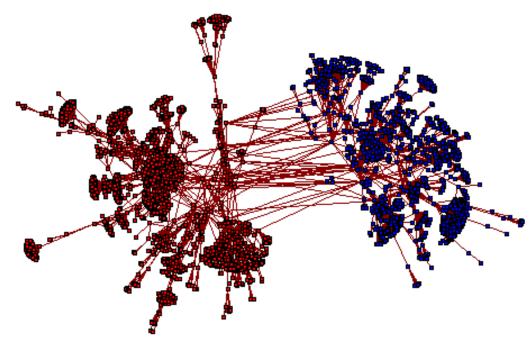
Finding and Visualizing Graph Clusters Using PageRank Optimization

Fan Chung and Alexander Tsiatas, UCSD WAW 2010

What is graph clustering?

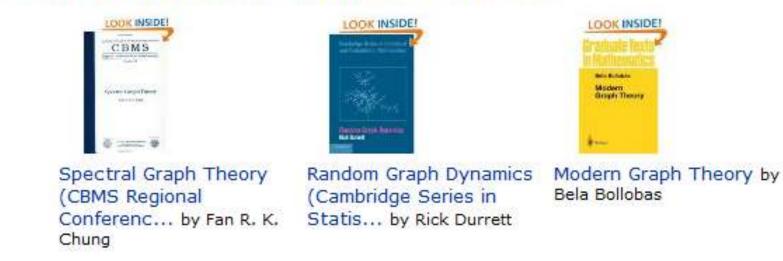
- The division of a graph into several partitions.
- Clusters should be selected according to some criteria:
 - For example: balance, graph connectivity and separation, ...



Why use graph clustering?

- Identification of communities or logical subgroups within a larger network
 - Targeted advertising
 - Product recommendations

Customers Who Bought This Item Also Bought



Why use graph clustering?

- Image segmentation and computer vision
 [Shi, Malik '00]
 - Identifying distinct objects or surfaces in an image
- Effective resistance to network epidemics [Chung, Horn, Tsiatas '09]
- Many applications in machine learning and data processing

Graph clustering algorithms

- *k*-means [MacQueen '67; Lloyd '82]
 - NP-complete to solve exactly.
 - Many heuristic iterative algorithms
 - Requires a notion of pairwise distances.
 - Usually used for vector-based data.
 - Intractable to embed a graph into a low-dimensional space, or to cluster data in high-dimensional space.
 - Using the usual (shortest-path) graph distance as a metric is not discerning in real-world graphs with the small-world phenomenon: all distances are small!

Graph clustering algorithms

- Spectral clustering [Shi, Malik '00; Ng, Jordan, Weiss '02]
 - Relies on matrix computation, which can be intractable for large networks.
 - Splits graph into 2 parts
 - For more, recursively apply the algorithm.
 - We will develop an algorithm for *k* parts without recursive division.
- Markov clustering [Enright, Van Dongen, Ouzounis '02]

- Also reliant on matrix computations.

Graph clustering algorithms

- Affinity propagation [Frey, Dueck '07]
 - A heuristic algorithm using pairwise distances.
- Local partitioning algorithms [Andersen, Chung, Lang '06; Andersen, Chung '07]
 - Algorithms for finding one smaller cut within a network.
 - We will find a more balanced partition into *k* parts.
 - Does not require pairwise distances
- Many others... [Schaeffer '07]

Our contribution

- A new graph clustering algorithm:
 - Find k centers of mass using PageRank
 - Avoid the need for a high-dimensional embedding
 - Use centers to derive k clusters using Voronoi diagrams
 - Perform computations efficiently using inexpensive approximation algorithms
- A graph drawing algorithm:
 - Use PageRank to assist in determining node locations, highlighting local cluster structure
- PageRank helps overcome several problems!

What is PageRank?

 Personalized PageRank [Brin, Page '98, Jeh, Widom '03] vectors quantify structural relationships between vertices and a specified starting distribution (or vertex) s:

$$\operatorname{pr}(\alpha, s) = \alpha s + (1 - \alpha) \operatorname{pr}(\alpha, s) W$$

- PageRank is the stationary distribution of a random walk (with transition probability matrix W) that restarts to s randomly.
 - Restart rate is controlled by the *jumping constant* α .

Why use PageRank?

About 300,000 results (0.23 seconds)

- Proven to be effective and efficient at finding relevance in link-based data
- Intuitive interpretation of vertex relationships
 - The vth component of $pr(\alpha, u)$ quantifies how well-suited v is to be a representative center for u.
 - A natural metric for pairwise distances giving more information than simple graph distances.
 - Proven to be effective in Web search, local partitioning, combating epidemics....
- Performance
 - Using approximation algorithms [Andersen, Chung, Lang '06; Chung, Zhao '10], PageRank vectors can be calculated efficiently.

Pairwise distances using PageRank

• In Euclidean space (for *k*-means):

$$\operatorname{dist}(u,v) = \|u - v\|_2$$

• Using PageRank:

 $dist_{\alpha}(u,v) = \| pr(\alpha, u) D^{-1/2} - pr(\alpha, u) D^{-1/2} \|_{2}$

where *D* is the diagonal degree matrix.

Throughout, we use node degrees and cluster volumes as normalizing factors.

• Generalizing to probability distributions p,qover vertices: $\operatorname{dist}_{\alpha}(p,q) = \sum p(u)q(v)\operatorname{dist}_{\alpha}(u,v)$

Centers of mass and clusters

 c is an ε-center or center of mass for a vertex set S if its PageRank distance to S is small:

$$\sum_{v \in S} \operatorname{dist}_{\alpha}(c, v) \le \epsilon$$

Here, *c* can be an individual vertex or a more general probability distribution.

• A set C of k centers determines a set of k clusters R_c for every c in C:

 $R_c = \{x \in V : \operatorname{dist}_{\alpha}(c, x) \le \operatorname{dist}_{\alpha}(c', x) \text{ for all } c' \in C\}$

In other words, clusters are determined using a *Voronoi* diagram with PageRank distances and the centers C.

Evaluating centers and clusters

- We need some way to describe how "good" a set of centers C and their corresponding clusters R_c are.
- For *k*-means: $\mu(C) = \sum_{v \in V} \operatorname{dist}(v, c_v)^2$
- Using PageRank:

 $\mu(C) = \sum_{v \in V} d_v \| \operatorname{pr}(\alpha, v) D^{-1/2} - \operatorname{pr}(\alpha, c_v) D^{-1/2} \|_2^2$ $= \sum_{v \in V} d_v \operatorname{dist}_{\alpha}(v, c_v)^2$

• Here, c_v is the center of mass closest to v.

Evaluating centers and clusters

- $\mu(C)$ quantifies how well each center *c* in *C* represents its cluster R_c .
- We also need a metric for evaluating how well each cluster R_c is structurally different from the overall graph structure, using the random walk stationary distribution π .

$$\Psi_{\alpha}(C) = \sum_{c \in C} \operatorname{vol}(R_c) \operatorname{dist}_{\alpha}(c, \pi)^2$$

• If $\Psi_{\alpha}(C)$ is large, then the clusters are well-separated.

Evaluating a graph for clustered structure

 We interpret the PageRank vector p = pr(α,v) for a vertex v to give the suitability of other vertices to be its center of mass. We define the α-PageRank-variance:

$$\Phi(\alpha) = \sum_{v \in V} d_v \operatorname{dist}_{\alpha}(v, \operatorname{pr}(\alpha, v))^2$$

 If Φ(α) is small, then the PageRank vectors for v and p are close, indicating a clustered structure.

Evaluating a graph for clustered structure

• We also define the α -cluster-variance:

$$\Psi(\alpha) = \sum_{v \in V} d_v \operatorname{dist}_{\alpha}(\operatorname{pr}(\alpha, v), \pi)^2$$

 If Ψ(α) is large, then centers of mass predicted by PageRank vectors are far from the stationary distribution, also indicating a clustered structure.

Relationship between metrics

• The objective is to find a "good" set of centers *C:*

– This means $\mu(C)$ is small and $\Psi_{\alpha}(C)$ is large.

- But if we use PageRank vectors to "guess" centers of mass, these metrics are similar to Φ(α) and Ψ(α).
- If we take enough samples for centers of mass using PageRank, these metrics can be made arbitrarily close.

Relationship between metrics

$$\mu(C) = \sum_{v \in V} d_v \operatorname{dist}_{\alpha}(v, c_v)^2 \qquad \Psi_{\alpha}(C) = \sum_{c \in C} \operatorname{vol}(R_c) \operatorname{dist}_{\alpha}(c, \pi)^2$$

$$\Phi(\alpha) = \sum_{v \in V} d_v \operatorname{dist}_{\alpha}(v, \operatorname{pr}(\alpha, v))^2 \ \Psi(\alpha) = \sum_{v \in V} d_v \operatorname{dist}_{\alpha}(\operatorname{pr}(\alpha, v), \pi)^2$$

• Thus, to find small $\mu(C)$ and large $\Psi_{\alpha}(C)$, we must find an α that gives small $\Phi(\alpha)$ and large $\Psi(\alpha)$.

Selecting the jumping constant α

- We need to choose α so that Φ(α) is small.
 (We will see later that if a graph has a clustered structure, Ψ(α) will be large.)
- We can find local minima of $\Phi(\alpha)$ by finding roots of $\Phi'(\alpha)$.
- We can also just use binary search over (0,1).
- There can be several good values for α, indicating a layered clustering structure.

Selecting the jumping constant α : an illustration

• Let G be a dumbbell graph: two cliques of 20 nodes connected by a single edge.



The clustering algorithm

- PageRank-ClusteringA(G,k,ε):
 - For each vertex v, compute its PageRank vector pr(α,v)
 - For each root α of $\mathcal{P}'(\alpha)$:
 - If $\Phi(\alpha) \leq \varepsilon$ and $k \geq \Psi(\alpha) 2 \varepsilon$:
 - Select $c \log n$ sets of k potential centers, randomly selected from π . (Here, c is some large constant.)
 - For each set $S = \{v_1, ..., v_k\}$, let C be the set of centers of mass where $c_i = pr(\alpha, v_i)$.
 - If $|\mu(C) \Phi(\alpha)| \le \varepsilon$ and $|\Psi_{\alpha}(C) \Psi(\alpha)| \le \varepsilon$, return the clusters given by the *k* Voronoi regions according to the PageRank distances using *C*.
 - Otherwise, there may be no output the graph does not have a clustered structure

- The algorithm PageRank-ClusteringA does not always return a clustering, but we will show that it does for a special class of (k,h,β,ε)-clusterable graphs G:
 - G can be partitioned into k parts so that each part S satisfies:
 - *S* has Cheeger ratio at most *h*.
 - S has volume at least β vol(G)/k.
 - There is a subset S' with vol(S') \leq (1- ϵ) vol(S) and Cheeger ratio at least $\sqrt{h/\log n}$.
 - Here, the Cheeger ratio for a set H is the ratio of the number of edges leaving H and vol(H).

• **Theorem.** Suppose a graph *G* has a (k,h,β,ε) clustering and α,ε in (0,1) satisfy $\varepsilon \ge hk/2\alpha\beta$. Then with high probability, **PageRank**-

ClusteringA returns a set *C* of *k* centers with $\mathcal{O}(\alpha) \leq \varepsilon, \Psi(C) > k - 2 - \varepsilon$, and the *k* clusters are near optimal according to $\mu(C)$ with an additive error term ε .

- The theorem mainly follows from the definition of (k,h,β,ε)-clustering, the discussed theory surrounding the evaluative cluster metrics Φ and Ψ, and probabilistic sampling arguments.
- The rest follows from the following claim:
 - If G can be partitioned into k clusters with Cheeger ratio at most h and $\varepsilon \ge hk/2\alpha\beta$, then $\Psi(a) \ge k 2 \varepsilon$.
 - This claim can be proven using a generalization of a known connection between PageRank and the Cheeger ratio [Andersen, Chung, Lang '06].

- The computational complexity of PageRank-ClusteringA is dominated by several computations:
 - Finding the roots of $\Phi'(\alpha)$
 - $O(k \log n)$ calculations of $\mu(C)$ and $\Psi_{\alpha}(C)$
 - O(n) PageRank vector calculations
- These computations can be expensive, but fortunately we have inexpensive approximation algorithms:
 - Finding roots and calculating functions using sampling techniques [Rudelson, Vershynin '07]
 - Using approximate PageRank vectors [Andersen, Chung, Lang '06; Chung, Zhao '10]
- These techniques are outlined in an algorithm **PageRank-ClusteringB**.

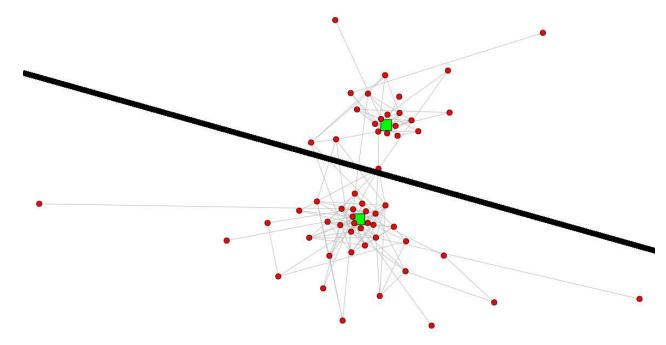
PageRank and graph visualization

- Many graph visualization algorithms have trouble showing local structure in complex networks without resorting to hierarchical layouts.
- PageRank's quantitative information can be used to assist force-based graph layout algorithms [Kamada, Kawai '89], highlighting local clusters around k centers of mass.
 - For each center c and every non-center v, simulate a spring with force inversely proportional to the vth component of $pr(\alpha,c)$.
 - For two centers c and c', simulate a spring with a strong repellent force.
 - We also overlay a Voronoi diagram in Euclidean space to highlight the clusters.

Yahoo IM graph Reid Andersen 2005

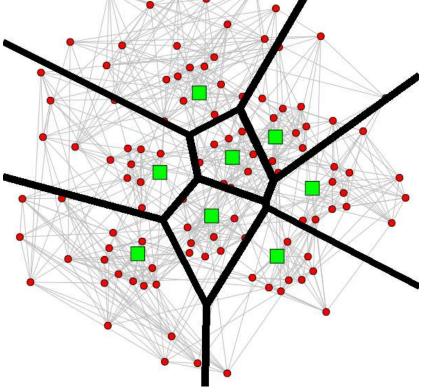
PageRank and graph visualization: an example

 Social network of dolphins [Newman, Girvan '04] with 2 clusters



PageRank and graph drawing: example

 Network of NCAA Division I football opponents [Girvan, Newman '02], highlighting several conferences



Open questions

Improved performance and scalability

Graph visualization bottlenecks

- Applications of the graph clustering algorithm in specific settings
 - Biological graphs
 - Social networks

Thank you!

• Questions?