flank the TIR, created during the insertion of

the element by a staggered cut in the target DNA.

In more detail, IRF searches TIR candidates that contain exact short inverted repeats

(4 to 7 nt) that do not overlap, then extends them, calculates an alignment score for a

larger palindromic arrangement and saves the candidates that obtain values higher than

the thresholds for similarity (70%) and length (25 bp). MUST detects the TIR associated

with the TSD (the minimal and the maximal length of TIR and TSD are user-defined

parameters) from a sliding window (up to 500 bp). Candidates with a score higher than

a similarity threshold are conserved. MUST then clusters them using the MCL

algorithm (81) and writes out the MITE families that contain at least 3 occurrences.

RPBS is a series of Perl scripts using a Blastn-based approach. It seems to have been

essentially applied to non-autonomous transposons of the Miniature Inverted

Transposable Elements family (MITE), but the core of its approach could be applied to a

broader set of families. The principle is to build clusters of repeats (at least 5 elements,

less than 1500 bp) sharing high similarity (Evalue < 10−15) and having precise

boundaries (maximum 5 bp variation and dissimilar 100-bp flanking sequences <50%

identity). This software is known to be resource-intensive (several days of computations

for large genomes). MITE-HUNTER and MITE Digger have been designed exclusively

Author version 2015

29

to detect MITEs. In MITE-HUNTER, MITE candidates (with their flanking regions) are

compared with each other by BLAST (21), and MITE candidates that have similar

flanking regions are considered to be part of a larger repeat element and are removed.

MITE-HUNTER clusters the remaining candidates and defines a representative element

(exemplar) for each cluster (an element that has the greatest similarity with all other

elements). BLAST is used to detect its homologs in the input sequences. Candidates that

have many copies are then aligned. Homologs such that flanking regions of the MITE

sequences are similar (>60%) for the majority of occurrences are assumed to be false

positive and discarded. The TSD is predicted again for the remaining candidates for

better accuracy. The program creates a consensus sequence from the clustered

homologs, compares all consensuses (using BLAST) and clusters them again in order to

reduce the number of clusters. MITE Digger is another BLAST-based program designed

to scale large genomes by making use of the fact that a MITE family typically contains

several hundred highly similar copies that are scattered all over the genome. Rather

than repeating for each copy TIR and TSD signature identification, screening, multiple

sequence alignment and clustering, the search is first focused on a small portion of the

genome and a possible family is filtered out as soon as the number of found copies

reaches a threshold. For instance, the probability is very low (1%) of missing 50 copies

in 8% of a genome database. Low-complexity regions and hits with very similar

flanking regions are discarded from sequences and the process is iterated.

Author version 2015

30

2.5. Helitrons

There seems to be only one method to date specializing in helitron search: HelSearch

(see table) (82) (see Table 9). This is based on the search for a helitron signature in the 5'

and 3' extremities. HelSearch looks for the CT[AG][AG]T motif (3' termini) of the

helitrons and the small hairpin structure (a 3' sub-termini with a GC-rich sequence)

calculated using UNAFOLD (83). It then determines the 5' end (which contains the

dinucleotide TC) from the multiple alignment of the potential hits. Finally, HelSearch

classifies helitrons based on their 3' end similarity and uses BLAST to detect the

fragmented helitrons in the input sequences.

3. Efficient search of repeats in genomic sequences

Some common background appears in all the tools we have seen so far: in most cases,

even if it seems a little remote from reality, programs are looking first for exact repeats,

often referred to as anchor points or seeds. The real, approximated repeats are obtained

by extending the search further from these seeds, by introducing elementary operations

Author version 2015

31

enabling the detection of copies with distant contents. Looking for exact and

approximated repeats is part of the rich domain of string algorithms. In the most

general setting, detecting repeats in genomic sequences, or in any kind of textual

sequence, is organized on the basis of the detection of particular words (the queries) in a

text (the bank). This setting appears clearly when processing alignments in homology-

based methods or looking for particular motifs in structure-based methods.

There are basically two ways of performing such detection.

In the first case, the text is not preprocessed and the query is searched on the fly in the

text. For instance, this is the case when using the well-known “Ctrl-F” shortcut key or

search function on any piece of software dealing with texts (text editors, web browsers,

etc.). Beginning in the early 1970s, there are strong and interesting theories about fast

detection on the fly of queries in texts. This is known as string-matching. The naive way

to achieve string-matching is to compare at each position in the text the presence of each

character of the query, starting from this position. Obviously, if n is the size of the text

and m is the size of the query, this would require n.m comparisons. Thinking of large

texts (several gigabytes for a genome), and even for relatively small queries (say 1000

bp), this quickly becomes an issue. It is possible to decrease this complexity for a linear

behavior, although it will always depend of the size of the bank. We will not address

the topic in this chapter but the interested reader can refer to the excellent book from

Charras & Lecroq (84), which explores string-matching algorithms exhaustively and in a

Author version 2015

32

didactic way. A more general approach, pattern-matching, is discussed in the last

section (linguistic analysis).

Given their huge volume, the treatment of genomic sequences is generally based on

the second way of performing text processing: the text is preprocessed by indexation

techniques. In the previous section, many technical terms have been used, such as suffix

trees and suffix arrays. These are structures developed for fast indexation and searching

in texts. Research in this area has been fostered by developments in genomics and in

Internet content querying and we propose a quick but up-to-date review of the key

results achieved to date. We focus on indexing techniques which open the way both to

fast queries and to repeat detection.

3.1. The art of indexing

Imagine what would happen without indexation while looking, for example, for a

word (query) on the Internet (bank). Your favorite search engine would open and then

read all words of all pages of the whole web in order to detect the presence/absence of

your query in each page. Estimated to a few tens or hundreds of billions of webpages,

querying the web would simply be impossible, whatever the computation resources

available. The same would be the case if the bank is a large set of genomic sequences,

such as Genbank. For an efficient search, indexes are necessary. An index is a

mechanism that can answer the question: “where does this word occur in the bank?”

Author version 2015

33

within an amount of time that does not depend on the size of the bank. To be precise,

indexes are built once for a given bank (and within a time proportional to the size of the

bank) and then the time it takes to perform every query in the bank depends only on

the query size. Happily, indexes also have “side effects” which are valuable in the

biological context, such as the efficient detection of repeats inside or between genomes.

The main idea is to use data-structures to organize and structure the information

initially present in the banks. A classic and well-known structure is the dictionary:

searching for a word in a paper dictionary does not require reading the entire book, as

words are organized in lexicographic order. Similarly, the data-structures used for

indexing texts are computational objects having the same advantages as classic

dictionaries: they enable a portion of a sequence to be searched quickly by avoiding all

portions where this query could not occur. However, while genomes can easily be seen

as particular texts, the notion of “word” is not natural in this context since no general

delimiter exists. This is why indexes used in this context are designed to answer

questions regarding any word in the bank. For example, consider a sequence

S=ATGCGCAGTTTAT as a bank, and a query P=GCGC: “does P occurs somewhere in S,

and, if yes, where?” In this example the answer would be “P occurs at position 3 in S”.

From the point of view of strings, positions are associated to suffixes of the text, that is,

words starting at this position and ending at the end of the text. For instance, position 3

in S is associated with the word GCGCAGTTTAT (and P is a prefix of this word, that is, it is

Author version 2015

34

placed at its beginning). There are a number of indexes primarily powered by this

important notion of the suffix: automaton, hash tables, suffix trees or suffix arrays. All

of these data-structures are designed to answer at least the fundamental question

“where does P occur in S?”, but each has some specific skills either in terms of

additional possibilities or in terms of performance (time efficiency and memory

footprint).

Here we propose focusing on the most well-known and most widely-used data-

structures: suffix trees, an “historical” data-structure which is no longer extensively

applied in practice but which, in addition to useful educational and theoretical

properties, also affords the most and the most flexible functionalities; suffix arrays, an

efficient and elegant way to index large datasets and answer additional useful questions

such as those related to exact repeats in a bank; and, lastly, the Burrows-Wheeler

transform on which the compressed FM-index is based and which is a development that

makes it possible to build compressed suffix arrays. Note that in all cases, an efficient

program code appears quite short but is in fact very tricky and definitely not within a

standard programmer’s reach: use well-written libraries!

Suffix trees

Suffix trees are represented by a classification tree structure that clusters the suffixes

of the indexed text. All suffixes having a common prefix are clustered in the same class

Author version 2015

35

under a common internal node that has this prefix as a label. Any suffix can be read

along exactly one path from the unique root of the tree to one of its leaves and

conversely, any path from the root to a leaf corresponds to a unique suffix of the text or,

equivalently, to a position in this text. Figure 1 shows an example of the suffix tree of

S=ATTTAATAAC. The suffix at position 8 in the text, AAC, can be read from the root to

the leftmost leaf labeled 8:C by collecting all the words along the path, A, A, and C.

There are strong theories and beautiful algorithms for constructing suffix trees

quickly and with the lowest memory requirements. The most famous include the

Weiner (85) and later the Ukkonen (86) algorithms which both propose a way of

constructing the suffix tree of a sequence composed of n characters with a number of

operations and a memory requirement proportional to n. To be precise, storing the

suffix tree for a genomic sequence whose alphabet is limited to letters A, C, G and T

requires in the worst case 20 bytes per indexed character in optimized applications (87).

Indexing the human genome therefore requires 61.47 GB of memory. Even if the actual

average amount of memory required is rather around 13 bytes per nucleic acid, storing

the suffix tree puts a strain on the main memory for large-scale applications. Applied,

for instance, to indexing an Illumina run composed of 100 million reads of length 100

would require 130 GB of memory. In order to save space, it is necessary to shift the

space/time tradeoff in the program. One option is to save the tree to hard disk rather

Author version 2015

36

than the main memory but this becomes much slower to access. The most recent

implementations of suffix trees have used compressed structures, to the cost of slightly

slower access (88). The corresponding program is available in C++ on the website (89).

The suffix tree makes it possible to answer a query in an amount of time proportional

to the length of the query. Indeed, any word P read in the tree of an indexed sequence S

from its root to any one of its leaves corresponds to a word in S. For instance, searching

for the word ATT in the suffix tree of S =ATTTAATAAC can be read in bold in Erreur !

Source du renvoi introuvable. , leading to a leaf labeled 1: ATTTAATAAC meaning that

the word ATT exists at starting position 1 in S.

Fortunately, the suffix tree offers many possibilities other than answering such

simple queries. For instance, it is of great interest for detecting exact repeats. Indeed

each internal node of the tree (squares in Erreur ! Source du renvoi introuvable.)

determines a word which has several occurrences. This is the case for the word TT in

our example (path with grey rectangles in the Figure): the corresponding cluster

contains leaves labeled 3 and 2, meaning that there are two occurrences of TT in S,

starting at positions 2 and 3. Moreover, simple algorithms can exploit the suffix tree to

find easily distinct kinds of repeats: those having the maximal number of occurrences,

the longest, those that are maximal in their length (adding a new character to the repeat

would discard some occurrences), etc. The suffix tree can be applied to more than one

unique sequence, in this case it is called a generalized suffix tree. The generalized suffix

Author version 2015

37

tree is useful in genomics as it affords, for example, the possibility of easily determining

the words that are copied between different sequences or chromosomes.

Suffix arrays

The suffix array appeared in the early 1990s with the Manber and Myers paper (90).

This data-structure is much simpler than the suffix tree, requires less memory space and

answers the same range of questions. It is constructed by first sorting all suffixes of the

indexed text and by storing the obtained set in alphabetic order, remembering the

obtained starting positions.

For instance, the set of suffixes of S=ATTTAATAAC is made of ATTTAATAAC

(starting position 1), TTTAATAAC (pos. 2), TTAATAAC (pos. 3), TAATAAC (pos. 4),

AATAAC (pos. 5), ATAAC (pos. 6), TAAC (pos. 7), AAC (pos. 8), AC (pos. 9), and C (pos.

10). Their alphabetic order is: AAC, AATAAC, AC, ATAAC, ATTTAATAAC, C, TAAC,

TAATAAC, TTAATAAC, and TTTAATAAC. Let us represent this set of suffixes in a table:

Position Suffix

8 AAC

5 AATAAC

9 AC

6 ATAAC

1 ATTTAATAAC

10 C

Author version 2015

38

7 TAAC

4 TAATAAC

3 TTAATAAC

2 TTTAATAAC

The suffix array may be reduced to the Position column of the previous table (the

suffixes are represented to promote better understanding of the structure but are never

stored in the computer memory). This sole column may appear rather minimalist, but

this simple piece of information and the original indexed sequence are sufficient for

efficiently answering a query. In its simplest form, it can be found by applying a

dichotomic procedure: i) look for the word at the middle position of the array. If the

query occurs at this position the search stops, or ii/ if the query is alphabetically smaller

than the suffix starting at this position, recursively apply the procedure to the upper

part of the array, or apply it to the lower array.

For instance, searching the query Q=AC in the previously indexed text

S=ATTTAATAAC would entail the following steps. First check the middle of the array. In

this example, it corresponds to the suffix at position 1, that is, ATTTAATAAC. As it is

alphabetically larger than the query Q=AC, the process restarts with the array limited

to:

Position Suffix

8 AAC

Author version 2015

39

5 AATAAC

9 AC

6 ATAAC

Consider the middle line of this array: it corresponds to the suffix starting position 5,

AATAAC, which is alphabetically smaller than the query Q=AC. Thus the process

restarts with the lower part of the array. In this case, position 9, where the suffix AC

starts, corresponds to the searched query. With this simple procedure, at worse, the

number of steps to be performed is log(size of the array) = log(size of the indexed

sequence). The query time can be further improved by the use of a new column called

the LCP, which provides the length of the “Longest Common Prefix” between two

consecutive lines in the suffix array. For instance, if 0 is a LCP default value for the first

suffix of the array, the two lines of the previous suffix array would become:

Position LCP Suffix

9 0 AAC

6 2 AATAAC

The value 2 indicates that AAC and AATAAC start with 2 common characters. The

LCP somehow enables retrieval of the suffix tree topology, and then enables answering

questions related to repeats. In the example, LCP =2 indicates that a repeat of size 2

exists in the indexed text, at positions 9 and 6 given by Position.

Author version 2015

40

The suffix array (together with the LCP array) requires (for classic genomic analyses)

5 bytes per indexed character. Thus, indexing a 3.3 billion-character human genome

with a suffix array and its LCP would require 15.37GB. The indexation of a hundred

million reads of length 100 would require 46.57GB of memory. A good C++ code is

available in the appendix of the paper (91) (algorithm DC3) and two other C programs

that are among the most advanced implementations to date are given in the appendix of

the paper (92) (algorithms SA-IS and SA-DS). We mention the recent paper (93), a

didactic presentation of the SA-IS algorithm for Bioinformatics specialists. Regarding

access to an operational code in Java, please refer to (94). A recent development in using

suffix arrays to look for repeats (finding the largest substring common to a set of

sequences and finding maximal repeats exclusive of a sequence with respect to another

set of sequences) is described in (95). The C code can be downloaded from (96). In fact,

genomic repeats may be a source of inefficiency for certain implementations and care is

required when choosing a program. A far more general use of the suffix array data-

structure is described in the next section with the software Vmatch (68).

Author version 2015

41

FM-index and Burrows-Wheeler transform

The Burrows-Wheeler transform (97), inspired by the suffix array, was the starting

point of the FM-index (98) (99), a new powerful indexing approach that is now widely

used in many fields, in particular in computational biology. The Burrows-Wheeler

transform (BWT) is a permutation of characters in a sequence that is easy to understand

from a suffix array. Using our previous example, ATTTAATAAC, it is the sequence

TTAACAATTA, which can be displayed next to the suffix array as follows:

Position Suffix BWT

8 AAC T

5 AATAAC T

9 AC A

6 ATAAC A

1 ATTTAATAAC C

10 C A

7 TAAC A

4 TAATAAC T

3 TTAATAAC T

2 TTTAATAAC A

Author version 2015

42

For each position in the suffix array, the BWT corresponds to the letter located just

before this position in the sequence (or the last letter for position 1). For instance, the

letter indicated in the first line is ‘T’ as it is the letter at position 8-1=7 in the text. The

BWT has astonishing properties that we review here briefly. Interested readers can refer

to (97) for further algorithmic details.

A first important property of the BWT is that this permutation (TTAACAATTA in our

example) is reversible: it is sufficient to retrieve the indexed sequence (ATTTAATAAC).

This is what is called a self-index, i.e. it is not necessary to keep the indexed sequence in

the memory, it is contained in the index.

A second appreciable property of the BWT is that it is highly compressible. Indeed

this letter organization tends to create stretches of letters. For instance, consider the

sequence “treat peat pea repeats” (spaces added to help reading). Its BWT sequence is

“eeeepprprttetataasa”. This is well-suited for compression algorithms (e.g. “eeee” could

be rewritten as “4e”).

In 2000, Ferragina and Manzini refined this compression approach to make it capable of

answering queries in a text, leading to the FM-index (its full name, “Full-text index in

Minute space” does not really help its understanding). To do this, they added a few

pieces of information to the BWT while keeping the data structure extremely light. We

Author version 2015

43

cannot enter into the details of this structure, but suffice to know that it can be

considered as a kind of compressed suffix array requiring very little memory space. For

instance, the human genome could be indexed with this approach using 1.23 GB, and

one million reads of length 100 would require 3.73GB of memory. A good source for

codes on the FM index and suffix array indexes is the Pizza&Chili reference site (100).

The FM-index supports the following operations which generally use a tiny portion of

the compressed file:

 locate finds the position in the text of an occurrence of the query, in O(logcn) time,

where c is a constant chosen at the time the FM-index is built.

 count computes the number of occurrences of the query, in time proportional to

its length;

 extract returns the sequence of a given length starting at a given position in the

text;

 display outputs for a given length L the L characters on each side of the

occurrences of the query in the text.

Hash tables versus Burrows-Wheeler transform

Another frequently employed indexing data structure is the hash table. The hash

table concept stands on a very simple idea. For indexing a set of names for instance,

each name is converted into an address (called a hash value) using a function that is

Author version 2015

44

easy to compute. For instance, using a hash function that considers each substring as a

number in base 11 (each letter being coded by an ASCII number), "AMY" is given the

address 8801=65112+77111+89110 and "BOB" is given the address

8921=66112+79111+66110. In an initially empty array (called the hash table), "AMY"

is stored at position 8801 and "BOB" at position 8921. As it is important to save as much

space as possible, it happens that two different names get the same hash value. For

instance, imagine now we add the name "AYM" that also has the hash value 8921. This

causes a collision at position 8921 that already contains the name "BOB". There are

several ways to manage collision, either by computing a new hash value for "AYM"

(open addressing) or by storing at each position a list of name (“BOB” and “AYM”). In

case of too many collisions, the hash table is overloaded and may be resized. This

operation is expensive as it may reorganize all the already stored items.

Querying a hash table is fairly similar to what is done by the indexing algorithm. The

hash value of the query is computed, and the content of the hash table at this position is

visited in order to check the presence/absence of the queried object. Depending on the

strategy used to manage collisions, either all the entries present in the list at this

position have to be checked or new hash functions have to be computed for the query

until it is found (match) or an empty position is reached (mismatch).

Most programming languages offer simple structures to build hash tables. It is easy to

find efficient implementations of hash tables on the web (e.g. SpookyHash (101) or

Author version 2015

45

SparseHash (102)). Some tools implementing hash tables are specifically designed for

routine similarity search on NGS data such as RAPSearch2 (103), which allows

similarity searches in proteins and is fully compatible with Blast. Implemented in C++,

the source code is freely available for download at the RAPSearch2 website (104).

The main advantage of hash tables is their speed, in particular when collisions are

absent or rare. Another important advantage stands in the fact that hash tables are

dynamic and can host any additional piece of information for each of its items. Unlike

the FM-Index, any new item can be added to a hash table, even after its construction. In

a biological context, to each k-mer can be associated its list of occurrences in a genome

for instance. In comparison, the FM-Index gives only access to the occurring position(s)

of each query.

The theoretical indexing and querying times (respectively O(n) and O(m) in average

with n being the size of the bank and m the size of the query) are the same for FM-Index

and hash table approaches. However, the application range are a bit different. First the

hash table contains fixed items. For instance if items are k-mers, a hash table does not

allow to query k+1-mer or k-1-mer. Moreover, these items must be explicitly stored. For a

human genome, storing 3 billion of 31-mers (coded on a binary alphabet) requires

nearly 22 GB of memory. Indexing all 31-mers of a human genome would thus require

approximately 23 GB of memory using a hash table (including the array itself). In

comparison, the FM-Index is a self-indexed compressed data structure. This means that

Author version 2015

46

the index itself contains the original sequence, and furthermore any k-mer of any size

could be queried using this data structure. Indexing a human genome using the FM-

index requires less that 2 GB of memory. The BWA methods described in (105) presents

in details how the Burrows-Wheeler Transform (BWT) (often simply referred

inaccurately as the FM-Index) can be used for performing the mapping of reads on a

genome.

All the data structures presented above are designed for exact queries. However they

are not made for answering questions such as “where does Q=TAAT occur with at most one

error in S=ATTTAATAAC?”. Some attempts to make them able to deal with such requests

basically need to enumerate all possibilities. For instance, the previous request would

be answered by searching all queries distant by at most one error with respect to Q,

representing 4*(size of Q) queries: AAAT, CAAT, GAAT, TAAT, ACAT, etc. If more than

one error should be tolerated, then the number of queries to perform explodes, making

such solutions inapplicable for biological application. The search for approximated

words requires additional techniques, as described in the next subsection.

Author version 2015

47

3.2. Finding approximated words, a matter of seeds…

In terms of sequence approximation, two main distances are commonly used: the

Hamming distance in which only substitutions are allowed and the Levenshtein

distance in which insertions and deletions (called indels) are authorized in addition to

substitutions. The Hamming distance between two words is particularly simple to

compute: each couple of characters of the two words is read simultaneously and when

the two characters differ, the distance is increased by one. Conversely, the Levenshtein

distance (also called edit distance) is much more complex to measure. It involves a

recursive organization of partial computations called dynamic programming. More

precisely, computing the Levenshtein distance between two sequences requires a

number of comparisons proportional to the product of their lengths, which becomes

prohibitive when asking long queries in large banks. It is theoretically impossible to get

rid of this complexity, however it is possible in practice to propose some techniques that

look for an incomplete result. The goal becomes to find most of the solutions at the price

of possibly missing some of them (“false negatives”), using techniques called heuristics.

One of the most famous heuristics used in computation biology is BLAST (17), which is

designed to find approximate occurrences (hits) of a query in databanks. The BLAST

approach is representative of seed-based algorithms. In short, it uses the fact that two

words similar enough exactly share at least some small sub-word, called the seed. For

Author version 2015

48

instance, consider TACACCCTAG and TCACCGCTTG. These two words are similar and

they share the seed CACC: TACACC-CTAG

 | |||| ||.|

 T-CACCGCTTG

The seed-based algorithms use this simple idea in order to speed-up their

computations. Given a query and a database, they first search for occurrences of sub-

words of the query in the database. This first step is performed extremely fast, using

indexing techniques presented above. The positions where the shared seeds occur in the

query and in the database make it possible to limit the search space in which the query

may have a hit. A dynamic programming computation is performed in a second step

that searches this limited space. It is always useful to keep two warnings in mind when

using heuristics: they may miss some solutions and default parameters are not always

the best solution (for instance, the standard seed of size 11 is insufficient for finding

weak homologies between ancient interspersed repeats and it is recommended to use 7

base seeds instead).

In the last decade, the notion of seeds has been vastly improved. Of course, the

smaller the seed, the less likely one is to miss some similarities. But this has two

drawbacks: the filtering effect is not very sensitive and the computation becomes slower

since there may be many more spurious hits that occur by chance. Two ideas have been

developed to increase the sensitivity of a seed with a fixed number of characters,

allowing spaced seeds and using multiple seeds. Multiple seeds are sets of seeds that are

Author version 2015

49

looked for simultaneously and used together to determine an E-value of the hits. The

principle of spaced seeds is to choose noncontiguous characters to build them. For the

previous example, C-CT-G (“-“ means a don’t care position in the text) has the same

number of characters (the same weight) and thus the same selectivity than CACC but its

sensitivity is likely to be better because it spans a longer region (6 instead of 4).

Moreover, a software program like YASS (106) offers the possibility of introducing

subset seeds, i.e. to define some positions where nucleic acids can only take a subset of

possible values. For example, transition-constrained seeds (of weight ½) have to belong

to a same class in the query and the text, either purine or pyrimidine. Noting # a match

position, - a don’t care position, and @ a transition position, the default seed of YASS, of

weight 9, is #@# –– ## –– # – ##@#. Seeds of fixed weight can be optimized for a range

of similarity between sequences and for a user-defined particular family of sequences in

order to maximize the hitting probability. YASS can be used online or is available for

download at (107). It can filter low complexity repeats and produce the same output

format than BLAST. The paper (108) provides an example of YASS pairwise

comparisons applied to a gene family encoding proteins with pentatricopeptide repeat

(PPR) motifs in the radish genome.

It is possible to derive a “spaced” suffix array from a standard suffix array that takes

into account don’t care positions by applying a suitable transformation on the text (109)

and the query. The seed-based algorithms enable the detection of repeats within a

Author version 2015

50

sequence or between sequences. Indeed, the algorithmic “engine” based on seeds is also

adapted for comparing two long sequences in order to search for similar sub-sequences

[local alignment (110) and Mummer (111)] and for comparing a sequence against itself

in order to search for repeats inside this sequence itself as, for instance, is the case in the

Repseek software (14).

3.3. Using short sequence reads instead of contigs

The previously presented concepts are based on the use of queries which are smaller

in length than those of the bank sequences. With the arrival of NGS (Next-Generation

Sequencers) it is not uncommon to have to deal with unassembled data. In this context,

queries and/or banks are composed of short sequences called reads of at most a few

hundreds nucleotides. A set of such reads typically represents (all chromosomes of) an

original genome. The read representation of a whole genome is neither adapted to

human, nor to standard automatic analyses. For example, it becomes more difficult to

compute the answer to the simple query: “Does this sequence occur in this set of

reads?” and previous indexation methods must be adapted or, more radically, new

sequences must be designed to be able to cope with such data representation.

When dealing with NGS reads, in particular while looking for repeats in a set of

reads, there are several approaches that can be distinguished depending on the

Author version 2015

51

presence of a third-party reference genome or not. Given a set of sequenced reads, and

when a reference genome exists, this latter can be used as a bank and reads are used as

queries. For each read, a BLAST-like search is performed in order to know where it

occurs on the genome. This process is known as read mapping. As it is applied to

millions of reads, the mapping must be answered in a short time. Numerous methods,

specific to read mapping, have been developed in the past few years. They are adapted

to the size of the requests and to their expected error profiles and high similarity to the

reference. A great deal of information can be extracted from the mapping of reads,

especially concerning polymorphism (SNPs but also repeated elements). A good read

mapper in the case of highly-polymorphic genomes is the NextGenMap software (112).

The reference genome is indexed in a hash table. There exists a GitHub site including a

wiki page where the code is available for downloading on (113). When no reference

sequence is available the user has two choices left: either reconstruct the sequence from

reads (assembly process) and apply the reference-based approaches on this assembled

sequence, or use de novo methods that seek elements of interest directly in non-

assembled reads. The de novo approaches are thus useful when no reference sequence

exists and when the assembly of reads is problematic or impossible. This can be the case

for highly complex genomes such as plant polyploid genomes. The polyploid nature of

the genomes of most of the major species of agronomic interest represents a strong

barrier to analysis of the organization and variation of repeats, either for non-coding

areas or for duplicated genes. The only reasonable way to conduct a repeat study in

Author version 2015

52

these genomes seems to be to extract the repeat family of interest by careful primer

design and PCR amplification. However, the emergence of successful tools for de novo

detection of elements of interest in raw unassembled reads can be seen. For instance,

simpler to detect than repeats, the SNP detection can be performed de novo with recent

tools like Cortex (114) or discoSnp (115).

We have described in the list of homology-based methods for TE identification a

software, RelocaTE, which is able to look for given reference TE in a set of next-

generation sequencing (NGS) unassembled reads. Tools are now available to detect

Transposable Elements directly from these reads. The general idea is that repeated

elements are represented by a high number of reads and read frequency may be used

together with sequence similarity to assemble and regroup them into repeat families. At

least three methods have been designed for this purpose, RepARK (116), RetroSeq (43)

and T-lex (44).

RetroSeq is a sophisticated method that can exploit mate pairs. Instead of the classic

FASTA file, the input file of RetroSeq is a BAM format file. First, RetroSeq looks for

discordant mate pairs: regions present in BAM sequences but not present in the

reference sequence. These regions are identified as transposable elements by aligning

them against the consensus library with the Exonerate software (117). T-lex first uses

RepeatMasker (26) to remove the TE present in highly repetitive regions from the list of

TE insertions and detects the insertion of TE copies by comparing the two Target Site

Author version 2015

53

Duplications (TSD) and the termini of the TE from the NGS reads with the reference

sequence. T-lex detects the deletion of TE copies by the deletion of termini regions in

NGS reads.

4. Towards a richer characterization of repeated structures

4.1. A gentle introduction to the theory of languages

As can be observed in this chapter, most of the current practice of pattern matching

looks at efficient ways to index and compare sequences. This has proved very useful

and remains extremely important for the efficiency of any search algorithm. However, it

proves to be insufficient as the knowledge and understanding of some functional or

structural aspects of the different repeat families increases. Analysts in molecular

biology progressively shift from mere classification tasks to modeling tasks and develop

complex scripts in order to fulfill their search needs. Programming scripts may become

a tedious task because people need to express various hypothetical models of sequence

architectures. It is widely acknowledged that they may even be hard to reproduce (118).

A first line of progress has been proposed with the birth and development of Scientific

Author version 2015

54

Workflow Management Systems [SWMS, (119)]. To search for complex patterns such as

repeats, another approach is to clearly separate the descriptive part (the model of the

studied sequence family) from the way this model is searched in genomes. This is

precisely the goal of linguistic analysis and in the rest of this section we deal with the

key concepts in this field. The description of patterns or languages on strings is the

subject of the theory of formal languages. It is widely used for computer languages but

can also be developed in the case of biological sequences. The search for pattern or

models described in a language relies on the development of dedicated parsers that can

accept any query model in the language.

The framework of formal languages introduces models of a possibly infinite set of

sequences. The issue is to represent an infinite set in a finite way. A standard

representation, called grammar, is a set of rewriting rules acting on a starting axiom. For

instance, the following grammar (with axiom S1) is able to recognize telomeric regions

of eukaryotes like A. thaliana, known to be composed primarily of tandemly repeated

blocks 5’-C(C|T)CTAAA-3’:

 S1  C S2 S2  C S3 S2  T S3 S3  C S4 S4  T S5

 S5  A S6 S6  A S7 S7  A S1 S7  A

In such a model, the left part of a rule (the head) rewrites () into its right part (the

body). Note that rules use two types of symbols, non-terminal symbols that have to be

rewritten using any rule with a matching head (Si, i [1,7] in our example) and terminal

Author version 2015

55

symbols that correspond to letters of the analyzed string (nucleic acids A, C or T in our

example). Any genomic sequence that can be generated by a finite application of such

rules, starting from the axiom rule, is accepted as a telomeric region by the model.

Conversely, it is possible to check (i.e. to parse) a given sequence by applying the rules

from right to left on the sequence, and possibly collect some information from the

parsing structure (a tree). For instance, the number of tandem repeats in the region will

be the number of times S1 occurs in the parsing tree.

It appears that the general form of rules has a deep impact on the expressiveness of

the associated languages and the complexity of standard operations on these languages

such as the membership of a sequence to a language or the intersection of two

languages. Furthermore, the categorization of rule types may be roughly achieved in

very few classes. Thus, the rules in the example above are very specific: there exists a

single, non-terminal symbol in the head and at most one non-terminal in the body, at

the end of the body. It can be shown that this particular structure is characteristic of a

well-known class of languages called regular languages. This class has been used in

many pattern matching and bioinformatics tools [e.g. Unix grep for all types of text or

ScanProsite (120) for proteins] and script languages (e.g. Perl) since it is possible to look

for occurrences of any pattern in linear time (proportional to the length of the

sequence). Often, regular expressions (e.g. C[C|T]CTAAA in our example) are used

instead of grammars since they offer a more compact representation but this is strictly

Author version 2015

56

equivalent and just a matter of notations. Despite their high utility, regular languages

are limited for the recognition of repeats. They can only recognize (or serve to model)

looping structures, e.g. fixed tandem repeats. Describing, for instance, the Terminal

Inverted Repeats of DNA transposons is out of reach for this class of languages.

Moreover, if the element that is repeated is unknown (looking for some unspecified

tandem repeat or equivalently looking for all tandem repeats in a genome for instance),

it is also impossible to represent the structure with a regular language.

For the case of palindromic repeat structures, of which the stem-loop structure in RNA

sequences is one of the prime examples, it is necessary to accept grammar rules with a

body containing any string of terminal and non-terminal symbols. The corresponding

class of languages is called context-free. For instance, recognizing the TIRs of a DNA

transposon could be described by the following grammar:

 S1  A S2 U S1  C S2 G S1  G S2 C S1  U S2 A

 S2  A S2 U S2  U S2 A S2  C S2 G S2  G S2 C

 S2  A S2 S2  C S2 S2  G S2 S2  U S2 S2  

Context-free rules in this grammar (e.g. S2  A S2 U) serve to describe the Watson-Crick

pairing of nucleic bases. Thus this logical structure on sequences may be clearly

associated with a meaningful structure in space corresponding to chemical bonds.

Other regular rules (e.g. S2  A S2) describe the internal sequence between TIRs

without further constraint. The last rule S2   is a termination rule, where  denotes

Author version 2015

57

the empty string. The programming languages are generally context-free languages (if

you look at the html or xhtml code of a web page for instance, you will see the very

same structure of pairing tags that are characteristic of context-free languages). This

class of languages is more expressive but at some cost: recognizing if a model occurs in

a sequence of size n may require in the worst case in the order of n3 operations.

The next question is to know if this class of language is sufficient for biological

modeling. The answer is clearly no. Consider for instance the description of chloroplast

microstatellites. These “simple sequence repeats” that are stretches of small words (size

less than 7 generally) are complex from the point of view of structure: it is not possible

to decide in advance the number of copies or the size of copies. It requires more

advanced grammatical rules, called context sensitive, where the non-terminal symbol on

the left and the body of the rule may be surrounded by as many symbols as necessary

(there exists a context of rule application) providing that the same symbols are on both

sides. Other examples of context sensitive models in biological sequences are the

pseudo-knot structures in RNA or the disulfide bridge structure in proteins and the

introduction of errors in repeat is another source of complexity. The cost of models in

this category may become very high but fortunately it is not necessary to use the full

expressive power of context-sensitive languages. In practice, the art of linguistic

analysis entails getting the right tradeoff between the flexibility of the modeling

language and the efficiency of model parsing. From the user’s point of view, a number

of models have to be tried, tuning them iteratively in order to get a reasonable number

Author version 2015

58

of hits. Moreover, since parsers can provide not only the hits but also their internal

structure, it may be necessary to filter in post-treatment structural alternatives that are

not relevant for the biological analysis.

4.2. Linguistic analysis of genomic sequences

Once a language has been chosen for expressing models or patterns, any model can

be searched in a bank of sequences using dedicated software. If the language is simple

and specific to a sequence family, the query may generally be described by a string on a

special alphabet and this task is referred to as pattern matching. If the language is more

generic and allows the expression of more complex structures, it can take several rules

to describe the language and the software is then called a parser.

Dedicated Pattern Matching

It is not possible here to provide an exhaustive review of the profusion of specific

tools that have been made available to bioanalysts. Some are specific to a sequence

family and others to a particular motif type.

We have already cited ScanProsite (120) as an example of a pattern matcher using motifs

defined on a subset of regular languages. The current version accepts Prosite patterns,

user-defined patterns in the Prosite syntax, a combination of patterns using logical

Author version 2015

59

operators and, or and not, and can use contextual annotation templates (ProRules) to

detect functional characteristics. They are searched either by a query in a precomputed

database or with an algorithm called ps-scan. A website is available on the Expasy

server but for a large-scale independent analysis, it is possible to download the ps-scan

Perl script (121). A higher level parser has been developed for the de novo recognition of

human polymeraseII promoter regions in (122). This study uses a two-level grammar. A

regular grammar first allows recognition of promoter elements such as the TATA-box,

the Initiator and the Downstream Promoter Element (DPE), etc. Then a context-free

grammar is in charge of the recognition of a correct assembly of all these elements in a

reasonable promoter. Unfortunately, although it is likely the authors use a generic

context-free parser for this task, no tool is made available: we cite it here mostly for the

purposes of illustration since it is characteristic of the linguistic approach.

A number of tools are dedicated to RNA sequences, in response to the increasing need

for structure exploration in the complex RNA world, boosted by the recent importance

of non-coding RNA studies. This is useful for checking structural features in

retrotransposons. RNAmotif (123) is probably the most popular in this category as it

combines a pattern description language and a language to tune the scoring. It has been

designed for the description of patterns as a succession of content-constrained stems

and loops, offering the possibility of choosing the standard Watson-Crick pairing (A-U,

G-C) or any other user-defined pairing. The code is available for download at (124). The

tool Locomotif (125) has almost the same expressiveness (slightly less) as the previous

Author version 2015

60

one but proposes interesting additional features. The first is that it allows the user to

graphically design his pattern in an editor by composing several stems and loops

annotated with information on the sequence content and size. A dedicated parser is

automatically derived from the graphical representation provided. A second feature

filters a single matching result by optimizing a thermodynamical model. A more recent

tool in this category, Structator (126), is representative of this new generation of tools

that first use a lexical analysis to significantly improve the parsing time in a second step.

It makes use of an index data structure that is suited to the analysis of palindromic

structures and is derived from those we have presented, the affix array.

General Purpose Pattern Matching

Some tools have been designed for the analysis of several types of sequences (DNA,

RNA, proteins) with a generic expressiveness, i.e. without targeting the recognition of a

particular motif family. Among these general tools, two tendencies can be observed,

efficiency-oriented and expressiveness-oriented software.

One of the most advanced software solutions from the point of view of efficiency is

Vmatch (68), which offers a wide variety of search facilities in very large sequences.

Vmatch is a package maintained since 2003 by S. Kurtz and resulting from long

experience in the field of indexing and pattern matching for genomic sequences (the

Author version 2015

61

initial version was called REPuter). Vmatch is free for academic research and can be

obtained by downloading a license agreement form. It proposes a flexible command

language with numerous constructions offering a very broad variety of possible queries.

It is based on a careful implementation of enhanced suffix arrays (127) for the

computation of a sequence index that provides fast access to every substring in that

sequence. If the search for a motif contains some rare substrings, this technique is

particularly efficient. As in the previous version, REPuter, Vmatch goes from exact to

approximated strings with a fixed number of mismatches by using a dynamic

programming algorithm and proposes a graphical interface for the bioanalyst.

The software Vmatch is the core search engine used in a number of more specialized

tools working on specific sequence structures (e.g. tandem-repeats or LTR

retrotransposons in MASiVE). It is used in some databases to generate genomic

information or to propose extended search functionalities. For instance, in

MIPSPlantsDB, the curation and clustering in the mips-REdat repeat database (128) has

been achieved using Vmatch: repeats are put in a same cluster if they share 98% identity

and the representative of each cluster is its longest sequence, a choice that makes it

possible to remove incomplete sequences included in a cluster representative. PlantGDB

proposes a server also based on Vmatch, PatternSearch (129), to look for short patterns

with mismatches in A. thaliana or O. sativa genomes.

Another highly generic tool, although less expressive, is Biogrep (130), designed by MIT

with the objective of quickly recognizing a large set of simple motifs (typically more

Author version 2015

62

than 100) in biological sequence banks, using multi-processor optimizations. Biogrep

allows queries in the POSIX language, a standard format of extended regular

expressions, and can look for patterns in parallel on a set of processors.

The other approach for the analysis of biological sequences is more concerned with

modeling the peculiarities of biological objects in the most relevant and expressive way.

A major contribution in this respect is the work of D. Searls who laid the foundations

for research in this domain. He was the first to supervise developments allowing users

to design biological grammars and to apply them for the large-scale analysis of their

genomic sequences (131; 132). One of D. Searls’ key ideas is to try to find a balance

between the well-founded framework of context-free languages that offer a good

expressivity/efficiency trade-off, and the necessity of easily describing basic biological

mechanisms such as copy that lie at the core of genome evolution. D. Searls introduced

a very practical object in algebraic grammars, the string variable, which elegantly

expresses this notion of copy (either direct or reverse). He has implemented the

resulting logic formalism, called SVG - for StringVariable Grammars -, in the (no longer

available) GenLang tool (133). From the point of view of expressivity on biological

sequences, this makes it possible to take into account not only various forms of copy,

distance, position and size constraints but also hierarchical aspects of genomic

structures. For instance, in the case of LTR Retrotransposons, the top-level rule of the

Author version 2015

63

grammar could be represented by the following expression – this is given for the

purposes of illustration only and does not pretend to be fully realistic:

 LTRR DR:[2..6], «tg», (U5,R,U3):[80..750], «ca »,

 [1..100], pbs, [1..100], gag, [1 000..15 000], ppt, [1..100],

 «tg», (U5:80%, R:90%, U3:80%), «ca», DR .

In this expression, DR, U5, R, and U3 are string variables. Its meaning is “the sequence

is surrounded by two exact copies of a direct repeat (DR) of size between 2 and 6. The

LTR start with nucleotides “tg”, end with nucleotides “ca” and are made up of three

parts named A, R and B with a total length between 80 and 750. The right LTR is an

approximate copy of the left one. The central part (R) is the most preserved - because of

the hybridization between both Rs during duplication - with a 90% minimum identity

level whereas U3 and U5 only need to have 80% level identity. The central part of the

sequence must contain at constrained distances a primer binding site (pbs), a group-

specific antigen (gag), and polypurine tract (ppt), which are described by other

grammatical rules.

GenLang is no longer available but PatSearch (134) is a restricted tool belonging to this

family. It is based on the C program scan_for_matches, mainly written by R. Overbeek

and which is downloadable from (135). It allows to describe approximated strings

(including IUB codes for ambiguous nucleotides and mismatch/indel errors), gaps and

Author version 2015

64

length constraints, stem/loops structures and alternative patterns. Insofar as regards

repeats, they can be described by a statement

nmax>repeat(patternident=pattern) dmin..dmax >nmin ,

where nmin and nmax are integers fixing a range for the number of patterns, dmin and

dmax fix a range for the edit distance between repeat units, and patternident and pattern

are a string variable and a pattern constraining the content of this variable respectively.

The keyword frepeat has to be used instead of repeat in case of exact repeat. In addition,

PatSearch provides an assessment of the motif significance from a simulation

experiment using Markov chains (estimating the number of instances that can be

expected randomly).

Logol (136) is a highly descriptive language dedicated to the modeling of biological

sequences and also derived from SVG. Starting from the sound basis of SVG grammars,

the Logol language proposes several extensions - most notably by adopting a constraint

approach - with the aim of allowing the expression of realistic biological motifs. Models

use constrained string variables (supporting overlaps, substitution and distance errors)

that can be subject to various transformations (e.g. inverse complement), gaps, and

repetitions of a pattern along the sequence, negation and alternatives to define different

possibilities. As in every formal grammar components can be grouped with a view to

obtaining a high-level representation of a subset of components.

Author version 2015

65

Repeats may be described either with string variables or with special repeat constructs.

For example, the following model with string variables I1 and I2 can be used to look for 3

instances of the same string successively deriving from each other (e.g. I1= aaaaa,

I2=aaaca and I3=agaca): X1:{#[5,8],_I1},.*:{#[1,7]}, ?I1:{_I2}:{$[1,1]},.*:{#[1,7]}, ?I2:{$[1,1]}

The second pattern, ?I1: {_I2}:{$[1,1]}, reads as follows: the expected string must be

similar to the previous I1 string (aaaaa in our example), apart from 1 mismatch ($[1,1]).

The matched string (aaaca) is saved in I2 ({_I2}) for further use in the last pattern ({?I2}).

This individualization of instances means it is possible to adjust fine notions of

sequence evolution.

 The following example shows how palindromic repeats for the recognition of stem-

loops whose stem length varies between 5 and 11 and loop size between 1 and 9 are

represented. In this example, the Watson-Crick pairing is not required to be perfect: up

to 2 substitutions and 1 indel are allowed.

STEM1:{#[5,11],_IS1}, .*:{#[1,9]}, -"wc" ?IS1 :{$[0,2],$$[0,1]}

The content of STEM1 (first strand of the stem) is saved in IS1, (_IS1). The second stem

strand is then defined as the exact reverse complement of the previous content (that is -

"wc" ?IS1), except for 2 mismatches and 1 indel.

The special constructor repeat, as in PatSearch, manages the characteristics of a series of

occurrences. Its standard format is:

 repeat(<entity>,<distance>)+<occurrence number>.

Author version 2015

66

For instance, repeat("acgt",[0,3])+[7,38] states that substring acgt is repeated from 7 to 38

times, using a spacing of at most 3 characters between 2 repeats.

Logol is available as a web application and for download on (137). It includes a

graphical editor. In the case of spacers in a model, Logol calls on an external program

using indexing sequence techniques to directly look for positions of subsequent words.

Two possibilities are offered by Logol to perform indexing, either Vmatch or Cassiopee,

a Ruby tool specifically developed for Logol and which is generally not as efficient as

Vmatch but enables installation independently of Vmatch.

Author version 2015

67

List of tables

Table 1: List of plant transposable element databases that cover several plant genera

Database and reference Content Web site

mips-REdat + mips-REcat (128) All repeats +

repeat type index

(82 genera)

http://mips.helmholtz-

muenchen.de/plant/recat/

Plant Repeat Databases (138) http://plantrepeats.plantbiology.msu.edu/

MASiVEdb (139) LTR (37 species) http://databases.bat.infspire.org/masivedb/

P-MITE (140) MITE (41 species) http://pmite.hzau.edu.cn/django/mite/

Table 2: List of available ab initio methods detecting all types of transposable elements

Software Name Web site, Download site (ftp,

forge, galaxy or github), or

email contact

OS Requirements Comments

PClouds (13) www.evolutionarygenomics.c

om/ProgramsData

/PClouds/PClouds.html

Linux,

MacOS X

C compiler No help file

PILER (18) www.drive5.com/piler/ All MUSCLE User’s guide

(web site)

RBR (141) www.ii.uib.no/~ketil/bioinfor

matics/tools.html

All, Linux

preferred

Glasgow

Haskell

Compiler (GHC)

README

Install file

Author version 2015

68

ReAS (142) ://ftp.genomics.org.cn/pub/

ReAS/software/

All Perl, C compiler,

64bits system

README

Install file

RECON (19) selab.janelia.org/recon.html All C compiler README

Install file.

Makefile to

be adapted

RepeatFinder (10) cbcb.umd.edu/software/Repe

atFinder/

All REPuter README

Install file

RepeatScout (59) repeatscout.bioprojects.org/ Linux,

MacOS X

Perl, Tandem

Repeat Finder,

RepeatMasker

README

Install file

Repseek (14) wwwabi.snv.jussieu.fr/public

/RepSeek/

Linux,

MacOS X

No README

Install file

User’s guide

(Repseek_do

c.pdf

REPuter (9) bibiserv.techfak.uni-

bielefeld.de/reputer/

All No User’s guide

(web site)

RepARK (116) https://github.com/PhKoch/

RepARK.

All Perl, Jellyfish,

Velvet

README

Tallymer (8) www.zbh.uni-

hamburg.de/?id=211

Linux,

MacOS X

Perl, C compiler,

Python, Ruby,

Cairo & Pango

lib. (optional),

User’s guide

(web site)

Author version 2015

69

HMMER

Windowmasker

(11)

ftp.ncbi.nlm.nih.gov/pub/aga

rwala/windowmasker

Windows,

Linux

No User’s guide

(web site)

Table 3: List of available homology-based methods detecting all types of transposable elements

Software Name Web site, Download site (ftp,

forge, galaxy or github), or

email contact

OS Requirements Comments

AB-BLAST (wu-)

(22)

www.advbiocomp.com/blas

t.html

 User’s guide

(web site)

Censor (24) www.girinst.org/censor/do

wnload.php

Linux,

MacOS X

Perl README

Install file

HMMER (45) hmmer.janelia.org/ Linux,

MacOS X

Perl User’s guide

(web site)

NCBI-BLAST

(21)

ftp.ncbi.nlm.nih.gov/blast/e

xecutables/blast+/

All No README

Install file

One code to find

them all (42)

http://doua.prabi.fr/softwar

e/one-code-to-find-them-all

All Perl Tutorial (zip

file on web

site)

Process_hits (39) processhits.sourceforge.net/ All Perl README

Install file

REannotate (40) www.bioinformatics.org/rea

nnotate/index.html

All Perl User’s guide

(web site)

RelocaTE (29) https://github.com/srobb1/ All Blat, Bowtie 1, README

Author version 2015

70

RelocaTE BioPerl,

SAMtools

User’s guide

(web site)

RepeatMasker

(25)

www.repeatmasker.org/ All Perl, Blast or

HMMER or

RMBlast, and

Tandem Repeat

Finder

README

Install file

RepeatRunner

(41)

www.yandell-

lab.org/software/repeatrunn

er.html

All Perl, Blast and

RepeatMasker

README

Install file

RetroSeq (43) github.com/tk2/RetroSeq Linux Perl, bedtools

lib., Samtools

and Exonerate

User’s guide

(web site)

T-lex (44) petrov.stanford.edu/cgi-

bin/Tlex_manual.html

Linux Perl,

RepeatMasker,

Maq, SHRIMP2,

BLAT, Phrap

and FastaGrep

User’s guide

(web site)

TARGeT (30) target.iplantcollaborative.org

/

All Web browser User’s guide

(web site)

TESeeker (27) repository.library.nd.edu/vi

ew/27/teseeker

All VirtualBox,

BLAST, CAP3,

ClustalW2, and

BioPerl

User’s guide

(web site)

Author version 2015

71

Transposon-PSI

(28)

transposonpsi.sourceforge.ne

t/

All Perl, Psi Blast README

Install file

Author version 2015

72

Table 4: List of available structure-based methods detecting all types of transposable elements

Software Name Web site, Download site

(ftp, forge, galaxy or github),

or email contact

OS Requirements Comments

SMaRTFinder (47) services.appliedgenomics.o

rg/software/smartfinder/

All C compiler README

Install file

SMOTIF (46) www.cs.rpi.edu/~zaki/soft

ware/sMotif/

All C compiler README

Install file

Logol (136) http://logol.genouest.org/ Linux,

MacOS X

Ruby User’s

guide (web

site)

Table 5: List of available pipeline methods detecting all types of transposable elements

Software Name Web site, Download site

(ftp, forge, galaxy or

github), or email contact

OS Requirements Comments

DAWGPAWS (49) dawgpaws.sourceforge.

net/

Linux Perl, emacs,

Apollo, Blast,

Cross_match,Eu

Gène, find_ltr,

FINDMITE,

FGENESH,

User’s

guide (web

site)

Author version 2015

73

GeneID,

GeneMarkHMM,

Genscan,

HMMER,

LTR_FINDER,

LTR_Seq,

LTR_Struc,

RepeatMasker

RepeatExplorer (2) galaxy.umbr.cas.cz:8080

/

Linux Perl, R,

Python,

ImageMagick,

Blast,

RepeatMasker,

Muscle, Fasty36

User’s

guide (web

site)

RepeatModeler (25) www.repeatmasker.org

/RepeatModeler.html

Linux,

MacOS X

Perl,

RepeatMasker,

RECON,

RepeatScout,

Tandem Repeat

Finder, and

RMBlast or Ab-

Blast

README

Install file

User’s

guide

REPET (50) urgi.versailles.inra.fr/To

ols/REPET

Linux,

MacOS X

C compiler User’s

guide (web

Author version 2015

74

site)

TriAnnot (51) wheat-

urgi.versailles.inra.fr/Tools

/Triannot-Pipeline

All Web browser User’s

guide (web

site)

RISCI (52) http://www.ccmb.res.in/

rakeshmishra/tools.html

Linux Perl,

EMBOSS, Blast,

RepeatMasker

README

Table 6: List of available software for the search of Long Terminal Repeat Retrotransposons (LTRR)

Software

Name

Method Web site, Download site (ftp,

forge, galaxy or github), or

email contact

OS Requirements Comments

LTR_MINER

(64)

Homol. genomebiology.com/content/s

upplementary/gb-2004-5-10-

r79-s7.pl

All Perl No help file

LTR_Finder

(55)

Struct. tlife.fudan.edu.cn/ltr_finder/ Linux

(standal

one)

No User’s

guide (web

site)

LTR_STRUC

(53)

Struct. www.mcdonaldlab.biology.gat

ech.edu/ltr_struc.htm

Window

s

No No help file

LTRharvest

(65)

Struct. www.zbh.uni-

hamburg.de/forschung/

genominformatik/software/ltr

harvest.html

Linux,

MacOS

X

Perl, C

compiler,

Python,

GenomeTools

README

Install file

User’s

guide (web

Author version 2015

75

site)

MGEScan-

LTR (57)

Struct. darwin.informatics.indiana.edu

/cgi-bin/

evolution/daphnia_ltr.pl

Linux,

MacOS

X

Perl, C compil.

Tandem

Repeat Finder,

HMMER,

EMBOSS

README

Install file

User’s

guide (web

site)

MASiVE (67) Pipel. tools.bat.infspire.org/masive/ Linux,

MacOS

X

LTRharvest,

Vmatch, Wise2

and MAFFT

README

Install file

Table 7: List of available homology-based methods detecting non LTR retrotransposons

Software Name Web site, Download site (ftp,

forge, galaxy or github), or

email contact

OS Requirements Comments

MGEScan-

nonLTR (70)

darwin.informatics.indiana.edu

/cgi-

bin/evolution/nonltr/nonltr.pl

Linux,

MacOS X

Perl, C compiler,

HMMER,

EMBOSS

package

README

Install file

RTAnalyzer

(71)

www.riboclub.org/cgi-

bin/RTAnalyzer/index.pl

All Perl, Internet

connexion

No help file

Table 8: List of available software for the search of DNA transposons

Software

Name

Method Web site, Download site

(ftp, forge, galaxy or

OS Requirements Comments

Author version 2015

76

github), or email contact

TRANSPO

(73)

Homol. alggen.lsi.upc.es/recerca

/search/transpo/transp

o.html

Windows

(standalone)

cygwin1.dll

(standalone)

No help file

IRF (76) Struct. tandem.bu.edu/irf/irf.d

ownload.html

All No No help file

RSPB (78) Struct. http://122.205.95.39/me

dia/MITE/tools/RSPB_0

.20.zip

Linux Blast, Muscle,

Mdust, Perl,

RepeatMasker

Readme

(http://122.2

05.95.39/me

dia/MITE/to

ols/RSPB_Re

adme.txt)

MITE-

Hunter (79)

Struct. target.iplantcollaborative

.org/mite_hunter.html

All Perl, Blast,

Muscle, mDust

Readme

Install file

User’s guide

(web site)

MITE

Digger (80)

Struct. http://labs.csb.utoronto.

ca/yang/MITEDigger

Windows Perl Readme

+ Rice

database

MUST (77) Struct. csbl1.bmb.uga.edu/ffzho

u/MUST/

Web server No No help file

Table 9: Software looking for Helitrons

Software Name Web site, Download site (ftp, OS Requirements Comments

http://labs.csb.utoronto.ca/yang/MITEDigger
http://labs.csb.utoronto.ca/yang/MITEDigger

Author version 2015

77

forge, galaxy or github), or

email contact

HelSearch (82) helsearch.sourceforge.net/ All Perl, Blast,

ClustalW

README

Install file

Author version 2015

78

Author version 2015

79

List of figures

Figure 1: Suffix- tree representation for the text ATTTAATAAC. The top square is the root of the tree.
Circles are the leaves, and other squares are called “internal nodes”.

Author version 2015

80

References

1. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Barghini, E.,

et al., et al. 4, Apr 2014, Genome Biol Evol., Vol. 6, pp. 776-91. doi: 10.1093/gbe/evu058.

2. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic

repetitive elements from next-generation sequence reads. Novák, P., et al., et al. 6, 2013,

Bioinformatics, Vol. 29, pp. 79279-3. doi: 10.1093/bioinformatics/btt054.

3. Review of tandem repeat search tools: a systematic approach to evaluating algorithmic performance.

Lim, K. G., et al., et al. 1, 2013, Briefings in Bioinformatics, Vol. 14, pp. 67-81.

doi :10.1093/bib/bbs023.

4. Sequence-specific error profile of Illumina sequencers. Nakamura, K., et al., et al. 13, may 2011,

Nucl. Acids Res., Vol. 39, p. e90. doi:10.1093/nar/gkr344.

5. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial

community DNA sample. Luo, C., et al., et al. 3, 2012, PLoS ONE, Vol. 7, p. e30087. doi:

10.1371/journal.pone.0030087.

6. Repbase Update, a database of eukaryotic repetitive elements. Jurka, J., et al., et al. 2005,

Cytogenetic and Genome Research, Vol. 110, pp. 462-467.

7. Discovering and detecting transposable elements in genome sequences. Bergman, C. M. et

Quesneville, H. 6, 2007, Briefings in Bioinformatics, Vol. 8, pp. 382-392.

8. A new method to compute K-mer frequencies and its application to annotate large repetitive plant

genomes. Kurtz, S., et al., et al. 2008, BMC Genomics, Vol. 9, p. 517.

9. REPuter: the manifold applications of repeat analysis on a genomic scale. Kurtz, S., et al., et al. 22,

2001, Nucleic Acids Res., Vol. 29, pp. 4633-42.

10. A clustering method for repeat analysis in DNA sequences. Volfovsky, N. et Haas, B.J. and

Salzberg, S.L. 8, 2001, Genome Biol., Vol. 2, p. RESEARCH0027.

11. WindowMasker: window-based masker for sequenced genomes. Morgulis, A., et al., et al. 2,

2006, Bioinformatics, Vol. 22, pp. 134-41.

12. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Marcais, G. et

Kingsford, C. 2011, Bioinformatics, Vol. 27, pp. 764-770.

13. Identification of repeat structure in large genomes using repeat probability clouds. Gu, W., et al.,

et al. 1, 2008, Anal Biochem, Vol. 380, pp. 77-83.

14. Repseek, a tool to retrieve approximate repeats from large DNA sequences. Achaz, G., et al., et al.

1, 2007, Bioinformatics, Vol. 23, pp. 119-21.

15. Estimating the probability of approximate matches. Kurtz, S. et Myers, G. s.l. : Springer Verlag,

1997, Combinatorial Pattern Matching, Lecture Notes in Computer Science, Vol. 1264, pp. 52-64.

Author version 2015

81

16. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Zerbino, D.R. et

Birney, E. 2008, Genome Res., Vol. 18, pp. 821-829.

17. Basic local alignment search tool. Altschul, S.F., et al., et al. 3, 1990, J Mol Biol., Vol. 215, pp. 403-

10.

18. PILER: identification and classification of genomic repeats. Edgar, R.C. et Myers, E.W. 2005,

BMC Bioinformatics, Vol. 9, p. 18.

19. Automated de novo identification of repeat sequence families in sequenced genomes. Bao, Z. et

Eddy, SR. 8, 2002, Genome Res., Vol. 12, pp. 1269-76.

20. Discovery and assembly of repeat family pseudomolecules from sparse genomic sequence data using

the Assisted Automated Assembler of Repeat Families (AAARF) algorithm. DeBarry, J., Liu, R. et

Bennetzen, J. 1, 2008, BMC Bioinformatics, Vol. 9, p. 235. 10.1186/1471-2105-9-235.

21. NCBI BLAST: a better web interface. Johnson, M., et al., et al. 2008, Nucleic Acids Res., Vol. 36,

pp. W5-9.

22. Advanced Biocomputing, LLC. AB-BLAST. [En ligne] 2009. http://blast.advbiocomp.com/.

23. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics

and other refinements. Schäffer, AA., et al., et al. 14, 2001, Nucl. Acids Res., Vol. 29, pp. 2994-3005.

doi:10.1093/nar/29.14.2994.

24. CENSOR - a program for identification and elimination of repetitive elements from DNA sequences.

Jurka, J., et al., et al. 1, 1996, Computers and Chemistry, Vol. 20, pp. 119-122.

25. Smit, AFA.., Hubley, R. et Green, P. RepeatMasker Open-3.0. [En ligne] 1996-2010.

http://www.repeatmasker.org/.

26. Using and understanding RepeatMasker. Tempel, S. 2012, Methods Mol Biol., Vol. 859, pp. 29-51.

27. An automated homology-based approach for identifying transposable elements. Kennedy, R.C., et

al., et al. 2011, BMC Bioinformatics, Vol. 12, p. 130.

28. Haas, B.J. TransposonPSI. [En ligne] 2010. http://transposonpsi.sf.net.

29. The Use of RelocaTE and Unassembled Short Reads to Produce High-Resolution Snapshots of

Transposable Element Generated Diversity in Rice. Robb, S. C., et al., et al. 6, 2013, G3:

Genes|Genomes|Genetics, Vol. 3, pp. 949-957. 10.1534/g3.112.005348.

30. TARGeT: a web-based pipeline for retrieving and characterizing gene and transposable element

families from genomic sequences. Han, Y., Burnette, J.M. et Wessler, S.R. 11, 2009, Nucl. Acids

Res., Vol. 37, p. e78.

31. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Edgar, R.C. 5,

2004, Nucl. Acids Res., Vol. 32, pp. 1792-1797.

Author version 2015

82

32. FastTree: Computing Large Minimum-Evolution Trees with Profiles instead of a Distance Matrix.

Price, M.N., Dehal, P.S. et Arkin, A.P. 2009, Molecular Biology and Evolution, Vol. 26, pp. 1641-

1650.

33. CAP3: A DNA sequence assembly program. Huang, X. et Madan, A. Sept. 1999, Genome Res., Vol.

9, pp. 868-77.

34. Clustal W and Clustal X version 2.0. Larkin, M.A., et al., et al. 21, 2007, Bioinformatics, Vol. 23,

pp. 2947-2948.

35. Tandem repeats finder: a program to analyze DNA sequences. Benson, G. 18, 1999, Nucleic Acids

Research, Vol. 20, pp. 573-580.

36. Green, P. phrap/cross_match/swat documentation. [En ligne] 1993-1996.

http://www.phrap.org/phredphrap/general.html.

37. TimeLogic. Decypher. [En ligne] 2014. http://www.timelogic.com/.

38. Smit, A. RMBlast. [En ligne] 2013. http://www.repeatmasker.org/RMBlast.html.

39. Smith, J.D. Process_hits. [En ligne] 2010.

http://sourceforge.net/projects/processhits/files/README.txt/download.

40. Automated paleontology of repetitive DNA with REANNOTATE. Pereira, V. 2008, BMC Genomics,

Vol. 9, p. 614. doi: 10.1186/1471-2164-9-614.

41. Improved repeat identification. ; masking in Dipterans. Smith, C.D., et al., et al. 1, 2007, Gene,

Vol. 389, pp. 1-9.

42. "One code to find them all": a perl tool to conveniently parse RepeatMasker output files. Bailly-

Bechet, M., Haudry, A. et Lerat, E. 13, s.l. : Biomed Central, 2014, Mobile DNA,, Vol. 5.

doi:10.1186/1759-8753-5-13.

43. RetroSeq: transposable element discovery from next-generation sequencing data. Keane, T.M.,

Wong, K. et Adams, D.J. 3, 2012, Bioinformatics, Vol. 29, pp. 389-390.

44. T-lex: a program for fast and accurate assessment of transposable element presence using next-

generation sequencing data. Fiston-Lavier, A.S., et al., et al. 6, 2011, Nucl. Acids Res., Vol. 39, p.

e36.

45. HMMER web server: interactive sequence similarity searching. Finn, R.D., Clements, J. et

Eddy, S.R. 2011, Nucleic Acids Research, Vol. 39, pp. W29-W37.

46. SMOTIF: efficient structured pattern and profile motif search. Zhang, Y. et Zaki, M.J. 2006,

Algorithms Mol Biol., Vol. 1, p. 22.

47. Structured Motifs Search. Morgante, M., et al., et al. 8, oct. 2005, Journal of Computational

Biology, Vol. 12, pp. 1065-1082. doi:10.1089/cmb.2005.12.1065.

Author version 2015

83

48. Suffix-tree analyser (STAN): looking for nucleotidic and peptidic patterns in chromosomes.

Nicolas, J., et al., et al. 24, 2005, Bioinformatics, Vol. 21, pp. 4408-10.

49. The DAWGPAWS pipeline for the annotation of genes and transposable elements in plant genomes.

Estill, J.C. et Bennetzen, J.L. 1, 2009, Plant Methods, Vol. 5, p. 8.

50. Considering transposable element diversification in de novo annotation approaches. Flutre, T., et

al., et al. 1, 2011, PLoS One, Vol. 6, p. e16526.

51. TriAnnot: A Versatile. ; High Performance Pipeline for the Automated Annotation of Plant Genomes.

Leroy, P., et al., et al. 2012, Front Plant Sci., Vol. 3, p. 5.

52. RISCI - Repeat Induced Sequence Changes Identifier: a comprehensive, comparative genomics-

based, in silico subtractive hybridization pipeline to identify repeat induced sequence changes in closely

related genomes. Singh, V. & Mishra, R. 609, 2010, BMC Bioinformatics, Vol. 11. 10.1186/1471-2105-

11-609.

53. LTR_STRUC: A novel search and identification program for LTR retrotransposons. McCarthy,

E.M. et McDonald, J.F. 2003, Bioinformatics, Vol. 19, pp. 362-367.

54. Efficient algorithms and software for detection of full-length LTR retrotransposons.

Kalyanaraman, A. et Aluru, S. 2, 2006, J Bioinform Comput Biol., Vol. 4, pp. 197-216.

55. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Xu, Z. et

Wang, H. 2007, Nucleic Acids Res., Vol. 35, pp. W265-W268.

56. Eight novel families of miniature inverted repeat transposable elements in the African malaria

mosquito, Anopheles gambiae. Tu, Z. 2001, PNAS, Vol. 98, pp. 1699-1704.

57. De novo identification of LTR retrotransposons in eukaryotic genomes. Rho, M., et al., et al. 2007,

BMC Genomics, Vol. 8, p. 90.

58. TEnest: Automated chronological annotation and visualization of nested plant transposable

elements. Kronmiller, B.A. et Wise, R.P. 2008, Plant Physiol., Vol. 146, pp. 45-59.

59. De novo identification of repeat families in large genomes. Price, A. L., Jones, N. C. et Pevzner,

P.A. 1, 2005, Bioinformatics, Vol. 21, pp. 351-8.

60. Detection of new transposable element families in Drosophila melanogaster. ; Anopheles gambiae

genomes. Quesneville, H., Nouaud, D. et Anxolabéhère, D. 1, 2003, J Mol Evol., Vol. 57, pp. S50-9.

61. On global sequence alignment. Huang, X. 1994, Computer Applications in the Biosciences, Vol. 10,

pp. 227–235.

62. Recent developments in the MAFFT multiple sequence alignment program. Katoh, K. et Toh, H.

2008, Briefings in Bioinformatics, Vol. 9, pp. 286–298.

63. mreps: efficient and flexible detection of tandem repeats in DNA. Kolpakov, R., Bana, G. et

Kucherov, G. 2003, Nucl. Acids Res., Vol. 31, pp. 3672–3678.

Author version 2015

84

64. Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome.

Pereira, V. 10, 2004, Genome Biol., Vol. 5, p. R79.

65. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons.

Ellinghaus, D., Kurtz, S. et Willhoeft, U. 2008, BMC Bioinformatics, Vol. 9, p. 18.

66. GenomeTools: a comprehensive software library for efficient processing of structured genome

annotations. Gremme, G., Steinbiss, S. et Kurtz, S. 3, 2013, IEEE/ACM Transactions on

Computational Biology and Bioinformatics, Vol. 10, pp. 645–656.

67. MASiVE: Mapping and Analysis of SireVirus Elements in plant genome sequences. Darzentas, N.,

et al., et al. 19, 2010, Bioinformatics, Vol. 26, pp. 2452–2454.

68. Kurtz, S. Vmatch: large scale sequence analysis software. http://www.vmatch.de/vmweb.pdf. [En

ligne] December 2011.

69. Genewise and genomewise. Birney, E., Clamp, M. et Durbin, R. 2004, Genome Res., Vol. 14, pp.

988–995.

70. MGEScan-non-LTR: computational identification and classification of autonomous non-LTR

retrotransposons in eukaryotic genomes. Rho, M. et Tang, H. 21, 2009, Nucl. Acids Res., Vol. 37, p.

e143.

71. RTAnalyzer: a web application for finding new retrotransposons and detecting L1

retrotransposition signatures. Lucier, J.F., et al., et al. 2007, Nucleic Acids Res., Vol. 35, pp. W269-

W274.

72. EMBOSS: the European Molecular Biology Open Software Suite. Rice, P., Longden, I. et

Bleasby, A. 2000, Trends Genet., Vol. 16, pp. 276–277.

73. Genome-wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana. Santiago, N., et

al., et al. 12, 2002, Mol Biol Evol., Vol. 19, pp. 2285-93.

74. Gordon, A.D. Classification. New York : Chapman & Hall/CRC, 1999.

75. A fast bit-vector algorithm for approximate string matching based on dynamic progamming.

Myers, G. s.l. : Springer-Verlag LNCS Series, 1998. Ninth Combinatorial Pattern Matching Conference.

Vol. 1448, pp. 1–13.

76. Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of

large, highly homologous inverted repeats that contain testes genes. Warburton, P.E., et al., et al.

10A, 2004, Genome Res., Vol. 14, pp. 1861-9.

77. MUST: a system for identification of miniature inverted-repeat transposable elements and

applications to Anabaena variabilis and Haloquadratum walsbyi. Chen, Y., Zhou, F. et Li, G .and

Xu, Y. 1-2, 2009, Gene, Vol. 436, pp. 1-7.

78. Miniature inverted-repeat transposable elements (MITEs) have been accumulated through

amplification bursts and play important roles in gene expression and species diversity in Oryza sativa.

Lu, C., et al., et al. 3, 2012, Mol Biol Evol, Vol. 29, pp. 1005-1017. doi: 10.1093/molbev/msr282.

Author version 2015

85

79. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from

genomic sequences. Han, Y. et Wessler, S.R. 22, 2010, Nucleic Acids Res., Vol. 38, p. e199.

80. MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted

repeat transposable elements. Yang, G. 186, june 2013, BMC Bioinformatics, Vol. 14. doi:10.1186/1471-

2105-14-186.

81. Graph clustering via a discrete uncoupling process. Dongen, S.V. 2008, SIAM. Journal. on. Matrix.

Analysis. and. Applications., Vol. 30, pp. 121–141.

82. Structure-based discovery and description of plant and animal Helitrons. Yang, L. et Bennetzen,

J.L. 31, 2009, P.N.A.S., Vol. 106, pp. 12832-7.

83. DINAMelt web server for nucleic acid melting prediction. Markham, N. et Zuker, M. 2005,

Nucleic Acids Res., Vol. 33, pp. 577–581.

84. Charras, C. et Lecroq, T. Handbook of exact string matching algorithms. s.l. : King's College

publications, 2004. ISBN:0954300645.

85. Linear pattern matching algorithms. Weiner, P. s.l. : IEEE Computer Society Washington, DC,

USA, 1973, SWAT '73 Proceedings of the 14th Annual Symposium on Switching and Automata Theory, pp.

1-11. doi:10.1109/SWAT.1973.13.

86. On-line construction of suffix trees. Ukkonen, E. 3, 1995, Algorithmica, Vol. 14, pp. 249-260.

doi:10.1007/BF01206331.

87. Aluru, S. et Ko, P. Handbook of Computational Molecular Biology. [éd.] S. Aluru. s.l. : Chapman &

Hall/CRC Computer and Information Science Series, 2006. p. Chapter 5 and 6.

88. Compressed suffix tree--a basis for genome-scale sequence analysis. Välimäki, N., et al., et al. 5,

s.l. : Oxford University Press, 2007, Bioinformatics, Vol. 23, pp. 629-30.

doi:10.1093/bioinformatics/btl681.

89. Mäkinen, V. Compressed Suffix Tree. [En ligne] 2013. http://www.cs.helsinki.fi/group/suds/cst/.

90. Suffix arrays: a new method for on-line string searches. Manber, U.i et Myers, G. 1993, SIAM

Journal on Computing, Vol. 22, pp. 935–948. doi:10.1137/0222058.

91. Linear work suffix array construction. Kärkkäinen, J., Sanders, P. et Burkhardt, S. [éd.] ACM.

6, Nov. 2006, Journal of the ACM (JACM), Vol. 53, pp. 918-936. doi>10.1145/1217856.1217858.

92. Two Efficient Algorithms for Linear Time Suffix Array Construction. Nong, G., Zhang, S. et

Chan, W.H. [éd.] IEEE. 10, oct. 2011, IEEE Transactions on Computers, Vol. 60, pp. 1471 - 1484.

DOI:10.1109/TC.2010.188.

93. A bioinformatician’s guide to the forefront of suffix array construction algorithms. Shrestha, A. M.

S., Frith, M. C. et Horton, P. jan. 2014, Brief. Bioinform. doi:10.1093/bib/bbt081.

94. Weiss, Dawid. jsuffixarrays. [En ligne] 2011. https://github.com/carrotsearch/jsuffixarrays.

Author version 2015

86

95. Efficient repeat finding in sets of strings via suffix arrays. Barenbaum, P., et al., et al. 2, 2013,

Discrete Mathematics & Theoretical Computer Science, Vol. 15, pp. 59-70.

96. Becher, V. findrepset. [En ligne] 2013.

http://www.dc.uba.ar/people/profesores/becher/software/findrepset.tar.bz2.

97. Burrows, M. et Wheeler, D.J. A block sorting lossless data compression algorithm. Digital

Equipment Corporation. Palo Alto : s.n., 1994. Technical Report. 124.

98. Opportunistic data structures with applications. Ferragina, P. et Manzini, G. 2000, FOCS '00

Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 390-398.

doi:10.1109/SFCS.2000.892127.

99. An Experimental Study of an Opportunistic Index. Ferragina, P. et Manzini, G. Washington,

D.C., USA : Society for Industrial and Applied Mathematics, 2001. Proceedings of the Twelfth Annual

ACM-SIAM Symposium on Discrete Algorithms. pp. 269--278. isbn 0-89871-490-7.

100. Ferragina, P. et Navarro, G. Compressed Indexes and their Testbeds. [En ligne] sept. 2005.

http://pizzachili.di.unipi.it/.

101. Jenkin, B. SpookyHash. [En ligne] 2012. http://burtleburtle.net/bob/hash/spooky.html.

102. Google. Sparsehash. [En ligne] 2012. http://code.google.com/p/sparsehash/.

103. RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation

sequencing data. Zhao, Y., Tang, H. et Ye, Y. 1, s.l. : Oxford pub., 2012, Bioinformatics, Vol. 28, pp.

125-126. 10.1093/bioinformatics/btr595.

104. Zhao, Y. et Ye, Y. RAPSearch2. [En ligne] June 2014.

http://omics.informatics.indiana.edu/mg/RAPSearch2/.

105. Fast and accurate short read alignment with Burrows–Wheeler transform. Li, H. et Durbin, R.

14, s.l. : Oxford Pub., 2009, Bioinformatics, Vol. 25, pp. 1754-1760. 10.1093/bioinformatics/btp324.

106. YASS: enhancing the sensitivity of DNA similarity search. Noe, L. et Kucherov, G. 2, 2005,

Nucleic Acids Research, Vol. 33, pp. W540-W543.

107. Noe, L. Yass. [En ligne] 2013. http://bioinfo.lifl.fr/yass/.

108. Sequence analysis of two alleles reveals that intra- and intergenic recombination played a role in

the evolution of the radish fertility restorer (Rfo). Mora, J.R.H., et al., et al. 35, 2010, BMC Plant Biol,

Vol. 10.

109. DisLex: a transformation for discontiguous suffix array construction. Horton, P., Kiełbasa,

S.M. et Frith, M.C. 2008. Workshop on Knowledge, Language, and Learning in Bioinformatics, KLLBI.

Pacific Rim International Conferences on Artificial Intelligence (PRICAI). pp. 1-11.

110. Identification of common molecular subsequences. Smith, T.F. et Waterman, M.S. [éd.] Elsevier.

1, March 1981, Journal of Molecular Biology, Vol. 147, pp. 195-197. doi: 10.1016/0022-2836(81)90087-5.

Author version 2015

87

111. Versatile and open software for comparing large genomes. Kurtz, S., et al., et al. 2, 2004,

Genome Biology, Vol. 5, p. R12. doi:10.1186/gb-2004-5-2-r12.

112. NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Sedlazeck, F.J.,

Rescheneder, P. et von Haeseler, A. 21, 2013, Bioinformatics, Vol. 29, pp. 2790-1. doi:

10.1093/bioinformatics/btt468..

113. Sedlazeck, F.J. et Rescheneder, P. NextGenMap. [En ligne] 2014.

http://cibiv.github.io/NextGenMap/.

114. De novo assembly and genotyping of variants using colored de Bruijn graphs. Iqbal, Z., et al., et

al. 2, Jan. 2012, Nature Genetics, Vol. 44, pp. 226-232. doi: 10.1038/ng.1028.

115. Peterlongo, P. discoSnp. [En ligne] 2014. http://colibread.inria.fr/software/discosnp/.

116. RepARK—de novo creation of repeat libraries from whole-genome NGS reads. Koch, P., Platzer,

M. et Downie, B. R. 9, 14 March 2014, Nucl. Acids Res., Vol. 42, p. e80. doi:10.1093/nar/gku210.

117. Automated generation of heuristics for biological sequence comparison. Slater, G.S. et Birney, E.

1, 2005, BMC Bioinformatics, Vol. 6. doi:10.1186/1471-2105-6-31.

118. Replication of analysis of published microarray gene expression analyses. Ioannidis, J. P. A., et

al., et al. 2, Feb. 2009, Nature Genetics, Vol. 41, pp. 149–155. doi: 10.1038/ng.295.

119. The Taverna workflow suite: designing and executing workflows of Web Services on the desktop,

web or in the cloud. Wolstencroft, K., et al., et al. W1, 2013, Nucl. Acids Res., Vol. 41, pp. W557-

W561. doi:10.1093/nar/gkt328.

120. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and

structural residues in proteins. de Castro, E., et al., et al. Jul. 2006, Nucl. Acids Res., Vol. 34(Web

Server issue), pp. W362-W365. doi: 10.1093/nar/gkl124.

121. de Castro, E. ps_scan. [En ligne] 2002. ftp://ftp.expasy.org/databases/prosite/ps_scan/.

122. A Composite Method Based on Formal Grammar and DNA Structural Features in Detecting

Human Polymerase II. Datta, S. et Mukhopadhyay, S. 2, 2013, PLoS ONE, Vol. 8, p. e54843.

doi:10.1371/journal.pone.0054843.

123. RNAMotif: A new RNA secondary structure definition and discovery algorithm. Macke, T., et al.,

et al. 22, nov. 2001, Nucl Acids Res, Vol. 29, pp. 4724–4735. doi: 10.1093/nar/29.22.4724.

124. Macke, T. RNAMotif. [En ligne] april 2010. http://casegroup.rutgers.edu/casegr-sh-2.5.html.

125. Locomotif: from graphical motif description to RNA motif search. Reeder, J., Reeder, J. et

Giegerich, R. 13, 2007, Bioinformatics, Vol. 23, pp. 392-400. doi: 10.1093/bioinformatics/btm179.

126. Structator: fast index-based search for RNA sequence-structure patterns. Meyer, F., et al., et al.

214, may 2011, BMC Bioinformatics., Vol. 12. doi:10.1186/1471-2105-12-214.

Author version 2015

88

127. Replacing suffix trees with enhanced suffix arrays. Abouelhoda, M.I., Kurtz, S. et Ohlebusch,

E. 1, march 2004, Journal of Discrete Algorithms, Vol. 2, pp. 53-86. doi:10.1016/S1570-8667(03)00065-

0.

128. MIPS PlantsDB: a database framework for comparative plant genome research. Nussbaumer,

T., et al., et al. 2013, Nucl. Acids Res., Vol. 41 (Database issue), pp. D1144-51.

129. Brendel, V. Pattern Search. [En ligne] 2007. http://www.plantgdb.org/cgi-

bin/vmatch/patternsearch.pl.

130. Jensen, K., Stephanopoulos, G. et Rigoutsos, I. Biogrep: a multi–threaded pattern matcher

for large pattern sets. kljensen/biogrep · GitHub. [En ligne] 2002. https://github.com/kljensen/biogrep.

131. The language of genes. Searls, D.B. 6912, 2002, Nature, Vol. 420, pp. 211-217.

132. String Variable Grammar: a logic grammar formalism for DNA sequences. Searls, D. B. 1,2, 1995,

Journal of Logic Programming, Vol. 24, pp. 73-102.

133. Gene structure prediction by linguistic methods. Dong, S. et Searls, D. B. 1994, Genomics, Vol.

23, pp. 540-551.

134. PatSearch: A program for the detection of patterns and structural motifs in nucleotide sequences.

Grillo, G., et al., et al. 13, 2003, Nucl. Acids Res., Vol. 31, pp. 3608-12. doi: 10.1093/nar/gkg548.

135. Overbeek, R. ScanForMatches. [En ligne] jul. 2010.

http://blog.theseed.org/servers/2010/07/scan-for-matches.html.

136. Expressive Pattern Matching with Logol. Application to the Modelling of -1 Ribosomal Frameshift

events. Belleannée, C., Sallou, O. et Nicolas, J. Rennes : s.n., 2012. JOBIM'2012. pp. 5-14.

http://jobim2012.inria.fr/jobim_actes_2012_online.pdf.

137. Sallou, O. Logol. [En ligne] 2014. http://logol.genouest.org.

138. The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive

sequences in plants. Ouyang, S. et Buell, C.R. 2004, Nucl. Acids Res., Vol. 32 (Database issue), pp.

D360-3.

139. MASiVEdb: the Sirevirus Plant Retrotransposon Database. Bousios, A., et al., et al. 158, 2012,

BMC Genomics, Vol. 13.

140. P-MITE: a database for plant miniature inverted-repeat transposable elements. Chen, J., et al.,

et al. 2013, Nucl. Acids Res., Vol. 42 (Database issue), pp. D1176-81. doi: 10.1093/nar/gkt1000.

141. RBR: library-less repeat detection for ESTs. Malde, K., et al., et al. 18, 2006, Bioinformatics, Vol.

22, pp. 2232-6.

142. ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a

whole genome shotgun. Li, R., et al., et al. 4, 2005, PLoS Comput Biol., Vol. 1, p. e43.

Author version 2015

89

143. The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive

sequences in plants. Ouyang, C.R. et Buell, S. 2004, Nucleic Acids Res., Vol. 32 (Database issue), pp.

D360-3. http://plantrepeats.plantbiology.msu.edu/.

144. Rapid Identification of Repeated Patterns in Strings, Trees and Arrays. Karp, R.M., Miller, R.E.

et Rosenberg, A.L. New York, NY, USA : ACM, 1972. STOC '72, Fourth Annual ACM Symposium on

Theory of Computing. pp. 125-136.

145. RJPrimers: unique transposable element insertion junction discovery and PCR primer design for

marker development. You, F.M., et al., et al. sup. 2, 2010, Nucl. Acids Res., Vol. 38, pp. W313-20.

146. Automated paleontology of repetitive DNA with REANNOTATE. Pereira, V. 2008, BMC

Genomics, Vol. 9, p. 614.

147. MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted

repeat transposable elements. G., Yang. 186, 2013, BMC Bioinformatics, Vol. 14. doi:10.1186/1471-2105-

14-186.

148. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and

structural residues in proteins. de Castro E, Sigrist CJA, Gattiker, A., et al., et al. 2, 2006, Nucl

Acids Res., Vol. 34, pp. W362–W365. doi: 10.1093/nar/gkl124.

149. Transposon Insertion Finder (TIF): a novel program for detection of de novo transpositions of

transposable elements. Nakagome, M., et al., et al. 71, s.l. : Biomed, 2014, BMC Bioinformatics, Vol.

15. doi:10.1186/1471-2105-15-71.

