
Finding and Fixing Java Naming
Bugs with the Lancelot Eclipse Plugin

Edvard K. Karlsen
Sør-Trøndelag University College,

Norway
edvardkk@stud.hist.no

Einar W. Høst
Computas AS, Norway
einarwh@gmail.com

Bjarte M. Østvold
Norwegian Computing Center, Norway

bjarte@nr.no

Abstract
The Lancelot plugin extends the integrated development environ-
ment Eclipse with support for finding and fixing ‘naming bugs’ in
Java programs. A naming bug is a mismatch between the name and
implementation of a method, in the sense that the pairing of name
and implementation do not correspond to the implicit method nam-
ing conventions used by many well-known open source applica-
tions.

Lancelot has not been presented before, but its theoretical foun-
dations and evaluation have been published [4]. The contribution
of the present paper is to present a publicly available tool building
on our theory, explain the design of the tool, including some nec-
essary adaptations to the interactive use setting, and report on our
experience with it. The source code of Lancelot is available under
an open source license.

Categories and Subject Descriptors D.2.6 [Programming Envi-
ronments]: Interactive environments; D.2.5 [Testing and Debug-
ging]: Debugging aids; F.3.2 [Semantics of Programming Lan-
guages]: Program analysis

General Terms Design, Languages

Keywords Naming bugs, Eclipse, Java

1. Introduction
We present Lancelot, a plugin that extends the state-of-the-art in-
tegrated development environment Eclipse with support for finding
and fixing ‘naming bugs’ in Java programs. Previously, we have
published on the theory of naming bugs and put the theory to use
to find such bugs in many open source Java applications [4, 3]. The
contribution of the present paper is to present a publicly available
tool building on our theory, explain the design of the tool, includ-
ing some necessary adaptations to the setting of interactive use,
and report on our experience with its use. The Lancelot web-site is
http://code.google.com/p/lancelot-eclipse/.

The next two sub-sections explain what we mean by ‘good
names’ and what naming bugs are. Then, Section 2 presents the
application-independent analysis required before using Lancelot on
a concrete Java application. Section 3 explains the inner working of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’12, January 23–24, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1118-2/12/01. . . $10.00

Lancelot, specifically how it finds and fixes naming bugs. Section 4
shows Lancelot in use on a real Java application and Section 5
discusses future work on the plugin. Appendix A explains how to
get hold of Lancelot, both as a binary for Eclipse and as source
code.

1.1 Good names
Industrial practitioners argue for using good names in program-
ming [1, 8, 9] and there is research showing that identifier quality
affects our ability to comprehend programs [6]. Yet programmers
looking for guidance can do little better than looking at naming
convention documents, such as those provided for Java. Here is a
typical quote for the kind of advice in such documents: “Except
for variables, all instance, class, and class constants are in mixed
case with a lowercase first letter.”1 There are tools that help pro-
grammers be lexically consistent with these and other conventions.
There has, however, not been any tools that help programmers write
meaningful identifiers. Lancelot is such a tool.

An identifier represents some program entity. We may use the
identifier to refer to that entity, and thus the identifier is also an
abstraction of the entity. The meaning we as programmers assign
to the identifier is connected to the meaning of the entity, that is,
its implementation. As programmers we also expect the abstraction
to be sound: the identifier must be a suitable replacement for the
entity. So we have two criteria for a good name: First, the name
should be meaningful, that is, a programmer can to some extent
understand a program entity from its name. Second, the name
should be appropriate for the program entity in question, that is, it
should faithfully describe the named entity and not be misleading.

1.2 Naming bugs
Consider the following example, taken from AspectJ 1.6.11, where
the method name has been replaced by underscores:

/**
* @return field object with given name, or null
*/
public Field ___(String name) {

for (Iterator e = this.field_vec.iterator();
e.hasNext();) {

Field f = (Field) e.next();
if (f.getName().equals(name))

return f;
}
return null;

}

1 http://www.oracle.com/technetwork/java/
codeconventions-135099.html

35

Most Java programmers will be able to give a name to this
method: clearly, this is a find method. We would probably name
it findField since it is a method that tries to find a Field. In
AspectJ, however, the name used is containsField. This is an
example of what we call a naming bug, since the name is not ap-
propriate. The name containsField is a question that expects
a Boolean reply (“Do you [the object] contain a field with this
name?”), rather than an instruction to return an object (“Find me
the field with this name.”).

Other kinds of naming bugs are unintelligible method names
(frobNitz, foo) and too generic method names (doThings). A
programmer cannot assign meaning to such identifiers as their
names are meaningless. Good names, however, must be meaning-
ful.2

2. Rule book generation
This section explains how we build rules for checking Java pro-
grams for naming bugs, drawing on our previous work [4]. Our un-
derlying assumption is that good names are derivable from a soft-
ware corpus of 100 well-known Java applications [4, Table 7] with
over one million methods. Consider the three-phase process de-
picted in Figure 1. Rule book generation consists of phase one and
phase two; the third phase, finding naming bugs, is explained later
in Section 3.

CodeName Phrase
Corpus

SemanticsPhrase
Derive
Rules

Prepare Generate

semantic
abstraction

grammatical
analysis refinequalifies?

Identify

SemanticsPhrase

Rules

lookup check

Software
Corpus

Method
Corpus

Rule
Book

Naming
Bugs

Figure 1. Overview of the naming bug checking process.

In the first phase (Section 2.1) we transform the software cor-
pus into a method corpus, where method names and method imple-
mentations are replaced by idealised versions. In the second phase
(Section 2.2) we make naming rules by examining the semantics
of methods with similar names. The third phase (Section 3) in-
volves checking a specific Java application for naming bugs using
Lancelot. This means looking for methods that break the naming
rules.

2.1 Building the method corpus
In the method corpus names and method implementations are re-
placed by idealised versions. First, we analyse the method name,
splitting it into individual words and doing a part-of-speech anal-
ysis [7] to tag those words with information about their grammat-
ical role in the name. That is, we do natural language analysis of
the method name, and tag individual words with their role in the
‘name sentence’. A tag is either a grammatical element (‘verb’,
‘noun’, ‘adjective’, ‘adverb’, etc.) or one of the special tags: ‘type’
signifying a Java type in the scope of the method, ‘number’ sig-
nifying a numeric value, or ‘unknown’ signifying that the anal-
ysis was unable to tag that word. Tag candidates for individual
words are found using WordNet [2] and a hand-made dictionary
of programming-specific terms. In the corpus of idealised methods,
each method name, for example, the name findField, is replaced
by a list of tagged words like ‘find-field’ with tags ‘verb’ and

2 Note that these degenerate names are not in any way excluded from our
analysis.

‘type’. This allows us to abstract names into phrases by replacing
one or more words in a name by tags or by the wildcard symbol
‘*’. For example, the phrase ‘is-*’ is more abstract than the phrase
‘is-〈adjective〉’, which again is more abstract than the name ‘is-
empty’. We also say that a more general phrase matches a more
specific phrase or a name.

Second, we analyse the method implementation, that is, the
method signature and its Java bytecode. Comparing regular method
implementations is infeasible3, so in the method corpus we replace
each method implementation with a vector of binary numbers,
called a semantic profile. Corresponding to each bit position of the
vector is a property. A bit is set in the semantic profile of a method
m if m has the corresponding property. The value of each property
is determined by method-local static analysis. A semantic profile
is an abstraction of a method’s behaviour, and comparing method
implementations via their semantic profiles is simple. The list of
properties used in semantic profiles appear in Table 1. The choice
of properties is based on our knowledge of Java programming.

Signature
Returns void* Returns reference
Returns int Returns boolean
Returns string No parameters*
Return type in name Parameter type in name

Data Flow
Reads field* Writes field*
Writes parameter value to field Returns field value
Returns created object Runtime type check*

Object Creation
Creates regular objects* Creates string objects
Creates custom objects Creates own type objects

Control Flow
Contains loop* Contains branch
Multiple return points*

Exception Handling
Throws exceptions* Catches exceptions*
Exposes checked exceptions

Method Call
Recursive call* Same name call*
Same verb call* Method call on field value
Method call on parameter value Parameter value passed to method

call on field value

Table 1. Properties divided into groups. Orthogonal properties in
a group are marked with an asterisk.

2.2 Creating the rule book
Naming rules for good names are derived for each prevalent phrase
in the method corpus. Since a phrase can match several methods,
the number of prevalent phrases is larger than the number of preva-
lent method names, allowing us to make more rules than if we were
to consider regular names. Prevalent phrases become part of a cor-
pus ‘rule book’ together with rules for good use of the phrase. The
intuition is that all methods whose name are matched by a phrase
must obey the corresponding rules.

We divide the method corpus into sub-corpora corresponding
to non-overlapping phrases. Looking at one such phrase corpus,
and one property, we find the frequency values for the property by
considering each semantic profile in that corpus. The intuition of
this frequency value is that it gives the probability that the property
holds for methods in the phrase corpus. A frequency value close
to 0 means that it is rare for methods in the phrase corpus to have

3 One of several problems with comparing regular method implementations
is that equality is not generally decidable. Also, we want a coarser notation
of equality than semantic identity in order to effectively group and compare
implementations.

36

the corresponding property, and a value close to 1 means that it
is common for the methods to have the property. Thus, each rule
requires either inclusion or omission of a specific property. From
this we make rules for each phrase-property combination. The rule
set of a phrase is the set of all rules found for all properties in
Table 1.

An example of a rule is that a method whose name is matched
by the phrase ‘contains-*’ should have the property ‘Returns
boolean’. This rule was broken by the AspectJ method implemen-
tation shown in Section 1.2.

To illustrate how to generate a rule book, consider this contrived
mini-corpus:

{(‘find’, 100), (‘find-field’, 101), (‘find-element’, 101)}
Here each tuple contains a method name and a three-bit vector that
is the semantic profile of the method. If we assume the tags of both
‘field’ and ‘element’ being ‘type’, rule set generation yields two in-
teresting phrases: ‘find-*’ and ‘find-[type]-*’. The phrases’ cor-
responding rule sets follow from the semantic profiles: The ‘find-
*’ rule set enforces semantic property one and forbids semantic
property two, but includes no rule for semantic property three since
the corpus is inconclusive for methods matching ‘find-*’. How-
ever, in the narrower ‘find-[type]-*’ sub-corpus property three is
always present, and the ‘find-[type]-*’ rule set will enforce it.

3. Lancelot
Our primary motivation for Lancelot has been to create a tool
that lets Java programmers use our research results in day-to-day
development work. We want to give them immediate feedback
each time they write a method, as well as allow them to analyse
methods in a batch run. We target Eclipse, a well-known and widely
used open-source integrated development environment for Java
programming.

We hope also that our experiences with making such a tool is
of interest to other researches that want to make their program
analyses available inside Eclipse.

3.1 Finding and fixing naming bugs
Lancelot finds and fixes naming bugs as a three-step process: Given
some method we first analyse its method name using part-of-speech
tagging, obtaining a phrase, and then we analyse the method im-
plementation, yielding a semantic profile. This step is the same as
when building the method corpus (Section 2.1). Then, in the sec-
ond step, we search the rule book for a maximally specific matching
phrase for the method’s name. Last, in the third step, we consider
each rule in the phrase’s rule set, and record every case where the
semantic profile disagrees with the omission or inclusion of a prop-
erty mandated by the rule set. These cases are called rule violations.

While Lancelot’s approach to finding naming bugs corresponds
exactly to the one presented in our earlier work [4, 3], its approach
to fixing4 naming bugs differs slightly. In our previous work we
relied upon data about all methods in the corpus when proposing
naming bug fixes. This large amount of data is not practical to in-
clude in an Eclipse plugin. Instead, we construct an ‘inverse rule
book’, that is, a partial function mapping a subset of semantic pro-
files to lists of ‘suitable’ phrases. We build this semantic map in two
steps. First, we consider each phrase corpus (found as discussed in
Section 2.2), and register all prevalent relations between seman-
tic profiles and phrases. For instance, one such relation could be
that the semantic profile 〈Returns boolean,¬(Contains branch)〉
occurs 43 times together with the name is-consistent. Second,

4 Rather than fixing naming bugs, Lancelot proposes suggestions as to how
bugs may be fixed. It is up to the programmer to judge the suggestions and
make the actual fix.

we process this data set, building ordered ‘suggestion lists’: We sort
the lists on prevalence, remove seldom-seen semantic profiles and
reduce families of specific, but similar phrases to unifying, general
forms. This pruning produces suggestion lists which mainly consist
of the most prevalent basic verbs. Our experience is that, despite the
pruning, this alternative approach does capture the essence of the
previous corpus-based approach for fixing naming bugs.

3.2 Lancelot’s design
The Lancelot plugin consists of two main components: The Lancelot
Engine, which implements the naming bug analysis as described in
previous sections; and the Lancelot Eclipse Plugin, the component
that integrates this engine into the Eclipse Java IDE. In addition
to these two components, Lancelot also has an off-line component
used for generating the rule book.

Lancelot Engine consists of several sub-systems:

• The analysis core, built around the ASM Bytecode framework.5

• Implementations of the part-of-speech tagger, rule book and
semantic map, as specified in previous sections.

• The facade, the publicly exposed entry-point which orches-
trates operation of the other sub-systems. Colloquially speak-
ing, it is a component that produces naming bug reports given
JVM bytecode.

Although currently packaged as an Eclipse plugin, Lancelot Engine
is oblivious of the surrounding Eclipse context, and may easily be
integrated in other contexts, for instance as an Ant or Maven plugin,
or as a stand-alone tool.

We do not discuss the design of Lancelot’s Eclipse-specific
component, because such a discussion would require an introduc-
tion to Eclipse’s plugin architecture, but we comment on our expe-
rience with targeting an interactive static analysis tool to Eclipse.

3.3 Notes on implementation
In general, the development of the Eclipse integration was un-
problematic. Although a voluminous project, Eclipse is well-
documented. However, we faced some difficulties. The primary
one was managing the relation between Eclipse’s various mod-
els of the code and Lancelot Engine’s model: While extracting
JVM bytecode from Eclipse’s Java model proved easy, relating the
types and methods in the analysis results to their corresponding
elements in the model was definitely non-trivial (primarily because
of type erasure). Although Eclipse has relatively good support
for resolving type names in various contexts, we found that these
procedures could be quite slow, and we had to implement alterna-
tive solutions in several places. A related and difficult problem is
to identify anonymous classes. To address this, both Lancelot and
FindBugs [5] use modifications of a 500-line snippet that originated
in the Bytecode Outline plugin6.

Despite the mentioned problems and the unfortunate workarounds,
we are satisfied with the resulting design and implementation of the
Eclipse integration. The great majority of the code could easily be
re-used in other static analysis tools. Lancelot Eclipse Plugin spe-
cific parts currently comprises two thousand lines of Java code,
while Lancelot Engine comprises five thousand.

4. Using Lancelot
Lancelot extends the context menus of Eclipse’s Project/Package
Explorer views with options for running analysis, clearing naming
bug markers, and—if a project is selected—enabling or disabling
whole-project automatic analysis.

5 http://asm.ow2.org/
6 http://andrei.gmxhome.de/bytecode/

37

Lancelot is closely integrated with Eclipse’s Java development
environment: Naming bugs show up in Java editors as markers
on affected elements, while alternative name suggestions appear
as marker resolutions or ‘quick fixes’. Lancelot has two kinds of
marker resolutions: First, to suppress false positive, there are ‘sup-
press warnings’ resolutions, which, when invoked, adds a Lancelot-
specific SuppressWarnings annotation7 to affected methods.8

Second, there are ‘renaming resolutions’, which Lancelot adds after
finding potentially better-fitting phrases during analysis. Invoking
one of those opens Eclipse’s standard ‘Rename method’ dialogue,
so that the user may concretise and customise the proposed phrase.

Lancelot may run automatically or manually. In automatic
mode, analysis runs each time a project is built, giving instant feed-
back during development. In manual mode, users manually select
resources and invoke Lancelot through a menu option. Depending
on task and intention, users will probably find one mode of opera-
tion more relevant than the other. Analysts and testers are likely to
find manual mode the best fit, while developers actively working
on code probably consider automatic feedback most useful.

4.1 Example use of Lancelot
To illustrate Lancelot, we analyse the sub-component of AspectJ
1.6.11 that contains the naming bug discussed in the introduction
(specifically, this is the Apache Commons BCEL, included as part
of AspectJ). In our explanation here, we focus on how the naming
bug manifests itself in the analysis results, illustrating how the rule
book violations and alternative name suggestions are presented.

First, we import the code for the BCEL component and its de-
pendencies into Eclipse, and assert that Eclipse reports no build
errors. Second, we select the package org.aspectj.apache.
bcel.generic in the project menu and invoke Lancelot on the
package from the context menu.

After about three seconds of processing, the package’s naming
bugs appear in Eclipse’s problem marker listing.9 Here Lancelot
reports the naming bug discussed in the introduction, for the
containsField method on the ClassGen class. If we then nav-
igate to this bug’s marker in the Java editor, Eclipse presents a
pop-up dialogue with a textual description of the naming bug
and several resolutions, as illustrated in Figure 2. First, if the
user considers the bug report a false positive, she may insert
Lancelot’s SuppressWarnings annotation. Alternatively, the user
may choose one of the alternative name suggestions and change the
name of the method accordingly using Eclipse’s standard renaming
refactoring.

Figure 2. A naming bug with possible fixes for the method name.

7 http://download.oracle.com/javase/6/docs/api/java/lang/
SuppressWarnings.html
8 Whether using in-code annotations for ignoring, as well as piggybacking
onto java.lang’s SuppressWarnings, is a viable solution is open to
debate. We decided to settle with this relatively simple solution, but we
remain interested in alternative solutions.
9 Alternatively, a very simple view that exclusively shows naming bug
markers may be opened from the ‘Show view’ sub-menu in Eclipse’s top
bar.

5. Discussion
Further work on Lancelot will take two main directions: Improving
rule book generation and improving the plugin itself. The rule book
should be generated with a more recent and independent corpus,
such as the Qualitas corpus [10]. Also, we would like to investigate
the degree of ‘convergence’ of the rule book when enough applica-
tions are added to the corpus, similar to the central limit theorem of
probability theory. Furthermore, we will investigate more closely
the nature of naming bugs, for example, how can they be classified,
and we will work on systematically measuring false positives.

We would also like to conduct a case study in which developers
unfamiliar with Lancelot use the plugin on their own source code.
This would allow us to learn more about user benefits and expecta-
tions, and it would point us to parts needing improvement in both
Lancelot’s user interface and the underlying theory.

References
[1] K. Beck. Implementation Patterns. Addison-Wesley Professional,

2007.

[2] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press,
1998.

[3] E. W. Høst. Meaningful Method Names. PhD thesis, University of
Oslo, 2011. http://urn.nb.no/URN:NBN:no-27629.

[4] E. W. Høst and B. M. Østvold. Debugging method names. In
S. Drossopoulou, editor, Proceedings of the 23rd European Con-
ference on Object-Oriented Programming, volume 5653 of Lecture
Notes in Computer Science, pages 294–317. Springer, 2009.

[5] D. Hovemeyer and W. Pugh. Finding bugs is easy. In J. M. Vlissides
and D. C. Schmidt, editors, OOPSLA Companion, pages 132–136.
ACM, 2004.

[6] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name?
A study of identifiers. In Proceedings of the 14th International
Conference on Program Comprehension (ICPC 2006), 14-16 June
2006, Athens, Greece, pages 3–12. IEEE Computer Society, 2006.

[7] C. D. Manning and H. Schuetze. Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

[8] R. C. Martin. Clean Code. Prentice Hall, 2008.

[9] S. McConnell. Code Complete: A Practical Handbook of Software
Construction. Microsoft Press, 2nd edition, 2004.

[10] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble. Qualitas corpus: A curated collection of
Java code for empirical studies. In 2010 Asia Pacific Software Engi-
neering Conference (APSEC2010), Dec. 2010.

A. Getting Lancelot
Lancelot is available under the terms of the Eclipse Public License
in both compiled and source form. Stable binaries reside in our
Eclipse update site10, while source code is hosted in a publicly
available Subversion repository at the Lancelot website11.

Lancelot targets Eclipse’s 2011 annual release, Indigo, and runs
in all environments supporting Eclipse. Lancelot manages all its
dependencies, requiring only a working Eclipse installation with
the standard Java Developer Tools for installation and execution.

Although the Eclipse update site is likely the best option for the
majority of users, interested developers could alternatively check
out Lancelot’s code from the source repository and into Eclipse,
and run the tool directly in Eclipse’s Plug-in Development Envi-
ronment.

10 http://lancelot.nr.no/
11 http://code.google.com/p/lancelot-eclipse/

38

