
Finding and evaluating community structure in networks

M. E. J. Newman1,2 and M. Girvan2,3

1Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109-1120, USA
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA

3Department of Physics, Cornell University, Ithaca, New York 14853-2501, USA

~Received 19 August 2003; published 26 February 2004!

We propose and study a set of algorithms for discovering community structure in networks—natural divi-

sions of network nodes into densely connected subgroups. Our algorithms all share two definitive features:

first, they involve iterative removal of edges from the network to split it into communities, the edges removed

being identified using any one of a number of possible ‘‘betweenness’’ measures, and second, these measures

are, crucially, recalculated after each removal. We also propose a measure for the strength of the community

structure found by our algorithms, which gives us an objective metric for choosing the number of communities

into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering

community structure in both computer-generated and real-world network data, and show how they can be used

to shed light on the sometimes dauntingly complex structure of networked systems.

DOI: 10.1103/PhysRevE.69.026113 PACS number~s!: 89.75.Hc, 87.23.Ge, 89.20.Hh, 05.10.2a

I. INTRODUCTION

Empirical studies and theoretical modeling of networks

have been the subject of a large body of recent research in

statistical physics and applied mathematics @1–4#. Network

ideas have been applied with success to topics as diverse as
the Internet and the world wide web @5–7#, epidemiology
@8–11#, scientific citation and collaboration @12,13#, metabo-
lism @14,15#, and ecosystems @16,17#, to name but a few. A
property that seems to be common to many networks is com-

munity structure, the division of network nodes into groups
within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to find
and analyze such groups can provide invaluable help in un-
derstanding and visualizing the structure of networks. In this
paper, we show how this can be achieved.

The study of community structure in networks has a long
history. It is closely related to the ideas of graph partitioning
in graph theory and computer science, and hierarchical clus-
tering in sociology @18,19#. Before presenting our own find-
ings, it is worth reviewing some of this preceding work to
understand its achievements and shortcomings.

Graph partitioning is a problem that arises in, for ex-
ample, parallel computing. Suppose we have a number n of
intercommunicating computer processes, which we wish to
distribute over a number g of computer processors. Processes
do not necessarily need to communicate with all others, and
the pattern of required communications can be represented as
a graph or network in which the vertices represent processes
and edges join process pairs that need to communicate. The
problem is to allocate the processes to processors in such a
way as roughly to balance the load on each processor, while
at the same time minimizing the number of edges that run
between processors, so that the amount of interprocessor
communication ~which is normally slow! is minimized. In
general, finding an exact solution to a partitioning task of this
kind is believed to be an NP-hard problem, making it pro-
hibitively difficult to solve exactly for large graphs, but a
wide variety of heuristic algorithms have been developed

that give acceptably good solutions in many cases, the best
known being perhaps the Kernighan-Lin algorithm @20#,
which runs in time O(n3) on sparse graphs.

A solution to the graph partitioning problem is, however,
not particularly helpful for analyzing and understanding net-
works in general. If we merely want to find if and how a
given network breaks down into communities, we probably
do not know how many such communities there are going to
be, and there is no reason why they should be roughly the
same size. Furthermore, the number of intercommunity
edges need not be strictly minimized either, since more such
edges are admissible between large communities than be-
tween small ones.

As far as our goals in this paper are concerned, a more
useful approach is that taken by social network analysis with
the set of techniques known as hierarchical clustering. These
techniques are aimed at discovering natural divisions of ~so-
cial! networks into groups, based on various metrics of simi-
larity or strength of connection between vertices. They fall
into two broad classes, agglomerative and divisive @19#, de-
pending on whether they focus on the addition or removal of
edges to or from the network. In an agglomerative method,
similarities are calculated by one method or another between
vertex pairs, and edges are then added to an initially empty

FIG. 1. A small network with community structure of the type

considered in this paper. In this case there are three communities,

denoted by the dashed circles, which have dense internal links but

between which there is only a lower density of external links.

PHYSICAL REVIEW E 69, 026113 ~2004!

1063-651X/2004/69~2!/026113~15!/$22.50 ©2004 The American Physical Society69 026113-1

network ~n vertices with no edges! starting with the vertex
pairs with highest similarity. The procedure can be halted at
any point, and the resulting components in the network are
taken to be the communities. Alternatively, the entire pro-
gression of the algorithm from empty graph to complete
graph can be represented in the form of a tree or dendrogram

such as that shown in Fig. 2. Horizontal cuts through the tree
represent the communities appropriate to different halting
points.

Agglomerative methods based on a wide variety of simi-
larity measures have been applied to different networks.
Some networks have natural similarity metrics built in. For
example, in the widely studied network of collaborations be-
tween film actors @21,22#, in which two actors are connected
if they have appeared in the same film, one could quantify
similarity by how many films actors have appeared in to-
gether @23#. Other networks have no natural metric, but suit-
able ones can be devised using correlation coefficients, path
lengths, or matrix methods. A well known example of an
agglomerative clustering method is the Concor algorithm of
Breiger et al. @24#.

Agglomerative methods have their problems, however.
One concern is that they fail with some frequency to find the
correct communities in networks where the community
structure is known, which makes it difficult to place much
trust in them in other cases. Another is their tendency to find
only the cores of communities and leave out the periphery.
The core nodes in a community often have strong similarity,
and hence are connected early in the agglomerative process,
but peripheral nodes that have no strong similarity to others
tend to get neglected, leading to structures like that shown in
Fig. 3. In this figure, there are a number of peripheral nodes
whose community membership is obvious to the eye—in
most cases, they have only a single link to a specific
community—but agglomerative methods often fail to place
such nodes correctly.

In this paper, therefore, we focus on divisive methods.
These methods have been relatively little studied in the pre-
vious literature, either in social network theory or elsewhere,
but, as we will see, they seem to offer a lot of promise. In a
divisive method, we start with the network of interest and
attempt to find the least similar connected pairs of vertices
and then remove the edges between them. By doing this
repeatedly, we divide the network into smaller and smaller
components, and again we can stop the process at any stage
and take the components at that stage to be the network
communities. Again, the process can be represented as a den-
drogram depicting the successive splits of the network into
smaller and smaller groups.

The approach we take follows roughly these lines, but
adopts a somewhat different philosophical viewpoint. Rather
than looking for the most weakly connected vertex pairs, our
approach will be to look for the edges in the network that are
most ‘‘between’’ other vertices, meaning that the edge is, in
some sense, responsible for connecting many pairs of others.
Such edges need not be weak at all in the similarity sense.
How this idea works out in practice will become clear in the
course of the presentation.

Briefly then, the outline of this paper is as follows. In Sec.
II we describe the crucial concepts behind our methods for
finding community structure in networks and show how
these concepts can be turned into a concrete prescription for
performing calculations. In Sec. III we describe in detail the
implementation of our methods. In Sec. IV we consider ways
of determining when a particular division of a network into
communities is a good one, allowing us to quantify the suc-
cess of our community-finding algorithms. And in Sec. V we
give a number of applications of our algorithms to particular
networks, both real and artificial. In Sec. VI we give our
conclusions. A brief report of some of the work contained in
this paper has appeared previously as Ref. @25#.

II. FINDING COMMUNITIES IN A NETWORK

In this paper, we present a class of new algorithms for
network clustering, i.e., the discovery of community struc-
ture in networks. Our discussion focuses primarily on net-
works with only a single type of vertex and a single type of
undirected, unweighted edge, although generalizations to
more complicated network types are certainly possible.

There are two central features that distinguish our algo-
rithms from those that have preceded them. First, our algo-

FIG. 2. A hierarchical tree or dendrogram illustrating the type of

output generated by the algorithms described here. The circles at the

bottom of the figure represent the individual vertices of the net-

work. As we move up the tree, the vertices join together to form

larger and larger communities, as indicated by the lines, until we

reach the top, where all are joined together in a single community.

Alternatively, the dendrogram depicts an initially connected net-

work splitting into smaller and smaller communities as we go from

top to bottom. A cross section of the tree at any level, such as that

indicated by the dotted line, will give the communities at that level.

The vertical height of the split points in the tree are indicative only

of the order in which the splits ~or joins! take place, although it is

possible to construct more elaborate dendrograms in which these

heights contain other information.

FIG. 3. Agglomerative clustering methods are typically good at

discovering the strongly linked cores of communities ~bold vertices

and edges! but tend to leave out peripheral vertices, even when, as

here, most of them clearly belong to one community or another.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 ~2004!

026113-2

rithms are divisive rather than agglomerative. Divisive algo-

rithms have occasionally been studied in the past, but, as

discussed in the Introduction, ours differ in focusing not on

removing the edges between vertex pairs with the lowest

similarity, but on finding edges with the highest ‘‘between-

ness,’’ where betweenness is some measure that favors edges

that lie between communities and disfavors those that lie

inside communities.

To make things more concrete, we give some examples of
the types of betweenness measures we will be looking at. All
of them are based on the same idea. If two communities are
joined by only a few intercommunity edges, then all paths
through the network from vertices in one community to ver-
tices in the other must pass along one of those few edges.
Given a suitable set of paths, one can count how many go
along each edge in the graph, and this number we then ex-
pect to be largest for the intercommunity edges, thus provid-
ing a method for identifying them. Our different measures
correspond to various implementations of this idea as fol-
lows:

~i! The simplest example of such a betweenness measure
is that based on shortest ~geodesic! paths: we find the short-
est paths between all pairs of vertices and count how many
run along each edge. To the best of our knowledge, this
measure was first introduced by Anthonisse in a never-
published technical report in 1971 @26#. Anthonisse called it
‘‘rush,’’ but we prefer the term edge betweenness, since the
quantity is a natural generalization to edges of the well-
known ~vertex! betweenness measure of Freeman @27#,
which was the inspiration for our approach. When we need
to distinguish it from the other betweenness measures con-
sidered in this paper, we will refer to it as shortest-path be-

tweenness. A fast algorithm for calculating the shortest-path
betweenness is given in Sec. III A.

~ii! The shortest-path betweenness can be thought of in
terms of signals traveling through a network. If signals travel
from source to destination along geodesic network paths, and
all vertices send signals at the same constant rate to all oth-
ers, then the betweenness is a measure of the rate at which
signals pass along each edge. Suppose, however, that signals
do not travel along geodesic paths, but instead just perform a
random walk about the network until they reach their desti-
nation. This gives us another measure on edges, the random-

walk betweenness: we calculate the expected net number of
times that a random walk between a particular pair of verti-
ces will pass down a particular edge and sum over all vertex
pairs. The random-walk betweenness can be calculated using
matrix methods, as described in Sec. III C.

~iii! Another betweenness measure is motivated by ideas
from elementary circuit theory. We consider the circuit cre-
ated by placing a unit resistance on each edge of the network
and unit current source and sink at a particular pair of verti-
ces. The resulting current flow in the network will travel
from source to sink along a multitude of paths, those with
least resistance carrying the greatest fraction of the current.
The current-flow betweenness for an edge we define to be the
absolute value of the current along the edge summed over all
source/sink pairs. It can be calculated using Kirchhoff’s
laws, as described in Sec. III B. In fact, as we will show, the

current-flow betweenness turns out to be exactly equal to the

random-walk betweenness of the previous paragraph, but we

nonetheless consider it separately since it leads to a simpler

derivation of the measure.

These measures are only suggestions; many others are

possible and may well be appropriate for specific applica-

tions. Measures ~i! and ~ii! are in some sense extremes in the

spectrum of possibilities, one corresponding to signals that

know exactly where they are going, and the other to signals
that have no idea where they are going. As we will see,
however, these two measures actually give rather similar re-
sults, indicating that the precise choice of betweenness mea-
sure may not, at least for the types of applications considered
here, be that important.

The second way in which our methods differ from previ-
ous ones is in the inclusion of a ‘‘recalculation step’’ in the
algorithm. If we were to perform a standard divisive cluster-
ing based on edge betweenness, we would calculate the edge
betweenness for all edges in the network and then remove
edges in decreasing order of betweenness to produce a den-
drogram like that of Fig. 2, showing the order in which the
network split up.

However, once the first edge in the network is removed in
such an algorithm, the betweenness values for the remaining
edges will no longer reflect the network as it now is. This can
give rise to unwanted behaviors. For example, if two com-
munities are joined by two edges, but, for one reason or
another, most paths between the two flow along just one of
those edges, then that edge will have a high betweenness
score and the other will not. An algorithm that calculated
betweennesses only once and then removed edges in be-
tweenness order would remove the first edge early in the
course of its operation, but the second might not get removed
until much later. Thus the obvious division of the network
into two parts might not be discovered by the algorithm. In
the worst case, the two parts themselves might be individu-
ally broken up before the division between the two is made.
In practice, problems like this crop up in real networks with
some regularity and render algorithms of this type ineffective
for the discovery of community structure.

The solution, luckily, is obvious. We simply recalculate
our betweenness measure after the removal of each edge.
This certainly adds to the computational effort of performing
the calculation, but its effect on the results is so desirable that
we consider the price worth paying.

Thus the general form of our community structure finding
algorithm is as follows:

~i! Calculate betweenness scores for all edges in the net-
work.

~ii! Find the edge with the highest score and remove it
from the network. ~If two or more edges tie for highest score,
choose one of them at random and remove that.!

~iii! Recalculate betweenness for all remaining edges.
~iv! Repeat from step ~ii!.
In fact, it appears that the recalculation step is the most

important feature of the algorithm, as far as getting satisfac-
tory results is concerned. As mentioned above, our studies
indicate that, once one hits on the idea of using betweenness
measures to weight edges, the exact measure one uses ap-

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 ~2004!

026113-3

pears not to influence the results highly. The recalculation
step, on the other hand, is absolutely crucial to the operation
of our methods. This step was missing from previous at-
tempts at solving the clustering problem using divisive algo-
rithms, and yet without it the results are very poor indeed,
failing to find known community structure even in the sim-
plest of cases. In Sec. V B we give an example comparing
the performance of the algorithm on a particular network
with and without the recalculation step.

In the following sections, we discuss implementation and
give examples of our algorithms for finding community
structure. For the reader who merely wants to know what
algorithm they should use for their own problem, let us give
an immediate answer: for most problems, we recommend the
algorithm with betweenness scores calculated using the
shortest-path betweenness measure ~i! above. This measure
appears to work well and is the quickest to calculate—as
described in Sec. III A, it can be calculated for all edges in
time O(mn), where m is the number of edges in the graph
and n is the number of vertices @48#. This is the only version
of the algorithm that we discussed in Ref. @25#. The other
versions we discuss, while being of some pedagogical inter-
est, make greater computational demands, and in practice
seem to give results no better than the shortest-path method.

III. IMPLEMENTATION

In theory, the descriptions of the preceding section com-
pletely define the methods we consider in this paper, but in
practice there are a number of subtleties to their implemen-
tation that are important for turning the description into a
workable computer algorithm.

Essentially all of the work in the algorithm is in the cal-
culation of the betweenness scores for the edges; the job of
finding and removing the highest-scoring edge is trivial and
not computationally demanding. Let us tackle our three sug-
gested betweenness measures in turn.

A. Shortest-path betweenness

At first sight, it appears that calculating the edge between-
ness measure based on geodesic paths for all edges will take
O(mn2) operations on a graph with m edges and n vertices:
calculating the shortest path between a particular pair of ver-
tices can be done using breadth-first search in time O(m)
@28,29#, and there are O(n2) vertex pairs. Recently, however,
new algorithms have been proposed by Newman @30# and
independently by Brandes @31# that can perform the calcula-
tion faster than this, finding all betweennesses in O(mn)
time. Both Newman and Brandes gave algorithms for the
standard Freeman vertex betweenness, but it is trivial to
adapt their algorithms for edge betweenness. We describe the
resulting method here for the algorithm of Newman.

Breadth-first search can find shortest paths from a single
vertex s to all others in time O(m). In the simplest case,
when there is only a single shortest path from the source
vertex to any other ~we will consider other cases in a mo-
ment!, the resulting set of paths forms a shortest-path tree—
see Fig. 4~a!. We can use this tree to calculate the contribu-

tion to betweenness for each edge from this set of paths as
follows. We find first the ‘‘leaves’’ of the tree, i.e., those
nodes such that no shortest paths to other nodes pass through
them, and we assign a score of 1 to the single edge that
connects each to the rest of the tree, as shown in the figure.
Then, starting with those edges that are farthest from the
source vertex on the tree, i.e., lowest in Fig. 4~a!, we work
upwards, assigning a score to each edge that is 1 plus the
sum of the scores on the neighboring edges immediately be-
low it ~i.e., those edges with which it shares a common ver-
tex!. When we have gone though all edges in the tree, the
resulting scores are the betweenness counts for the paths
from vertex s. Repeating the process for all possible vertices
s and summing the scores, we arrive at the full betweenness
scores for shortest paths between all pairs. The breadth-first
search and the process of working up through the tree both
take worst-case time O(m) and there are n vertices total, so
the entire calculation takes time O(mn) as claimed.

This simple case serves to illustrate the basic principle
behind the algorithm. In general, however, it is not the case
that there is only a single shortest path between any pair of
vertices. Most networks have at least some vertex pairs be-
tween which there are two or more geodesic paths of equal
length. Figure 4~b! shows a simple example of a shortest
path ‘‘tree’’ for a network with this property. The resulting
structure is in fact no longer a tree, and in such cases an extra
step is required in the algorithm to calculate the betweenness
correctly.

In the traditional definition of vertex betweenness @27#,
multiple shortest paths between a pair of vertices are given
equal weights summing to 1. For example, if there are three
shortest paths, each will be given weight 1

3. We adopt the
same definition for our edge betweenness ~as did Anthonisse
in his original work @26#, although other definitions are pos-

FIG. 4. Calculation of shortest-path betweenness: ~a! When

there is only a single shortest path from a source vertex s ~top! to all

other reachable vertices, those paths necessarily form a tree, which

makes the calculation of the contribution to betweenness from this

set of paths particularly simple, as described in the text. ~b! For

cases in which there is more than one shortest path to some vertices,

the calculation is more complex. First we must calculate the number

of distinct paths from the source s to each vertex ~numbers on

vertices!, and then these are used to weight the path counts as

described in the text. In either case, we can check the results by

confirming that the sum of the betweennesses of the edges con-

nected to the source vertex is equal to the total number of reachable

vertices—six in each of the cases illustrated here.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 ~2004!

026113-4

sible @32#!. Note that the paths may run along the same edge

or edges for some part of their length, resulting in edges with

greater weight. To calculate correctly what fraction of the

paths flows along each edge in the network, we generalize
the breadth-first search part of the calculation, as follows.

Consider Fig. 4~b! and suppose we are performing a
breadth-first search starting at vertex s. We carry out the
following steps:

~i! The initial vertex s is given distance ds50 and weight
ws51.

~ii! Every vertex i adjacent to s is given distance d i5ds

1151 and weight w i5ws51.
~iii! For each vertex j adjacent to one of those vertices i,

we do one of three things: ~a! If j has not yet been assigned
a distance, it is assigned distance d j5d i11 and weight w j

5w i ; ~b! if j has already been assigned a distance and d j

5d i11, then the vertex’s weight is increased by w i , that is,
w j←w j1w i ; and ~c! if j has already been assigned a dis-
tance and d j,d i11, we do nothing.

~iv! Repeat from step ~iii! until no vertices remain that
have assigned distances but whose neighbors do not have
assigned distances.

In practice, this algorithm can be implemented most effi-
ciently using a queue or first-in/first-out buffer to store the
vertices that have been assigned a distance, just as in the
standard breadth-first search.

Physically, the weight on a vertex i represents the number
of distinct paths from the source vertex to i. These weights
are precisely what we need to calculate our edge between-
nesses, because if two vertices i and j are connected, with j

farther than i from the source s, then the fraction of a geo-
desic path from j through i to s is given by w i /w j . Thus, to
calculate the contribution to edge betweenness from all
shortest paths starting at s, we need only carry out the fol-
lowing steps:

~i! Find every ‘‘leaf’’ vertex t, i.e., a vertex such that no
paths from s to other vertices go though t.

~ii! For each vertex i neighboring t, assign a score to the
edge from t to i of w i /w t .

~iii! Now, starting with the edges that are farthest from the
source vertex s—lower down in a diagram such as Fig.
4~b!—work up towards s. To the edge from vertex i to vertex
j, with j being farther from s than i, assign a score that is 1
plus the sum of the scores on the neighboring edges imme-
diately below it ~i.e., those with which it shares a common
vertex!, all multiplied by w i /w j .

~iv! Repeat from step ~iii! until vertex s is reached.
Now repeating this process for all n source vertices s and

summing the resulting scores on the edges gives us the total
betweenness for all edges in time O(mn).

We have to repeat this calculation for each edge removed
from the network, of which there are m, and hence the com-
plete community structure algorithm based on shortest-path
betweenness operates in worst-case time O(m2n), or O(n3)
time on a sparse graph. In our experience, this typically
makes it tractable for networks of up to about n510 000
vertices, with current ~circa 2003! desktop computers. In
some special cases one can do better. In particular, we note
that the removal of an edge only affects the betweenness of

other edges that fall in the same component, and hence that

we need only recalculate betweennesses in that component.

Networks with strong community structure often break apart

into separate components quite early in the progress of the

algorithm, substantially reducing the amount of work that

needs to be done on subsequent steps. Whether this results in

a change in the computational complexity of the algorithm

for any commonly occurring classes of graphs is an open

question, but it certainly gives a substantial speed boost to

many of the calculations described in this paper.

Some networks are directed, i.e., their edges run in one

direction only. The world wide web is an example; links in

the web point in one direction only from one web page to

another. One could imagine a generalization of the shortest-

path betweenness that allowed for directed edges by count-

ing only those paths that travel in the forward direction along

edges. Such a calculation is a trivial variation on the one

described above. However, we have found that in many cases

it is better to ignore the directed nature of a network in cal-
culating community structure. Often an edge acts simply as
an indication of a connection between two nodes, and its
direction is unimportant. For example, in Ref. @25# we ap-
plied our algorithm to a food web of predator-prey interac-
tions between marine species. Predator-prey interactions are
clearly directed—one species may eat another, but it is un-
likely that the reverse is simultaneously true. However, as far
as community structure goes, we want to know only which
species have interactions with which others. We find, there-
fore, that our algorithm applied to the undirected version of
the food web works well at picking out the community struc-
ture, and no special algorithm is needed for the directed case.
We give another example of our method applied to a directed
graph in Sec. V D.

B. Resistor networks

As examples of betweenness measures that take more
than just shortest paths into account, we proposed in Sec. II
measures based on random walks and on current flow in
resistor networks. In fact, there are well known mathematical
connections between random walks and resistor networks
@33#, and the properties of one can often be calculated by
considering the other. This turns out to be the case here also
and, as we now show, when appropriately defined, our
random-walk and current-flow betweenness measures are
precisely the same. Here we derive the current-flow measure
first, since it turns out to be simpler; in the following section,
we derive the random-walk measure and show that the two
are equivalent.

Consider the network created by placing a unit resistance
on every edge of our network, a unit current source at vertex
s, and a unit current sink at vertex t ~see Fig. 5!. Clearly, the
current between s and t will flow primarily along short paths,
but some will flow along longer ones, roughly in inverse
proportion to their length. We will use the absolute magni-
tude of the current flow along an edge, summed over all
source/sink pairs, as our betweenness score.

The current flows in the network are governed by Kirch-
hoff’s laws. To solve them, we proceed as follows for each

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 ~2004!

026113-5

separate component of the graph. Let V i be the voltage at
vertex i, measured relative to any convenient point. Then for
all i we have

(
j

A i j~V i2V j!5d is2d it , ~1!

where A i j is the ij element of the adjacency matrix of the
graph, i.e., A i j51 if i and j are connected by an edge and
A i j50 otherwise. The left-hand side of Eq. ~1! represents the
net current flow out of vertex i along edges of the network,
and the right-hand side represents the source and sink. De-
fining k i5(jA i j , which is the vertex degree, and creating a
diagonal matrix D with these degrees on the diagonal D ii

5k i , this equation can be written in matrix form as (D

2A)•V5s, where the source vector s has components

s i5H 11 for i5s

21 for i5t

0 otherwise.

~2!

We cannot directly invert the matrix D2A to get the volt-
age vector V, because the matrix ~which is just the graph
Laplacian! is singular. This is equivalent to saying that there
is one undetermined degree of freedom corresponding to the
choice of reference potential for measuring the voltages. We
can add any constant to a solution for the vertex voltages and
get another solution—only the voltage differences matter. In
choosing the reference potential, we fix this degree of free-
dom, leaving only n21 more to be determined. In math-
ematical terms, once any n21 of the equations in our matrix
formulation are satisfied, the remaining one is also automati-
cally satisfied so long as current is conserved in the network
as a whole, i.e., so long as (is i50, which is clearly true in
this case.

Choosing any vertex v to be the reference point, there-
fore, we remove the row and column corresponding to that
vertex from D and A before inverting. Denoting the resulting
(n21)3(n21) matrices D

v
and A

v
, we can then write

V5~D
v
2A

v
!21•s. ~3!

Calculation of the currents in the network thus involves
inverting D

v
2A

v
once for any convenient choice of v , and

taking the differences of pairs of columns to get the voltage
vector V for each possible source/sink pair. ~The voltage for
the one missing vertex v is always zero, by hypothesis.! The
absolute magnitudes of the differences of voltages along
each edge give us betweenness scores for the given source
and sink. Summing over all sources and sinks, we then get
our complete betweenness score.

The matrix inversion takes time O(n3) in the worst case,
while the subsequent calculation of betweennesses takes time
O(mn2), where as before m is the number of edges and n the
number of vertices in the graph. Thus, the entire community
structure algorithm, including the recalculation step, will
take O„(n1m)mn2… time to complete, or O(n4) on a sparse
graph. Although, as we will see, the algorithm is good at
finding community structure, this poor performance makes it
practical only for smaller graphs; a few hundreds of vertices
is the most that we have been able to do. It is for this reason
that we recommend using the shortest-path betweenness al-
gorithm in most cases, which gives results about as good or
better with considerably less effort.

C. Random walks

The random-walk betweenness described in Sec. II re-
quires us to calculate how often on average random walks
starting at vertex s will pass down a particular edge from
vertex v to vertex w ~or vice versa! before finding their way
to a given target vertex t. To calculate this quantity, we pro-
ceed as follows for each separate component of the graph.

As before, let A i j be an element of the adjacency matrix
such that A i j51 if vertices i and j are connected by an edge
and A i j50 otherwise. Consider a random walk that on each
step decides uniformly between the neighbors of the current
vertex j and takes a step to one of them. The number of
neighbors is just the degree of the vertex k j5(iA i j , and the
probability for the transition from j to i is A i j /k j , which we
can regard as an element of the matrix M5A•D21, where D

is the diagonal matrix with D ii5k i .
We are interested in walks that terminate when they reach

the target t, so that t is an absorbing state. The most conve-
nient way to represent this is just to remove entirely the
vertex t from the graph, so that no walk ever reaches any

other vertex from t. Thus let Mt5At•Dt
21 be the matrix M

with the tth row and column removed ~and similarly for At

and Dt).
Now the probability that a walk starts at s, takes n steps,

and ends up at some other vertex ~not t! is given by the is

element of Mt
n , which we denote @Mt

n
is . In particular,

walks end up at v and w with probabilities @Mt
n
#

vs and

@Mt
n
#ws , and of those a fraction 1/k

v
and 1/kw , respectively,

then pass along the edge (v ,w) in one direction or the other,
assuming such an edge exists. ~Note that they may also have
passed along this edge an arbitrary number of times before
reaching this point.! Summing over all n, the mean number
of times that a walk of any length traverses the edge from v

to w is k
v

21
@(I2Mt)

21#
vs , and similarly for walks that go

from w to v .
To highlight the similarity with the current-flow between-

ness of Sec. III B, let us denote these two numbers V
v

and

FIG. 5. An example of the type of resistor network considered

here, in which a unit resistance is placed on each edge and unit

current flows into and out of the source and sink vertices.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 ~2004!

026113-6

Vw , respectively. Then we can write

V5Dt
21•~I2Mt!

21•s5~Dt2At!
21•s, ~4!

where the source vector s is the vector whose components
are all 0 except for a single 1 in the position corresponding to
the source vertex s.

Now we define our random-walk betweenness for the
edge (v ,w) to be the absolute value of the difference of the
two probabilities V

v
and Vw , i.e., the net number of times

the walk passes along the edge in one direction. This seems
a natural definition—it makes little sense to accord an edge
high betweenness simply because a walk went back and forth
along it many times. It is the difference between the numbers
of times the edge is traversed in either direction that matters
@49#.

But now we see that this method is very similar to the
resistor network calculation of Sec. III B. In that calculation,
we also evaluated (Dt2At)

21•s for a suitable source vector
and then took differences of the resulting numbers. The only
difference is that in the current-flow calculation we had a
sink term in s as well as a source. Purely for the purposes of
mathematical convenience, we can add such a sink in the
present case at the target vertex t—this makes no difference
to the solution for V since the tth row has been removed
from the equations anyway. By doing this, however, we turn
the equations into precisely the form of the current-flow cal-
culation, and hence it becomes clear that the two measures
are numerically identical, although their derivation is quite
different. ~It also immediately follows that we can remove
any row or column and still get the same answer—it does not
have to be row and column t, although physically this choice
makes the most sense.!

IV. QUANTIFYING THE STRENGTH

OF COMMUNITY STRUCTURE

As we show in Sec. V, our community structure algo-
rithms do an excellent job of recovering known communities
both in artificially generated random networks and in real-
world examples. However, in practical situations the algo-
rithms will normally be used on networks for which the com-
munities are not known ahead of time. This raises a new
problem: how do we know when the communities found by
the algorithm are good ones? Our algorithms always produce
some division of the network into communities, even in com-
pletely random networks that have no meaningful commu-
nity structure, so it would be useful to have some way of
saying how good the structure found is. Furthermore, the
algorithms’ output is in the form of a dendrogram which
represents an entire nested hierarchy of possible community
divisions for the network. We would like to know which of
these divisions are the best ones for a given network—where
we should cut the dendrogram to get a sensible division of
the network.

To answer these questions, we now define a measure of
the quality of a particular division of a network, which we
call the modularity. This measure is based on a previous
measure of assortative mixing proposed by Newman @34#.

Consider a particular division of a network into k communi-
ties. Let us define a k3k symmetric matrix e whose element
e i j is the fraction of all edges in the network that link verti-
ces in community i to vertices in community j @50#. ~Here we
consider all edges in the original network—even after edges
have been removed by the community structure algorithm,
our modularity measure is calculated using the full network.!

The trace of this matrix Tr e5(ie ii gives the fraction of
edges in the network that connect vertices in the same com-
munity, and clearly a good division into communities should
have a high value of this trace. The trace on its own, how-
ever, is not a good indicator of the quality of the division
since, for example, placing all vertices in a single community
would give the maximal value of Tr e51 while giving no
information about community structure at all.

So we further define the row ~or column! sums a i

5(je i j , which represent the fraction of edges that connect
to vertices in community i. In a network in which edges fall
between vertices without regard for the communities they
belong to, we would have e i j5a ia j . Thus we can define a
modularity measure by

Q5(
i

~e ii2a i
2!5Tr e2ie2i , ~5!

where ixi indicates the sum of the elements of the matrix x.
This quantity measures the fraction of the edges in the net-
work that connect vertices of the same type ~i.e., within-
community edges! minus the expected value of the same
quantity in a network with the same community divisions but
random connections between the vertices. If the number of
within-community edges is no better than random, we will
get Q50. Values approaching Q51, which is the maximum,
indicate networks with strong community structure @51#. In
practice, values for such networks typically fall in the range
from about 0.3 to 0.7. Higher values are rare.

The expected error on Q can be calculated by treating
each edge in the network as an independent measurement of
the contributions to the elements of the matrix e. A simple
jackknife procedure works well @34,35#.

Typically, we will calculate Q for each split of a network
into communities as we move down the dendrogram, and
look for local peaks in its value, which indicate particularly
satisfactory splits. Usually we find that there are only one or
two such peaks, and, as we will show in the next section, in
cases where the community structure is known beforehand
by some means, we find that the positions of these peaks
correspond closely to the expected divisions. The height of a
peak is a measure of the strength of the community division.

V. APPLICATIONS

In this section, we give a number of applications of our
algorithms to particular problems, illustrating their operation
and their use in understanding the structure of complex net-
works.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 ~2004!

026113-7

A. Tests on computer-generated networks

First, as a controlled test of how well our algorithms per-
form, we have generated networks with known community
structure, to see if the algorithms can recognize and extract
this structure.

We have generated a large number of graphs with n

5128 vertices, divided into four communities of 32 vertices
each. Edges were placed independently at random between
vertex pairs with probability p in for an edge to fall between
vertices in the same community and pout to fall between ver-
tices in different communities. The values of p in and pout

were chosen to make the expected degree of each vertex
equal to 16. In Fig. 6, we show a typical dendrogram from
the analysis of such a graph using the shortest-path between-
ness version of our algorithm. ~In fact, for the sake of clarity,
the figure is for a 64-node version of the graph.! Results for
the random-walk version are similar. At the right of the fig-
ure we also show the modularity, Eq. ~5!, for the same cal-
culation, plotted as a function of position in the dendrogram.
That is, the plot is aligned with the dendrogram so that one
can read off modularity values for different divisions of the
network directly. As we can see, the modularity has a single
clear peak at the point where the network breaks into four
communities, as we would expect. The peak value is around
0.5, which is typical.

In Fig. 7, we show the fraction of vertices in our
computer-generated network sample classified correctly into
the four communities by our algorithms, as a function of the
mean number zout of edges from each vertex to vertices in
other communities. As the figure shows, both the shortest-
path and random-walk versions of the algorithm perform ex-
cellently, with more than 90% of all vertices classified cor-
rectly from zout50 all the way to around zout56. Only for
zout*6 does the classification begin to deteriorate markedly.
In other words, our algorithm correctly identifies the com-
munity structure in the network almost all the way to the
point zout58 at which each vertex has on average the same

number of connections to vertices outside its community as it
does to those inside.

The shortest-path version of the algorithm does, however,
perform noticeably better than the random-walk version, es-
pecially for the more difficult cases where zout is large. Given
that the random-walk algorithm is also more computationally
demanding, there seems little reason to use it rather than the
shortest-path algorithm, and hence, as discussed previously,
we recommend the latter for most applications. ~To be fair,
the random-walk algorithm does slightly outperform the
shortest-path algorithm in the example addressed in the fol-
lowing section, although, being only a single case, it is hard

FIG. 6. Plot of the modularity and dendrogram for a 64-vertex random community-structured graph generated as described in the text

with, in this case, z in56 and zout52. The shapes at the bottom denote the four communities in the graph and, as we can see, the peak in the

modularity ~dotted line! corresponds to a perfect identification of the communities.

FIG. 7. The fraction of vertices correctly identified by our algo-

rithms in the computer-generated graphs described in the text. The

two curves show results for the shortest-path ~circles! and random-

walk ~squares! versions of the algorithm as a function of the num-

ber of edges the vertices have to others outside their own commu-

nity. The point zout58 at the rightmost edge of the plot represents

the point at which vertices have as many connections outside their

own community as inside it. Each data point is an average over 100

graphs.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 ~2004!

026113-8

to know whether this is significant.!

B. Zachary’s karate club network

We now turn to applications of our methods to real-world
network data. Our first such example is taken from one of the
classic studies in social network analysis. Over the course of
two years in the early 1970s, Wayne Zachary observed social
interactions between the members of a karate club at an
American university @36#. He constructed networks of ties
between members of the club based on their social interac-
tions both within the club and outside it. By chance, a dis-
pute arose during the course of his study between the club’s
administrator and its principal karate teacher over whether to
raise club fees, and as a result the club eventually split in
two, forming two smaller clubs, centered around the admin-
istrator and the teacher.

In Fig. 8, we show a consensus network structure ex-
tracted from Zachary’s observations before the split. Feeding
this network into our algorithms, we find the results shown in
Fig. 9. In the leftmost two panels, we show the dendrograms
generated by the shortest-path and random-walk versions of
our algorithm, along with the modularity measures for the
same. As we see, both algorithms give reasonably high val-
ues for the modularity when the network is split into two
communities—around 0.4 in each case—indicating that there
is a strong natural division at this level. What is more, the
divisions in question correspond almost perfectly to the ac-
tual divisions in the club revealed by which group each club
member joined after the club split up. ~The shapes of the
vertices representing the two factions are the same as those
of Fig. 8.! Only one vertex, vertex 3, is misclassified by the
shortest-path version of the method, and none are misclassi-
fied by the random-walk version—the latter gets a perfect
score on this test. ~On the other hand, the two-community
split fails to produce a local maximum in the modularity for
the random-walk method, unlike the shortest-path method,
for which there is a local maximum precisely at this point.!

In the last panel of Fig. 9, we show the dendrogram and

modularity for an algorithm based on shortest-path between-

ness but without the crucial recalculation step discussed in

Sec. II. As the figure shows, without this step, the algorithm

fails to find the division of the network into the two known

groups. Furthermore, the modularity does not reach nearly

such high values as in the first two panels, indicating that the

divisions suggested are much poorer than in the cases with

the recalculation.

C. Collaboration network

For our next example, we look at a collaboration network

of scientists. Figure 10~a! shows the largest component of a

network of collaborations between physicists who conduct

research on networks. ~The authors of the present paper, for

instance, are among the nodes in this network.! This network

~which appeared previously in Ref. @37#! was constructed by

taking names of authors appearing in the lengthy bibliogra-

phy of Ref. @4# and cross-referencing with the Physics e-print
Archive at arxiv.org, specifically the condensed-matter sec-
tion of the archive, where, for historical reasons, most papers
on networks have appeared. Authors appearing in both were
added to the network as vertices, and edges between them
indicate coauthorship of one or more papers appearing in the
archive. Thus the collaborative ties represented in the figure
are not limited to papers on topics concerning networks—we
were interested primarily in whether people know one an-
other, and collaboration on any topic is a reasonable indica-
tor of acquaintance.

The network as presented in Fig. 10~a! is difficult to in-
terpret. Given the names of the scientists, knowledgeable
readers with too much time on their hands could, no doubt,
pick out known groupings, for instance at particular institu-
tions, from the general confusion. But were this a network
about which we had no a priori knowledge, we would be
hard pressed to understand its underlying structure.

Applying the shortest-path version of our algorithm to this
network, we find that the modularity, Eq. ~5!, has a strong
peak at 13 communities with a value of Q50.7260.02. Ex-
tracting the communities from the corresponding dendro-
gram, we have indicated them with colors in Fig. 10~b!. The
knowledgeable reader will again be able to discern known
groups of scientists in this rendering, and more easily now
with the help of the colors. Still, however, the structure of the
network as a whole and of the interactions between groups is
quite unclear.

In Fig. 10~c!, we have reduced the network to only the
groups. In this panel, we have drawn each group as a circle,
with size varying roughly with the number of individuals in
the group. The lines between groups indicate collaborations
between group members, with the thickness of the lines
varying in proportion to the number of pairs of scientists
who have collaborated. Now the overall structure of the net-
work becomes easy to see. The network is centered around
the large group in the middle ~which consists of researchers
primarily in southern Europe!, with a knot of intercommu-
nity collaborations going on between the groups on the lower
right of the picture ~mostly Boston University physicists and

FIG. 8. The network of friendships between individuals in the

karate club study of Zachary @36#. The administrator and the in-

structor are represented by nodes 1 and 33, respectively. Shaded

squares represent individuals who ended up aligning with the club’s

administrator after the fission of the club, open circles those who

aligned with the instructor.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 ~2004!

026113-9

their intellectual descendants!. Other groups ~including the

authors’ own! are scattered further out and more loosely con-

nected to one another.

One of the problems created by the sudden availability in

recent years of large network data sets has been our lack of

tools for visualizing their structure @4#. In the early days of

network analysis, particularly in the social sciences, it was

usually enough simply to draw a picture of a network to see

what was going on. Networks in those days had ten or

twenty nodes, not 140 as here, or several billion as in the

world wide web. We believe that methods like the one pre-

sented here, of using community structure algorithms to

make a meaningful ‘‘coarse graining’’ of a network, thereby

reducing its level of complexity to one that can be inter-

preted readily by the human eye, will be invaluable in help-

ing us to understand the large-scale structure of these new

network data.

D. Other examples

In this section, we briefly describe example applications

of our methods to three further networks. The first is a non-

human social network, a network of dolphins, the second a

network of fictional characters, and the third not a social

network at all, but a network of web pages and the links

between them.

In Fig. 11, we show the social network of a community of

62 bottlenose dolphins living in Doubtful Sound, New
Zealand. The network was compiled by Lusseau @38# from
seven years of field studies of the dolphins, with ties between
dolphin pairs being established by observation of statistically
significant frequent association. The network splits naturally
into two large groups, represented by the circles and squares
in the figure, and the larger of the two also splits into four
smaller subgroups. The modularity is Q50.3860.08 for the
split into two groups, and peaks at 0.5260.03 when the sub-

FIG. 9. Community structure in the karate club network. Left: the dendrogram extracted by the shortest-path betweenness version of our

method and the resulting modularity. The modularity has two maxima ~dotted lines! corresponding to splits into two communities ~which

match closely the real-world split of the club, as denoted by the shapes of the vertices! and five communities ~though one of those five

contains only one individual!. Only one individual, number 3, is incorrectly classified in the two-community split. Center: the dendrogram

for the random-walk version of our method. This version classifies all 34 vertices correctly into the factions that they actually split into ~first

dotted line!, although the split into four communities gets a higher modularity score ~second dotted line!. Right: the dendrogram for the

shortest-path algorithm without recalculation of betweennesses after each edge removal. This version of the calculation fails to find the split

into the two factions.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 ~2004!

026113-10

FIG. 10. Illustration of the use of the community-structure algorithm to make sense of a complex network. ~a! The initial network is a

network of coauthorships between physicists who have published on topics related to networks. The figure shows only the largest component

of the network, which contains 145 scientists. There are 90 more scientists in smaller components, which are not shown. ~b! Application of

the shortest-path betweenness version of the community-structure algorithm produces the communities indicated by the shades of the

vertices. ~c! A coarse-graining of the network in which each community is represented by a single node, with edges representing collabo-

rations between communities. The thickness of the edges is proportional to the number of pairs of collaborators between communities.

Clearly panel ~c! reveals much that is not easily seen in the original network of panel ~a!.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 ~2004!

026113-11

group splitting is included also.

The split into two groups appears to correspond to a

known division of the dolphin community @39#. Lusseau re-

ports that for a period of about two years during observation

of the dolphins they separated into two groups along the

lines found by our analysis, apparently because of the disap-

pearance of individuals on the boundary between the groups.

When some of these individuals later reappeared, the two

halves of the network joined together once more. As Lusseau

points out, developments of this kind illustrate that the dol-

phin network is not merely a scientific curiosity but, like

human social networks, is closely tied to the evolution of the

community. The subgroupings within the larger half of the

network also seem to correspond to real divisions among the

animals: the largest subgroup consists almost of entirely of

females and the others almost entirely of males, and it is

conjectured that the split between the male groups is gov-
erned by matrilineage @D. Lusseau ~personal communica-
tion!#.

Figure 12 shows the community structure of the network
of interactions between major characters in Victor Hugo’s
sprawling novel of crime and redemption in post-restoration

FIG. 11. Community structure in the bottlenose dolphins of

Doubtful Sound @38,39#, extracted using the shortest-path version of

our algorithm. The squares and circles denote the primary split of

the network into two groups, and the circles are subdivided further

into four smaller groups as shown. The modularity for the split is

Q50.52. The network has been drawn with longer edges between

vertices in different communities than between those in the same

community, to make the community groupings clearer. The same is

also true of Figs. 12 and 13.

FIG. 12. The network of interactions between major characters in the novel Les Misérables by Victor Hugo. The greatest modularity

achieved in the shortest-path version of our algorithm is Q50.54 and corresponds to the 11 communities shown.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 ~2004!

026113-12

France, Les Misérables. Using the list of character appear-
ances by scene compiled by Knuth @40#, the network was
constructed in which the vertices represent characters and an
edge between two vertices represents coappearance of the
corresponding characters in one or more scenes. The optimal
community split of the resulting graph has a strong modular-
ity of Q50.5460.02, and gives 11 communities as shown in
the figure. The communities clearly reflect the subplot struc-
ture of the book: unsurprisingly, the protagonist, Jean Val-
jean, and his nemesis, the police officer Javert, are central to
the network and form the hubs of communities composed of
their respective adherents. Other subplots centered on
Marius, Cosette, Fantine, and the bishop Myriel are also
picked out.

Finally, as an example of the application of our method to
a nonsocial network, we have looked at a web graph—a
network in which the vertices and edges represent web pages
and the links between them. The graph in question represents
180 pages from the web site of a large corporation @52#.
Figure 13 shows the network and the communities found in
it by the shortest-path version of our algorithm. This network
has one of the strongest modularity values of the examples
studied here, at Q50.6560.02. The links between web
pages are directed, as indicated by the arrows in the figure,
but, as discussed in Sec. III A, for the purposes of finding the
communities, we ignore direction and treat the network as
undirected.

Certainly it might be useful to know the communities in a
web network; an algorithm that can pick out communities
could reveal which pages cover related topics or the social
structure of links between pages maintained by different in-
dividuals. Ideas along these lines have been pursued by, for
example, Flake et al. @41# and Adamic and Adar @42#.

VI. CONCLUSIONS

In this paper, we have described a new class of algorithms
for performing network clustering, the task of extracting the
natural community structure from networks of vertices and

edges. This is a problem long studied in computer science,

applied mathematics, and the social sciences, but it has

lacked a satisfactory solution. We believe the methods de-

scribed here give such a solution. They are simple, intuitive,

and demonstrably give excellent results on networks for

which we know the community structure ahead of time. Our

methods are defined by two crucial features. First, we use a

‘‘divisive’’ technique that iteratively removes edges from the
network, thereby breaking it up into communities. The edges
to be removed are identified using one of a set of edge be-
tweenness measures, of which the simplest is a generaliza-
tion to edges of the standard shortest-path betweenness of
Freeman @27#. Second, our algorithms include a recalculation
step in which betweenness scores are reevaluated after the
removal of every edge. This step, which was missing from
previous algorithms, turns out to be of primary importance to
the success of ours. Without it, the algorithms fail miserably
at even the simplest clustering tasks.

We have demonstrated the efficacy and utility of our
methods with a number of examples. We have shown that
our algorithms can reliably and sensitively extract commu-
nity structure from artificially generated networks with
known communities. We have also applied them to real-
world networks with known community structure and again
they extract that structure without difficulty. And we have
given examples of how our algorithms can be used to ana-
lyze networks whose structure is otherwise difficult to com-
prehend. The networks studied include a collaboration net-
work of scientists, in which our methods allow us to generate
schematic depictions of the overall structure of the network
and collaborations taking place within and between commu-
nities, other social networks of people and of animals, and a
network of links between pages on a corporate web site.

The primary remaining difficulty with our algorithms is
the relatively high computational demands they make. The
fastest of them, the one based on shortest-path betweenness,
operates in O(n3) time on a sparse graph, which makes it
usable for networks up to about 10 000 vertices, but for
larger systems it becomes intractable. Although the ever-
improving speed of computers will certainly raise this limit
in coming years, it would be more satisfactory if a faster
version of the method could be discovered. One possibility is
parallelization: the betweenness calculation involves a sum
over source vertices and the elements of that sum can be
distributed over different processors, making the calculation
trivially parallelizable on a distributed-memory machine.
However, a better approach would be to find some improve-
ment in the algorithm itself to decrease its computational
complexity.

Since the publication of our first paper on this topic @25#,
several other authors have made use of the shortest-path ver-
sion of our algorithm. Holme et al. @43# have applied it to a
number of metabolic networks for different organisms, find-
ing communities that correspond to functional units within
the networks, while Wilkinson and Huberman @44# have ap-
plied it to a network of relations between genes, as estab-
lished by the co-occurrence of names of genes in published
research articles. An interesting application to social net-
works is the study by Gleiser and Danon @45# of the collabo-

FIG. 13. Pages on a web site and the hyperlinks between them.

The different shades denote the optimal division into communities

found by the shortest-path version of our algorithm.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 ~2004!

026113-13

ration network of early jazz musicians. They found, among
other things, that the network split into two communities
along lines of race, with black musicians in one group and
white musicians in the other. Guimerà et al. @46# have ap-
plied the method to a network of email messages passing
between users at a university, and found communities that
reflect both formal and informal levels of organization. Tyler
et al. @47# have also applied the algorithm to an email net-
work, in their case at a large company, finding that the re-
sulting communities correspond closely to organizational
units. The latter work is interesting also in that it suggests a
method for improving the speed of the algorithm. Tyler et al.

calculate betweenness for only a subset, randomly chosen, of
possible source vertices in the network, rather than summing
over all sources. The size of the subset is decided on the fly,
by sampling source vertices until the betweenness of at least
one edge in the network exceeds a predetermined threshold.
This technique reduces the running time of the calculation
considerably, although the resulting estimate of betweenness

necessarily suffers from the statistical fluctuations inherent in
random sampling methods. This idea, or a variation of it,
might provide a solution to the problems mentioned above of
the high computational demands of our algorithms.

We are, of course, delighted to see our methods applied to
such a variety of problems. Combined with the algorithms
and measures described in this paper, we hope to see many
more applications in the future.

ACKNOWLEDGMENTS

The authors thank Steven Borgatti, Ulrik Brandes, Linton
Freeman, David Lusseau, Mason Porter, and Douglas White
for useful comments. Thanks also to Oliver Boisseau, Patti
Haase, David Lusseau, and Karsten Schneider for providing
the data for the dolphin network and to Douglas White for
the karate club data. This work was funded in part by the
National Science Foundation under Grant No. DMS-
0234188 and by the Santa Fe Institute.

@1# S. H. Strogatz, Nature ~London! 410, 268 ~2001!.

@2# R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 ~2002!.

@3# S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks:

From Biological Nets to the Internet and WWW ~Oxford Uni-

versity Press, Oxford, 2003!.

@4# M. E. J. Newman, SIAM Rev. 45, 167 ~2003!.

@5# M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. Com-

mun. Rev. 29, 251 ~1999!.

@6# R. Albert, H. Jeong, and A.-L. Barabási, Nature ~London! 401,

130 ~1999!.

@7# A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajago-

palan, R. Stata, A. Tomkins, and J. Wiener, Comput. Netw. 33,

309 ~2000!.

@8# A. Kleczkowski and B. T. Grenfell, Physica A 274, 355 ~1999!.

@9# C. Moore and M. E. J. Newman, Phys. Rev. E 61, 5678 ~2000!.

@10# R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86,

3200 ~2001!.

@11# R. M. May and A. L. Lloyd, Phys. Rev. E 64, 066112 ~2001!.

@12# S. Redner, Eur. Phys. J. B 4, 131 ~1998!.

@13# M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 98, 404

~2001!.

@14# H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Bara-

bási, Nature ~London! 407, 651 ~2000!.

@15# A. Wagner and D. Fell, Proc. R. Soc. London, Ser. B 268, 1803

~2001!.

@16# J. A. Dunne, R. J. Williams, and N. D. Martinez, Proc. Natl.

Acad. Sci. U.S.A. 99, 12 917 ~2002!.

@17# J. Camacho, R. Guimerà, and L. A. N. Amaral, Phys. Rev. Lett.

88, 228102 ~2002!.

@18# M. R. Garey and D. S. Johnson, Computers and Intractability:

A Guide to the Theory of NP-Completeness ~Freeman, San

Francisco, 1979!.

@19# J. Scott, Social Network Analysis: A Handbook, 2nd ed. ~Sage

Publications, London, 2000!.

@20# B. W. Kernighan and S. Lin, Bell Syst. Tech. J. 49, 291 ~1970!.

@21# D. J. Watts and S. H. Strogatz, Nature ~London! 393, 440

~1998!.

@22# L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley,

Proc. Natl. Acad. Sci. U.S.A. 97, 11149 ~2000!.

@23# M. Marchiori and V. Latora, Physica A 285, 539 ~2000!.

@24# R. L. Breiger, S. A. Boorman, and P. Arabie, J. Math. Psychol.

12, 328 ~1975!.

@25# M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A.

99, 7821 ~2002!.

@26# J. M. Anthonisse, Technical Report BN 9/71, Stichting Math-

ematicsh Centrum, Amsterdam ~1971! ~unpublished!.

@27# L. C. Freeman, Sociometry 40, 35 ~1977!.

@28# R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:

Theory, Algorithms, and Applications ~Prentice Hall, Upper

Saddle River, NJ, 1993!.

@29# T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, 2nd ed. ~MIT Press, Cambridge,

MA, 2001!.

@30# M. E. J. Newman, Phys. Rev. E 64, 016132 ~2001!.

@31# U. Brandes, J. Math. Sociol. 25, 163 ~2001!.

@32# K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87, 278701

~2001!.

@33# B. Bollobás, Modern Graph Theory ~Springer, New York,

1998!.

@34# M. E. J. Newman, Phys. Rev. E 67, 026126 ~2003!.

@35# B. Efron, SIAM Rev. 21, 460 ~1979!.

@36# W. W. Zachary, J. Anthropol. Res. 33, 452 ~1977!.

@37# J. Park and M. E. J. Newman, Phys. Rev. E 68, 026112 ~2003!.

@38# D. Lusseau, Proc. R. Soc. London, Ser. B ~Suppl.! 270, S186

~2003!.

@39# D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten,

and S. M. Dawson, Behav. Ecol. Sociobiol. 54, 396 ~2003!.

@40# D. E. Knuth, The Stanford GraphBase: A Platform for Combi-

natorial Computing ~Addison-Wesley, Reading, MA, 1993!.

@41# G. W. Flake, S. R. Lawrence, C. L. Giles, and F. M. Coetzee,

IEEE Computer 35, 66 ~2002!.

@42# L. A. Adamic and E. Adar, Soc. Networks 25, 211 ~2003!.

@43# P. Holme, M. Huss, and H. Jeong, Bioinformatics 19, 532

~2003!.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 ~2004!

026113-14

@44# D. Wilkinson and B. A. Huberman, e-print cond-mat/0210147.

@45# P. Gleiser and L. Danon, e-print cond-mat/0307434.

@46# R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt, and A. Are-

nas, Phys. Rev. E 65, 065103 ~2003!.

@47# J. R. Tyler, D. M. Wilkinson, and B. A. Huberman, in Proceed-

ings of the First International Conference on Communities and

Technologies, edited by M. Huysman, E. Wenger, and V. Wulf

~Kluwer, Dordrecht, 2003!.

@48# Following the publication of Ref. @25#, the algorithm has been

implemented in the software packages UCINET and NETDRAW

and in the open-source network library JUNG. ~See http://

www.analytictech.com/ and http://jung.sourceforge.net/.!

@49# In fact, we have tried counting each traversal separately, but

this method gives extremely poor results, confirming our intu-

ition that this would not be a good betweenness measure.

@50# As discussed in @34#, it is crucial to make sure each edge is

counted only once in the matrix e i j—the same edge should not

appear both above and below the diagonal. Alternatively, an

edge linking communities i and j can be split, half-and-half,

between the ij and ji elements, which has the advantage of

making the matrix symmetric. Either way, there are a number

of factors of 2 in the calculation that must be watched care-

fully, lest they escape one’s attention and make mischief.

@51# In Ref. @34#, the measure was normalized by dividing by its

value on a network with perfect mixing, so that we always get

1 for such a network. We find, however, that doing this in the

present case masks some of the useful information to be gained

from the value of Q, and hence that it is better to use the

unnormalized measure. In general, this unnormalized measure

will not reach a value of 1, even on a perfectly mixed network.

@52# The graph is one of the test graphs from the graph drawing

competition held in conjunction with the Symposium on Graph

Drawing, Berkeley, California, September 18–20, 1996.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 ~2004!

026113-15

