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What is graph clustering?

* The division of a graph into several partitions.

e Clusters should be selected according to some
criteria:

— For example: balance, graph connectivity and separation, ...




Why use graph clustering?

* |dentification of communities or logical
subgroups within a larger network

— Targeted advertising

— Product recommendations
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Why use graph clustering?

* Image segmentation and computer vision
[Shi, Malik ‘00]
— Identifying distinct objects or surfaces in an image

* Effective resistance to network epidemics
[Chung, Horn, Tsiatas ‘09]

* Many applications in machine learning and
data processing



Graph clustering algorithms

* k-means [MacQueen ‘67; Lloyd ‘82]

— NP-complete to solve exactly.
* Many heuristic iterative algorithms

— Requires a notion of pairwise distances.

» Usually used for vector-based data.

* Intractable to embed a graph into a low-dimensional
space, or to cluster data in high-dimensional space.

» Using the usual (shortest-path) graph distance as a
metric is not discerning in real-world graphs with the
small-world phenomenon: all distances are small!



Graph clustering algorithms

e Spectral clustering [Shi, Malik ‘00; Ng, Jordan,
Weiss ‘02]
— Relies on matrix computation, which can be
intractable for large networks.

— Splits graph into 2 parts
* For more, recursively apply the algorithm.

* We will develop an algorithm for k parts without recursive
division.
* Markov clustering [Enright, Van Dongen,
Ouzounis ‘02]

— Also reliant on matrix computations.



Graph clustering algorithms

* Affinity propagation [Frey, Dueck ‘07]
— A heuristic algorithm using pairwise distances.

* Local partitioning algorithms [Andersen, Chung,
Lang '06; Andersen, Chung ‘07]

— Algorithms for finding one smaller cut within a
network.

— We will find a more balanced partition into k parts.
— Does not require pairwise distances

 Many others... [Schaeffer ‘07]



Our contribution

* A new graph clustering algorithm:

— Find k centers of mass using PageRank
* Avoid the need for a high-dimensional embedding

— Use centers to derive k clusters using Voronoi diagrams

— Perform computations efficiently using inexpensive
approximation algorithms

* A graph drawing algorithm:

— Use PageRank to assist in determining node locations,
highlighting local cluster structure

 PageRank helps overcome several problems!



What is PageRank?

* Personalized PageRank [Brin, Page ‘98, Jeh,
Widom ‘03] vectors quantify structural
relationships between vertices and a specified

starting distribution (or vertex) s:

pI’(C?E? S) = Qs + (1 — CE')pI’(Ct‘? S)IIF

* PageRank is the stationary distribution of a
random walk (with transition probability matrix
W) that restarts to s randomly.

— Restart rate is controlled by the jumping constant a.



Why use PageRank? graph clustering

About 200,000 results (0.23 seconds)

Proven to be effective and efficient at finding relevance
in link-based data
Intuitive interpretation of vertex relationships

— The vth component of pr(a,u) quantifies how well-suited v
is to be a representative center for u.

— A natural metric for pairwise distances giving more
information than simple graph distances.

— Proven to be effective in Web search, local partitioning,
combating epidemics....

Performance

— Using approximation algorithms [Andersen, Chung, Lang
’06; Chung, Zhao ‘10], PageRank vectors can be calculated
efficiently.



Pairwise distances using PageRank

* |n Euclidean space (for k-means):
dist(u,v) = ||lu — v||o
* Using PageRank:
dist, (u, v) = ||pr(a, “a':,.z.)D_Ug — pr(a, u)D_UQHQ
where D is the diagonal degree matrix.

Throughout, we use node degrees and cluster
volumes as normalizing factors.

* Generalizing to probability distributions p,q
over vertices: dist,( Z p(w)g(v)dista(u, v)



Centers of mass and clusters

* cis an g-center or center of mass for a vertex set S
if its PageRank distance to S is small:
Zdisto_,(c, v) <e

ves

Here, c can be an individual vertex or a more
general probability distribution.

* Aset Cof k centers determines a set of k clusters
R_for everycin C:
R. ={z € V : dist,(c,z) < dist,(c, z) for all ¢’ € C'}
In other words, clusters are determined using a Voronoi
diagram with PageRank distances and the centers C.




Evaluating centers and clusters

We need some way to describe how “good” a
set of centers C and their corresponding
clusters R_ are.

For k-means: w(C) =) _dist(v,c,)’

veV

Using PageRank:
w(C) = Y dyllpr(a,v) D72 — pr(a, ¢,) D73

velV

= Z d,dist, (v, ¢, )?

veV

Here, ¢, is the center of mass closest to v.



Evaluating centers and clusters

* u(C) quantifies how well each centercin C
represents its cluster R._.

* We also need a metric for evaluating how well
each cluster R, is structurally different from
the overall graph structure, using the random

walk stationary distribution 7.
U, (C) = vol(R.)dists(c, )7

ceC

* If W (C)is large, then the clusters are well-
separated.



Evaluating a graph for
clustered structure

 We interpret the PageRank vector p = pr(a,v)
for a vertex v to give the suitability of other
vertices to be its center of mass. We define
the a-PageRank-variance:

(I)((};) = Z dﬂdist,__,_,(v, pr(a:, 1:))2

velV
e |If @(a)is small, then the PageRank vectors for
v and p are close, indicating a clustered
structure.



Evaluating a graph for
clustered structure

e \We also define the a-cluster-variance:

U(a) = Z d,dist, (pr(a, v), m)?
veEV
e |If Y(xx) is large, then centers of mass predicted
by PageRank vectors are far from the
stationary distribution, also indicating a
clustered structure.



Relationship between metrics

 The objective is to find a “good” set of centers
C:
— This means u(C) is small and W _(C) is large.

e But if we use PageRank vectors to “guess”

centers of mass, these metrics are similar to
D(a) and Y(a).

* |f we take enough samples for centers of mass
using PageRank, these metrics can be made
arbitrarily close.



Relationship between metrics

— Z d{}digt&(ta C’U)g I]JH(C) — ZRIDI(RC)diSta(C, ﬂ_)g

veV ceC
= Zdﬂdist,__,_,(v,pr(&,t)) ¥(a Zd dist, (pr(a, v), )’
veV velV

* Thus, to find small u(C) and large ¥ _(C), we
must find an a that gives small @(a) and large

Y(a).



Selecting the jumping constant o

We need to choose a so that @(a) is small.

(We will see later that if a graph has a clustered
structure, ¥Y(a) will be large.)

We can find local minima of @(a) by finding
roots of @’(a).

We can also just use binary search over (0,1).

There can be several good values for q,
indicating a layered clustering structure.



Selecting the jumping constant a:
an illustration

 Let G be adumbbell graph: two cliques of 20 nodes connected by a single edge.

@’(a)

W(a) Va)




The clustering algorithm

* PageRank-ClusteringA(G,k,e):
— For each vertex v, compute its PageRank vector
pr(a,v)
— For each root a of @’(a):
s IfQ(a)<eand k> W(a)-2—¢:

— Select c log n sets of k potential centers, randomly selected
from . (Here, c is some large constant.)

— For each set S ={v,, ..., v}, let C be the set of centers of mass
where c; = pr(a,v,).

— If [u(C) - D(a)| <eand |¥,(C)— W(a)| < &, return the clusters
given by the k Voronoi regions according to the PageRank
distances using C.

— Otherwise, there may be no output — the graph does not have
a clustered structure



Analysis of the clustering algorithm

* The algorithm PageRank-ClusteringA does not
always return a clustering, but we will show that

it does for a special class of (k,h,B,g)-clusterable
graphs G:

— G can be partitioned into k parts so that each part S
satisfies:

* S has Cheeger ratio at most h.
* S has volume at least B vol(G)/k.

* There is a subset S” with vol(S’) < (1-€) vol(S) and Cheeger
ratio at least \/h/logn .

— Here, the Cheeger ratio for a set H is the ratio of the
number of edges leaving H and vol(H).



Analysis of the clustering algorithm

 Theorem. Suppose a graph G has a (k,h,B,&)-
clustering and a,€ in (0,1) satisfy € > hk/2ap.
Then with high probability, PageRank-
ClusteringA returns a set C of k centers with
D(a) <&, Y(C) > k-2 —¢, and the k clusters
are near optimal according to u(C) with an
additive error term €.



Analysis of the clustering algorithm

 The theorem mainly follows from the definition
of (k,h,B,e)-clustering, the discussed theory
surrounding the evaluative cluster metrics @ and
¢, and probabilistic sampling arguments.

* The rest follows from the following claim:

— If G can be partitioned into k clusters with Cheeger
ratio at most h and € > hk/2a, then Y(a) > k-2 — €.

— This claim can be proven using a generalization of a
known connection between PageRank and the
Cheeger ratio [Andersen, Chung, Lang ‘06].



Analysis of the clustering algorithm

 The computational complexity of PageRank-ClusteringA is
dominated by several computations:
— Finding the roots of @’(«)
— O(k log n) calculations of u(C) and ¥ _(C)
— O(n) PageRank vector calculations
 These computations can be expensive, but fortunately we
have inexpensive approximation algorithms:

— Finding roots and calculating functions using sampling
techniques [Rudelson, Vershynin ‘07]

— Using approximate PageRank vectors [Andersen, Chung, Lang
’06; Chung, Zhao “10]

* These techniques are outlined in an algorithm PageRank-
ClusteringB.



PageRank and graph visualization

* Many graph visualization algorithms have trouble showing
local structure in complex networks without resorting to
hierarchical layouts.

e PageRank’s quantitative information can be used to assist
force-based graph layout algorithms [Kamada, Kawai ‘89],
highlighting local clusters around k centers of mass.

— For each center ¢ and every non-center v, simulate a spring with
force inversely proportional to the vth component of pr(a,c).

— For two centers ¢ and ¢’, simulate a spring with a strong
repellent force.

— We also overlay a Voronoi diagram in Euclidean space to
highlight the clusters.
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PageRank and graph visualization: an
example

e Social network of dolphins [Newman, Girvan
‘04] with 2 clusters




PageRank and graph drawing: example

e Network of NCAA Division | football
opponents [Girvan, Newman ‘02], hlghllghtmg
several conferences




Open questions

* Improved performance and scalability
— Graph visualization bottlenecks
* Applications of the graph clustering algorithm
in specific settings
— Biological graphs
— Social networks



Thank you!

e Questions?



