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Abstract: Plant genomes contain a particularly high proportion of repeated structures of 

various types. This chapter proposes a guided tour of available software that can help 

biologists to look for these repeats and check some hypothetical models intended to 

characterize their structures. Since transposable elements are a major source of repeats 

in plants, many methods have been used or developed for this large class of sequences. 

They are representative of the range of tools available for other classes of repeats and 

we have provided a whole section on this topic as well as a selection of the main 

existing software. In order to better understand how they work and how repeats may 

be efficiently found in genomes, it is necessary to look at the technical issues involved in 
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the large--scale search of these structures. Indeed, it may be hard to keep up with the 

profusion of proposals in this dynamic field and the rest of the chapter is devoted to the 

foundations of the search for repeats and more complex patterns. The second section 

introduces the key concepts that are useful for understanding the current state of the art 

in playing with words, applied to genomic sequences. This can be seen as the first stage 

of a very general approach called linguistic analysis that is interested in the analysis of 

natural or artificial texts. Words, the lexical level, correspond to simple repeated entities 

in texts or strings. In fact, biologists need to represent more complex entities where a 

repeat family is built on more abstract structures, including direct or inverted small 

repeats, motifs, composition constraints as well as ordering and distance constraints 

between these elementary blocks. In terms of linguistics, this corresponds to the 

syntactic level of a language. The last section introduces concepts and practical tools 

that can be used to reach this syntactic level in biological sequence analysis. 

Keywords: Repeats, Transposon, Indexing, Algorithmics on words, Pattern matching. 

 

1. Introduction 

A salient feature of eukaryotic genomes is the number of repeated sequences that 

they contain. Many processes contribute to this accumulation of genomic material. Even 

if the polyploidy speciation mechanism were not taken into account, plant genomes are 

particularly rich in copy events that explain the remarkable range of their size variation 

and may considerably increase this size. Indeed, the genome length world record, 
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1.5x1011 DNA base pairs, is currently held by a plant, Paris japonica, an octoploid native 

to sub-alpine regions of Japan. The aim of this chapter is to propose several methods 

that help identify the various repeats that populate DNA sequences. The objective is 

more to collect and explain key concepts rather than to present an exhaustive and 

somewhat tedious study of the search for the various known repeat types, which may 

quickly have become obsolete. 

In fact, due to its importance, we will describe in detail only the exploration of the 

major source of repeats, the transposable element (TE) super-class. Transposable 

elements often account for up to 40% of plant genomes and, for example, account for 

about 60% of Solanum lycopersicum and Sorgum bicolor, and 80% of the Triticum aestivum 

or the Zea mays genome sizes. A whole section is devoted to practical methods that have 

been developed to extract TEs. This includes both generic tools and tools tailored for a 

particular class of RNA or DNA transposons. Another important class of repeats in 

some plants, such as Olea europaea (1), the tandem (or satellite) repeats, are not treated 

specifically, although some pointers to ab initio methods for transposable elements, such 

as RepeatExplorer (2), may be useful for the search of tandem repeats on reduced sets of 

genomic reads. We refer the interested reader to a fine review on this topic in (3). 

We then propose a more advanced section on the algorithmic basis of the detection of 

copies. This will help the reader to gain a better understanding of the technical terms 

often used in the description of the previous tools. All these software solutions derive 

much of their power from a crucial step, which finds all exact multiple occurrences of 
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words in a sequence. We introduce the state -of -the -art data structures that are used 

for this task and describe how approximated repeats can be searched for efficiently 

from these. In all cases, we provide pointers to free available software. Next Generation 

Sequencing (NGS) data are tending to predominate the current technology and need to 

be addressed specifically. Even if NGS avoids some issues with repeat cloning in BACs, 

sequencers have a certain bias that can affect the search for repeats. For instance, 

Illumina GA sequencers have some difficulties with GGC repeats and long inverted 

repeats (4) and Roche 454 sequencers have a higher error rate on long A or T 

homopolymers (5). Moreover, assembly is error-prone with respect to repeats, and we 

discuss to what extent it is possible to work directly at the read level without requiring 

an assembly step. The study of repeat variations is certainly the most important 

challenge that is currently addressed in advanced research on repeats by using NGS 

data, and the section ends with a small discussion on this subject. 

We end the chapter with a more prospective section, which emphasizes a global and 

long-term approach that may be very useful in the systematic study or the discovery of 

particular repeat classes. It is motivated by the fact that as knowledge on repeat families 

grows, software solutions have to be adapted to take into account such knowledge, at 

an increasing cost. The linguistic approach is based on the design of some specific 

language for the description and search of complex chaining structures, which may 

occur in nucleic acid sequences as well as in protein sequences. In this paradigm, the 

description of the state-of-the-art knowledge is left to the biologist acting as modeler. 
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Each model written in the representation language can then be searched in a systematic 

way in the input data, using generic software, a parser, which is able to recognize the 

occurrences of any pattern written in the language. Of course, the more expressive 

languages are more desirable but this has a computational cost, which may even be 

beyond the reach of any computing system if the language and models are not designed 

carefully. A first subsection recalls the basic aspects of the theory of languages that 

clarify these computational limitations. A second subsection introduces some practical 

tools that may be experimented with for this modeling approach. 
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2. Detecting transposable elements in plant genomes 

Many tools have been developed to search for transposable elements, forming a 

representative set illustrating the variety of techniques that can be applied for the search 

of genomic repeats in general.  

The most common approach used to detect TEs is by homology to already-known TE 

sequences. This means that the search starts from an existing database of identified TE 

families and new elements are classified in the family containing the most similar 

sequence. In practice, this is often done on protein coding sequences (e.g. reverse 

transcriptase) since reaching a significant level of similarity requires a sufficient 

conservation level throughout evolution. In all cases, it assumes that a database of 

known TEs is available. A well-known generic database for eukaryotic consensus 

repeated sequence models is Repbase Update (6), maintained by the Genetic 

Information Research Institute (GIRI, Mountain View, CA). The current version, at the 

date of this publication (Jul. 2014), contained 8,300 loci related to the Viridiplantae 

clade. Some more specific databases exist. In Table 1, we list a few plant transposable 

element databases that cover several plant genera. Two of them cover all kinds of 

repeats that can appear in genomes, the most complete to date being mips-REdat. 

A second approach for detecting TEs, called structure-based (7), tries to be less 

dependent on known sequences by taking advantage of a priori knowledge of 
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characteristic features of transposon families. For instance, LTR sequences have been 

analyzed for more than twenty years and a number of common elements have been 

discovered in their architecture: a short direct repeat string marking the insertion and 

flanking the 5' and 3' extremities of the LTR, a similar TG..CA box at each extremity, a 

polypurine tract about 12 bp in length, and various protein domains. All these features 

can serve as specific constraints enabling the detection of new elements in genomes. 

They usually form the basis of specific programs or scripts. We will see in the last 

section that this constrain solving problem may also be seen as an instance of a general 

pattern-matching issue, which could be treated by generic programs (parsers). 

The most complex approach for detecting TEs is ab initio, without any assumption of 

the type of transposon being looked for. Typically, this is used at large scale to annotate 

new genomes. For this reason, ab initio methods make use of the most advanced data 

structures and string algorithms. 

Of course, it is sometimes difficult to clearly state the status of a particular method, 

which may incorporate several steps belonging to different approaches, for instance, ab 

initio and by homology. We have created a fourth category, pipeline, to account for 

these more complex frameworks which implement a workflow combining existing 

software components with their own specific glue code and possibly new contributions. 
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Most detection methods are listed on the Bergman website1. Previous reviews 

classified the software according to the detection method (7) rather than detected 

transposable element superfamilies. This is a valuable approach for Bioinformatics and 

for whole-genome annotation and we start with a comprehensive subsection on this 

issue of systematic TE search in a newly-sequenced genome. Since biologists are often 

primarily interested in certain TE superfamilies, looking at methods as a second step, 

we propose, in the remaining subsections, different algorithms targeting specific 

transposable element (TE) families and then subdividing their presentation by the 

method itself (ab initio, homology-based, structured and pipeline methods). Our chapter 

focuses on software that is currently available via code downloading, a website or by 

email. For each TE class and each type of method, a table summarizes the 

corresponding list of software and provides for each a reference, a download site and 

installation requirements. 

 

 

                                                             
1 http://bergmanlab.smith.man.ac.uk/?page_id=295 
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2.1. Large-scale search of transposable elements 

 

First, we present tools that detect all TE superfamilies. These methods correspond to 

the majority of the TE detection tools. They generally use sophisticated algorithms to 

ensure an efficient search of elements and the interested reader is referred to Section 3 

for having more details on the way it works on computers and having the possibility to 

compare related techniques. 

 

All TEs; ab initio methods 

Available ab initio methods are listed in Table 2. They can be roughly split into two 

categories: methods that detect exact repeats of fixed size and assemble or extend them, 

and methods that directly detect non-exact repeats. 

Except for Tallymer (8) and RepARK which detect a range of exact repeats, all 

methods in the first group detect exact repeats of length k called k-mers. These repeats 

are stored in various data structures offering a tradeoff between the required amount of 

memory and the amount of computation. These repeats are stored in various data 

structures offering a tradeoff between the needed amount of memory and the amount 

of computation. Reputer (9) and RepeatFinder (10) use the suffix tree data structure for 

storing and retrieving k-mers, while Tallymer (8) uses the more compact suffix array 
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data structure. A number of methods such as WindowMasker (11) use a structure that 

does use the fact that elements are strings, a hash index (not to be confused with h-

index… !). RepARK counts k-mers up to k=31, making use of the Jellyfish software (12), 

which is based on a multithreaded, lock-free hash index. PClouds (13) uses a bit array 

and a hash index. A software such as RepSeek (14) uses a lower and an upper bound for 

k and keeps only the maximal repeats, those that cannot be extended without losing an 

occurrence. 

Available software solutions offer various alternatives regarding the choice of k, 

some more practical than others depending on the data set: it is most often a parameter 

whose value has to be user-provided (ReAS, Repseek, REPuter and RepeatScout); it 

equals log4(n)+1 for PClouds (where n is the sequence size); it is the smallest integer that 

satisfies the equation n/4k < 5 for WindowMasker. In the case of Tallymer, it is an 

optimal value calculated from a user-provided range fixing the minimal and maximal 

values. To be more precise, Tallymer calculates this value from the uniqueness ratio, 

which is the ratio of k-mers occurring exactly once relative to the total number of k-mers 

in the genomic sequence. Then the selected k corresponds to the least value where the 

ratio does not increase significantly with the increase of k (inflection point in the 

uniqueness ratio graph). All repeats greater than k are written out by Tallymer. 

RepARK assumes a Poisson distribution for the k-mers unique in the whole genome 
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and thus determines a frequency threshold to filter significant k-mers that occur at least 

twice in the genome. 

Unlike other methods that detect repeats on genomic sequences, ReAS and RBR work 

on Whole Genome Shotgun (WGS) and Expressed Sequence Tags (EST) data 

respectively. ReAS selects WGS that contains k-mers with a high copy number and 

divides them into 100-bp segments centered on that k-mer. ReAS clusters the WGS 

containing the same k-mers and creates the consensus sequence of the 100-bp segments. 

In the RBR method, k-mers are considered as repeats if their frequency is higher than a 

calculated threshold based on a binomial distribution model. 

 

The next important feature for comparing these tools is the way they build 

approximated repeats from exact ones. Dynamic programming is a widely used method 

for this purpose, although it is not the only one and the way it is applied may vary. 

Tools such as REPuter, RepSeek and RepeatScout use k-mers as seeds and try to 

extend them on both sides. REPuter allows a fixed number of mismatches and uses a 

dynamic programming algorithm. For each repeat found, an E-value score is computed 

using the Kurtz and Myers procedure (15) which corresponds to the significance of 

mismatch repeats. REPuter also possesses a graphical interface to display the position of 

copy pairs along the genome, something that may help provide a global view of 
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duplicated material between chromosomes. RepSeek also extends the k-mer seeds by a 

dynamic programming approach but accepts more errors (substitutions or indels). 

Finally, RepSeek calculates for each extended repeat a score based on its length and 

nucleotide composition. The probability for a given repeat score is computed by 

estimating the probability P(Sbest_repeat ≥ S) that the score of the best local alignment 

observed between two random sequences of fixed size is larger than a given score S and 

is expressed as a function of the sequence length and the GC ratio. A minimum 

threshold score is derived from this probability above which no repeats are expected to 

be found in random sequences and only repeats with a score higher than this threshold 

are kept. RepeatScout uses a greedy algorithm to extend the exact repeat to the right 

and to the left and build a consensus. For each extended nucleotide, the algorithm 

calculates a score that is computed by summing up local similarities of each sequence 

with the consensus and uses an incomplete-fit penalty for sequences that partially 

match the consensus. The extension is stopped when the algorithm finds a locally 

optimal value value that does not increase after a fixed number of steps (100 by default). 

RepARK uses a de Bruijn graph assembler for NGS data, Velvet (16), to get the repeat 

library. 

The previous strategy can be enhanced by specific preprocessing treatments. 

PClouds first excludes tandem repeats. It then clusters similar k-mers (called 'P-cloud 

core') and extends them according to empirical user thresholds (13).  
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Another approach considers that every relevant approximate repeat is made of a 

mosaic of exact repeats. RepeatFinder merges exact repeat pairs if the gap distance 

between the repeats is smaller than the maximal allowed gap size (a user parameter to 

be defined in the command line), or if one repeat overlaps another by more than 75%. 

RepeatFinder then clusters the merged repeats that have a same maximal repeat or a 

common hit with an E-value lower than a user-specified parameter, using WU-BLAST 

(17). 

ReAS starts from the consensus sequence of 100-bp segments built on WGS clusters 

containing the same k-mers. The ReAS algorithm recursively extends the consensus 

sequence to the left or/and to the right if another 100-bp consensus sequence overlaps 

it.  

Finally, WindowMasker (11) aims solely to mask low complexity regions and repeats in 

genomic sequences and it does not attempt to annotate or classify them. 

WindowMasker screens the sequence twice for processing repeats: the first screen 

computes the frequency of each k-mer (for the direct and reverse strands) and defines 

several thresholds corresponding to various percentiles of the empirical cumulative 

distribution of repeat occurrences; the second screen uses a frequency-based score and 

masks k-mers whose score exceeds the 99.5% percentile or is between two masked k-

mers and has a score exceeding the 99% percentile. 
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In the second group of ab initio methods, no index is built and repeats are directly 

detected through the self-alignment of genomic sequences. These methods are thus 

heavily reliant on dynamic programming and their sensitivity depends on the way in 

which significant aligned pairs are filtered. PILER (18) and RECON (19) proceed by first 

aligning each sequence against itself and then, in a second step, selecting repeats that 

present a high copy number or a score higher than a fixed threshold.  

In more detail, RECON 1) creates a graph G(V,E) such that vertices V correspond to 

subsequences involved in WU-BLAST pairwise alignments and edges E represent 

overlapping vertices in a global alignment; 2) removes from this graph sequences that 

do not overlap a significant number of times with sequences belonging to the same 

cluster of sequences; 3) groups elements that belong to the same repeat family. RECON 

then creates a new graph H(V',E') for each family such that a vertex V' corresponds to a 

RECON element and each edge E' corresponds to the overlap between two elements in 

a global alignment. A RECON repeat family is attributed to each repeat position in 

genomic sequences.  

From the alignment, PILER defines a pile as a list of pairwise hits covering a 

contiguous region in sequences. PILER saves only hits that cluster with more than p 

instances (p is a user-defined parameter). An interesting original feature of PILER is that 

it distinguishes different categories of repeats that correspond to different pairwise hit 

definitions (or repeat builds) and implements a specific method for each category. Thus, 
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PILER-DF looks for intact transposable elements and aligns at least three similar piles (not 

hits) to create a repeat, with this pile alignment avoiding generating fragmented 

sequences. PILER-TR searches TEs with terminal repeats (LTR retrotransposon) and 

aligns banded hits (i.e. hits separated by a maximum distance) to create the repeats. 

AAARF (Assisted Automated Assembler of Repeat Families (20)) is a simple Perl 

script (downloadable at aaarf.sourceforge.net/) that is representative of methods oriented 

towards the use of incomplete genomic information collected through large sets of 

reads. It has been tested with success on the maize genome, either with a sample of the 

TIGR Sanger reads (780 bp on average) or with simulated 454 reads (100 bp on average). 

It is most useful for trying to detect repeats from the short 454 reads, a widespread 

situation for biological labs. It is possible to tune a number of parameters using BLAST 

(21) and ClustalW. Of course, it has some limitations since it is a purely de novo method 

working on highly fragmented data and it should be used with care particularly when 

discriminating families of degenerated repeats, such as a series of tandem repeats or a 

mix of non-autonomous and autonomous transposable elements. 

 

All TEs; Homology-based methods 

 

Available homology-based methods are listed in Table 3. Most of them make direct use 

of the BLAST software (Altschul et al., 1990) and a BLAST-parser. Currently, these 
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methods used three BLAST versions: AB-BLAST (22), NCBI-BLAST (21) and PSI-BLAST 

(23). The BLAST method is a famous and widely-used seed-based approach that looks 

for the presence of a query from its k-mers and estimates a E-value for the significance 

of matches. Its principles are recapped in Section 3. For all homology-based methods, 

the query sequence is a library of consensus sequences from TE copies. 

AB-BLAST is the new and commercial version of WU-BLAST (no longer supported) 

and is only free in a limited version available to academic users. The input and output 

files and the binary names are identical to WU-BLAST. Because there are so far no 

papers published and no source code, it is not possible to describe the algorithm of this 

new version in further detail. NCBI-BLAST is a widely-used BLAST algorithm variation. 

By default, k is set to 11 for the DNA (or RNA) and to 3 for the proteins. PSI-BLAST is 

another version from the NCBI laboratory which is much more sensitive in picking up 

distant evolutionary relationships than a standard protein-protein BLAST (23).  

A BLAST parser is a method that reads the BLAST hits and tries to assemble them to 

obtain summarized results. Since large scale analysis may produce an amount of results 

that can reach the amount of input sequences, such a component has a decisive role in 

practice. It determines the type of annotations that can be expected as a result. The 

language used to program the parser is an indication of its type of usage: Censor (24), 

RepeatMasker (25; 26), TESeeker (27), TransposonPSI (28) and RelocaTE (29) are written 

in Perl and are routines that can be included in more complex workflows; TARGeT (30) 
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is written in PHP as is intended for use only via a website. Note that, independently of 

languages, and perhaps because it may be a tedious task for biologists, some authors 

give only a very brief account or do not write out their algorithm in the corresponding 

paper, something that is not favorable for the interpretation of results and rational 

improvement of software by the community. For example, the authors of RepeatMasker 

did not write a paper about it, although it is possibly the most widely-used software for 

TE detection. TransposonPSI includes a library of ORFs coding for transposon proteins 

and uses PSI-BLAST to detect intact coding TEs and TBLAST for slightly degenerated 

coding TEs.  

To be more precise, TARGeT (Tree Analysis of Related Genes and Transposons) is a 

webserver that does not only detect TEs in genomic sequences but also establishes a 

phylogeny of these elements. It first uses NCBI-BLAST to find the TE copies, aligns 

them with MUSCLE (31) and determines consensus with the TE family. Finally, it 

launches FastTree (32) to create the phylogenetic tree of the TE copies. Censor is a 

BLAST-parser that can use AB-BLAST or NCBI-BLAST. Censor first launches DUST and 

NSEQ to remove the micro- and mini-satellites from the genomic sequences. From the 

BLAST hit positions, it tries to assemble them based on the TE consensus families 

available in the RepBase database. Censor finally calculates for each match the new 

similarity score and a hit score. The software TESeeker detects preferentially 

autonomous and complete transposable elements, in three steps. In the first step, 
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TESeeker uses NCBI-BLAST to find the partial hits of the transposable element copies, 

assembles them using CAP3 (33) and creates new consensus using ClustalW (34). Hits 

with E-values higher than 1x10-20 are eliminated. In the second and third steps, 

TESeeker iterates the same method with NCBI-BLAST, CAP3 and ClustalW, but 

starting from the TE consensus library created during the previous step. RelocaTE is a 

list of Perl scripts aiming at the identification of given reference TE in NGS short reads 

(paired or unpaired). It produces the locations of TE insertions that are either 

polymorphic or shared between the reference and short reads. The identification is 

based on three tools, BLAT, Bowtie and SAMtools. RelocaTE has been used to 

characterize the amplification of mPing in Oryza sativa (29).  

Like Censor, RepeatMasker first detects and removes the micro- and mini-satellites, by 

applying Tandem Repeat Finder (TRF) (35). RepeatMasker is very flexible and can 

launch many BLAST-like software solutions: cross-match (36), NCBI-BLAST (21), AB-

BLAST (22), or Decypher (37). The NCBI laboratory has made available a special BLAST 

version for RepeatMasker called RM-BLAST (38). RepeatMasker identifies the TE 

superfamily of the fragmented BLAST-like hits and assembles them using methods 

tailored to each superfamily.  

RepeatMasker is a base component used in many applications. There are (at least) 

four other methods that read the RepeatMasker hit outputs and re-assemble them: 

Process_hits (39), REannotate (40), RepeatRunner (41) and One code to find them all 
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(42). Process_hits, a Perl script that can also read a BLAST output, processes a refined 

output using various formats depending on the user parameters. REannotate 

defragments RepeatMasker outputs following certain rules: the two fragmented hits 

have the same orientation; the distance between the first and the last fragment must not 

exceed a user-specified parameter (default 40kb), and the overlap between two 

fragmented hits must exceed 10% of the reference length sequence. RepeatRunner, 

written in Perl, mainly detects the autonomous transposable elements (those that 

contain an ORF). RepeatRunner first launches BLASTX (22) and RepeatMasker, merges 

the results of both in a XML-based output and eventually masks the repeats in the input 

genomic sequence (like RepeatMasker). One code to find them all assemble RepeatMasker 

hits into complete copies, retrieve corresponding TE sequences and flanking sequences, 

and compute summary statistics for each TE family.  

 

We end with three other methods that do not use BLAST-like output to detect 

transposable elements but can nevertheless be related to the homology-based methods, 

RetroSeq, T-lex and HMMER.  

RetroSeq (43) and T-lex (44) detect TEs in next-generation sequencing (NGS) reads and 

are described for this reason in Subsection 3.3. HMMER (45) is a widely-used pattern-

matching and discovery software package which creates and searches profile Hidden 

Markov Models (profile HMMs) against a sequence. It was not specifically designed for 
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TE detection. Three steps are involved in looking for a transposable element belonging 

to a fixed family using HMMER. One must first align the known copies of the TE family 

(HMMalign) and then create the HMM profile of this family (HMMbuild and 

HMMcalibrate). The final step consists in scanning the genomic sequence with the 

HMM profile as a model (HMMsearch).  

 

All TEs; Structured methods 

To our knowledge, three structured methods have been applied to detect transposable 

elements, SMaRTFinder and SMOTIF for the Copia retrotransposons in A. thaliana (also 

with SMaRTFinder) and STAN used for Helitrons in A. thaliana. This is the reason for 

citing them here although these methods are not dedicated to the recognition of 

transposable elements. The corresponding tools are listed in Table 4. They are generic 

and can be used to detect any biological pattern. This is the subject of Section 4.2, where 

more complete parsers such as Vmatch are described. 

Apart from SMOTIF (46) , SMaRTFinder (47) and Stan (48) use the suffix-tree data 

structure. SMaRTFinder and SMOTIF first detect all positions of each element of the 

motif and join the positions that satisfy the distance between the elements of the motif. 

STAN, on the other hand, creates a list of the possible sequences from the user motif 

and looks for each of them. Only STAN can detect motifs with substitution errors and 
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non-fixed gaps. STAN is no longer maintained and a more expressive tool, Logol, can 

be used instead. It is also described in Section 4.2. 

 

All TEs; Pipeline methods 

We end this section with the most elaborate tools, which chain several methods to 

enhance the repeat annotations and are listed in Table 5. Apart from DAWGPAWS (49), 

which uses the three kinds of method, RepeatModeler (25), REPET (50), TriAnnot (51) 

and RISCI (52) use de novo and homology-based methods to detect TEs. All these 

programs are meta-tools: they launch other software and assemble and rewrite their 

results. Among TE detection software, only RepeatMasker (26) is used by all these 

pipelines.  

In more detail, DAWGPAWS, written in PERL, launches LTR_STRUCT (53), LTR_seq 

(54), LTR_FINDER (55), FINDMITE (56), Find_LTR (57), TRF (35), Repseek (14), 

RepeatMasker, HMMER, TE_Nest (58), and BLAST. DAWGPAWS assembles and 

rewrites the output of these tools. After removing the tandem repeats with TRF (35), 

RepeatModeler, also written in PERL, uses first RECON (19) and RepeatScout (59). 

Finally, RepeatModeler launches after RepeatMasker with a library of consensus 

sequences to identify and assembles the previously detected hits. REPET is a 

sophisticated method composed of two main pipelines. The first pipeline (de novo) 

compares the genome against itself using BLASTER (a BLAST-like method written by 
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the authors (60)). Then, hits are clustered with RECON, PILER (18) and GROUPER (also 

written by these authors (60)). A consensus sequence is created by multiple alignment 

[MAFFT (61) and MAP (62)] and then classified. The second pipeline (homology-based) 

looks for repeats using a library of sequences, for example the created consensus, with 

RepeatMasker, CENSOR (24) or BLASTER (60). This pipeline also uses TRF and mreps 

(63) to detect micro- and mini-satellites. TriAnnot (51) is an annotation pipeline which 

first detects transposable elements and then predicts the other genetic elements. It 

launches BLASTX (21), RepeatMasker, TEAnnot (50) (homology-based), and Tallymer (8) 

(ab initio method). Finally, RISCI (Repeat Induced Sequence Changes Identifier) is a set 

of Perl scripts specialized in the comparative genomics of transposons. Starting from a 

reference genome and comparative genomes, it is able to infer intra-species and inter-

species structural variations introduced by transposons (e.g. Target Site duplication, 

inversion and truncation of repeat sequence or post insertion modifications like 

disruption) . This pipeline uses RepeatMasker, Blast and the EMBOSS module and the 

Genbank annotation file if made available. 

 

2.2. LTR retrotransposons 

 

Concerning the search and analysis of specific transposable elements, LTR 

retrotransposons (LTRR) form a large family and offer a rich structure that justifies the 
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existence of several dedicated tools. An overview of the most interesting ones is 

provided in Table 6. 

 

Homology-based methods 

LTR_MINER (64), written in Perl, is the only homology-based method specialized in 

LTR retrotransposon detection. It launches first RepeatMasker and WU-BLAST, and 

then assembles the multiple hits of the Long Terminal Repeat (LTR) (e.g. the extremities 

of the retrotransposon) under some constraints: a maximal distance between hits (550 

bp), a common orientation, a same LTRR family, and a combined length no larger than 

a complete LTRR. LTR_MINER also gives information about the probable age of the 

LTR retrotransposon insertion. 

 

Structure-based methods 

LTR_FINDER (55) and LTRharvest (65) detect only full length LTR retrotransposons 

while LTR_STRUC (53) and MGEScan-LTR (57) detect all LTRs. Aside from 

LTR_STRUC, LTR_FINDER, LTRharvest and MGEScan-LTR use the suffix-array data 

structure to find the exact maximal repeats in the genome, and extend/merge them into 

non-exact repeats. The three methods look also for LTRR signals such as Target Site 

Duplication (TSD) and PBS and PPT retrotransposon motifs.  
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In more detail, LTR_FINDER (55) is a web server that merges exact repeat pairs with 

a similarity score higher than a minimum extension threshold. LTR_FINDER combines 

dynamic programming (Smith-Waterman algorithm) and the search of structured 

motifs like the TG..CA box and TSD, in order to adjust LTRR candidate extremities. 

Next, LTR_FINDER looks for LTRR motifs such as the PBS and PPT signals (by aligning 

the LTR retrotransposon candidate with the 3' tail of tRNAs) or LTRR protein motifs 

(using ScanProsite on protein domains such as IN and RH). LTRharvest first builds the 

suffix array of the genomic sequence using GenomeTools (66) and stores all maximal 

repeats that are longer than a user-defined threshold. Optionally, LTRharvest looks for 

motifs such as the TSDs, which can be derived from the maximal repeat occurrences, 

and the palindromic LTR motif, which corresponds to the dinucleotide palindrome in 

the LTR extremities (often TG with CA). Finally, LTRharvest checks candidates that 

have the TSD site, together with some constraints on the size and similarity of the two 

LTRs and the distance between them. LTR_STRUC, written in C++, first identifies 

similar pairs subject to a set of constraints: common matching size (larger than 40 bp), 

similarity (higher than 70%), and distance (lower than a user-defined parameter value). 

In a second step, LTR_STRUC tries to extend from the initial pair to a second pair in the 

3' direction, then the 5’ direction. The extension proceeds by looking in neighboring 

regions of fixed size (100 bp) for a largest match pair that can be aligned at similar 

distances from the previous ones and greedily produces the alignment of the whole 

region by filling the gap by largest matches. This extension process continues until the 
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similarity falls consistently below the 70% threshold. A last step determines 

progressively the exact termini of the LTR retrotransposon by calculating the number of 

matches in a sliding window. Finally, MGEScan-LTR (57), written in C++ and Perl, uses 

an algorithm similar to LTR_seq (54) (not available) and LTR_STRUC. In a first step, 

MGEScan-LTR finds all maximal repeat pairs longer than 40 bp and within a range of 

distances (between 1000 and 20000 bp). Two exact pairs are merged if they are close 

(less than 20 bp) and share a similarity greater than 80%. In a second step, the method 

scans the ORFs inside the LTR candidates using HMMER (45), and removes the 

candidates that match with DNA transposons. In the third step, MGEScan-LTR looks 

for solo LTRs. It clusters the LTR discovered previously and aligns them to create a 

profile HMM of each cluster. HMMsearch, a procedure of HMMER, is used to discover 

these solo LTR retrotransposons. 

 

 Pipeline methods 

MASiVE (67), written in Perl, is typical of the methods based on carefully designed 

specific models: it only detects full autonomous LTR of the plant-specific Sireviruses 

and takes advantage of the highly conserved motifs they share for a sensitive and 

accurate search. It uses Vmatch (68) - see Section 4.2 - to detect clusters of Sirevirus-

specific PPT motifs, and LTRharvest (65) - see Structured methods - to detect complete 

LTR retrotransposons. Only candidates that possess both hits, the right PBS site, an 
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admissible distance between the different elements and include LTRS and an internal 

sequence longer than 500 bp are retained. Wise2 (69) – see Homology-based methods - is 

used to detect the reverse transcriptase (RT) present in almost intact LTR 

retrotransposon.  

 

 

2.3. Non-LTR retrotransposons 

 

The two methods that detect non-LTR retrotransposons first launch homology-based 

tools, via Perl language scripts, and also look for non-LTR motifs to confirm the TE 

candidates. They are listed in Table 7.  

MGEScan-nonLTR (70) uses dedicated HMM profiles and the pHMM module from 

the HMMER package (45) to detect autonomous non-LTR retrotransposons. These 

profiles correspond to the apurinic/apyrimidinic endonuclease APE, the linker and the 

Reverse Transcriptase protein domains. MGEScan-nonLTR then classifies the 

candidates into one of the 12 known non-LTR clades.  

RTAnalyzer (71) launches BLAST to detect all non-LTR matches (autonomous and 

non-autonomous). From the hits, RTAnalyzer launches Matcher (72), which determines 

precisely the 5' extremity of the non-LTR retrotransposon. From the corresponding 5' 

Target Site Duplication (TSD), the algorithm extracts the 3' TSD. Finally, RTAnalyzer 
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determines the polyA tail, calculates a score from all these motifs and saves the non-

LTR candidates that have a score higher than a threshold. 

 

2.4. DNA transposons 

DNA transposons are made of a transposase gene flanked by Terminal Inverted 

Repeats (TIRs) that make structure-based methods the best adapted for an efficient 

search. The main difference between methods is the way in which TIRs are selected. All 

methods are listed in Table 8.  

 

Homology-based methods 

To our knowledge, there exists only one method specialized in homology-based 

detection of DNA transposons : TRANSPO (73). It implements a fast bit-vector dynamic 

programming algorithm (74) that finds the position of all matches similar to a given 

sequence in a library. The set of matches are then clustered using the SPAT program 

(75). 

 

Structure-based methods 

Five methods use the palindromic structure of their 5' and 3' extremities to detect 

DNA transposons: Inverted Repeats Finder (IRF) (76), MITE Uncovering SysTem 
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(MUST) (77), Repetitive Sequence with Precise Boundaries (RSPB) (78), MITE-HUNTER 

(79) and MITE Digger (80). They all look first for the Terminal Inverted Repeat (TIR), 

and all but IRF also look for the TSDs that flank the TIR, created during the insertion of 

the element by a staggered cut in the target DNA. 

In more detail, IRF searches TIR candidates that contain exact short inverted repeats 

(4 to 7 nt) that do not overlap, then extends them, calculates an alignment score for a 

larger palindromic arrangement and saves the candidates that obtain values higher than 

the thresholds for similarity (70%) and length (25 bp). MUST detects the TIR associated 

with the TSD (the minimal and the maximal length of TIR and TSD are user-defined 

parameters) from a sliding window (up to 500 bp). Candidates with a score higher than 

a similarity threshold are conserved. MUST then clusters them using the MCL 

algorithm (81) and writes out the MITE families that contain at least 3 occurrences. 

RPBS is a series of Perl scripts using a Blastn-based approach. It seems to have been 

essentially applied to non-autonomous transposons of the Miniature Inverted 

Transposable Elements family (MITE), but the core of its approach could be applied to a 

broader set of families. The principle is to build clusters of repeats (at least 5 elements, 

less than 1500 bp) sharing high similarity (Evalue < 10−15) and having precise 

boundaries (maximum 5 bp variation and dissimilar 100-bp flanking sequences <50% 

identity). This software is known to be resource-intensive (several days of computations 

for large genomes). MITE-HUNTER and MITE Digger have been designed exclusively 
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to detect MITEs. In MITE-HUNTER, MITE candidates (with their flanking regions) are 

compared with each other by BLAST (21), and MITE candidates that have similar 

flanking regions are considered to be part of a larger repeat element and are removed. 

MITE-HUNTER clusters the remaining candidates and defines a representative element 

(exemplar) for each cluster (an element that has the greatest similarity with all other 

elements). BLAST is used to detect its homologs in the input sequences. Candidates that 

have many copies are then aligned. Homologs such that flanking regions of the MITE 

sequences are similar (>60%) for the majority of occurrences are assumed to be false 

positive and discarded. The TSD is predicted again for the remaining candidates for 

better accuracy. The program creates a consensus sequence from the clustered 

homologs, compares all consensuses (using BLAST) and clusters them again in order to 

reduce the number of clusters. MITE Digger is another BLAST-based program designed 

to scale large genomes by making use of the fact that a MITE family typically contains 

several hundred highly similar copies that are scattered all over the genome. Rather 

than repeating for each copy TIR and TSD signature identification, screening, multiple 

sequence alignment and clustering, the search is first focused on a small portion of the 

genome and a possible family is filtered out as soon as the number of found copies 

reaches a threshold. For instance, the probability is very low (1%) of missing 50 copies 

in 8% of a genome database. Low-complexity regions and hits with very similar 

flanking regions are discarded from sequences and the process is iterated. 
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2.5. Helitrons  

 

There seems to be only one method to date specializing in helitron search: HelSearch 

(see table ) (82) (see Table 9). This is based on the search for a helitron signature in the 5' 

and 3' extremities. HelSearch looks for the CT[AG][AG]T motif (3' termini) of the 

helitrons and the small hairpin structure (a 3' sub-termini with a GC-rich sequence) 

calculated using UNAFOLD (83). It then determines the 5' end (which contains the 

dinucleotide TC) from the multiple alignment of the potential hits. Finally, HelSearch 

classifies helitrons based on their 3' end similarity and uses BLAST to detect the 

fragmented helitrons in the input sequences. 

 

 

3. Efficient search of repeats in genomic sequences 

 

Some common background appears in all the tools we have seen so far: in most cases, 

even if it seems a little remote from reality, programs are looking first for exact repeats, 

often referred to as anchor points or seeds. The real, approximated repeats are obtained 

by extending the search further from these seeds, by introducing elementary operations 



Author version 2015 

 

 

31 

enabling the detection of copies with distant contents. Looking for exact and 

approximated repeats is part of the rich domain of string algorithms. In the most 

general setting, detecting repeats in genomic sequences, or in any kind of textual 

sequence, is organized on the basis of the detection of particular words (the queries) in a 

text (the bank). This setting appears clearly when processing alignments in homology-

based methods or looking for particular motifs in structure-based methods.  

There are basically two ways of performing such detection.  

In the first case, the text is not preprocessed and the query is searched on the fly in the 

text. For instance, this is the case when using the well-known “Ctrl-F” shortcut key or 

search function on any piece of software dealing with texts (text editors, web browsers, 

etc.). Beginning in the early 1970s, there are strong and interesting theories about fast 

detection on the fly of queries in texts. This is known as string-matching. The naive way 

to achieve string-matching is to compare at each position in the text the presence of each 

character of the query, starting from this position. Obviously, if n is the size of the text 

and m is the size of the query, this would require n.m comparisons. Thinking of large 

texts (several gigabytes for a genome), and even for relatively small queries (say 1000 

bp), this quickly becomes an issue. It is possible to decrease this complexity for a linear 

behavior, although it will always depend of the size of the bank. We will not address 

the topic in this chapter but the interested reader can refer to the excellent book from 

Charras & Lecroq (84), which explores string-matching algorithms exhaustively and in a 
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didactic way. A more general approach, pattern-matching, is discussed in the last 

section (linguistic analysis). 

Given their huge volume, the treatment of genomic sequences is generally based on 

the second way of performing text processing: the text is preprocessed by indexation 

techniques. In the previous section, many technical terms have been used, such as suffix 

trees and suffix arrays. These are structures developed for fast indexation and searching 

in texts. Research in this area has been fostered by developments in genomics and in 

Internet content querying and we propose a quick but up-to-date review of the key 

results achieved to date. We focus on indexing techniques which open the way both to 

fast queries and to repeat detection. 

 

3.1. The art of indexing 

Imagine what would happen without indexation while looking, for example, for a 

word (query) on the Internet (bank). Your favorite search engine would open and then 

read all words of all pages of the whole web in order to detect the presence/absence of 

your query in each page. Estimated to a few tens or hundreds of billions of webpages, 

querying the web would simply be impossible, whatever the computation resources 

available. The same would be the case if the bank is a large set of genomic sequences, 

such as Genbank. For an efficient search, indexes are necessary. An index is a 

mechanism that can answer the question: “where does this word occur in the bank?” 
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within an amount of time that does not depend on the size of the bank. To be precise, 

indexes are built once for a given bank (and within a time proportional to the size of the 

bank) and then the time it takes to perform every query in the bank depends only on 

the query size. Happily, indexes also have “side effects” which are valuable in the 

biological context, such as the efficient detection of repeats inside or between genomes. 

The main idea is to use data-structures to organize and structure the information 

initially present in the banks. A classic and well-known structure is the dictionary: 

searching for a word in a paper dictionary does not require reading the entire book, as 

words are organized in lexicographic order. Similarly, the data-structures used for 

indexing texts are computational objects having the same advantages as classic 

dictionaries: they enable a portion of a sequence to be searched quickly by avoiding all 

portions where this query could not occur. However, while genomes can easily be seen 

as particular texts, the notion of “word” is not natural in this context since no general 

delimiter exists. This is why indexes used in this context are designed to answer 

questions regarding any word in the bank. For example, consider a sequence 

S=ATGCGCAGTTTAT as a bank, and a query P=GCGC: “does P occurs somewhere in S, 

and, if yes, where?” In this example the answer would be “P occurs at position 3 in S”. 

From the point of view of strings, positions are associated to suffixes of the text, that is, 

words starting at this position and ending at the end of the text. For instance, position 3 

in S is associated with the word GCGCAGTTTAT (and P is a prefix of this word, that is, it is 
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placed at its beginning). There are a number of indexes primarily powered by this 

important notion of the suffix: automaton, hash tables, suffix trees or suffix arrays. All 

of these data-structures are designed to answer at least the fundamental question 

“where does P occur in S?”, but each has some specific skills either in terms of 

additional possibilities or in terms of performance (time efficiency and memory 

footprint).  

Here we propose focusing on the most well-known and most widely-used data-

structures: suffix trees, an “historical” data-structure which is no longer extensively 

applied in practice but which, in addition to useful educational and theoretical 

properties, also affords the most and the most flexible functionalities; suffix arrays, an 

efficient and elegant way to index large datasets and answer additional useful questions 

such as those related to exact repeats in a bank; and, lastly, the Burrows-Wheeler 

transform on which the compressed FM-index is based and which is a development that 

makes it possible to build compressed suffix arrays. Note that in all cases, an efficient 

program code appears quite short but is in fact very tricky and definitely not within a 

standard programmer’s reach: use well-written libraries! 

 

Suffix trees 

Suffix trees are represented by a classification tree structure that clusters the suffixes 

of the indexed text. All suffixes having a common prefix are clustered in the same class 
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under a common internal node that has this prefix as a label. Any suffix can be read 

along exactly one path from the unique root of the tree to one of its leaves and 

conversely, any path from the root to a leaf corresponds to a unique suffix of the text or, 

equivalently, to a position in this text. Figure 1 shows an example of the suffix tree of 

S=ATTTAATAAC. The suffix at position 8 in the text, AAC, can be read from the root to 

the leftmost leaf labeled 8:C by collecting all the words along the path, A, A, and C. 

 

There are strong theories and beautiful algorithms for constructing suffix trees 

quickly and with the lowest memory requirements. The most famous include the 

Weiner (85) and later the Ukkonen (86) algorithms which both propose a way of 

constructing the suffix tree of a sequence composed of n characters with a number of 

operations and a memory requirement proportional to n. To be precise, storing the 

suffix tree for a genomic sequence whose alphabet is limited to letters A, C, G and T 

requires in the worst case 20 bytes per indexed character in optimized applications (87). 

Indexing the human genome therefore requires 61.47 GB of memory. Even if the actual 

average amount of memory required is rather around 13 bytes per nucleic acid, storing 

the suffix tree puts a strain on the main memory for large-scale applications. Applied, 

for instance, to indexing an Illumina run composed of 100 million reads of length 100 

would require 130 GB of memory. In order to save space, it is necessary to shift the 

space/time tradeoff in the program. One option is to save the tree to hard disk rather 
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than the main memory but this becomes much slower to access. The most recent 

implementations of suffix trees have used compressed structures, to the cost of slightly 

slower access (88). The corresponding program is available in C++ on the website (89). 

The suffix tree makes it possible to answer a query in an amount of time proportional 

to the length of the query. Indeed, any word P read in the tree of an indexed sequence S 

from its root to any one of its leaves corresponds to a word in S. For instance, searching 

for the word ATT in the suffix tree of S =ATTTAATAAC can be read in bold in Erreur ! 

Source du renvoi introuvable. , leading to a leaf labeled 1: ATTTAATAAC meaning that 

the word ATT exists at starting position 1 in S. 

Fortunately, the suffix tree offers many possibilities other than answering such 

simple queries. For instance, it is of great interest for detecting exact repeats. Indeed 

each internal node of the tree (squares in Erreur ! Source du renvoi introuvable.) 

determines a word which has several occurrences. This is the case for the word TT in 

our example (path with grey rectangles in the Figure): the corresponding cluster 

contains leaves labeled 3 and 2, meaning that there are two occurrences of TT in S, 

starting at positions 2 and 3. Moreover, simple algorithms can exploit the suffix tree to 

find easily distinct kinds of repeats: those having the maximal number of occurrences, 

the longest, those that are maximal in their length (adding a new character to the repeat 

would discard some occurrences), etc. The suffix tree can be applied to more than one 

unique sequence, in this case it is called a generalized suffix tree. The generalized suffix 
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tree is useful in genomics as it affords, for example, the possibility of easily determining 

the words that are copied between different sequences or chromosomes. 

Suffix arrays 

The suffix array appeared in the early 1990s with the Manber and Myers paper (90). 

This data-structure is much simpler than the suffix tree, requires less memory space and 

answers the same range of questions. It is constructed by first sorting all suffixes of the 

indexed text and by storing the obtained set in alphabetic order, remembering the 

obtained starting positions. 

For instance, the set of suffixes of S=ATTTAATAAC is made of ATTTAATAAC 

(starting position 1), TTTAATAAC (pos. 2), TTAATAAC (pos. 3), TAATAAC (pos. 4), 

AATAAC (pos. 5), ATAAC (pos. 6), TAAC (pos. 7), AAC (pos. 8), AC (pos. 9), and C (pos. 

10). Their alphabetic order is: AAC, AATAAC, AC, ATAAC, ATTTAATAAC, C, TAAC, 

TAATAAC, TTAATAAC, and TTTAATAAC. Let us represent this set of suffixes in a table: 

Position Suffix 

8 AAC 

5 AATAAC 

9 AC 

6 ATAAC 

1 ATTTAATAAC 

10 C 
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7 TAAC 

4 TAATAAC 

3 TTAATAAC 

2 TTTAATAAC 

The suffix array may be reduced to the Position column of the previous table (the 

suffixes are represented to promote better understanding of the structure but are never 

stored in the computer memory). This sole column may appear rather minimalist, but 

this simple piece of information and the original indexed sequence are sufficient for 

efficiently answering a query. In its simplest form, it can be found by applying a 

dichotomic procedure: i) look for the word at the middle position of the array. If the 

query occurs at this position the search stops, or ii/ if the query is alphabetically smaller 

than the suffix starting at this position, recursively apply the procedure to the upper 

part of the array, or apply it to the lower array.  

For instance, searching the query Q=AC in the previously indexed text 

S=ATTTAATAAC would entail the following steps. First check the middle of the array. In 

this example, it corresponds to the suffix at position 1, that is, ATTTAATAAC. As it is 

alphabetically larger than the query Q=AC, the process restarts with the array limited 

to: 

Position Suffix 

8 AAC 
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5 AATAAC 

9 AC 

6 ATAAC 

Consider the middle line of this array: it corresponds to the suffix starting position 5, 

AATAAC, which is alphabetically smaller than the query Q=AC. Thus the process 

restarts with the lower part of the array. In this case, position 9, where the suffix AC 

starts, corresponds to the searched query. With this simple procedure, at worse, the 

number of steps to be performed is log(size of the array) = log(size of the indexed 

sequence). The query time can be further improved by the use of a new column called 

the LCP, which provides the length of the “Longest Common Prefix” between two 

consecutive lines in the suffix array. For instance, if 0 is a LCP default value for the first 

suffix of the array, the two lines of the previous suffix array would become:  

Position LCP Suffix 

9 0 AAC 

6 2 AATAAC 

The value 2 indicates that AAC and AATAAC start with 2 common characters. The 

LCP somehow enables retrieval of the suffix tree topology, and then enables answering 

questions related to repeats. In the example, LCP =2 indicates that a repeat of size 2 

exists in the indexed text, at positions 9 and 6 given by Position. 
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The suffix array (together with the LCP array) requires (for classic genomic analyses) 

5 bytes per indexed character. Thus, indexing a 3.3 billion-character human genome 

with a suffix array and its LCP would require 15.37GB. The indexation of a hundred 

million reads of length 100 would require 46.57GB of memory. A good C++ code is 

available in the appendix of the paper (91) (algorithm DC3) and two other C programs 

that are among the most advanced implementations to date are given in the appendix of 

the paper (92) (algorithms SA-IS and SA-DS). We mention the recent paper (93), a 

didactic presentation of the SA-IS algorithm for Bioinformatics specialists. Regarding 

access to an operational code in Java, please refer to (94). A recent development in using 

suffix arrays to look for repeats (finding the largest substring common to a set of 

sequences and finding maximal repeats exclusive of a sequence with respect to another 

set of sequences) is described in (95). The C code can be downloaded from (96). In fact, 

genomic repeats may be a source of inefficiency for certain implementations and care is 

required when choosing a program. A far more general use of the suffix array data-

structure is described in the next section with the software Vmatch (68). 
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FM-index and Burrows-Wheeler transform 

The Burrows-Wheeler transform (97), inspired by the suffix array, was the starting 

point of the FM-index (98) (99), a new powerful indexing approach that is now widely 

used in many fields, in particular in computational biology. The Burrows-Wheeler 

transform (BWT) is a permutation of characters in a sequence that is easy to understand 

from a suffix array. Using our previous example, ATTTAATAAC, it is the sequence 

TTAACAATTA, which can be displayed next to the suffix array as follows:  

Position Suffix BWT 

8 AAC T 

5 AATAAC T 

9 AC A 

6 ATAAC A 

1 ATTTAATAAC C 

10 C A 

7 TAAC A 

4 TAATAAC T 

3 TTAATAAC T 

2 TTTAATAAC A 
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For each position in the suffix array, the BWT corresponds to the letter located just 

before this position in the sequence (or the last letter for position 1). For instance, the 

letter indicated in the first line is ‘T’ as it is the letter at position 8-1=7 in the text. The 

BWT has astonishing properties that we review here briefly. Interested readers can refer 

to (97) for further algorithmic details.  

A first important property of the BWT is that this permutation (TTAACAATTA in our 

example) is reversible: it is sufficient to retrieve the indexed sequence (ATTTAATAAC). 

This is what is called a self-index, i.e. it is not necessary to keep the indexed sequence in 

the memory, it is contained in the index. 

A second appreciable property of the BWT is that it is highly compressible. Indeed 

this letter organization tends to create stretches of letters. For instance, consider the 

sequence “treat peat pea repeats” (spaces added to help reading). Its BWT sequence is 

“eeeepprprttetataasa”. This is well-suited for compression algorithms (e.g. “eeee” could 

be rewritten as “4e”).  

In 2000, Ferragina and Manzini refined this compression approach to make it capable of 

answering queries in a text, leading to the FM-index (its full name, “Full-text index in 

Minute space” does not really help its understanding). To do this, they added a few 

pieces of information to the BWT while keeping the data structure extremely light. We 
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cannot enter into the details of this structure, but suffice to know that it can be 

considered as a kind of compressed suffix array requiring very little memory space. For 

instance, the human genome could be indexed with this approach using 1.23 GB, and 

one million reads of length 100 would require 3.73GB of memory. A good source for 

codes on the FM index and suffix array indexes is the Pizza&Chili reference site (100). 

The FM-index supports the following operations which generally use a tiny portion of 

the compressed file: 

 locate finds the position in the text of an occurrence of the query, in O(logcn) time, 

where c is a constant chosen at the time the FM-index is built. 

 count computes the number of occurrences of the query, in time proportional to 

its length; 

 extract returns the sequence of a given length starting at a given position in the 

text;  

 display outputs for a given length L the L characters on each side of the 

occurrences of the query in the text. 

 

Hash tables versus Burrows-Wheeler transform 

Another frequently employed indexing data structure is the hash table. The hash 

table concept stands on a very simple idea. For indexing a set of names for instance, 

each name is converted into an address (called a hash value) using a function that is 
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easy to compute. For instance, using a hash function that considers each substring as a 

number in base 11 (each letter being coded by an ASCII number), "AMY" is given the 

address 8801=65112+77111+89110 and "BOB" is given the address 

8921=66112+79111+66110. In an initially empty array (called the hash table), "AMY" 

is stored at position 8801 and "BOB" at position 8921. As it is important to save as much 

space as possible, it happens that two different names get the same hash value. For 

instance, imagine now we add the name "AYM" that also has the hash value 8921. This 

causes a collision at position 8921 that already contains the name "BOB". There are 

several ways to manage collision, either by computing a new hash value for "AYM" 

(open addressing) or by storing at each position a list of name (“BOB” and “AYM”). In 

case of too many collisions, the hash table is overloaded and may be resized. This 

operation is expensive as it may reorganize all the already stored items. 

Querying a hash table is fairly similar to what is done by the indexing algorithm. The 

hash value of the query is computed, and the content of the hash table at this position is 

visited in order to check the presence/absence of the queried object. Depending on the 

strategy used to manage collisions, either all the entries present in the list at this 

position have to be checked or new hash functions have to be computed for the query 

until it is found (match) or an empty position is reached (mismatch). 

Most programming languages offer simple structures to build hash tables. It is easy to 

find efficient implementations of hash tables on the web (e.g. SpookyHash (101) or 
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SparseHash (102)). Some tools implementing hash tables are specifically designed for 

routine similarity search on NGS data such as RAPSearch2 (103), which allows 

similarity searches in proteins and is fully compatible with Blast. Implemented in C++, 

the source code is freely available for download at the RAPSearch2 website (104). 

The main advantage of hash tables is their speed, in particular when collisions are 

absent or rare. Another important advantage stands in the fact that hash tables are 

dynamic and can host any additional piece of information for each of its items. Unlike 

the FM-Index, any new item can be added to a hash table, even after its construction. In 

a biological context, to each k-mer can be associated its list of occurrences in a genome 

for instance. In comparison, the FM-Index gives only access to the occurring position(s) 

of each query. 

The theoretical indexing and querying times (respectively O(n) and O(m) in average 

with n being the size of the bank and m the size of the query) are the same for FM-Index 

and hash table approaches. However, the application range are a bit different. First the 

hash table contains fixed items. For instance if items are k-mers, a hash table does not 

allow to query k+1-mer or k-1-mer. Moreover, these items must be explicitly stored. For a 

human genome, storing 3 billion of 31-mers (coded on a binary alphabet) requires 

nearly 22 GB of memory. Indexing all 31-mers of a human genome would thus require 

approximately 23 GB of memory using a hash table (including the array itself). In 

comparison, the FM-Index is a self-indexed compressed data structure. This means that 
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the index itself contains the original sequence, and furthermore any k-mer of any size 

could be queried using this data structure. Indexing a human genome using the FM-

index requires less that 2 GB of memory. The BWA methods described in (105) presents 

in details how the Burrows-Wheeler Transform (BWT) (often simply referred 

inaccurately as the FM-Index) can be used for performing the mapping of reads on a 

genome. 

 

All the data structures presented above are designed for exact queries. However they 

are not made for answering questions such as “where does Q=TAAT occur with at most one 

error in S=ATTTAATAAC?”. Some attempts to make them able to deal with such requests 

basically need to enumerate all possibilities. For instance, the previous request would 

be answered by searching all queries distant by at most one error with respect to Q, 

representing 4*(size of Q) queries: AAAT, CAAT, GAAT, TAAT, ACAT, etc. If more than 

one error should be tolerated, then the number of queries to perform explodes, making 

such solutions inapplicable for biological application. The search for approximated 

words requires additional techniques, as described in the next subsection. 
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3.2. Finding approximated words, a matter of seeds… 

In terms of sequence approximation, two main distances are commonly used: the 

Hamming distance in which only substitutions are allowed and the Levenshtein 

distance in which insertions and deletions (called indels) are authorized in addition to 

substitutions. The Hamming distance between two words is particularly simple to 

compute: each couple of characters of the two words is read simultaneously and when 

the two characters differ, the distance is increased by one. Conversely, the Levenshtein 

distance (also called edit distance) is much more complex to measure. It involves a 

recursive organization of partial computations called dynamic programming. More 

precisely, computing the Levenshtein distance between two sequences requires a 

number of comparisons proportional to the product of their lengths, which becomes 

prohibitive when asking long queries in large banks. It is theoretically impossible to get 

rid of this complexity, however it is possible in practice to propose some techniques that 

look for an incomplete result. The goal becomes to find most of the solutions at the price 

of possibly missing some of them (“false negatives”), using techniques called heuristics. 

One of the most famous heuristics used in computation biology is BLAST (17), which is 

designed to find approximate occurrences (hits) of a query in databanks. The BLAST 

approach is representative of seed-based algorithms. In short, it uses the fact that two 

words similar enough exactly share at least some small sub-word, called the seed. For 
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instance, consider TACACCCTAG and TCACCGCTTG. These two words are similar and 

they share the seed CACC:  TACACC-CTAG  

 | |||| ||.| 

 T-CACCGCTTG 

The seed-based algorithms use this simple idea in order to speed-up their 

computations. Given a query and a database, they first search for occurrences of sub-

words of the query in the database. This first step is performed extremely fast, using 

indexing techniques presented above. The positions where the shared seeds occur in the 

query and in the database make it possible to limit the search space in which the query 

may have a hit. A dynamic programming computation is performed in a second step 

that searches this limited space. It is always useful to keep two warnings in mind when 

using heuristics: they may miss some solutions and default parameters are not always 

the best solution (for instance, the standard seed of size 11 is insufficient for finding 

weak homologies between ancient interspersed repeats and it is recommended to use 7 

base seeds instead). 

In the last decade, the notion of seeds has been vastly improved. Of course, the 

smaller the seed, the less likely one is to miss some similarities. But this has two 

drawbacks: the filtering effect is not very sensitive and the computation becomes slower 

since there may be many more spurious hits that occur by chance. Two ideas have been 

developed to increase the sensitivity of a seed with a fixed number of characters, 

allowing spaced seeds and using multiple seeds. Multiple seeds are sets of seeds that are 
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looked for simultaneously and used together to determine an E-value of the hits. The 

principle of spaced seeds is to choose noncontiguous characters to build them. For the 

previous example, C-CT-G (“-“ means a don’t care position in the text) has the same 

number of characters (the same weight) and thus the same selectivity than CACC but its 

sensitivity is likely to be better because it spans a longer region (6 instead of 4). 

Moreover, a software program like YASS (106) offers the possibility of introducing 

subset seeds, i.e. to define some positions where nucleic acids can only take a subset of 

possible values. For example, transition-constrained seeds (of weight ½) have to belong 

to a same class in the query and the text, either purine or pyrimidine. Noting # a match 

position, - a don’t care position, and @ a transition position, the default seed of YASS, of 

weight 9, is #@# –– ## –– # – ##@#. Seeds of fixed weight can be optimized for a range 

of similarity between sequences and for a user-defined particular family of sequences in 

order to maximize the hitting probability. YASS can be used online or is available for 

download at (107). It can filter low complexity repeats and produce the same output 

format than BLAST. The paper (108) provides an example of YASS pairwise 

comparisons applied to a gene family encoding proteins with pentatricopeptide repeat 

(PPR) motifs in the radish genome. 

It is possible to derive a “spaced” suffix array from a standard suffix array that takes 

into account don’t care positions by applying a suitable transformation on the text (109) 

and the query. The seed-based algorithms enable the detection of repeats within a 
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sequence or between sequences. Indeed, the algorithmic “engine” based on seeds is also 

adapted for comparing two long sequences in order to search for similar sub-sequences 

[local alignment (110) and Mummer (111)] and for comparing a sequence against itself 

in order to search for repeats inside this sequence itself as, for instance, is the case in the 

Repseek software (14). 

 

3.3. Using short sequence reads instead of contigs 

The previously presented concepts are based on the use of queries which are smaller 

in length than those of the bank sequences. With the arrival of NGS (Next-Generation 

Sequencers) it is not uncommon to have to deal with unassembled data. In this context, 

queries and/or banks are composed of short sequences called reads of at most a few 

hundreds nucleotides. A set of such reads typically represents (all chromosomes of) an 

original genome. The read representation of a whole genome is neither adapted to 

human, nor to standard automatic analyses. For example, it becomes more difficult to 

compute the answer to the simple query: “Does this sequence occur in this set of 

reads?” and previous indexation methods must be adapted or, more radically, new 

sequences must be designed to be able to cope with such data representation.  

When dealing with NGS reads, in particular while looking for repeats in a set of 

reads, there are several approaches that can be distinguished depending on the 
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presence of a third-party reference genome or not. Given a set of sequenced reads, and 

when a reference genome exists, this latter can be used as a bank and reads are used as 

queries. For each read, a BLAST-like search is performed in order to know where it 

occurs on the genome. This process is known as read mapping. As it is applied to 

millions of reads, the mapping must be answered in a short time. Numerous methods, 

specific to read mapping, have been developed in the past few years. They are adapted 

to the size of the requests and to their expected error profiles and high similarity to the 

reference. A great deal of information can be extracted from the mapping of reads, 

especially concerning polymorphism (SNPs but also repeated elements). A good read 

mapper in the case of highly-polymorphic genomes is the NextGenMap software (112). 

The reference genome is indexed in a hash table. There exists a GitHub site including a 

wiki page where the code is available for downloading on (113). When no reference 

sequence is available the user has two choices left: either reconstruct the sequence from 

reads (assembly process) and apply the reference-based approaches on this assembled 

sequence, or use de novo methods that seek elements of interest directly in non-

assembled reads. The de novo approaches are thus useful when no reference sequence 

exists and when the assembly of reads is problematic or impossible. This can be the case 

for highly complex genomes such as plant polyploid genomes. The polyploid nature of 

the genomes of most of the major species of agronomic interest represents a strong 

barrier to analysis of the organization and variation of repeats, either for non-coding 

areas or for duplicated genes. The only reasonable way to conduct a repeat study in 
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these genomes seems to be to extract the repeat family of interest by careful primer 

design and PCR amplification. However, the emergence of successful tools for de novo 

detection of elements of interest in raw unassembled reads can be seen. For instance, 

simpler to detect than repeats, the SNP detection can be performed de novo with recent 

tools like Cortex (114) or discoSnp (115).  

We have described in the list of homology-based methods for TE identification a 

software, RelocaTE, which is able to look for given reference TE in a set of next-

generation sequencing (NGS) unassembled reads. Tools are now available to detect 

Transposable Elements directly from these reads. The general idea is that repeated 

elements are represented by a high number of reads and read frequency may be used 

together with sequence similarity to assemble and regroup them into repeat families. At 

least three methods have been designed for this purpose, RepARK (116),  RetroSeq (43) 

and T-lex (44).  

RetroSeq is a sophisticated method that can exploit mate pairs. Instead of the classic 

FASTA file, the input file of RetroSeq is a BAM format file. First, RetroSeq looks for 

discordant mate pairs: regions present in BAM sequences but not present in the 

reference sequence. These regions are identified as transposable elements by aligning 

them against the consensus library with the Exonerate software (117). T-lex first uses 

RepeatMasker (26) to remove the TE present in highly repetitive regions from the list of 

TE insertions and detects the insertion of TE copies by comparing the two Target Site 
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Duplications (TSD) and the termini of the TE from the NGS reads with the reference 

sequence. T-lex detects the deletion of TE copies by the deletion of termini regions in 

NGS reads. 

 

 

4. Towards a richer characterization of repeated structures 

 

4.1. A gentle introduction to the theory of languages 

 

As can be observed in this chapter, most of the current practice of pattern matching 

looks at efficient ways to index and compare sequences. This has proved very useful 

and remains extremely important for the efficiency of any search algorithm. However, it 

proves to be insufficient as the knowledge and understanding of some functional or 

structural aspects of the different repeat families increases. Analysts in molecular 

biology progressively shift from mere classification tasks to modeling tasks and develop 

complex scripts in order to fulfill their search needs. Programming scripts may become 

a tedious task because people need to express various hypothetical models of sequence 

architectures. It is widely acknowledged that they may even be hard to reproduce (118). 

A first line of progress has been proposed with the birth and development of Scientific 
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Workflow Management Systems [SWMS, (119)]. To search for complex patterns such as 

repeats, another approach is to clearly separate the descriptive part (the model of the 

studied sequence family) from the way this model is searched in genomes. This is 

precisely the goal of linguistic analysis and in the rest of this section we deal with the 

key concepts in this field. The description of patterns or languages on strings is the 

subject of the theory of formal languages. It is widely used for computer languages but 

can also be developed in the case of biological sequences. The search for pattern or 

models described in a language relies on the development of dedicated parsers that can 

accept any query model in the language. 

 

The framework of formal languages introduces models of a possibly infinite set of 

sequences. The issue is to represent an infinite set in a finite way. A standard 

representation, called grammar, is a set of rewriting rules acting on a starting axiom. For 

instance, the following grammar (with axiom S1) is able to recognize telomeric regions 

of eukaryotes like A. thaliana, known to be composed primarily of tandemly repeated 

blocks 5’-C(C|T)CTAAA-3’: 

 S1  C S2 S2  C S3 S2  T S3  S3  C S4  S4  T S5   

 S5  A S6 S6  A S7 S7  A S1  S7  A 

In such a model, the left part of a rule (the head) rewrites () into its right part (the 

body). Note that rules use two types of symbols, non-terminal symbols that have to be 

rewritten using any rule with a matching head (Si, i [1,7] in our example) and terminal 



Author version 2015 

 

 

55 

symbols that correspond to letters of the analyzed string (nucleic acids A, C or T in our 

example). Any genomic sequence that can be generated by a finite application of such 

rules, starting from the axiom rule, is accepted as a telomeric region by the model. 

Conversely, it is possible to check (i.e. to parse) a given sequence by applying the rules 

from right to left on the sequence, and possibly collect some information from the 

parsing structure (a tree). For instance, the number of tandem repeats in the region will 

be the number of times S1 occurs in the parsing tree. 

 

It appears that the general form of rules has a deep impact on the expressiveness of 

the associated languages and the complexity of standard operations on these languages 

such as the membership of a sequence to a language or the intersection of two 

languages. Furthermore, the categorization of rule types may be roughly achieved in 

very few classes. Thus, the rules in the example above are very specific: there exists a 

single, non-terminal symbol in the head and at most one non-terminal in the body, at 

the end of the body. It can be shown that this particular structure is characteristic of a 

well-known class of languages called regular languages. This class has been used in 

many pattern matching and bioinformatics tools [e.g. Unix grep for all types of text or 

ScanProsite (120) for proteins] and script languages (e.g. Perl) since it is possible to look 

for occurrences of any pattern in linear time (proportional to the length of the 

sequence). Often, regular expressions (e.g. C[C|T]CTAAA in our example) are used 

instead of grammars since they offer a more compact representation but this is strictly 
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equivalent and just a matter of notations. Despite their high utility, regular languages 

are limited for the recognition of repeats. They can only recognize (or serve to model) 

looping structures, e.g. fixed tandem repeats. Describing, for instance, the Terminal 

Inverted Repeats of DNA transposons is out of reach for this class of languages. 

Moreover, if the element that is repeated is unknown (looking for some unspecified 

tandem repeat or equivalently looking for all tandem repeats in a genome for instance), 

it is also impossible to represent the structure with a regular language. 

 

For the case of palindromic repeat structures, of which the stem-loop structure in RNA 

sequences is one of the prime examples, it is necessary to accept grammar rules with a 

body containing any string of terminal and non-terminal symbols. The corresponding 

class of languages is called context-free. For instance, recognizing the TIRs of a DNA 

transposon could be described by the following grammar: 

 S1  A S2 U S1  C S2 G S1  G S2 C S1  U S2 A   

 S2  A S2 U  S2  U S2 A  S2  C S2 G S2  G S2 C  

 S2  A S2 S2  C S2 S2  G S2  S2  U S2  S2   

Context-free rules in this grammar (e.g. S2  A S2 U) serve to describe the Watson-Crick 

pairing of nucleic bases. Thus this logical structure on sequences may be clearly 

associated with a meaningful structure in space corresponding to chemical bonds. 

Other regular rules (e.g. S2  A S2) describe the internal sequence between TIRs 

without further constraint. The last rule S2   is a termination rule, where  denotes 
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the empty string. The programming languages are generally context-free languages (if 

you look at the html or xhtml code of a web page for instance, you will see the very 

same structure of pairing tags that are characteristic of context-free languages). This 

class of languages is more expressive but at some cost: recognizing if a model occurs in 

a sequence of size n may require in the worst case in the order of n3 operations.  

The next question is to know if this class of language is sufficient for biological 

modeling. The answer is clearly no. Consider for instance the description of chloroplast 

microstatellites. These “simple sequence repeats” that are stretches of small words (size 

less than 7 generally) are complex from the point of view of structure: it is not possible 

to decide in advance the number of copies or the size of copies. It requires more 

advanced grammatical rules, called context sensitive, where the non-terminal symbol on 

the left and the body of the rule may be surrounded by as many symbols as necessary 

(there exists a context of rule application) providing that the same symbols are on both 

sides. Other examples of context sensitive models in biological sequences are the 

pseudo-knot structures in RNA or the disulfide bridge structure in proteins and the 

introduction of errors in repeat is another source of complexity. The cost of models in 

this category may become very high but fortunately it is not necessary to use the full 

expressive power of context-sensitive languages. In practice, the art of linguistic 

analysis entails getting the right tradeoff between the flexibility of the modeling 

language and the efficiency of model parsing. From the user’s point of view, a number 

of models have to be tried, tuning them iteratively in order to get a reasonable number 
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of hits. Moreover, since parsers can provide not only the hits but also their internal 

structure, it may be necessary to filter in post-treatment structural alternatives that are 

not relevant for the biological analysis. 

 

 

4.2. Linguistic analysis of genomic sequences 

Once a language has been chosen for expressing models or patterns, any model can 

be searched in a bank of sequences using dedicated software. If the language is simple 

and specific to a sequence family, the query may generally be described by a string on a 

special alphabet and this task is referred to as pattern matching. If the language is more 

generic and allows the expression of more complex structures, it can take several rules 

to describe the language and the software is then called a parser. 

Dedicated Pattern Matching 

It is not possible here to provide an exhaustive review of the profusion of specific 

tools that have been made available to bioanalysts. Some are specific to a sequence 

family and others to a particular motif type. 

We have already cited ScanProsite (120) as an example of a pattern matcher using motifs 

defined on a subset of regular languages. The current version accepts Prosite patterns, 

user-defined patterns in the Prosite syntax, a combination of patterns using logical 
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operators and, or and not, and can use contextual annotation templates (ProRules) to 

detect functional characteristics. They are searched either by a query in a precomputed 

database or with an algorithm called ps-scan. A website is available on the Expasy 

server but for a large-scale independent analysis, it is possible to download the ps-scan 

Perl script (121). A higher level parser has been developed for the de novo recognition of 

human polymeraseII promoter regions in (122). This study uses a two-level grammar. A 

regular grammar first allows recognition of promoter elements such as the TATA-box, 

the Initiator and the Downstream Promoter Element (DPE), etc. Then a context-free 

grammar is in charge of the recognition of a correct assembly of all these elements in a 

reasonable promoter. Unfortunately, although it is likely the authors use a generic 

context-free parser for this task, no tool is made available: we cite it here mostly for the 

purposes of illustration since it is characteristic of the linguistic approach. 

A number of tools are dedicated to RNA sequences, in response to the increasing need 

for structure exploration in the complex RNA world, boosted by the recent importance 

of non-coding RNA studies. This is useful for checking structural features in 

retrotransposons. RNAmotif (123) is probably the most popular in this category as it 

combines a pattern description language and a language to tune the scoring. It has been 

designed for the description of patterns as a succession of content-constrained stems 

and loops, offering the possibility of choosing the standard Watson-Crick pairing (A-U, 

G-C) or any other user-defined pairing. The code is available for download at (124). The 

tool Locomotif (125) has almost the same expressiveness (slightly less) as the previous 
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one but proposes interesting additional features. The first is that it allows the user to 

graphically design his pattern in an editor by composing several stems and loops 

annotated with information on the sequence content and size. A dedicated parser is 

automatically derived from the graphical representation provided. A second feature 

filters a single matching result by optimizing a thermodynamical model. A more recent 

tool in this category, Structator (126), is representative of this new generation of tools 

that first use a lexical analysis to significantly improve the parsing time in a second step. 

It makes use of an index data structure that is suited to the analysis of palindromic 

structures and is derived from those we have presented, the affix array. 

 

General Purpose Pattern Matching 

 

Some tools have been designed for the analysis of several types of sequences (DNA, 

RNA, proteins) with a generic expressiveness, i.e. without targeting the recognition of a 

particular motif family. Among these general tools, two tendencies can be observed, 

efficiency-oriented and expressiveness-oriented software. 

 

One of the most advanced software solutions from the point of view of efficiency is 

Vmatch (68), which offers a wide variety of search facilities in very large sequences. 

Vmatch is a package maintained since 2003 by S. Kurtz and resulting from long 

experience in the field of indexing and pattern matching for genomic sequences (the 
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initial version was called REPuter). Vmatch is free for academic research and can be 

obtained by downloading a license agreement form. It proposes a flexible command 

language with numerous constructions offering a very broad variety of possible queries. 

It is based on a careful implementation of enhanced suffix arrays (127) for the 

computation of a sequence index that provides fast access to every substring in that 

sequence. If the search for a motif contains some rare substrings, this technique is 

particularly efficient. As in the previous version, REPuter, Vmatch goes from exact to 

approximated strings with a fixed number of mismatches by using a dynamic 

programming algorithm and proposes a graphical interface for the bioanalyst. 

The software Vmatch is the core search engine used in a number of more specialized 

tools working on specific sequence structures (e.g. tandem-repeats or LTR 

retrotransposons in MASiVE). It is used in some databases to generate genomic 

information or to propose extended search functionalities. For instance, in 

MIPSPlantsDB, the curation and clustering in the mips-REdat repeat database (128) has 

been achieved using Vmatch: repeats are put in a same cluster if they share 98% identity 

and the representative of each cluster is its longest sequence, a choice that makes it 

possible to remove incomplete sequences included in a cluster representative. PlantGDB 

proposes a server also based on Vmatch, PatternSearch (129), to look for short patterns 

with mismatches in A. thaliana or O. sativa genomes. 

Another highly generic tool, although less expressive, is Biogrep (130), designed by MIT 

with the objective of quickly recognizing a large set of simple motifs (typically more 
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than 100) in biological sequence banks, using multi-processor optimizations. Biogrep 

allows queries in the POSIX language, a standard format of extended regular 

expressions, and can look for patterns in parallel on a set of processors. 

  

  

The other approach for the analysis of biological sequences is more concerned with 

modeling the peculiarities of biological objects in the most relevant and expressive way. 

A major contribution in this respect is the work of D. Searls who laid the foundations 

for research in this domain. He was the first to supervise developments allowing users 

to design biological grammars and to apply them for the large-scale analysis of their 

genomic sequences (131; 132). One of D. Searls’ key ideas is to try to find a balance 

between the well-founded framework of context-free languages that offer a good 

expressivity/efficiency trade-off, and the necessity of easily describing basic biological 

mechanisms such as copy that lie at the core of genome evolution. D. Searls introduced 

a very practical object in algebraic grammars, the string variable, which elegantly 

expresses this notion of copy (either direct or reverse). He has implemented the 

resulting logic formalism, called SVG - for StringVariable Grammars -, in the (no longer 

available) GenLang tool (133). From the point of view of expressivity on biological 

sequences, this makes it possible to take into account not only various forms of copy, 

distance, position and size constraints but also hierarchical aspects of genomic 

structures. For instance, in the case of LTR Retrotransposons, the top-level rule of the 
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grammar could be represented by the following expression – this is given for the 

purposes of illustration only and does not pretend to be fully realistic: 

     LTRR  DR:[2..6], «tg», (U5,R,U3):[80..750], «ca »,  

         [1..100], pbs, [1..100], gag, [1 000..15 000], ppt, [1..100],  

        «tg», (U5:80%, R:90%, U3:80%), «ca», DR . 

 

In this expression, DR, U5, R, and U3 are string variables. Its meaning is “the sequence 

is surrounded by two exact copies of a direct repeat (DR) of size between 2 and 6. The 

LTR start with nucleotides “tg”, end with nucleotides “ca” and are made up of three 

parts named A, R and B with a total length between 80 and 750. The right LTR is an 

approximate copy of the left one. The central part (R) is the most preserved - because of 

the hybridization between both Rs during duplication - with a 90% minimum identity 

level whereas U3 and U5 only need to have 80% level identity. The central part of the 

sequence must contain at constrained distances a primer binding site (pbs), a group-

specific antigen (gag), and polypurine tract (ppt), which are described by other 

grammatical rules. 

GenLang is no longer available but PatSearch (134) is a restricted tool belonging to this 

family. It is based on the C program scan_for_matches, mainly written by R. Overbeek 

and which is downloadable from (135). It allows to describe approximated strings 

(including IUB codes for ambiguous nucleotides and mismatch/indel errors), gaps and 
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length constraints, stem/loops structures and alternative patterns. Insofar as regards 

repeats, they can be described by a statement  

nmax>repeat(patternident=pattern) dmin..dmax >nmin , 

where nmin and nmax are integers fixing a range for the number of patterns, dmin and 

dmax fix a range for the edit distance between repeat units, and patternident and pattern 

are a string variable and a pattern constraining the content of this variable respectively. 

The keyword frepeat has to be used instead of repeat in case of exact repeat. In addition, 

PatSearch provides an assessment of the motif significance from a simulation 

experiment using Markov chains (estimating the number of instances that can be 

expected randomly). 

 

Logol (136) is a highly descriptive language dedicated to the modeling of biological 

sequences and also derived from SVG. Starting from the sound basis of SVG grammars, 

the Logol language proposes several extensions - most notably by adopting a constraint 

approach - with the aim of allowing the expression of realistic biological motifs. Models 

use constrained string variables (supporting overlaps, substitution and distance errors) 

that can be subject to various transformations (e.g. inverse complement), gaps, and 

repetitions of a pattern along the sequence, negation and alternatives to define different 

possibilities. As in every formal grammar components can be grouped with a view to 

obtaining a high-level representation of a subset of components. 
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Repeats may be described either with string variables or with special repeat constructs. 

For example, the following model with string variables I1 and I2 can be used to look for 3 

instances of the same string successively deriving from each other (e.g. I1= aaaaa, 

I2=aaaca and I3=agaca):     X1:{#[5,8],_I1},.*:{#[1,7]}, ?I1:{_I2}:{$[1,1]},.*:{#[1,7]}, ?I2:{$[1,1]} 

The second pattern, ?I1: {_I2}:{$[1,1]}, reads as follows: the expected string must be 

similar to the previous I1 string (aaaaa in our example), apart from 1 mismatch ($[1,1]). 

The matched string (aaaca) is saved in I2 ({_I2}) for further use in the last pattern ({?I2}). 

This individualization of instances means it is possible to adjust fine notions of 

sequence evolution. 

 The following example shows how palindromic repeats for the recognition of stem-

loops whose stem length varies between 5 and 11 and loop size between 1 and 9 are 

represented. In this example, the Watson-Crick pairing is not required to be perfect: up 

to 2 substitutions and 1 indel are allowed. 

STEM1:{#[5,11],_IS1},  .*:{#[1,9]},  -"wc" ?IS1 :{$[0,2],$$[0,1]} 

The content of STEM1 (first strand of the stem) is saved in IS1, (_IS1). The second stem 

strand is then defined as the exact reverse complement of the previous content (that is -

"wc" ?IS1), except for 2 mismatches and 1 indel. 

The special constructor repeat, as in PatSearch, manages the characteristics of a series of 

occurrences. Its standard format is: 

 repeat(<entity>,<distance>)+<occurrence number>.  
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For instance, repeat("acgt",[0,3])+[7,38] states that substring acgt is repeated from 7 to 38 

times, using a spacing of at most 3 characters between 2 repeats. 

Logol is available as a web application and for download on (137). It includes a 

graphical editor. In the case of spacers in a model, Logol calls on an external program 

using indexing sequence techniques to directly look for positions of subsequent words. 

Two possibilities are offered by Logol to perform indexing, either Vmatch or Cassiopee, 

a Ruby tool specifically developed for Logol and which is generally not as efficient as 

Vmatch but enables installation independently of Vmatch. 
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List of tables 

 

Table 1:  List of plant transposable element databases that cover several plant genera 

Database and reference Content Web site 

mips-REdat + mips-REcat (128) All repeats + 

repeat type index 

(82 genera) 

http://mips.helmholtz-

muenchen.de/plant/recat/ 

Plant Repeat Databases (138)  http://plantrepeats.plantbiology.msu.edu/ 

MASiVEdb (139) LTR (37 species) http://databases.bat.infspire.org/masivedb/ 

P-MITE (140) MITE (41 species) http://pmite.hzau.edu.cn/django/mite/ 

 

Table 2: List of available ab initio methods detecting all types of transposable elements 

Software Name Web site, Download site (ftp, 

forge, galaxy or github), or 

email contact  

OS Requirements Comments 

PClouds (13) www.evolutionarygenomics.c

om/ProgramsData 

/PClouds/PClouds.html 

Linux, 

MacOS X 

C compiler No help file 

PILER (18) www.drive5.com/piler/ All MUSCLE User’s guide 

(web site) 

RBR (141) www.ii.uib.no/~ketil/bioinfor

matics/tools.html 

All, Linux 

preferred 

Glasgow 

Haskell 

Compiler (GHC) 

README 

Install file 
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ReAS (142) ://ftp.genomics.org.cn/pub/

ReAS/software/ 

All Perl, C compiler, 

64bits system 

README 

Install file 

RECON (19) selab.janelia.org/recon.html All C compiler README 

Install file. 

Makefile to 

be adapted 

RepeatFinder (10) cbcb.umd.edu/software/Repe

atFinder/ 

All REPuter README 

Install file 

RepeatScout (59) repeatscout.bioprojects.org/ Linux, 

MacOS X 

Perl, Tandem 

Repeat Finder, 

RepeatMasker 

README 

Install file 

Repseek (14) wwwabi.snv.jussieu.fr/public

/RepSeek/ 

Linux, 

MacOS X 

No README 

Install file 

User’s guide 

(Repseek_do

c.pdf 

REPuter (9) bibiserv.techfak.uni-

bielefeld.de/reputer/ 

All No User’s guide 

(web site) 

RepARK (116) https://github.com/PhKoch/

RepARK. 

All Perl, Jellyfish, 

Velvet 

README 

Tallymer (8) www.zbh.uni-

hamburg.de/?id=211 

Linux, 

MacOS X 

Perl, C compiler, 

Python, Ruby, 

Cairo & Pango 

lib. (optional), 

User’s guide 

(web site) 
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HMMER 

Windowmasker 

(11) 

ftp.ncbi.nlm.nih.gov/pub/aga

rwala/windowmasker 

Windows, 

Linux 

No User’s guide 

(web site) 

 

Table 3: List of available homology-based methods detecting all types of transposable elements 

Software Name Web site, Download site (ftp, 

forge, galaxy or github), or 

email contact  

OS Requirements Comments 

AB-BLAST (wu-) 

(22) 

www.advbiocomp.com/blas

t.html 

  User’s guide 

(web site) 

Censor (24) www.girinst.org/censor/do

wnload.php 

Linux, 

MacOS X 

Perl README 

Install file 

HMMER (45) hmmer.janelia.org/ Linux, 

MacOS X 

Perl User’s guide 

(web site) 

NCBI-BLAST 

(21) 

ftp.ncbi.nlm.nih.gov/blast/e

xecutables/blast+/ 

All No README 

Install file 

One code to find 

them all (42) 

http://doua.prabi.fr/softwar

e/one-code-to-find-them-all 

All Perl Tutorial (zip 

file on web 

site) 

Process_hits (39) processhits.sourceforge.net/ All Perl README 

Install file 

REannotate (40) www.bioinformatics.org/rea

nnotate/index.html 

All Perl User’s guide 

(web site) 

RelocaTE (29) https://github.com/srobb1/ All Blat, Bowtie 1, README 



Author version 2015 

 

 

70 

RelocaTE BioPerl, 

SAMtools 

User’s guide 

(web site) 

RepeatMasker 

(25) 

www.repeatmasker.org/ All Perl, Blast or 

HMMER or 

RMBlast, and 

Tandem Repeat 

Finder 

README 

Install file 

RepeatRunner 

(41) 

www.yandell-

lab.org/software/repeatrunn

er.html 

All Perl, Blast and 

RepeatMasker 

README 

Install file 

RetroSeq (43) github.com/tk2/RetroSeq Linux Perl, bedtools 

lib., Samtools 

and Exonerate 

User’s guide 

(web site) 

T-lex (44) petrov.stanford.edu/cgi-

bin/Tlex_manual.html 

Linux Perl, 

RepeatMasker, 

Maq, SHRIMP2, 

BLAT, Phrap 

and FastaGrep 

User’s guide 

(web site) 

TARGeT (30) target.iplantcollaborative.org

/ 

All Web browser User’s guide 

(web site) 

TESeeker (27) repository.library.nd.edu/vi

ew/27/teseeker 

All VirtualBox, 

BLAST, CAP3, 

ClustalW2, and 

BioPerl 

User’s guide 

(web site) 
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Transposon-PSI 

(28) 

transposonpsi.sourceforge.ne

t/ 

All Perl, Psi Blast README 

Install file 
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Table 4: List of available structure-based methods detecting all types of transposable elements 

Software Name Web site, Download site 

(ftp, forge, galaxy or github), 

or email contact  

OS Requirements Comments 

SMaRTFinder (47) services.appliedgenomics.o

rg/software/smartfinder/ 

All C compiler README 

Install file 

SMOTIF (46) www.cs.rpi.edu/~zaki/soft

ware/sMotif/ 

All C compiler README 

Install file 

Logol (136) http://logol.genouest.org/ Linux, 

MacOS X 

Ruby User’s 

guide (web 

site) 

 

Table 5: List of available pipeline methods detecting all types of transposable elements 

Software Name Web site, Download site 

(ftp, forge, galaxy or 

github), or email contact  

OS Requirements Comments 

DAWGPAWS (49) dawgpaws.sourceforge.

net/ 

Linux Perl, emacs, 

Apollo, Blast, 

Cross_match,Eu

Gène, find_ltr, 

FINDMITE, 

FGENESH, 

User’s 

guide (web 

site) 
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GeneID, 

GeneMarkHMM, 

Genscan, 

HMMER, 

LTR_FINDER, 

LTR_Seq, 

LTR_Struc, 

RepeatMasker 

RepeatExplorer (2) galaxy.umbr.cas.cz:8080

/ 

Linux Perl, R, 

Python, 

ImageMagick, 

Blast, 

RepeatMasker, 

Muscle, Fasty36 

User’s 

guide (web 

site) 

RepeatModeler (25) www.repeatmasker.org

/RepeatModeler.html 

Linux, 

MacOS X 

Perl, 

RepeatMasker, 

RECON, 

RepeatScout, 

Tandem Repeat 

Finder, and 

RMBlast or Ab-

Blast 

README 

Install file 

User’s 

guide 

REPET (50) urgi.versailles.inra.fr/To

ols/REPET 

Linux, 

MacOS X 

C compiler User’s 

guide (web 
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site) 

TriAnnot (51) wheat-

urgi.versailles.inra.fr/Tools

/Triannot-Pipeline 

All Web browser User’s 

guide (web 

site) 

RISCI (52) http://www.ccmb.res.in/ 

rakeshmishra/tools.html  

Linux Perl, 

EMBOSS, Blast, 

RepeatMasker 

README 

 

Table 6: List of available software for the search of Long Terminal Repeat Retrotransposons (LTRR) 

Software 

Name 

Method Web site, Download site (ftp, 

forge, galaxy or github), or 

email contact  

OS Requirements Comments 

LTR_MINER 

(64) 

Homol. genomebiology.com/content/s

upplementary/gb-2004-5-10-

r79-s7.pl 

All Perl No help file 

LTR_Finder 

(55) 

Struct. tlife.fudan.edu.cn/ltr_finder/ Linux 

(standal

one) 

No User’s 

guide (web 

site) 

LTR_STRUC 

(53) 

Struct. www.mcdonaldlab.biology.gat

ech.edu/ltr_struc.htm 

Window

s 

No No help file 

LTRharvest 

(65) 

Struct. www.zbh.uni-

hamburg.de/forschung/ 

genominformatik/software/ltr

harvest.html 

Linux, 

MacOS 

X 

Perl, C 

compiler, 

Python, 

GenomeTools 

README 

Install file 

User’s 

guide (web 
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site) 

MGEScan-

LTR (57) 

Struct. darwin.informatics.indiana.edu

/cgi-bin/ 

evolution/daphnia_ltr.pl 

Linux, 

MacOS 

X 

Perl, C compil. 

Tandem 

Repeat Finder, 

HMMER, 

EMBOSS 

README 

Install file 

User’s 

guide (web 

site) 

MASiVE (67) Pipel. tools.bat.infspire.org/masive/ Linux, 

MacOS 

X 

LTRharvest, 

Vmatch, Wise2 

and MAFFT 

README 

Install file 

 

 

Table 7: List of available homology-based methods detecting non LTR retrotransposons 

Software Name Web site, Download site (ftp, 

forge, galaxy or github), or 

email contact  

OS Requirements Comments 

MGEScan-

nonLTR (70)

  

darwin.informatics.indiana.edu

/cgi-

bin/evolution/nonltr/nonltr.pl 

Linux, 

MacOS X 

Perl, C compiler, 

HMMER, 

EMBOSS 

package 

README 

Install file 

RTAnalyzer 

(71) 

www.riboclub.org/cgi-

bin/RTAnalyzer/index.pl 

All Perl, Internet 

connexion 

No help file 

 

Table 8: List of available software for the search of DNA transposons 

Software 

Name 

Method Web site, Download site 

(ftp, forge, galaxy or 

OS Requirements Comments 
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github), or email contact  

TRANSPO 

(73) 

Homol. alggen.lsi.upc.es/recerca

/search/transpo/transp

o.html 

Windows 

(standalone) 

cygwin1.dll 

(standalone) 

No help file 

IRF (76) Struct. tandem.bu.edu/irf/irf.d

ownload.html 

All No No help file 

RSPB (78) Struct. http://122.205.95.39/me

dia/MITE/tools/RSPB_0

.20.zip 

Linux Blast, Muscle, 

Mdust, Perl, 

RepeatMasker 

Readme 

(http://122.2

05.95.39/me

dia/MITE/to

ols/RSPB_Re

adme.txt) 

MITE-

Hunter (79) 

Struct. target.iplantcollaborative

.org/mite_hunter.html 

All Perl, Blast, 

Muscle, mDust 

Readme 

Install file 

User’s guide 

(web site) 

MITE 

Digger (80) 

Struct. http://labs.csb.utoronto.

ca/yang/MITEDigger 

Windows Perl Readme 

+ Rice 

database  

MUST (77) Struct. csbl1.bmb.uga.edu/ffzho

u/MUST/ 

Web server No No help file 

 

Table 9: Software looking for Helitrons 

Software Name Web site, Download site (ftp, OS Requirements Comments 

http://labs.csb.utoronto.ca/yang/MITEDigger
http://labs.csb.utoronto.ca/yang/MITEDigger


Author version 2015 

 

 

77 

forge, galaxy or github), or 

email contact  

HelSearch (82) helsearch.sourceforge.net/ All Perl, Blast, 

ClustalW 

README 

Install file 
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List of figures 

 

 

Figure 1: Suffix- tree representation for the text ATTTAATAAC. The top square is the root of the tree. 
Circles are the leaves, and other squares are called “internal nodes”. 
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