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Abstract 

A bilaterally symmetric figure on an arbitrarily oriented plane viewed 
under orthographic projection yields a "skew symmetric" figure whose 
axes of symmetry and skew constrain the orientation of the underlying 
plane. Detection of skewed symmetries and extraction of axis orientations 
is a necessary practical issue that has not received much attention. 

We develop a strong necessary condition on the axes of symmetry and 
skew in a planar skew symmetric figure which constrains them to lie on a 
one-dimensional locus in a two-dimensional space of orientation pairs. 

The practicality of our technique is demonstrated with illustrations 
from an experimental testbed. A companion paper (TR 134) discusses a 
number of symmetry evaluators which may be used in conjunction with 
our strong constraint to determine axes of skewed symmetry. 
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Introduction 

Skewed Symmetries 

A symmetric figure is one that may be formed by reflection of a "half shape" 
about a line. In Cartesian coordinates, we shall without loss of generality describe the 
generation of a symmetric figure as discarding all points with negative abscissa and 
adding the reflection of all points with positive abscissa about the x-axis. The 
resulting symmetric figure has the same properties (figure or background, intensity, 
texture, etc.) at points [x, y] and [x, -y]. 

If we take the points in a symmetric figure and map them (with a shear 
transformation) to the numerically identical points measured in oblique coordinates, 
we obtain a skewsymmetric figure. The figures retain the property of symmetry when 
coordinates are expressed in terms of the oblique axes and generally do not retain 
symmetry in terms of the original orthogonal axes. This is a model of orthographic 
imaging from an arbitrary viewpoint and we sometimes speak of the skew symmetric 
figure as being in an "image plane" or "image space." 

Two axes that together define a set of oblique coordinates in which a figure is 
symmetric are called axes of skewed symmetry for that figure. There may be many 
such axis pairs for a given figure. The axis corresponding to the axis of reflection is 
called the axis ofsymmetry and the other is called the axis of skew. We shall denote 
these a and 9. respectively (Figure 1). 
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Figure 1.Skew Symmetry under Oblique Coordinate Transformation 

Axes of symmetry may not align with the x-axis we use for measurement. 
Rotation of a skew symmetric figure is measured between the axis of symmetry and 
the x-axis. Skew of a skew symmetric figure is measured between the axes of skewed 
symmetry. Thus. an unrotated, unskewed symmetric figure has a rotation of 0 and a 



2 

skew of .,,12. In what follows, the angle of rotation is denoted a; the angle the axis o.f 
skew makes with the x-axis is denoted y, and the skew is denoted p = y - a (Fig. 2): " 
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Figure2.Rotation and Skew of a Skew Symmetric Figure 

Image Domain and Projections 

As implied above, we shall use orthogonal Cartesian coordinates for 
measurements in image space. At times we shall be interested in the coordinates 
implied by the axes of skewed symmetry. To distinguish measurements in the two 
systems, we use P = [x, y] to denote points in the "original" symmetric figure (using 
the oblique coordinates) and q = [u, v] to denote points in the "image" skew 
symmetric figure (using the orthogonal coordinates). To distinguish points in the 
same coordinates we use PI' P2' and so forth. 

To obtain translation invariance in our analysis, we measure all coordinates 
relative to the centroid or center of mass of the figure. The centroid is invariant 
under skew and rotation, and has the useful property that all axes of symmetry must 
pass through it. 

Skew symmetric figures are planar figures in the image space that are 
generated from planar symmetric figures by either of two processes: 

1) rotation in three dimensions followed by orthographic projection onto 
the image plane; 

2) oblique coordinate transformation followed by rotation in the image 
plane. 
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A restricted set of three-dimensional rotations will produce skew symmetry 
from planar symmetry under perspective transformation: A rotated axis of symmetry 
in the original figure must align with the angle of tilt (maximum z-gradient) in the 
projection. 

In both of these processes, the information about the "real" orientation and 
shape of the planar symmetric figure is lost. As a result skew symmetric figures are 
ambiguous because there are many figure-transformation pairs that could generate 
the same skew symmetric figure. The loss is due to two independent sources: 
gradient and shear ambiguities. 

A gradient ambiguity exists in the three-dimensional process because there is 
an infinite number of three-dimensional rotations that project the x-axis and y-axis 
orthographically to the same axes of skewed symmetry (Figure 3). This ambiguity is 
subject to the constraints illustrated in Figure 4 after [Kanade 79], which we have 
relabelled to avoid confusion between Kanade's notation and our own. The p-q 

parameter space is the space of x-gradients and y-gradients, which together 
determine plane orientation relative to reference axes. The solutions for plane 
orientation given a skewed symmetry lie on the locus of a hyperbola (GT, G'T) in p-q 

space. The asymptotes of the hyperbola are orthogonal to lines drawn in p-q space at 
angles a and 'Y. 

Figure 3. Gradient Ambiguity 
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Figure 4. Constraints on Gradient Ambiguity due to Kanade 

Shear ambiguity exists in both processes and corresponds to multiple axes of 
skewed symmetry. The number of axes of skewed symmetry for a figure depends 
upon the shape of the figure. Shear ambiguity is a generalization of the symmetric 
ambiguity of figures such as the circle and the square, which have an infinite number 
and four axes of symmetry, respectively. Under skewed symmetry, previously 
unambiguous figures, such as triangles with all sides of different length, become 
shear ambiguous (Figure 5). Figures of finite ambiguity under symmetry, such as the 
ellipse with two axes of symmetry, can become infinitely shear ambiguous under 
skew symmetry. 

Not all figures are more ambiguous under skew symmetry than under 
orthogonal symmetry. For example, a square retains its four axes of (skewed) 
symmetry. No figure, however, is less ambiguous under skew symmetry than under 
orthogonal symmetry. We do not know of a precise characterisation for the degree of 
shear ambiguity as a function of shape. 

Figure 5. Shear Ambiguity of an Arbitrary Triangle 

,' .. 
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Since gradient ambiguity in the three-dimensional skew symmetry generation 
process leads to figures that are not uniquely invertible even under a particular 

projection of axes of skewed symmetry, we choose the two-dimensional process as 
our model of skewing. Our results are easily related to the three-dimensional rotation 
and projection process by the well-known constraint of [Kanade 79]. 

The form of the skew coordinate transformations is p T = q, where 

T - COSa sme 
COSaCOtp -sine sinecots +cosa 

Finding axes of skewed symmetry corresponds to calculating skew coordinate 

transformations that could have taken an unknown symmetric figure into the known 
image figure. We must be able to deal with the fact that many shapes have multiple 
axes of skewed symmetry; our goal is to find all of the axes. 

Applications and Interest 

Finding axes of skewed symmetry is interesting for a number of reasons. First, 
it seems to present a basic problem in computational geometry regardless of 
applications. Second, several researchers have applied axes extracted from two
dimensional projections in determining the actual three-dimensional orientation of a 
figure [Kanade 81], [Kanade, Kender 80], [Kender 78], [Kender 80], [Stevens 79], 

[Stevens 80]. Axes of skewed symmetry are a useful special case of such axes of 
interest. Third, actual application of a skewed symmetry finder produces quantifiable 
evidence for some unintuitive axes of symmetry (i.e., those humans do not perceive 
as such). Such findings may shed some light on how biological perception of 

(skewed) symmetries proceeds. 

Analytic Constraint 

Solution 

We shall assume throughout that the figure we are analyzing is in fact derived 
from (is a skewed version 00 a planar symmetric figure. 

The development here arose while searching for properties invariant under 
skew. The starting point is the standard matrix of moments for the figure: 

M = m20 mll 

mIl m02 

where mab = ~ (xka Ykb), summed over all points Pk [xk' Yk] E figure. 



The matrix of moments for a symmetric figure is a diagonal matrix. The" 
moment mn is necessarily equal to zero for a symmetric figure, since for every points; 
[x, y] adding the quantity xy to the moment, there is another point [x, -y] adding -xy 

to the moment. 

The matrix of moments for the original figure, M, is the sum ~ PkT Pk . Let N 

be the matrix of moments measured in the image, ~ qkT qk . These are necessarily 

related by Pk T = qk' Then 

N = ~ qkT qk = ~ (Pk T)T (Pk T) = TT (~ PkT Pk) T = TT M T . 

Knowing that M must be a diagonal matrix and that T has the form given in 

the previous section, we solve for a and y as follows, where the moments mn, m20 
and m02 are from the matrix measured in the image, N. This gives us: 

a = atanum 11 tan- - m02)1(m20 tan- - m11)) 
y = atan«m02 cote - m l1)1(m 11 cote - m20)) 

Fundamental Symmetry Constraint, C. 

Taking a and y over the interval [0 .. 11) as a periodic parameter space we can 
plot the locus of (a, y) pairs meeting constraint C as a connected curve on a torus. 
Stated another way, we can now describe a as a function of y and vice versa. C 
constrains the shear ambiguity in a manner analogous to Kanade's constraint on the 
gradient ambiguity. In both cases, a two-dimensional parameter space is reduced to a 
one-dimensional locus of possible solutions. We desire a parameterization of the 
constraint C giving a and y as functions of arc length along the locus but have not 
yet achieved it. 

While all solutions under shear ambiguity are represented by points on our
 
locus, not all points on our locus represent actual solutions. This is in contrast to
 
Kanade's locus in which all points represent actual solutions. The difference is
 
fundamentally due to our use of the equality m11 = 0, which is a necessary but
 
insufficient property of symmetric figures.
 

Figure 6 shows loci for ellipses with major to minor axis ratios of one (6a), 
three (6b) and eight (6c). The major axis is aligned with the x-axis for the figures 
generating the first three loci. The fourth locus (Figure 6d) is generated from the . 
ellipse with axis ratio three under a rotation of 45 degrees. Figure 7 shows loci for". 
the equilateral triangle under zero (7a), 30 (7b) and 60 degree rotation (7c). 
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Figure6a. 

Figure 6b. 
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Figure6c. 
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Figure6d.
 
Constrained Locus of Axes of Skewed Symmetry for the Circle and the Ellipse
 

Figure 7a. 

Figure 7b. 
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1 
Figure 7c.
 

Constrained Locus of Axes of Skewed Symmetry for the Equilateral Triangle
 

Shape Independence 

The constraint C is insensitive to absolute shape. The only property of 
symmetric shapes exploited is the known value of the moment m11' In particular, the 
constraint is completely insensitive to scaling the original figure along either of the 
axes of (planar) symmetry. This even applies to nonlinear scaling. such as raising 
coordinates to a power. This insensitivity to scale implies a strong insensitivity to the 
shape of the original figure. 

Scale the original image in some fashion preserving symmetry. Then the 
original M and the new M' are related by some factors K and L: 

This holds even if the scaling was nonlinear. To preserve symmetry, the only 
restriction is that the scaling along the y-axis (axis of planar skew) must observe f(-y) 
= -f{y), i.e., be an odd function. The transformation of x coordinates can be 
completely unrestrained. The actual values of m20 and mQ2 from the original matrix 
M never appear in the solution. 

Need for Evaluation 

Since all possible solutions fallon the locus of the graph of a against Y. we 
have turned a two-dimensional parameter space into a one-dimensional parameter 
space. Thus the constraint C is a necessary but not sufficient condition to determine 
the axes of skewed symmetry in a given figure. With a more tractable problem. we 
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can now apply a variety of search techniques to locate the actual solutions among the 

possibilities. The strategy is somehow to consider (a, y) points along the locus until 

(or as long as) locus points meet some additional condition of symmetry. Several 

search techniques may be applied: e.g., hierarchical refinement of resolution, local 

maxima finding and thresholding. A companion paper [Friedberg 84] discusses 
evaluators of symmetry that can be employed to guide and terminate search. 

We do not hold out much hope for additional general analytic constraints due 

to the nature of the problem. If another constraint provided a different locus in (a, y) 
space, the intersection of loci could perhaps determine a finite number of isolated' 
(a, y) pairs. However, we can construct a figure with any given number of axes of 

skewed symmetry. Thus any general analytic constraints would have to be of 
arbitrarily high order to intersect the locus of our constraint an arbitrary number of 
times. This strongly suggests that we have captured the essence of skewed symmetry 

in so far as a finite description may be extracted from a figure. That is, apparently 

there is no shape number or other description of finite complexity which can fully 

define skewed symmetry due to shear ambiguity. 

We note further that there are essentially two ways to cope with this if one 
wants to find actual axes of skewed symmetry. The first approach is to use additional 
knowledge about the figure which increases in complexity with the complexity of the 

figure. This might be called the feature-based approach since the useful knowledge is 

likely to focus on curves, angles, sides, holes, etc. The second approach is to use 
additional properties about the figure which are bounded in complexity but provide 

satisfactory results in practice. The feature-based approach has been successfully 
applied to the detection of lateral and n-fold rotational symmetries in the absence of 

skew [Bolles 79]. In our experimental testbed we followed the second approach with 
additional evaluators of "real" symmetry. 

Any technique for detecting symmetry in the absence of skew or even in the 

canonical orthogonal coordinates given by the absence of skew and rotation can be': 
used in conjunction with constraint C to search for axes of skewed symmetry. At the 
very least, for each candidate (a, y) the inverse transformation T-l can be applied t6:.' 
all the points in the given figure and the detection technique applied to the result;' 
Feature-based techniques may offer more efficient methods for finding axes- of: 
skewed symmetry than search along the locus. 

With a priori knowledge that the shape of the original figure or the parameters 
of the imaging process are constrained, additional analytic constraints may be 
derivable. Such knowledge is often available in specific applications. An example is. 
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determining orientation of parts of known shape in industrial robotics. Prior 

knowledge of shape may be quite useful in such situations. Even when additional 
analytic constraints are created, knowledge of original shape may serve to 
disambiguate instances of shear ambiguity. 

Implementation and Experiments 

The experimental environment consisted of a Grinnell Systems GMR-26 frame 
buffer, an Adage RDS- 3001 (Ikonas) frame buffer, the Rochester Intelligent 
Gateway (RIG) and several DEC Vax computers. Software was developed on the 
Vaxen using the C programming language and locally developed graphics packages 
to run under the UNIX operating system (Berkeley Standard Distribution, Versions 
4.1 through 4.lc). (UNIX is a trademark of AT&T, Vax is a trademark of DEC.) 

The experimental testbed used the following procedure. A figure is taken as 
input data. The mass properties (moments and centroid) of the figure are 
determined. The pairs (a, 'Y) lying on the locus of constraint C are calculated to the 
desired resolution, which is currently 64 equal increments from 0 to 1T for both a and 
'Y, yielding 128 pairs. A necessary but insufficient evaluator of symmetry is applied to 
the input figure for each of these (a, 'Y) pairs. The input figure is displayed; the locus 
of constraint C is displayed with intensity proportional to the results of the evaluator 
at that point on the locus, and a plot of the evaluation vs a is displayed. The testbed 
now permits interactive selection of an arbitrary (a, 'Y) pair for display of the 
corresponding axes superimposed on the input figure. The inverse transformation 
1-1 corresponding to the (a, 'Y) pair can also be applied to the input figure and the 
results displayed. 

Input figures were represented as text for ease of manipulation, where printing 
characters represent figure and white space represents ground. Procedures to read, 
write, display graphically, reflect about an axis, and arbitrarily skew and rotate 
figures were created. The latter two procedures were used to synthesize skew 
symmetric test figures from known symmetric original figures. 

The evaluator used here is the sector symmetry evaluator, Ess ' discussed in 
detail in [Friedberg 84], where the reader is directed for more information. It was 
chosen from among eight evaluators as most effective for a domain where an area 
occupancy matrix is used to represent a figure and where significant noise in the 

figure is anticipated. 
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As mentioned above, we would like a parameterization of IX and 'Y as a function 
of arc length along the locus of solutions. This would allow us to take evenly spaced; 

(IX, 'Y) pairs along the locus. The current procedure of taking two sets of pairs, one 
equally spaced in IX and the other equally spaced in 'Y, is necessary to ensure} 

sufficient resolution along the locus when IX is changing rapidly as a function of/ 

and vice versa. 

Experimental Results 

In the following figures, taken from the Ikonas display, the upper left shows 

the input figure. The upper right is a display of the (lX, 'Y) parameter space. The 
ordinates give IX, the abscissa give 'Y. For both axes the range of values is in [0 .. .,,) 
periodic. The intensity of each point on the locus shown in the upper right is 
proportional to the evaluation of the corresponding solution normalized so at least 
one point is displayed at full intensity. The lower right is a plot of the evaluation 
(abscissa) against IX (ordinate). In this plot the evaluation is normalized by the area of 
the figure so maximum symmetry is displayed at the top of the scale and minimum 
symmetry is displayed at the bottom. 

The crosshairs superimposed on the upper right quadrant, the lines 
superimposed on the upper left quadrant and the entire lower left quadrant are 

related. The crosshairs have selected an (IX, 'Y) pair from the locus of legal solutions. 
The axes a and 9 are then displayed over the figure in the upper left. The lower left 
shows the input figure "unskewed" to correspond to that candidate solution. The 

axes superimposed on the lower left figure are the unskewed a and 9 which are 
equivalent to the x- and y-axes. In this photography, the brighter of the two axes 

(where the distinction can be made) is the axis of symmetry. The dimmer is the axis 

of skew. 

The extreme noise in the figures shown in the lower left quadrant is due to two 
generations of quantization noise introduced through the skewing process. The first 
skewing synthesized the figure in the upper left. The candidate solution was then 
inverted and applied to the upper left figure to produce the lower left figure. There 

is an additional source of quantization in our experimental testbed: We only resolve 
solutions to .,,/64 radians or about 2.81 degrees. This limits our ability to undo initial 
transformations precisely. 

We earlier noted that the triangle is shear ambiguous in three ways. We begin 
this section with an example of a scalene triangle. In Figures 8a through 8c the 
solutions for this example are shown. There are three clear peaks in the plot of Ess 
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against a, one for each solution. In each case we show the original is a symmetric 
(isoscalene) triangle. The relative proportions of these solutions vary considerably. A 
parallelogram is shear ambiguous in four ways. Figures 9a and 9b demonstrate two 
of the four solutions. The other two solutions are duals of those shown in Figures 9a 
and 9b, with the axes of symmetry and skew swapped. Notice that two of the 
solutions are rectangles, while the others are rhombi. Figure 10 shows a figure 
ambiguous in five ways. Only one of the solutions is shown for brevity. As with the 

triangle, all the solutions are aligned along a "similar" axis while the relative 
proportions of length to breadth vary substantially. In Figure 11 we illustrate the 
infinite shear ambiguity of an ellipse. An arbitrary solution is shown. 

Having shown that ellipses provide no information about axes of skewed 
symmetry, we introduce texture in Figure 12a. The pattern shown was randomly 
generated with density of about 30%. As displayed it is symmetric about the y-axis. 
The E evaluator is able to find this solution. The pattern is precarious, as shown in ss 
Figure 12b. Here the same figure has been skewed and rotated. The solution 
displayed is the correct one, but it is clearly down in the noise and not distinguished 
from other possible solutions. We see that a symmetric texture alone wil1 not be 
enough to pull out axes of skewed symmetry. On the other hand, if the input figure 
of Figure 12b were sampled from real imagery and not synthesized discretely from 
discrete originals, more of the texture symmetry would be available rather than less 
and thus the evaluator would work better. Figure 12c shows the combined effects for 
overall shape and a symmetric texture. Here we augment one solution and diminish 
another. The augmented solution is displayed and is, in fact, the correct solution. 

Figure l3a shows the solution for an shape derived from outlines provided by 
the Production Automation Project at the University of Rochester. There is one 
solution evaluated by E as extremely symmetric. But what are the three lesser but ss 
distinct peaks? Figure l3b shows the dual solution for Figure l3a. Figure Bc shows 
one of the two "diagonal" solutions. These three "extra" local maxima are 
unintuitive results. An examination of the "original" figures in the lower left shows 
that there is in fact a "degree" of symmetry present. 

While Figure 13 shows plausible but unintuitive axes of skewed symmetry, 
Figure 14 demonstrates a deficiency of E using Stevens's example of the outline ofss 
a mousehole. Figures 14a and 14b display the selected "correct" solution, but there 
are two extremely sharp local maxima of substantial magnitude. Figure 14c selects 
one of these maxima. While a case could be made for a "minor degree" of symmetry 
in the original figure displayed in the lower left, an examination of the figure with 
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the definition of Ess in mind shows that this maxima is likely to be an artifact of the 
symmetry evaluator [Stevens 80]. 

Figure 8a. 

" 
" 

Figure 8b. 
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Figure 8c. 

Figure 9a. 
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Figure 9b. 

Figure 10. 
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Figure 11. 

Figure 12a. 
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Figure 12b. 

Figure 12c. 
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Figure l3a. 

Figure l3b. 
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. Figure Be. 

Figure 14a. 
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Figure 14b. 

Figure 14c. 
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Unintuitive Results 

Frequently the experimental system produced results that were unexpected but 
quite reasonable upon reflection. Some of the results follow from the nature of the 
constraint C; others are artifacts of the differences between (our) human evaluations' 
of symmetry and the symmetry evaluators applied to the figures. 

A long thin parallelogram presents problems for the detection of axes of 
skewed symmetry. The behavior at the short ends determines the angle of the skew 
axis when the symmetry axis is aligned with the long axis of the figure. Many 
evaluators find it hard to distinguish between various candidate skews. The limiting 
case is an infinitely long, narrow strip. In this case we can't observe the ends and thus 
skew is undetermined. This much was intuitive (to us). Experiments later forcibly 
brought to our attention the symmetry of the locus of the constraint C. An infinitely 
long, narrow strip has two kinds of ambiguity due to undetermined axes. First, the 
skew axis is undetermined when the symmetry axis is aligned with the long axis. The 
only prohibited y is a. Second, the symmetry axis is undetermined when the skew 
axis is aligned with the long axis. In this second case the long narrow strip may be 
thought of as a short, infinitely fat strip and the only prohibited a is y. 

An different kind of unintuitive results developed from experiments with a 
"Christmas tree" figure (Figure 15). The evaluators initially gave unexpected results 
from relatively moderate degrees of skew. Analysis of the results showed that the 
evaluators were finding substantial evidence that the figure was essentially a triangle. 
well before the amount of skew needed to distort the figure into a triangular blob in 
(our) human eyes was reached. An objective examination of a skewed Christmas tree 
indicates that. in fact, the figure differs less and less from a triangle as skew is 
applied. The difference readily becomes sufficiently small that three solutions for 
axes of skew symmetry are found while the human eye still sees just one. After 
sufficient skew distortion we perceive the figure as a mangled triangle rather than a 
skewed tree, or at least, as some shape which is not a tree. 
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Figure 15. "Christmas tree" shape 

Conclusions 

We have addressed the problem of determining axes of skewed symmetry from 
planar skew symmetric figures. This is of interest in determining three-dimensional 
orientation of objects. It is a necessary step in order to apply Kanade's constraint on 
three-dimensional orientation given axes of skewed symmetry that, to our knowledge, 
has never been sucessfully developed. 

In general there may be many sets of axes for a single figure. We call this shear 
ambiguity. The existence of shear ambiguity indicates that determining three
dimensional shape from a single view a fa Kanade requires solving a problem with 
an additional degree of freedom over that discussed in [Kanade 79]. 

We develop a constraint, C, on the possible sets of axes of skewed symmetry 
based on the matrix of moments for a figure. Axes must meet this constraint to be 
axes of skewed symmetry, but meeting the constraint is insufficient to guarantee 
skew symmetry. General analytic solutions for axes are skewed symmetry are 
unlikely to exist given the potentially unbounded shear ambiguity. Therefore, 
evaluation of symmetry for each set of axes on the locus of constraint C is a 
necessary practical step. 

An effective evaluator of symmetry used in conjunction with constraint C has 
been exhibited. 

The practicality of finding axes of skewed symmetry from planar figures has 
been demonstrated. We give several examples of experiments, ranging from those 
showing the expected results through those yielding unintuitive results to those 
demonstrating a limitation of our experimental testbed. 
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Suggestions for Future Work 

A Prior; Shape Exploitation 

If there are constraints on the original shape of the figure being processed (e.g., 
figures are known to be portions of automotive connecting rods) or if there are 
constraints on the axes of skewed symmetry (e.g., aerial photography with known 
relation between camera and ground coordinates) additional analytic constraints may 
be developed. 

Feature-based Extraction 

Figure representations that lend themselves directly to providing constraints on 
axes of skewed symmetry could be developed that eliminate most if not all of the 
searching performed by our testbed. Feature-based techniques are quite effective in 
finding real symmetry. In part this is because they "know where to look" for 
corresponding features. 

Our research is concentrating on polygonal approximations to figures. At a 
"natural scale" all axes of (skew) symmetry either bisect a side or pass through a 
vertex of a (skew) symmetric polygon. This places some obvious constraints on 
candidate values of a. In addition, we are investigating a kind of dual to the (a. y) 

parameter space. Constraint C gives a locus in a two parameter space corresponding 
to the solutions of four equations with five variables: a, y, three moments in the 
image figure, and two (unknown) moments in the original figure. Each point (a, y) 

along the locus corresponds to a pair of moments (m20' m02) in the original figure. 
We are interested in looking at the locus in the "moment" space corresponding to 
constraint C and seeing what happens when a "piece" of the image figure is 
removed, producing a modified image figure. 

Texture Exploitation 

Skew transformations significantly alter some forms of texture. Consider radial 
lines or concentric circles about the centroid as a texture pattern. In an unskewed 
figure, these lines are of uniform density around the figure. In a skewed figure.ithe 
density of these lines varies with position and the axes of skewed symmetry can, in 
fact, be recovered from the variations in texture density. A generalization of-this 
behavior and its exploitation would provide a useful tool in processing obscured: 
images or in further constraining the axes of skewed symmetry for visible ones-For 
closely related issues, see [Kanade, Kender 80]. 
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Perspective Generalization 

If we adopt an imaging model with perspective projection, we can no longer 
use constraint C on shear ambiguity or Kanade's constraint on gradient ambiguity. 
Many tasks in robotics and "near" vision must process images produced under 
perspective projection. Generalizing either constraint would be useful. 

Appendix: Calculating Mass Properties (moments) 

Throughout our experiments we used an area occupancy matrix representation 
for our figures. Calculating mass properties with such a representation is trivial. Steve 
Shafer pointed out to us the utility of perimeter representations in practical computer 
vision work. This appendix is to indicate how to calculate the moments of an image 
when an area representation is not available. 

The simple technique described here and the others referenced are all 
variations on Green's theorem and Stokes' theorem, where a double integral is 
reduced to a single integral. Specifically, an integral over the area of a figure IS 

reduced to an integral around the (directed) perimeter of the figure. 

Polygonal Approximation 

Assume a polygonal approximation to a figure composed of sequences of 
connected line segments. Each sequence defines a closed curve where the area to the 
"left" of the curve is the figure and the area to the "right" of the curve is the ground, 
i.e., a simple polygon would be described by listing its sides counterclockwise about 
the center. A hole would be described by listing its sides clockwise about the center. 

With a little care a perimeter represented by its component points (as might be 
produced by a region finder/segmenter) can be treated as a polygonal approximation 
to a figure, so the simple technique described here can be used without incurring the 
expense of an explicit line segment approximation. 

Polygonal figures with directed perimeters as just described may be broken into 
a set of triangles. One vertex of each triangle is the (arbitrary) origin and the side 
opposing that vertex is a line segment of the directed perimeter. The moments 
calculated for the triangles respect the direction of the line segment opposing the 
vertex. That is, we want "holes" to remove areas, second moments, etc., while 
"figures" are to contribute positively. The sums of the moments of these triangles are 
the moments of the polygonal figure. 
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We list here simple formulae for calculating various moments on such triangles. 
Let [Xl' yd be the beginning and [x2' Y2] be the end of the line segment forming part 
of the directed perimeter of the polygonal figure. 

= (xlY2 - x2YI)/2 

= (y2x12 + (Y2-YI) xlx2 - Ylxl)/6 

= (xly22 + (xl-x2) YIY2 x2Y12)/6 

= (Y22 (2xlx2 + X12) + 2YIY2 (x12 - x22) - Yl2 (2xlx2 + x22))/ 24 

Ylx23)/12= (Y2x13 + (Y2-YI) (x12x2 + xlx22) 

x2Y13)/12= (XIY23 + (xl-x2) (Y22YI + Y2Y12) 

xl2x2= (Y23 (x13 + 3xl2x2 + 6xlxl) + ylYI (3x13 + - 6x23) 
- Yl2Y2 (3x23 + 3x22xI - 6x13) - yl3 (x23 + 3xlxI + 6x2xI2))/180 

Xl 2x22 += (Y2x14 + (Y2- YI) (x13x2 + xlx23) - Ylx24)/ 20 

4 3 2 2 3 4= (xIY2 + (xl-x2) (Y2 YI + Y2 YI + Y2YI) - x2YI )120 

Chain-Code Representation 

[Freeman 74] discusses the calculation of a number of mass properties given 
the chain code representation of a figure. 

Piece-wise Cubic Approximation 

[Miles, Tough 83] provide a complete algorithm for computing a piece-wise 
cubic approximation to a figure and then calculating mass properties for that 
representation. 
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Ronald Loui, David Sher and Stuart Friedberg approached the problem with 
variations on a boundary pair Hough transform, while Mark Brucks applied ",-s 

curves. At that point the Hough transform was sufficient to extract the axes of 

skewed symmetry without the benefit, or even knowledge, of constraint C. Analytic 

constraints on parameters a and y were sought as an afterthought. 

Shmuel Tomer assisted us with a partial constraint on the axis of skew. Once 

the full constraint was discovered, David Sher made many helpful suggestions on 
refinements and possible further constraints. Their assistance is much appreciated. 
We would like to thank Mark Brucks for sharing with us his incomplete results on 

extracting symmetry and skewed symmetry from the ",-s curves. 

Finally, the symbolic computation we went through was tremendously 
facilitated by the "vaxima" version of the Macsyma program, made available to us by 
the joint efforts of MIT's Project MAC and University of California-Berkeley's 
UNIX development and software distribution project. 
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