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Abstract The efficiency of a software piece is a key factor for many systems.
Real-time programs, critical software, device drivers, kernel OS functions and
many other software pieces which are executed thousands or even millions of
times per day require a very efficient execution. How this software is built can
significantly affect the run time for these programs, since the context is that
of compile-once/run-many. In this sense, the optimization flags used during
the compilation time are a crucial element for this goal and they could make a
big difference in the final execution time. In this paper, we use parallel meta-
heuristic techniques to automatically decide which optimization flags should
be activated during the compilation on a set of benchmarking programs. The
using the appropriate flag configuration is a complex combinatorial problem,
but our approach is able to adapt the flag tuning to the characteristics of the
software, improving the final run times with respect to other spread practices.

1 Introduction

When a software package is developed, there are a lot of aspects which should
be considered. The ISO/IEC 25010 standard [1] defines eight characteristics
(with many sub-characteristics), such as security, usability, compatibility, ef-
ficiency... which must be taken into account when evaluating a software.

In this work, we focus on software in which the performance is one of
the key features requested by the stakeholders. Many systems fall into this
category. Critical and real-time systems [2] clearly need to response to the
external environment changes as quick as possible. But, there are also non-
critical software pieces in which performance is very relevant like program
which are constantly executed and their runtime affects to the complete soft-
ware ecosystem, like drives, kernel OS functions, or communication protocols.
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Developers focus on the software design and on the source code to get an
efficient program. These aspects are indeed crucial, but they often pay little
attention how their software is built. Some world spread compiler options, like
O3 or hardware platform specific ones in C/C++, are blindly applied without
any additional study. The main contributions of this paper focuses on how
the optimization flags used during the compilation process affect to the final
software performance and how they can be optimally selected to build a more
efficient program. We analyze the influence of 181 optimization flags provided
by GCC compiler [3]. We model it as a complex combinatorial problem, and
provide a parallel automatic tool to decide which options should be activated
to get a high-performance software on a set of benchmarking problems.

The rest of this article is organized as follows. The next section introduces
the problem solved, modelling it as a combinatorial problem. Section 3 ex-
plains the algorithmic approaches proposed in this paper. Section 4 shows the
experimental design and Section 5 analyses the results from different points
of view. Finally, the last section concludes and gives some open research lines.

2 Problem description

Modern compilers have a rich set of optimization flags and a manual selec-
tion of the most adequate configuration is a hard task. Compilers support
a number of basic optimization level to make easy this process. However,
the question is if these basic levels are adequate for any software and any
scenario. Traditional compiler optimizations define a well-studied area, and
some issues are been analysed in the literature in the past. But, these works
follow a different approach to the proposed in this paper: they study the com-
piler phase order [4], compare different compiler [5], optimize specific software
[6, 7], or evaluate specific flags for some hardware platforms [8].

In this paper, we have modelled the problem of selecting the optimal set
of compiler flags as a combinatorial problem. Given a program P and a set of
flags F' = {f1, fo,..., fn}, this problem consists on finding a binary vector
X = (21,22,...,2n) (where z; € {0,1} means if the flags f; is activated or
not) which minimizes the execution time of P when it is compiled with set
of flags indicated by X {fi|lz; == 1Vie {1,N}}:

miny Fitness(X) = executionTime(compile(P, F, X)) (1)

where compile(P, F, X) is a process which generates an executable program
compiling the program P selecting the flags from F' indicated by X and
executionTime(P) calculates the execution time of the executable program.

We focus on the optimization flags of GCC compiler, a popular C language
compiler. This language is the most prominent one for the developing this
kind of critical software and GCC is the most used compiler for this language.
We will consider all the 181 flags activated by level O3, the most aggressive
and commonly option used to get efficient executable codes.
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3 Our proposed approach

This problem is very complex in manifold ways. On the one hand, as we
showed in Equation 1, the evaluation of a candidate solution requires the
compilation and execution of a program. Even in the smallest software pieces,
these activities requires between 0.5 and 1 second. On the other hand, the
search space is quite large: we have two options for each flags (it is activated
or not), therefore, there are 2'8! ~ 3.1 x 10%* candidate solutions.

The combination of these two factors makes hard the utilization of methods
which require a large number of evaluations. Therefore, we have chosen a
trajectory-based metaheuristic with a fast convergence to get some accurate
solutions in a reasonable time. We have used Variable Neighborhood Search
(VNS) [9]. This technique solves optimization problems by doing systematic
changes of neighbourhood within a local search. VNS is a descendent method
which does not follow a single trajectory since it explores different predefined
neighbourhoods of the current solution using a local search (LS). The current
solution is changed by a new one if and only if an improvement has been made.
The basic idea is to change the neighbourhood structure when the local search
is trapped on a local optimum. There exist several parallel models for VNS
[10, 11]. In this work, we have used two parallel variants:

e Parallel moves model: The parallel moves model is a kind of
farmer/worker model allowing to speed up the exploration of the possi-
ble moves. At the beginning of each iteration of the algorithm, the farmer
sends the current solution to a pool of workers. Each worker explores some
neighbouring candidates, and returns back the results to the farmer.

e Parallel multi-start cooperative model: The model consists in launch-
ing in parallel several cooperative homogeneous VNS. FEach VNS is ini-
tialized with a different solution. VNSs of the parallel multi-start model
periodically interchange the current solution during execution.

Now, we show will how this generic template has been instantiated for our
concrete problem. To do this, we have to describe the solution representation,
the fitness function and the definition of the different neighbourhoods.
Solution encoding. In the previous section, we define the solution of this
problem as a binary vector. With this representation, a solution is a vector
X where x; = 1 indicates if the flags f; is activated while z; = 0 means that
the flag f; does not appear in the compilation command. But our preliminary
experiments showed that this approach was not the most appropriate repre-
sentation. According to the documentation, the O3 option activates all the
flags considered in this work and no more, but the results of our preliminary
experiments (see Table 1) showed a significant difference between using the
03 option and the activation of all the flags (without using the O3 option).

Based on these results, we decide to change the meaning of each vector
component. Now, the compilation is always performed with the O3 option
but our algorithm is able to deactivate some flags from O3 option. Therefore,
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Table 1 CLBG corpus of programs and execution time (in usec) of the compiled programs
with different options

Benchmark  Description O3  All the flags
binary-trees Allocate/traverse/deallocate binary trees 75579 84924
chameneos-redux Symmetrical thread rendezvous requests 390695 436925
fannkuch-redux Indexed access to tiny integer sequence 78313 128914
fasta Generate and write random DNA sequences 18425 59158
k-nucleotide Hashtable update and k-nucleotide strings 39271 50916
mandelbrot Generate Mandelbrot set bitmap file 13926 23865
meteor-contest Search for solutions to shape packing puzzle 45314 72318
n-body Double precision N-body simulation 46661 184670
pidigits Streaming arbitrary precision arithmetic 21742 39185

regex-redux Match DNA 8mers and substitute magic patterns 25712 32673
rev-complement Read DNA sequences, write their rev-complement 34159 53811
spectral-norm Eigenvalue using the power method 61149 69154

thread-ring Switch from thread to thread passing one token 714616 736524

x; = 1 indicates if the flag f; is deactivated' while z; = 0 means that we
allow to O3 to use the flag f;. Preliminary experiments show that the order
in which the flags are deactivated does not change the overall performance.
Fitness function. We use the (Equation 1) as fitness function. The main
complication found in our preliminary experiments is that although the hard-
ware platform is dedicated to this work and the tested programs are deter-
ministic, in some cases the time consumed by the same program (compiled
with the same flags) is significant different. This is due to the operating sys-
tem, that is composed by a quite large number of internal processes which
are executed in a non-controllable way (by the user). This behaviour could
provoke misleading conclusions. To deal with this difficulty, we execute each
program five times and get the lowest value. We use this value (instead of
the mean, median, or other statistical rate) since it is the most accurate rep-
resentation of the execution time of the program without any interruption of
any external software. However, this approach makes even harder the search
process since the evaluation of a candidate solution is now more expensive.
Neighbourhood. Since we encode the solutions as a bit string, we can ap-
ply traditional variation operators. In concrete, we use a variant of bit-flip
mutation. We define that X' is in the k-neighbourhood of X if the hamming
distance (number of different elements between the bit string of X and the
one of X’) is exactly k. Then, our VNS starts changing only one bit in the
solution (k = 1) to get a neighbour. When the convergence is detected (we
explore 5 neighbours and all these candidate solutions are worse than the
current one, in our experiments), it changes the neighbourhood and varies at
most two bits (k = 2). This process continues until the N/2-neighbourhood
is reached and in that moment it backs to the first neighbourhood. VNS also
backs to the first neighbourhood when a new best solution is found.

I In GCC, you can activate flag with -fflag but you can also deactivate it with —~fno-flag
if another option (O3 in our case) has previously activate it.
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4 Experimental Design

This section is mainly devoted to describe the benchmark problems used to
test our algorithm but before describing them, some comments about the
setting of our approaches and the testing platform.

Our sequential proposed algorithm has only a single parameter: the stop
condition. Since the fitness function is a very time-consuming task, we use a
maximum number of evaluation (4000 in our experiments) as stopping cri-
terion. It is a quite low value but most of the runs have already converged
before reaching this number of fitness evaluations. In parallel techniques, we
use 8 processes which cooperate (in multi-start approach) every 25 evalua-
tions using an unidirectional ring topology. Finally, we have performed 30
independent runs of each experiment to gather statistical information and
then apply Kruskal-Wallis test to validate if the results are statistically dif-
ferent. We use these values to decide in the results’ tables when the values
are similar or not (the actual values are not shown due to the lack of space).

In this study, we propose three VNS variants: the sequential version,
VNSgs.q, and two parallel ones; one following the farmer/worker scheme,
VNSr_w, and a cooperative multi-start approach, VNS¢ /5. We compare
them against four static and commonly used compiler configurations:

None: No flags are activated.

All: All the considered flags in this study are activated.
O2: It uses the O2 option to compile the program.

03: It uses the O3 option to compile the program.

In tables reporting results (next section), we will present how the execution
time is reduced (percentage) with respect to the most basic configuration
(None one). This value is calculated using the next equation:

tNone - tAlgorithm

reduction(Algorithm) = x 100 (2)

tNone

A larger value indicates a higher reduction in the execution time and it is
better. The hardware platform is composed by 8 machines with Intel i-core7
processor at 2.6 GHz with 8 GB of RAM memory. The operating system is
Ubuntu/Linux 14.04.5 LTS and the GCC version is 4.8.4.

In order to obtain a comparable, representative and extensive set of pro-
grams we have explored The Computer Language Benchmarks Game (CLBG)
[12] which has been used in previous studies in the literature such as [13].
The CLBG has gathered solutions for 13 benchmark problems (Table 1). An
interesting feature of this set of programs is most of them (with the excep-
tion of meteor-contest) can be easily tunable with a parameter or file in
order to generate faster or slower executions. Also, this benchmark includes
programs with different characteristics; in concrete, five of the programs are
also using some kind of parallelism (k-nucleotide, spectral-norm, fasta,
rev-complement, and thread-ring).
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5 Experimental Analysis

In this section, we will show the results obtained in our experiments. We
have performed two main experiments and analyses: in our first analysis
(Section 5.1), we study the numerical performance of the techniques, while
in our second study (Section 5.2), we analyse the solutions obtained by our
proposed tool, and discuss about the optimization flags activated or deacti-
vated according to the problem tested.

5.1 Quality Analysis

Our main goal in this section is to study the quality of the solutions provided
by our tool. In the Table 2, we show the reduction obtained by each of the
configurations calculated according to the Equation 2 with respect to the
None version. Several conclusion can be obtained from that table.

Table 2 Average time reduction (percentage) with respect to the None configuration.
Boldfaced values represent the best values with statistical significance.

Benchmark All 02 03 VNSgs., VNSr_yw VNScus

binary-trees 6.48 12.41 16.77 20.66 19.13 23.78
chameneos-redux 25.58 27.94 33.45 45.43 50.31 53.41
fannkuch-redux 25.42 50.21 54.69 73.51 72.97 73.38

fasta 3.86 35.85 70.06 74.65 76.32 77.2
k-nucleotide 28.69 40.37 45.00 55.99 50.12 58.39
mandelbrot  11.09 37.41 48.12 50.86 54.18 54.78
meteor-contest 13.76 25.61 45.96 50.58 50.84 52.34
n-body 29.95 74.20 80.41 83.30 82.57 82.40
pidigits 26.57 51.47 59.25 66.58 71.53 77.31

regex-redux 30.72 43.83 45.48 52.42 55.31 56.85
rev-complement 12.20 18.42 44.26 50.80 53.51 67.37

spectral-norm 3.12 10.83 14.34 42.56 50.74 51.34

thread-ring 3.64 4.87 6.51 12.54 9.34 10.75

Average 12.77 26.93 36.39  47.25 47.42 50.99

First, the utilization of the optimization flags allows to reduce the final
execution time in all the benchmark problems tested in this work. In fact,
this reduction is very important in most of the cases and we can observe a
reduction around 50% (or even larger) for 11 out 13 cases. Only in a specific
benchmark problem, thread-ring, the benefit of the optimization flags is
minor (between 3.6% and 12.5%). This is due to this application creates
many threads and switches constantly among them. Then, the influence of
the code generated by the compiler is smaller since most of the time is spent
changing among thread without executing real calculations. This confirms
the intuitive idea that the efficacy of the compiler depends on the amount of
non-calculation operations in the code (switching context or IO operations).

Second, as we stated in Section 3, the O3 configuration obtains different
results than the configuration which activate all the flags and this difference
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is quite important in most of the scenarios. These figures means that the O3
adds some additional flags which are not mentioned in the documentation.

Third, our approaches outperform in all the instances to the classical O3
configuration. The difference varies from 4-5% (for binary-trees or n-body)
to 41.5% (for fannkuch-redux). The average reduction provided by VNS with
respect to the O3 option is 18%, a significant reduction. This gives us some
hints that the blindly utilization of O3 is not the most adequate configuration
in general and some additional studies are need to select the most beneficial
flags for each program. Even in the cases in which the reduction is small,
these gains can be very important for critical systems.

Analyzing our proposals, we observe that the VNS5 version outper-
forms (or it is equal to) the other two version in 12 out of 13 test problems.
This is due to the parallel versions maintains a better diversity, and while the
serial version is stuck in a local optimum, the parallel versions is able to get
out of it and to continue the search for better solutions. However, this slows
that the convergence (see time with one processor in Table 3) provoking that
parallel versions consume their computational badge without improving the
sequential solution or even providing a worse one when the problem requires
a high number of evaluations to get the local optimum (like in thread-ring)

Table 3 Average execution time (in sec) of our approaches and the speedup

Benchmark VNSgeq VNSr_w VNScums
1 proc. 8 proc. Speedup 1 proc. 8 proc Speedup

binary-trees 2735.20 3397.12 463.45 7.33 3042.64 435.28 6.99
chameneos-redux 2142.90 2800.34 386.25 7.25 2494.12 346.41 7.2
fannkuch-redux 3175.00 4011.93 583.98 6.87 3597.28 510.25 7.05
fasta 1995.40 2650.69 372.29 7.12 2404.66 328.95 7.31
k-nucleotide 4293.60 5147.17 698.39 7.37  4643.53  639.6 7.26
mandelbrot 2269.30 2892 429.72 6.73 2711.36 381.34 7.11

meteor-contest 2974.00 3854.3 559.4 6.89 3583.97 506.21 7.08
n-body 3006.90 3734.57  528.23 7.07 3592.64 526.78 6.82
pidigits 1189.60 1605.96  224.92 7.14  1507.1 207.3 7.27

regex-redux 2323.80 3086.94  410.5 7.52 287222 402.27 7.14

rev-complement 2153.00 2883.3 402.7 7.16  2727.64 380.96 7.16
spectral-norm 2018.50 2768.57 394.38 7.02 249487 351.89 7.09
thread-ring  4550.40 5061.86 729.37 6.94 4733.78 660.22 7.17

Average 2533.18 3240.36  456.05 7.11 2983.49 418.69 7.13

Finally, in Table 3, we show the average execution time required by our
approaches. We show the execution time in a single processor (with 8 threads)
aganist a real parallel configuration (with 8 machines) in order to calculate
the speedup. Comparing the versions on a single processor, we notice that
the parallel versions spend more time that serial one. As we said, parallel
version have slower convergence but it allows to get better solutions. When
the parallel versions are run in an actual parallel platform, the execution time
is reduced in a very significant way, with a very good speedup. The VNSz_
usually is slower than VNS¢ s since they require more synchronization (it
waits to the finalization of all the workers before moving to the next iteration).
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5.2 Analysis of the selected flags

Now, we study the flags selected by our proposals. The Figure 1 shows how
many times is selected each flags in the best found solution of each indepen-
dent run (as percentage) in some representative problems. Since the number
of flags is too high to be shown in the figures, only the extremes are presented
(the first five and the last five considering they are sorted by percentage).

First, we can notice that depending on the problem, a different set of flags
is selected and these flags are chosen according to the characteristic of the
problem. For example, we can observe that in fannkuch-redux (Figure 1b),
the flag -finline is always active. This is logical selection since the source
code of this program has five inline functions and they are used constantly.

Second, we can notice that in the programs in which we obtained large
runtime reductions, fannkuch-redux, fasta, and n-body (see Table 2), there
are a clear distinction between the appropriate flags (with percentages close to
100%) and the non-beneficial flags (around 20% or even lower). This can also
help to explain why in some test cases the All configuration offers a very low
performance. This poor performance is due to it activates these non-beneficial
flags (which can even harm the final runtime in specific programs).

Also, we can observe in some applications (like thread-ring, Figure 1f)
that the distinction of the appropriate flags is not so clear (percentages lower
than 80%). This is an expected result since, as we said before, for this problem
the optimization flags has only a minor effect in the final runtime.

Finally, in the last figure, we aggregate the values for all the functions.
We can notice that there is not a clear set of flags which should be chosen
always (the difference between the most selected one and the last one is lower
than 30%) since, as we said above, it depends on the features of the problem.
However, we can extract some information about our benchmark analysing
this figure. For example, since the -finline is the most selected flag, we
can deduce that our programs use this kind of inline functions frequently.
Examining the source codes, we can observe than 9 out 13 programs include
some inline functions confirming our deduction from the figure.

6 Conclusions

In this work, we have analysed how the optimization flags can affect to the fi-
nal performance of a software system. Here, we have modelled the compilation
process as a combinatorial problem and we have proposed three techniques
to automatically decide which optimizations flags should be activated.

Our results show that world spread levels (like O3 or O2) produce very ac-
curate results but they are not the optimal ones, and the flags chosen can be
refined to get better performance. Our proposed techniques are able to out-
perform the results of O3 in all the tested programs (a wide set of 13 different
software pieces). The parallelism (specially, using the multi-start approach)
does not only allow to reduce the execution time but it also improves the
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quality of the solutions. We have also observed that the selection of the flags
can be performed with the programs executed in small scenarios and later,
you can use that configuration to other scenarios (with larger inputs).

There are several open research lines in this domain. First, besides to flags
activated by O3, modern compilers offer a wider set of flags and parametric
options. Second, other compilers like LLVM or Microsoft Visual Compiler are
also very popular nowadays, and we are interesting in performing a similar
analysis for them. Finally, we also plan to analyse other metaheuristics in
order to perform a more efficient search.
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