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What is graph clustering?

• The division of a graph into several partitions.

• Clusters should be selected according to some 

criteria:

– For example: balance, graph connectivity and separation, …



Why use graph clustering?

• Identification of communities or logical 

subgroups within a larger network

– Targeted advertising

– Product recommendations



Why use graph clustering?

• Image segmentation and computer vision

[Shi, Malik ‘00+
– Identifying distinct objects or surfaces in an image

• Effective resistance to network epidemics 

[Chung, Horn, Tsiatas ‘09+
• Many applications in machine learning and 

data processing



Graph clustering algorithms

• k-means [MacQueen ’67; Lloyd ‘82+
– NP-complete to solve exactly.

• Many heuristic iterative algorithms

– Requires a notion of pairwise distances.

• Usually used for vector-based data.

• Intractable to embed a graph into a low-dimensional 

space, or to cluster data in high-dimensional space.

• Using the usual (shortest-path) graph distance as a 

metric is not discerning in real-world graphs with the 

small-world phenomenon:  all distances are small!



Graph clustering algorithms

• Spectral clustering [Shi, Malik ‘00; Ng, Jordan, 
Weiss ‘02+
– Relies on matrix computation, which can be 

intractable for large networks.

– Splits graph into 2 parts
• For more, recursively apply the algorithm.

• We will develop an algorithm for k parts without recursive 
division.

• Markov clustering [Enright, Van Dongen, 
Ouzounis ‘02+
– Also reliant on matrix computations.



Graph clustering algorithms

• Affinity propagation [Frey, Dueck ‘07+
– A heuristic algorithm using pairwise distances.

• Local partitioning algorithms [Andersen, Chung, 

Lang ’06; Andersen, Chung ‘07+
– Algorithms for finding one smaller cut within a 

network.

– We will find a more balanced partition into k parts.

– Does not require pairwise distances

• Many others… *Schaeffer ‘07+



Our contribution

• A new graph clustering algorithm:
– Find k centers of mass using PageRank

• Avoid the need for a high-dimensional embedding

– Use centers to derive k clusters using Voronoi diagrams

– Perform computations efficiently using inexpensive 
approximation algorithms

• A graph drawing algorithm:
– Use PageRank to assist in determining node locations, 

highlighting local cluster structure

• PageRank helps overcome several problems!



What is PageRank?

• Personalized PageRank [Brin, Page ‘98, Jeh, 
Widom ‘03+ vectors quantify structural 
relationships between vertices and a specified 
starting distribution (or vertex) s:

• PageRank is the stationary distribution of a 
random walk (with transition probability matrix 
W) that restarts to s randomly.

– Restart rate is controlled by the jumping constant α.



Why use PageRank?

• Proven to be effective and efficient at finding relevance 
in link-based data

• Intuitive interpretation of vertex relationships
– The vth component of pr(α,u) quantifies how well-suited v

is to be a representative center for u.

– A natural metric for pairwise distances giving more 
information than simple graph distances.

– Proven to be effective in Web search, local partitioning, 
combating epidemics….

• Performance
– Using approximation algorithms [Andersen, Chung, Lang 

’06; Chung, Zhao ‘10+, PageRank vectors can be calculated 
efficiently.



Pairwise distances using PageRank

• In Euclidean space (for k-means):

• Using PageRank: 

where D is the diagonal degree matrix.

Throughout, we use node degrees and cluster 
volumes as normalizing factors.

• Generalizing to probability distributions p,q

over vertices:



Centers of mass and clusters

• c is an ε-center or center of mass for a vertex set S
if its PageRank distance to S is small:

Here, c can be an individual vertex or a more 
general probability distribution.

• A set C of k centers determines a set of k clusters 
Rc for every c in C:

In other words, clusters are determined using a Voronoi

diagram with PageRank distances and the centers C.



Evaluating centers and clusters

• We need some way to describe how “good” a 
set of centers C and their corresponding 

clusters Rc are.

• For k-means:

• Using PageRank:

• Here, cv is the center of mass closest to v.



Evaluating centers and clusters

• μ(C) quantifies how well each center c in C

represents its cluster Rc.

• We also need a metric for evaluating how well 

each cluster Rc is structurally different from 

the overall graph structure, using the random 

walk stationary distribution π.

• If Ψα(C) is large, then the clusters are well-

separated.



Evaluating a graph for

clustered structure

• We interpret the PageRank vector p = pr(α,v) 
for a vertex v to give the suitability of other 
vertices to be its center of mass. We define 
the α-PageRank-variance:

• If Φ(α) is small, then the PageRank vectors for 
v and p are close, indicating a clustered 
structure.



Evaluating a graph for

clustered structure

• We also define the α-cluster-variance:

• If Ψ(α) is large, then centers of mass predicted 

by PageRank vectors are far from the 

stationary distribution, also indicating a 

clustered structure.



Relationship between metrics

• The objective is to find a “good” set of centers 
C:

– This means μ(C) is small and Ψα(C) is large.

• But if we use PageRank vectors to “guess” 
centers of mass, these metrics are similar to 
Φ(α) and Ψ(α).

• If we take enough samples for centers of mass 
using PageRank, these metrics can be made 
arbitrarily close.



Relationship between metrics

• Thus, to find small μ(C) and large Ψα(C), we 

must find an α that gives small Φ(α) and large 

Ψ(α).



Selecting the jumping constant α

• We need to choose α so that Φ(α) is small.

(We will see later that if a graph has a clustered 

structure, Ψ(α) will be large.)

• We can find local minima of Φ(α) by finding 

roots of Φ’(α).

• We can also just use binary search over (0,1).

• There can be several good values for α, 

indicating a layered clustering structure.



Selecting the jumping constant α:

an illustration
• Let G be a dumbbell graph: two cliques of 20 nodes connected by a single edge. 

Φ(α) Φ’(α)

Ψ’(α)Ψ(α)



The clustering algorithm

• PageRank-ClusteringA(G,k,ε):

– For each vertex v, compute its PageRank vector 
pr(α,v)

– For each root α of Φ’(α):

• If Φ(α) ≤ ε and k ≥ Ψ(α) – 2 – ε:

– Select c log n sets of k potential centers, randomly selected 
from π. (Here, c is some large constant.)

– For each set S = {v1, …, vk}, let C be the set of centers of mass 
where ci = pr(α,vi).

– If |μ(C) – Φ(α)| ≤ ε and |Ψα(C) – Ψ(α)| ≤ ε, return the clusters 
given by the k Voronoi regions according to the PageRank
distances using C.

– Otherwise, there may be no output – the graph does not have 
a clustered structure



Analysis of the clustering algorithm

• The algorithm PageRank-ClusteringA does not 
always return a clustering, but we will show that 
it does for a special class of (k,h,β,ε)-clusterable
graphs G:
– G can be partitioned into k parts so that each part S

satisfies:
• S has Cheeger ratio at most h.

• S has volume at least β vol(G)/k.

• There is a subset S’ with vol(S’) ≤ (1-ε) vol(S) and Cheeger
ratio at least                 .

– Here, the Cheeger ratio for a set H is the ratio of the 
number of edges leaving H and vol(H).



Analysis of the clustering algorithm

• Theorem. Suppose a graph G has a (k,h,β,ε)-

clustering and α,ε in (0,1) satisfy ε ≥ hk/2αβ. 

Then with high probability, PageRank-

ClusteringA returns a set C of k centers with 

Φ(α) ≤ ε, Ψ(C) > k – 2 – ε, and the k clusters 

are near optimal according to μ(C) with an 

additive error term ε.



Analysis of the clustering algorithm

• The theorem mainly follows from the definition 
of (k,h,β,ε)-clustering, the discussed theory 
surrounding the evaluative cluster metrics Φ and 
Ψ, and probabilistic sampling arguments.

• The rest follows from the following claim:

– If G can be partitioned into k clusters with Cheeger
ratio at most h and ε ≥ hk/2αβ, then Ψ(a) ≥ k – 2 – ε.

– This claim can be proven using a generalization of a 
known connection between PageRank and the 
Cheeger ratio *Andersen, Chung, Lang ‘06+.



Analysis of the clustering algorithm

• The computational complexity of PageRank-ClusteringA is 
dominated by several computations:
– Finding the roots of Φ’(α)

– O(k log n) calculations of μ(C) and Ψα(C)

– O(n) PageRank vector calculations

• These computations can be expensive, but fortunately we 
have inexpensive approximation algorithms:
– Finding roots and calculating functions using sampling 

techniques [Rudelson, Vershynin ‘07+
– Using approximate PageRank vectors [Andersen, Chung, Lang 

’06; Chung, Zhao ‘10+
• These techniques are outlined in an algorithm PageRank-

ClusteringB.



PageRank and graph visualization

• Many graph visualization algorithms have trouble showing 
local structure in complex networks without resorting to 
hierarchical layouts.

• PageRank’s quantitative information can be used to assist 
force-based graph layout algorithms [Kamada, Kawai ‘89+, 
highlighting local clusters around k centers of mass.
– For each center c and every non-center v, simulate a spring with 

force inversely proportional to the vth component of pr(α,c).

– For two centers c and c’, simulate a spring with a strong 
repellent force.

– We also overlay a Voronoi diagram in Euclidean space to 
highlight the clusters.





PageRank and graph visualization: an 

example

• Social network of dolphins [Newman, Girvan 

‘04+ with 2 clusters



PageRank and graph drawing: example

• Network of NCAA Division I football 

opponents *Girvan, Newman ‘02+, highlighting 
several conferences



Open questions

• Improved performance and scalability

– Graph visualization bottlenecks

• Applications of the graph clustering algorithm 

in specific settings

– Biological graphs

– Social networks



Thank you!

• Questions?


