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Abstract

We give algorithms for finding graph clusters and drawing graphs,

highlighting local community structure within the context of a larger net-

work. For a given graph G, we use the personalized PageRank vectors to

determine a set of clusters, by optimizing the jumping parameter α subject

to several cluster variance measures in order to capture the graph struc-

ture according to PageRank. We then give a graph visualization algorithm

for the clusters using PageRank-based coordinates. Several drawings of

real-world data are given, illustrating the partition and local community

structure.

1 Introduction

Finding smaller local communities within a larger graph is a well-studied prob-
lem with many applications. For example, advertisers can more effectively serve
niche audiences if they can identify their target communities within the larger
social web, and viruses on technological or population networks can be effec-
tively quarantined by distributing antidote to local clusters around their origins
[9].

There are numerous well-known algorithms for finding clusters within a
graph, including k-means [22, 25], spectral clustering [29, 34], Markov clus-
ter algorithms [13], and numerous others [19, 26, 27, 28, 30]. Many of these
algorithms require embedding a graph into low-dimensional Euclidean space us-
ing pairwise distances, but graph distance-based metrics fail to capture graph
structure in real-world networks with small-world phenomena since all pairs of
nodes are connected within short distances. PageRank provides essential struc-
tural relationships between nodes and is particularly well suited for clustering
analysis. Furthermore, PageRank vectors can be computed more efficiently than
performing a dimension reduction for a large graph.

In this paper, we give clustering algorithms PageRank-Clustering that
use PageRank vectors to draw attention to local graph structure within a larger
network. PageRank was first introduced by Brin and Page [6] for Web search
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algorithms. Although the original definition is for the Web graph, PageRank is
well defined for any graph. Here, we will use a modified version of PageRank,
known as personalized PageRank [20], using a prescribed set of nodes as a seed
vector.

PageRank can capture well the quantitative correlations between pairs or
subsets of nodes, especially on small-world graphs where the usual graph dis-
tances are all quite small. We use PageRank vectors to define a notion of PageR-
ank distance which provides a natural metric space appropriate for graphs.

A key diffusion parameter in deriving PageRank vectors is the jumping con-
stant α. In our clustering algorithms, we will use α to control the scale of the
clustering. In particular, we introduce two variance measures which can be used
to automatically find the optimized values for α. We then use PageRank vectors
determined by α to guide the selection of a set of centers of mass and use them
to find the clusters via PageRank distances. We further apply our clustering
algorithm to derive a visualization algorithm PageRank-Display to effectively
display local structure when drawing large networks.

The paper is organized as follows: The basic definitions for PageRank are
given in Section 2. In Section 3, we describe two cluster variance measures using
PageRank vectors, and we give clustering algorithms in Section 4, with analysis
in Section 5. A graph drawing algorithm is given in the last section and several
examples are included.

2 Preliminaries

We consider general undirected graphs G = (V,E) with vertex set V and edge set
E. For a vertex v, let dv denote the degree of v which is the number of neighbors
of v. For a set of nodes T ⊆ V , the volume of T is defined to be vol(T ) =
∑

v∈T dv. Let D denote the diagonal degree matrix and A the adjacency matrix
of G, where

Aij =

{

1 if {vi, vj} ∈ E,
0 otherwise.

We consider a typical random walk on G with the transition probability ma-
trix defined by P = D−1A and we denote the lazy walk by W = (I + P )/2.

Let π = ~d/vol(G) denote the stationary distribution of the random walk, if it
exists. Personalized PageRank vectors are based on random walks with two
governing parameters: a seed vector ~s, representing a probability distribution
over V , and a jumping constant α, controlling the rate of diffusion. The per-
sonalized PageRank vector pr(α,~s) is defined to be the solution to the following
recurrence relation:

pr(α,~s) = α~s + (1 − α)pr(α,~s)W.

Here, ~s (and all other vectors) will be treated as row vectors. The original
definition of PageRank defined in [6] is the special case where the seed vector
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is the the uniform distribution. If ~s is simply the distribution which is 1 for a
single node v and 0 elsewhere, we write pr(α, v).

An alternative expression for the personalized PageRank pr(α,~s) is a geo-
metric sum of random walks (see [4]):

pr(α,~s) = α
∞
∑

t=0

(1 − α)t~sW t.

In general, it can be computationally expensive to compute PageRank ex-
actly; it requires using the entire graph structure which can be prohibitive on
large networks. Instead, we use an approximate PageRank algorithm as given
in [4, 10]. This approximation algorithm is much more tractable on large net-
works, because it can be computed using only the local graph structure around
the starting seed vector ~s. Besides ~s and the jumping constant α, the algorithm
requires an approximation parameter ǫ.

For a subset of nodes H in a graph G, the Cheeger ratio h(H) is a measure
of the cut between H and its complement H̄:

h(H) =
e(H, H̄)

min(vol(H), vol((̄H)))
,

where e(H, H̄) denotes the number of edges {u, v} with u ∈ H and v ∈ H̄.
For a set of points S = {s1, . . . , sn} in Euclidean space, the Voronoi dia-

gram is a partition of the space into disjoint regions R1, . . . , Rn such that each
Ri contains si and the region of space containing the set of points that are
closer to si than any other sj . Voronoi diagrams are well-studied in the field of
computational geometry. Here we consider Voronoi diagrams on graphs using
PageRank vectors as a notion of closeness.

For two vertices u, v, we define the PageRank distance with jumping constant
α as:

distα(u, v) = ‖pr(α, u)D−1/2 − pr(α, v)D−1/2‖.
Throughout this paper, ‖ · ‖ denotes the L2-norm.

We can further generalize this distance to two probability distributions p
and q defined on the vertex set V of G. Namely, the PageRank distance, with
jumping constant α, between p and q is defined by

distα(p, q) =
∑

u,v

p(u)q(v)dist(u, v).

With this definition, for a subset S of vertices, we can generalize the notion
of a center of mass for S to be a probability distribution c. For a given ǫ > 0,
we say c is an ǫ-center or center of mass for S if

∑

v∈S

distα(c, v) ≤ ǫ.

Let C denote a set of k (potential) centers. The goal is for each center c to
be a representative center of mass for some cluster of vertices. We let Rc denote
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the set of all vertices x which are closest to c in terms of PageRank, provided
the jumping constant α is given:

Rc = {x ∈ V : distα(c, x) ≤ distα(c′, x) for all c′ ∈ C}.

3 PageRank Variance and Cluster Variance Mea-

sures

For a vertex v and a set of centers C, let cv denote the center that is closest to
v, (i.e., cv is the center of mass c ∈ C such that v ∈ Rc).

We follow the approach as in k-means by defining the following evaluative
measure for a potential set of k centers C, using PageRank instead of Euclidean
distances.

µ(C) =
∑

v∈V

dv‖pr(α, v)D−1/2 − pr(α, cv)D−1/2‖2 =
∑

v∈V

dv distα(v, cv)2.

Selecting a set of representative centers within a graph is a hard problem,
known to be NP-complete. There are many approximate and heuristic algo-
rithms used in practice (see [33]). Here, we will develop algorithms that use
personalized PageRank vectors to select the centers. In the Web graph, links
between websites can be interpreted as votes for a website’s importance, and
PageRank vectors are used to determine which pages are intrinsically more
important in the overall graph. Personalized PageRank vectors are local infor-
mation quantifying the importance of every node to the seed. Thus, the uth
component of the personalized PageRank vector pr(α, v) quantifies how well-
suited u is to be a representative cluster center for v.

To evaluate a set of cluster centers in a graph G, we consider two measures
that capture the community structure of G with respect to PageRank:

Φ(α) =
∑

v∈V

dv

∣

∣

∣

∣

∣

∣
pr(α, v)D−1/2 − pr(α,pr(α, v))D−1/2

∣

∣

∣

∣

∣

∣

2

=
∑

v∈V

dv distα(v,pr(α, v))2 ,

Ψ(α) =
∑

v∈V

dv

∣

∣

∣

∣

∣

∣
pr(α,pr(α, v))D−1/2 − πD−1/2

∣

∣

∣

∣

∣

∣

2

=
∑

v∈V

dv distα(pr(α, v), π)2 .

The α-PageRank-variance Φ(α) measures discrepancies between the personal-
ized PageRank vectors for nodes v and possible centers nearest to v, represented
by the probability distribution pr(α, v). The α-cluster-variance Ψ(α) measures
large discrepancies between personalized PageRank vectors for nodes v and the
overall stationary distribution π. If the PageRank-variance Φ(α) is small, then
the ‘guesses’ by using PageRank vectors for the centers of mass give a good
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upper bound for the k-means evaluation µ using PageRank distance, indicating
the formation of clusters. If the cluster-variance Ψ(α) is large, then the centers
of masses using the predictions from PageRank vectors are quite far from the
stationary distribution, capturing a community structure. Thus, our goal is to
find the appropriate α such that Φ(α) is small but Ψ(α) is large.

For a specific set of centers of mass C, we use the following for an eval-
uative metric Ψα(C), suggesting the structural separation of the communities
represented by centers in C:

Ψα(C) =
∑

c∈C

vol(Rc)
∣

∣

∣

∣

∣

∣
pr(α, c)D−1/2 − πD−1/2

∣

∣

∣

∣

∣

∣

2

=
∑

c∈C

vol(Rc) distα(c, π)2 .

We remark that this measure is essentially the analog of k-means in terms of
PageRank distance, and it has a similar flavor as a heuristic given by Dyer and
Frieze [11] for the traditional center selection problem. The metrics µ(C) and
Ψα(C) are designed to evaluate a specific set of clusters C, while the measures
Φ(α) and Ψ(α) are well-suited to measure a graph’s inherent clustered structure.

4 The PageRank-Clustering Algorithms

These evaluative measures give us a way to evaluate a set of community centers,
leading to the PageRank-Clustering algorithms presented here. The problem
of finding a set of k centers minimizing µ(C) is then reduced to the problem
of minimizing Φ(α) while Ψ(α) is large for appropriate α. In particular, for a
special class of graphs which consist of k clusters of vertices where each cluster
has a bounded Cheeger ratio, the center selection algorithm is guaranteed to be
successful with high probability.

A natural question is to find the appropriate α for a given graph, if such
α exists and if the graph is clusterable. A direct method is by computing the
variance metrics for a sample of α and narrowing down the range for α using
binary search. Here, we give a systematic method for determining the existence
of an appropriate α and finding its value is by differentiating Φ(α), and finding
roots α satisfying Φ′(α) = 0. It is not too difficult to compute that the derivative
of Ψ satisfies

Φ′(α) =
1 − α

α3

(

‖gv(α)D−1/2‖2 − 2〈gv(α),pr(α, gv(α))D−1〉
)

(1)

where gv(α) = pr(α,pr(α, v)(I −W )). Here, we give two versions of the cluster-
ing algorithm. For the sake of clarity, the first PageRank clustering algorithm
uses exact PageRank vectors without approximation. The second PageRank
clustering algorithm allows for the use of approximate PageRank vectors as well
as approximate PageRank-variance and cluster-variance for faster performance.

We can further reduce the computational complexity by using approximate
PageRank vectors in algorithm PageRank-ClusteringB.

We remark that by using the sharp approximate PageRank algorithm in
[10], the error bound δ for PageRank can be set to be quite small since the time
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Algorithm 1 PageRank-ClusteringA

Input: G, k, ǫ
Output: A set of centers C and partitions S, or nothing

for all v ∈ G do

compute pr(α, v)
end for

Find the roots of Φ′(α) (There can be more than one root if G has a layered
clustering structure.)
for all roots α do

Compute Φ(α)
if Φ(α) ≤ ǫ then

Compute Ψ(α)
else

Go to the next α
end if

if k < Ψ(α) − 2 − ǫ then

Go to the next α
else

Select c log n sets of k potential centers, randomly chosen according to π
end if

for all sets S = {v1, . . . , vk} do

Let C be the set of centers of mass where ci = pr(α, vi).
Compute µ(C) and Ψα(C).
if |µ(C) − Φ(α)| ≤ ǫ and |Ψα(C) − Ψ(α)| ≤ ǫ then

Determine the k Voronoi regions according to the PageRank distances
using C and return them.

end if

end for

end for
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Algorithm 2 PageRank-ClusteringB

Input: G, k, ǫ
Output: A set of centers C and partitions S, or nothing

for all v ∈ G do

compute pr(α, v)
end for

Find the roots of Φ′(α) within an error bound ǫ/2, by using sampling
techniques from [32] involving O(log n) nodes, log(1/ǫ) values of α and δ-
approximate PageRank vectors [4, 10] where δ = ǫ/n2. (There can be more
than one root if G has a layered clustering structure.)
for all roots α do

Approximate Φ(α)
if Φ(α) ≤ ǫ then

Compute Ψ(α)
else

Go to the next α
end if

if k < Ψ(α) − 2 − ǫ then

Go to the next α
else

Select c log n sets of k potential centers, randomly chosen according to π
end if

for all sets S = {v1, . . . , vk} do

Let C be the set of centers of mass where ci = pr(α, vi).
Compute µ(C) and Ψα(C).
if |µ(C) − Φ(α)| ≤ ǫ and |Ψα(C) − Ψ(α)| ≤ ǫ then

Determine the k Voronoi regions according to the PageRank distances
using C and return them.

end if

end for

end for
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complexity is proportional to log(1/δ). If we choose δ to be a negative power of n
such as δ = ǫ/n2, then approximate PageRank vectors lead to sharp estimates
for Φ and Φ′ within an error bound of ǫ. Thus for graphs with k clusters,
the PageRank-ClusteringB algorithm will terminate after approximating the
roots of Φ′, O(k log n) approximations of µ and Ψα and O(n) approximate Page-
Rank computations. By using approximation algorithms using sampling, this
can be done quite efficiently.

We also note that there might be no clustering output if the conditions
set within the algorithms are not satisfied. Indeed, there exist graphs that
inherently do not have a k-clustered structure within the error bound that we
set for ǫ. Another reason for no output is the probabilistic nature of the above
sampling method. We will provide evidence to the correctness of the above
algorithm by showing that, with high probability, a graph with a k-clustered
structure will have outputs that capture its clusters in a feasible manner which
we will specify further.

We say a graph G is (k, h, β, ǫ)-clusterable if the vertices of G can be parti-
tioned into k parts so that:

1. Each part Si has Cheeger ratio at most h,

2. each Si has volume at least βvol(G)/k for some constant β, and

3. for each Si, any subset S′
i ⊂ Si, with vol(S′

i) ≤ (1 − ǫ)vol(Si), has its
Cheeger ratio at least c

√
h log n where c = 8

√

β/k/ǫ.

We will provide evidence for the correctness of PageRank-ClusteringA

by proving the following theorem:

Theorem 1. Suppose a graph G has an (k, h, β, ǫ)-clustering and α, ǫ ∈ (0, 1)
satisfy ǫ ≥ hk/(2αβ). Then with high probability, PageRank-ClusteringA

returns a set C of k centers with Φ(α) ≤ ǫ, Ψ(C) > k−2− ǫ, and the k clusters
are near optimal according to the PageRank k-means measure µ with an additive
error term ǫ.

5 Several facts about PageRank

Before proceeding to show that the PageRank-clustering algorithms are effec-
tive for treating clusterable graphs, we will first establish some useful tools for
analyzing PageRank vectors. These tools concern the diffusion of PageRank
vectors in a subset of nodes with small Cheeger ratio. Before we examine a gen-
eral mixing inequality involving PageRank vectors, first we consider a diffusion
lower bound which is a slightly modified version of the results in [4].

Lemma 1. [4] For any set S and any constants α, δ in (0, 1], there is a subset
Sα ⊆ S with volume vol(Sα) ≥ (1 − δ)vol(S) such that for any vertex v ∈ Sα,
the PageRank vector pr(α, v) satisfies

[pr(α, v)](S) ≥ 1 − h(S)

2αδ
.
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We use the notation that for a function f : V → R, f(S) =
∑

v∈S f(v) for
S ⊆ V . For a positive real value x, we define

f(x) = max{
∑

v

βv

dv
f(v) :

∑

v

βv = x, 0 ≤ βv ≤ dv}.

This leads to many nice properties of f including, for example that f is concave
and f(vol(S)) ≥ f(S) (see [4, 23]).

Lemma 2. For any set S and any constants α, δ in (0, 1], there is a subset
Sα ⊆ S with volume vol(Sα) ≥ (1 − δ)vol(S) such that for any vertex v ∈ Sα,
the PageRank vector pr(α,pr(α, v)) satisfies

[pr(α,pr(α, v))](S) ≥ 1 − h(S)

αδ
.

Proof. The proof is quite similar to that in [4]. Let χS denote the function of
S which assumes the value χS(x) = dv/vol(S) if x ∈ S and 0 otherwise. First
we wish to show:

[pr(α,pr(α, χS))](S̄) ≤ h(S)
1 − α

α
.

During a single step from pr(α,pr(α, χS)) to pr(α,pr(α, χS))W , the amount of
probability that moves from S to S̄ is bounded from above by

[pr(α,pr(α, χS))W ](S̄) ≤ [pr(α,pr(α, χS))](S̄) +
1

2
[pr(α,pr(α, χS))](|δS|) (2)

where δ(S) denotes the edge boundary of S consisting of edges leaving S. By
using the definition of PageRank, we obtain

[pr(α,pr(α, χS))](S̄) = α[pr(α, χS)](S̄) + (1 − α)[pr(α,pr(α, χS))W ](S̄)

≤ 1 − α

2
h(S) + (1 − α)[pr(α,pr(α, χS))W ](S̄)

by using Theorem 4 in [4] (inequality (8), specifically). From (2), we have

[pr(α,pr(α, χS))W ](S̄)

=
1 − α

2
h(S) + (1 − α)[pr(α,pr(α, χS))](S̄) +

1 − α

2
[pr(α,pr(α, χS))](|δS|).

This implies

[pr(α,pr(α, χS))](S̄) =
1 − α

2α
h(S) +

1 − α

2α
[pr(α,pr(α, χS))](|δS|).

Now we use the monotonicity property from Lemma 4 in [4]; we have

[pr(α,pr(α, χS))](|δS|) ≤ [pr(α, χS)](|δ(S)|)
≤ χS(|δ(S)|)

=
|δ(S)|
vol(S)

= h(S).
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Thus we have

[pr(α,pr(α, χS))](S̄) ≤ 1 − α

α
h(S).

To complete the proof, let Sα denote the set of vertices v in S satisfying

[pr(α,pr(α, v))](S̄) ≤ h(S)

αδ
.

Let v be a vertex chosen randomly from the distribution dv/vol(S), and de-
fine the random variable X = [pr(α,pr(α, v))](S̄). The linearity property of
PageRank vectors implies that

E(X) = [pr(α,pr(α, χS))](S̄) ≤ 1 − α

α
h(S) ≤ h(S)

α
.

Applying Markov’s inequality, we have

Pr[v 6∈ Sα] ≤ Pr[X ≥ E[X]/δ] ≤ δ.

This completes the proof of Lemma 2. �

We will also need the quantitative estimates for PageRank vectors restricted
to a subset S of vertices. By considering submatrices WS restricted to rows and
columns associated with vertices in S, we can define the Dirichlet PageRank
prS(α, s), for a seed vector defined on S and 0 ≤ α < 1 satisfying:

prS(α,~s) = α~s + (1 − α)prS(α,~s)WS .

When α is appropriately chosen, the Dirichlet PageRank is a good estimate
of PageRank vectors. Lemma 5 and Theorem 6 in [8] can be rewritten as follows.

Lemma 3. [8] Suppose a subset S of vertices has its Cheeger ratio h(S) sat-

isfying ǫ ≥ (1−α)h(T )
2α , for positive values α, ǫ. Then prS satisfies the following:

For any R ⊆ S, There is a subset T ⊆ S with vol(T ) ≥ (1 − δ)vol(S), so that
for every v in T we have

[pr(α, v)](R) − [prS(α, v)](R) ≤
√

ǫ

δ
.

For a probability distribution f : V → R and a real value x, we de-
fine the Cheeger ratio hf (x) of f up to x as follows: We order the vertices
v1, v2, . . . , ... from highest to lowest probability-per-degree, so that p(vi)/d(vi) ≥
p(vi+1)/d(vi+1). This produces a collection of sets, called the segment subsets,

with one set T f
j = {v1, . . . , vj} for each j ≤ n. For a positive value x ≤ vol(G),

we define

hf (x) = max{h(T f
j ) : j satisfies vol(T f

j ) ≤ x}. (3)

h∗
f (x) = max{h(T f

j ) : j satisfies vol(T f
j ) ≤ x(1 + hf (x))}.
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Lemma 4. [4] For a vertex in G, any constant α in (0, 1] and non-negative
integer t, the PageRank vector pr(α, v) satisfies the following:

[pr(α, v)](T ) − π(T ) ≤ αt +
√

vol(T )

(

1 − φ2

8

)t

where φ is the Cheeger ratio h∗
f (vol(T )) with f = pr(α, v).

Lemma 5. For subsets S, T of vertices in G with vol(S), vol(T ) ≤ vol(G)/2, any
constant α in (0, 1] and non-negative integer t, the Dirichlet PageRank vector
prS(α, v) for any vertex v in S satisfies the following:
(i)

[prS(α, v)](T ) − [prS(α,prS(α, v))](T ) ≤ αt +
√

vol(T )

(

1 − φ2

8

)t

where φ is the Cheeger ratio h∗
f (vol(T )) with f = prS(α, v) − prS(α,prS(α, v)).

(ii)

[prS(α,prS(α, v))](T ) − [prS(α, v)](T ) ≤ αt +
√

vol(T )

(

1 − φ′2

8

)t

where φ′ is the Cheeger ratio h′∗
f (vol(T )) with f ′ = prS(α,prS(α, v))−prS(α, v).

(iii) For two vertices u and v,

[prS(α, u)](T ) − [prS(α, v)](T ) ≤ αt +
√

vol(T )

(

1 − φ′′2

8

)t

where φ′′ is the Cheeger ratio h′′∗
f (vol(T )) with f ′′ = prS(α, u) − prS(α, v).

Proof. We prove by induction on t for (i). For t = 0, it holds. Suppose the
above inequality holds for some t ≥ 0. Let x denote vol(T ) . We use Lemma 3
of [4] and apply the same method using the concavity of f to obtain:

[prS(α, v)](T ) − [prS(α,prS(α, v))](T ) = f(T )

≤ α + (1 − α)[fW ](T )

≤ α + (1 − α)

(

1

2
f(x − φx) +

1

2
f(x + φx)

)

≤ α +

(

1

2
f(x − φx) +

1

2
f(x + φx)

)

Using the induction assumption, we have

f(T ) ≤ α(t + 1) +
1

2

(

√

x − φx +
√

x + φx
)

(

1 − φ2

8

)t

≤ α(t + 1) +
√

x

(

1 − φ2

8

)t+1

.

This proves (i). We omit the proofs for (ii) and (iii) which can be done in a
similar way. The proof of Lemma 5 is complete. �
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6 Analyzing PageRank Clustering Algorithms

In this section, we consider an (h, k, β, ǫ)-clusterable graph G, with the following
condition:

ǫ ≥ hk

2αβ
.

Lemma 1 implies that in a cluster R of G, most of the vertices u in R have
pr(α, u)(S) ≥ 1 − ǫ/(2k). This fact is essential in the subsequent proof that
Ψ(α) ≥ k − 2 − ǫ.

We proceed with a series of lemmas that show that if G is (h, k, β, ǫ)-
clusterable, there is an α for which Φ(α) is small and Ψ(α) is large, corresponding
to a set of centers chosen from the core of the partitions.

Lemma 6. If a graph G can be partitioned into k clusters having Cheeger ratio
at most h and ǫ ≥ hk/(2αβ), then Ψ(α) ≥ k − 2 − ǫ.

Proof. Let S1, . . . , Sk be a partition of G into k clusters satisfying the theorem
conditions. Then, by definition of Ψ,

Ψ(α) =
∑

v∈V

dv

∣

∣

∣

∣

∣

∣
pr(α,pr(α, v))D−1/2 − πD−1/2

∣

∣

∣

∣

∣

∣

2

=

k
∑

i=1

∑

v∈Si

dv

∣

∣

∣

∣

∣

∣
pr(α,pr(α, v))D−1/2 − πD−1/2

∣

∣

∣

∣

∣

∣

2

=

k
∑

i=1

∑

v∈Si

dv

∑

x∈V

(

pr(α,pr(α, v))D−1/2(x) − πD−1/2(x)
)2

≥
k
∑

i=1

∑

v∈Si

dv

∑

x∈Si

(

pr(α,pr(α, v))D−1/2(x) − πD−1/2(x)
)2

=

k
∑

i=1

∑

v∈Si

dv

∑

x∈Si

(

pr(α,pr(α, v))D−1/2(x) − πD−1/2(x)
)2 ∑

x∈Si

dx

vol(Si)

=

k
∑

i=1

∑

v∈Si

dv

∑

x∈Si

1

dx
(pr(α,pr(α, v))(x) − π(x))

2
∑

x∈Si

dx

vol(Si)
.
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Using the Cauchy-Schwarz inequality and then Lemma 2, we have

Ψ(α) ≥
k
∑

i=1

∑

v∈Si

dv

vol(Si)

(

∑

x∈Si

(pr(α,pr(α, v))(x) − π(x))

)2

≥
k
∑

i=1

∑

v∈Si

dv

vol(Si)

(

1 − ǫ

2
− vol(Si)

vol(G)

)2

=

k
∑

i=1

(

1 − ǫ

2
− vol(Si)

vol(G)

)2

≥ 1

k

(

k
∑

i=1

(

1 − ǫ

2
− vol(Si)

vol(G)

)

)2

=
1

k

(

k − 1 − ǫ

2

)2

≥ k − 2 − ǫ.

�

We have shown that if G has a clustered structure, then there is an α for
which Ψ(α) is large. We will also show that our algorithm will also yield Φ(α) ≤
ǫ.

Lemma 7. If G is (k, h, β, ǫ)-clusterable, then we have Φ(α) ≤ ǫ.

Proof. The proof follows from preceding lemmas. Within each cluster S of
G, we first use Lemma 2 which implies there is a subset S′ of S such that
[pr(α, v)](S) ≥ 1− ǫ/k and vol(S′) ≥ (1− δ)vol(S) since S has Cheeger ratio at
most h.

We can apply Lemma 3 so that we can approximate PageRank vectors
pr(α, v) by the Dirichlet PageRank vectors prS(α, v).

From the definition of an (k, h, β, ǫ)-clusterable graph, each subset T of S
has Cheeger ratio at least c

√
h log n. This allows us to use Lemma 5 for any

segment subset T f
j (as defined in (3) with volume at most (1−ǫ/2)vol(S) defined

by the function f as in Lemma 5. Together we have that, for any subset R ⊂ S
with vol(R) ≤ (1 − ǫ/2)vol(S),

|[pr(α, v)](R) − [pr(α,pr(α, v)](R)| ≤ αt +
√

ne−(c2th log n)/8

≤ ǫ

4

by the assumption that c = 8
√

β/k/ǫ, and choosing t = 1/(hc2). This implies
that for any subset R ⊂ S and any vertex v, we have

|[pr(α, v)](R) − [pr(α,pr(α, v)](R)| ≤ ǫ

2

13



Thus the total variation distance between the two PageRank vectors is:

∆TV (α) = max
v

max
R⊆S

[pr(α, v) − pr(α,pr(α, v))](R) ≤ ǫ

2
.

Note that
√

Φ(α) is just the so-called χ-square distance ∆χ. Using the same
technique as in [2], we have

∆TV ≤ ∆χ ≤
√

1 − (1 − 2∆TV )2.

Thus, we conclude that Φ(α) ≤ ǫ as desired. �

We will also show that the sampling methods that PageRank-ClusteringA

does will ensure that with high probability, the cluster centers {c1, . . . , ck} will
include one from the core of each of k partitions in a clusterable graph:

Lemma 8. Suppose G is (h, k, β, ǫ)-clusterable, and c log n sets of k potential
centers are chosen from G according to the stationary distribution π, where c is
some absolute constant. With probability 1 − o(1), at least one set will contain
one vertex from the core of each of the k clusters.

Proof. Let S1, . . . , Sk be a partition of (h, k, β, ǫ)-clusterable G, and let S′
i be

the core of Si. Suppose vertices C = {c1, . . . , ck} are chosen randomly according
to π, and let E(C) be the event that each ci ∈ S′

i. Then, we have

Pr[E(C)] ≥
k
∏

i=1

Pr[ci ∈ S′
i]

=

k
∏

i=1

vol(S′
i)

vol(G)

≥
k
∏

i=1

(1 − ǫ)vol(S′
i)

vol(G)

≥
k
∏

i=1

(1 − ǫ)βvol(G)

kvol(G)

=

(

β(1 − ǫ)

k

)k

.

If c log n sets C1, . . . , Cc log n of k centers are sampled independently, the prob-
ability that at least one contains each ci ∈ S′

i is:

Pr[E(C1) ∨ · · · ∨ E(Cc log n)] ≥ 1 −
∏

i = 1c log n Pr[¬E(Ci)]

= 1 −
∏

i = 1c log n(1 − Pr[E(Ci)])

≥ 1 −
(

1 −
(

β(1 − ǫ)

k

)k
)c log n

= 1 − o(1).
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�

This series of lemmas then leads to the proof of Theorem 1, showing the
correctness of PageRank-ClusteringA.

Proof. We note that pr(0, s) = π and pr(1, s) = s for any distribution s. This
implies that Φ(0) = Φ(1) = Ψ(0) = 0 and Ψ(1) = n− 1. It is not hard to check
that Ψ is an increasing function since Ψ′(α) > 0 for α ∈ (0, 1]. The function of
particular interest is Φ. Since we wish to find α such that Φ is small, it suffices
to check the roots of Φ′ for an α where Φ(α) < ǫ, which our algorithm does.
Such an α exists due to Lemma 3.

Suppose α is a root of Φ′. To find k clusters, we can further restrict ourselves
to the case of Ψ(α) ≥ k − 2 − ǫ by Lemma 2.

We note that by sampling c log n sets of k vertices from π, for sufficiently
large c, the values µ(C) and Ψ(C) for one such random set of k centers are close
to Φ(α) and Ψ(α), respectively, with high probability (exponentially decreasing
depending on c and β) by probabilistic concentration arguments. In this context,
the upper bound ǫ for µ(C) implies that the set consisting of distributions
pr(α, c) for c ∈ C serves well as the set of centers of mass. Thus, the resulting
Voronoi regions using C give the desired clusters. This proves the correctness of
our clustering algorithm with high probability for (k, h, β, ǫ)-clusterable graphs.
�

To illustrate PageRank-ClusteringB, we consider a dumbbell graph U as
an example. This graph U has two complete graphs K20 connected by a single
edge, yielding a Cheeger ratio of h ≈ 0.0026. Plotting Φ(α) (Fig. 1) and its
derivative (Fig. 2) shows that there is a local minimum near α ≈ 0.018. When
Ψ is large, many individual nodes have personalized PageRank vectors that
differ greatly from the overall distribution. This indicates that there are many
nodes that are more representative of a small cluster than the entire graph. By
plotting Ψ(α) (Fig. 3) and its derivative (Fig. 4), we can see that there is a
distinct inflection point in the plot of Ψ for the dumbbell graph U as well.

7 A Graph Drawing Algorithm Using PageRank

The visualization of complex graphs provides many computational challenges.
Graphs such as the World Wide Web and social networks are known to exhibit
ubiquitous structure, including power-law distributions, small-world phenom-
ena, and a community structure [1, 7, 14]. With large graphs, it is easy for
such intricate structures to be lost in the sheer quantity of the nodes and edges,
which can result in drawings that reflect a network’s size but not necessarily its
structure.

Given a set of nodes S, we can extract communities around each node and de-
termine the layout of the graph using personalized PageRank. The arrangement
can be done using a force-based graph layout algorithm such as the Kamada-
Kawai algorithm [21]. The goal is to capture local communities; we can do this
by assigning edges {s, v} for each s ∈ S and v ∈ V \ S with weight inversely
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Figure 1: Φ(α) for the dumbell graph
U .

Figure 2: Φ′(α) for the dumbell graph
U , with the line y = 0 for reference.

Figure 3: Ψ(α) for the dumbell graph
U .

Figure 4: Ψ′(α) for the dumbell graph
U .

proportional to the personalized PageRank. This way, unrelated nodes with low
PageRank will be forced to be distant, and close communities will remain close
together. We also add edges {s, s′} for s, s′ ∈ S with large weight to encour-
age separation of the individual communities. We use an implementation from
Graphviz [16].

We note that because force-based algorithms are simulations, they do not
guarantee the exact cluster structure, but we will illustrate that it works well in
practice. Additionally, there are algorithms specifically designed for clustered
graph visualization [12, 31] and highlighting high-ranking nodes [5], but they
impose a lot of artificial hierarchical structure onto the drawing and often require
precomputing the clusters. Once we have a layout for all the nodes in the graph,
we can partition them by using a Voronoi diagram. We compute the Voronoi
diagram efficiently using Fortune’s algorithm [15].

We tie together personalized PageRank and Voronoi diagrams in the algo-
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rithm PageRank-Display.

Algorithm 3 PageRank-Display

Input: G = (V,E), S, α, ǫ
Output: A graph drawing

for all s ∈ S do

Compute an approximate PageRank vector ps = pr(α, s)
end for

Let G′ be a graph with vertex set V
for all s ∈ S and v ∈ V \ S do

Add an edge {s, v} to G′ with weight 1/ps(v), as long as ps(v) > 0
end for

for all s, s′ ∈ S do

Add an edge {s, s′} to G′ with weight 10 × maxs,v 1/ps(v).
end for

Use a force-based display algorithm on G′ to determine coordinates cv for
each v ∈ V .
Compute the Voronoi diagram on S.
Draw G using the coordinates cv, highlighting S with a different color, and
overlaying the Voronoi diagram.

The jumping constant α is associated with the scale of the clustering. We
can determine α either by trial and error or by optimizing Φ and Ψ as in section
4. As long as G is connected, the PageRank vector will be nonzero on every
vertex. Using the algorithms from [4, 10], the approximation factor ǫ acts as a
cutoff, and any node v with PageRank less than ǫdv will be assigned zero. This is
advantageous because the support of the approximate PageRank vector will be
limited to the local community containing its seed. In PageRank-Display, we
give weights to the edges equal to 1/ps(v), but this is problematic if ps(v) = 0.
In that case, we omit the edge from G′ entirely.

We remark that the selection of ǫ will influence the size of the local commu-
nities: the subset of nodes with nonzero approximate PageRank has volume at

most 2
(1−α)ǫ (see [4]). This implies that a good selection of ǫ is O

(

|S|
(1−α)vol(G)

)

.

We also remark that the selection of S is important. If S contains vertices
that are not part of communities or two nodes in the same community, then
there will be no structure to display. In general, the selection of S is similar
to the geometric problem of finding a set of points with minimum covering
radius, which can be intractable (see [18]). There are several algorithms that
can automatically choose S, including PageRank-Clustering as presented
here.

We used our algorithm to demonstrate and highlight the existence of local
structure in two real-world datasets. The first dataset is a social network among
62 dolphins [24]. While the graph exhibits traditional network structure such
as small-world phenomena, one can see in Figs. 5 and 6 that the dolphins
can be divided into two communities, with just a few connected to both sides.
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Figure 5: Results of PageRank-Display (α = 0.03) on the dolphin social
network [24], separating the dolphins into two communities.

Note that with larger α, the far-flung nodes become more isolated, making the
communities appear denser.

A more interesting example is shown in Figs. 7 and 8. The vertices represent
114 NCAA Division I American collegiate football teams, with edges connecting
two teams if they played against each other during the 2000 football season.
The league is divided into many smaller conferences of up to 12 teams; for each
team, about half of its games are played against conference opponents, and the
rest are played against nonconference teams. An appropriate selection of the
8 highlighted teams in Figs. 7 and 8 reveal a partition that separates their 8
respective conferences, and teams from the remaining conferences are placed
on the periphery of the drawing. Here, the larger α is more effective as the
PageRank is more concentrated near the community centers.
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